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Abstract 

I present a study comparing selection techniques for low-cost mobile VR devices, 

such as Google Cardboard. My objective was to assess if alternatives to common head-ray 

selection methods were feasible with current computer vision tracking approaches on the 

mobile. In the first experiment, I compared three selection techniques, air touch, head ray, 

and finger ray. Overall, hand-based selection technique (air touch) performed much worse 

than ray-based selection techniques. In the second experiment, I compared different 

combinations of selection techniques and selection activation methods. Results indicated 

that the built-in Cardboard button worked well with head ray and hand gesture with ray-

based techniques can be an interaction potential on mobile VR. I concluded that camera-

based ray selection techniques and hand-based activation mechanism are promising on 

Mobile VR in the future. 
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1    Chapter: Introduction 

1.1 Technology of Virtual Reality 

Immersive virtual reality, more commonly referred to simply as Virtual Reality (VR), 

offers a way for people to interact with simulated 3D environments as naturally as the real 

world [32,3]. The objective is to take advantage of the user’s experience with the real world 

and transferring understanding from reality to the simulated environment [2], or vice versa 

in training scenarios such as through military training and phobia therapy. In a good VR 

system, users report having strong feelings of really “being there”, a phenomenon known 

as presence [20]. Presence is thought to be caused, at least in part, by systems offering a 

high level of immersion [7]. 

According to Slater [20], the definition of immersion is “the objective level of sensory 

fidelity a VR system provides”. Since ideal VR systems include all sensory modalities, 

better visual display technology (e.g., using stereo rendering, or head-tracked viewpoint) 

enhances immersion. However, it also relates to the quality of sensors used both for 

interaction, and to support head-tracking. If the sensor data is synchronized well (i.e., little 

latency and noise due to technical problems) then the immersion will be greater and thus 

so too will be presence. 

Various tracking systems have been developed to work with different types of VR 

devices. The most common examples include full-body tracking and head tracking. Full-

body tracking requires a user to wear markers spread across the body, which are typically 

tracked by cameras for real-time computation [23]. This type of tracking necessitates 

complex data processing to determine the position of each marker worn by the user. Full-

body tracking can offer absolute 6 Degree of Freedom (DOF) tracking. Head tracking, 
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which often uses 6DOF trackers, is a key element of immersion. It is achieved by tracking 

the user’s head orientation and position to match the view presented in a head-mounted 

display (HMD). Head pose information can be acquired using various high-end sensors 

(e.g., optical, magnetic), but today, inertial sensors such as accelerometers and gyroscopes 

built into HMDs can be sufficient.  

 Although several VR displays have been previously developed, the most common 

commercial solution today is the head-mounted display (HMD). Commercial HMDs often 

include tracked hand-hold controllers as input devices. The two most popular devices are 

the HTC Vive1 and the Oculus Rift2. Both include an HMD, two controllers that allow the 

user to interact with the virtual environment and extra sensors to track the HMD and 

controllers. They are priced at $699 and $529 respectively. Due to factors such as high 

price and physical space requirements, these devices have reached only a limited market 

[27]. In addition, these devices require a high-end PC to drive them. To overcome this 

shortcoming, future self-contained versions of the Oculus Rift3 will no longer require a PC 

anymore. This suggests that VR is trending towards portability.  

A popular alternative to dedicated VR devices is mobile VR devices. Mobile VR 

devices do not need an external computing device. Instead, a mobile phone (which is 

assumed to already be in the user’s possession) acts as both the computing device and 

display. As a result, mobile VR devices are priced much lower than dedicated devices, and 

                                                 

1 https://www.vive.com/ca/product/ 

2 https://www.oculus.com/ 

3 https://www.oculus.com/?id=1227450960663477 
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also boast lower hardware requirements. Devices such as Google Daydream 4  (which 

includes a plastic HMD shell for a mobile phone as well as a touchpad controller) are priced 

at around $140 and makes VR experiences possible with ordinary mobile phones. Google 

Cardboard5 (Figure 1) and similar devices which use a cardboard HMD (but no input 

device) are even cheaper and more portable.  

 

Figure 1 Google Cardboard provides a cardboard box to hold a mobile device, and optics to help 

the user view the screen. Typically such devices do not include an external controller, but offer a 

button to support interaction (seen at the top right side of the device). 

 

Google Cardboard is, simply put, made of pieces of cardboard and two focal length 

lenses. When using it, the user must put a smartphone into the cardboard box. The 

smartphone’s built-in accelerometer and gyroscope are used to track head rotation. The 

button located on the side of Google Cardboard can be pressed down and can provide input 

(e.g., activating a selection). These are among the most accessible VR devices today. 

Lower costs and usage simplicity attract a larger population of customers. According to 

                                                 

4 https://vr.google.com/daydream/ 

5 https://vr.google.com/cardboard/ 
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Statista6, since 2014, Google has shipped 10 million Google Cardboard headsets and it is 

estimated to have sold between 2 million and 3.5 million Daydream devices in 2017 alone7. 

Samsung sold around 6.7 million Gear VR headsets in 20178. Besides, the fact that big 

companies (e.g., Facebook) have begun to invest in mobile VR devices suggests that 

mobile VR has a promising future. 

1.2 Motivation 

Combining cheap and lightweight cardboard-style HMDs with mobile devices makes 

VR more accessible to people than ever before. Such devices have the potential to reach a 

wider user base than high-end products like the Oculus Rift [27]. However, there is a major 

limitation with these devices. Due to the low fidelity of the built-in mobile sensors as well 

as the inability to do absolute 6 DOF position and orientation tracking, interaction with 

virtual environments presented on mobile VR is much more limited than with trackers 

offered by high-end HMDs. The motivation of this thesis research is to thus explore the 

interaction potential of using low-cost mobile head-mounted displays such as Google 

Cardboard. 

Numerous interaction techniques have been proposed for interaction (selection and 

manipulation of objects, navigation, etc.) in VR. However, without absolute position 

tracking, only a few of these are compatible with mobile VR [27]. Browsing the Google 

Play store, one can see how the variety of applications is considerably lower than high-end 

                                                 

6 https://www.statista.com/ 

7 https://www.engadget.com/2017/12/20/vr-and-ar-in-2018/ 

8 https://www.gamesindustry.biz/articles/2017-05-09-gear-vr-far-and-away-the-leader-with-almost-7m-expected-

to-be-sold-in-2017 
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HMDs due largely to this interaction limitation. The majority of applications are “look-

and-see” type applications, which involve a fairly passive user experience of watching 

videos in stereo 3D, sometimes using head tracking (with head orientation provided by the 

mobile device’s inertial measurement unit) to allow the user to look around the scene [38]. 

Some applications support rudimentary interaction by way of head tracking. For example, 

head-ray based interaction can be used to activate selection by looking at the target object. 

The pointing ray originates from the head and follows the tracked head post by head 

tracking system. Selection is generally activated by pressing the capacitive button on the 

Cardboard, or through a timeout. Such interaction styles are much less expressive than the 

dual-tracked wand input devices provided with high-end HMDs.   

There is also little research on whether using the type of button provided on cardboard 

devices is the best design alternative for selecting targets in mobile VR applications. 

Previous research by Yoo et al. [35] looked at mobile VR applications on the Google Play 

store. The researchers tested 32 applications designed for Google Cardboard, chosen based 

on their popularity and feedback within the store. They categorized the applications into 

five types: 1) those using the head ray to find the target object and pressing the side button 

to confirm a selection, 2) those using the head ray to find the target object and automatically 

confirm selection instantly, 3) those using the head ray to find the target object and 

confirming the selection by keeping the ray over the same object for a specific timeout 

delay, 4) using tilt supported by built-in gyroscope to control object’s orientation and 5) 

those requiring the user to connect an extra controller to the phone. Most applications fell 

under category 1 (using the Google Cardboard button) despite results showing it offered 

worse than average user feedback among the five categories. Surprisingly, applications 

requiring extra controllers got worse feedback, perhaps due to the necessity of using a 
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separate external device (limiting portability of the VR experience). This result indicates 

that using external controllers is less attractive than controller-less interaction for users. 

Above all, my motivation was to find a better interaction method for “Cardboard-like” 

HMDs. Inspired by modern computer vision, I considered the built-in cameras on cell 

phones might be another usable sensor. By tracking the users’ hands, gesture-based 

interaction could be used as an alternative to head-based selection using a button. Several 

popular products (e.g., Leap motion9) have achieved gesture-based input utilizing cameras 

and other sensors. However, these types of products either are PC-based or require high-

resolution and/or depth cameras, which are typically not available on mobile.  

In my case, I instead propose to use the standard RGB cameras in cellphones for 

tracking the hand. Although it is anticipated that tracking accuracy is likely lower, I believe 

it is still worth investigating the performance potential of the single rear-camera on tracking 

hand gestures. After all, such cameras are already on virtually all mobile devices, 

conveniently face outward from the Cardboard when mounted in the HMD and necessitate 

no additional hardware. Specifically, my present work is designed to answer the following 

research questions: 

 1. How effective is hand-based technique tracked by a smartphone camera, 

compared to head-based input provided by the internal IMU?  

 2. How effective is gesture-based selection activation, tracked by the smartphone 

camera, compared with using a button? 

My work thus compared different interaction methods for target selection, specifically 

                                                 

9 https://www.leapmotion.com/ 
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focused on those used with mobile VR presented on a Google Cardboard.  

1.1 Outline  

This thesis is organized in 5 chapters. Chapter 1 is the brief introduction of VR technology 

and the motivation of my work. Chapter 2 reviews relevant literature related to my research 

problems. Chapter 3 details of my first experiment, which compared selection using head-

based input with two hand-based methods using the camera for tracking. Chapter 4 details 

the second experiment, which compared different methods of activating selection (the 

Cardboard button and hand gestures). Chapter 5 presents a final summary of results, 

limitations and future work. 
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2    Chapter: Related work 

To determine potential interaction methods, I could use with mobile camera-based 

tracking, I reviewed 1) Fundamentals and theory about existing interaction techniques 2) 

existing techniques and their limitations. 

2.1 Interaction in 2D vs. 3D 

Interaction in 3D scenarios is more complex than 2D scenarios [14] depending on the 

task presented in the virtual environment (VE). Interaction in 2D scenarios only requires 

up to 3 degrees of freedom (DOF) including translation in the x and y-axes and sometimes 

rotation around the z-axis. Full 3D interaction requires more DOFs: translation on the z-

axis, and two more rotational DOF about the y- and x-axes. Because of this difference, 2D 

interaction styles are normally not well suited for 3D scenarios [1].  Additional DOFs can 

give users more freedom to operate in VEs but can also be a source of frustration [22]. 

Previous work suggests minimizing the required DOFs for manipulating virtual objects in 

the VE. The more DOFs simultaneously supported, the greater the difficulty to control the 

interaction technique [6]. Besides, lack of tactile feedback and higher latency and noise 

from motion tracking system can lower user performance as well [11,23]. 

In addition, interaction in 3D scenarios is also more physically demanding. Consider, 

for example, grasping an object in the air in a 3D environment, as compared to a 

conceptually equivalent task (dragging an icon) using a mouse on a desktop. Unlike the 2D 

scenario, which requires small and quick muscle movements, grasping in 3D requires 

compound muscle movements that tend to be larger and slower, and can yield substantial 

arm fatigue [38]. However, the familiar 2D “desktop metaphor” is unsuitable in VR since 

the physical mouse and keyboard cannot be seen while wearing head-mounted display 

devices [11]. Current solutions are 2D-inspired interaction styles, often modelled after 
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mouse control while using 3D input devices (e.g., using a wand to point a ray at an 

essentially 2D UI).  

Above all, interaction in 3D has many difficulties. In my case, however, interaction 

with low-cost mobile VR HMDs exacerbates these problems with simplistic interaction 

styles and poor motion tracking hardware (IMUs). This thesis explores potential interaction 

methods under these constraints.  

2.1.1 Selection in 3D 

Selection is one of the fundamental interaction tasks across all user interfaces [5] and 

involves specifying a target using a controller, often for subsequent operations. For 

example, object manipulation (moving/rotating an object) in VR is usually preceded by 

selection. Selection is also frequently used as a means to control the system (e.g., selecting 

options from menus). Although selection tasks generally are short (1-2 seconds), due to 

their relative frequency, better selection techniques can improve system performance 

overall [1]. Based on this observation, I focus on comparing different 3D selection 

techniques in mobile VR scenarios.  

Many factors impact selection results, including the target’s size and location [2], 

properties of the input and display devices, target density, etc. For example, the degrees of 

freedom (DOFs) supported by the input device influence selection, with lower DOFs 

generally providing better performance [5]. Display size and resolution can also affect on 

selection performance [23]. Research by Teather et al.[30] shows that even simplistic 

visual feedback mechanisms, such as target highlighting, can increase selection time while 

decreasing the selection error rate.   

2.2 Interaction techniques 

Many previous interaction methods have been proposed for interaction in VEs. 
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According to Poupyrev et al. [26], these interaction techniques can be classified into two 

types: exocentric and egocentric techniques. Exocentric techniques or third person 

techniques, are those where the user works from outside of the environment and sees an 

avatar in the VE. For example, the Oculus flagship game, Lucky’s Tale10, requires players 

to control a fox avatar who represents the player. Exocentric interaction is comparatively 

rarer than egocentric interaction in VR. Egocentric interaction is often referred to as first-

person interaction. The user stands inside of the VE. Egocentric metaphors are widely used 

in immersive VR to give user a stronger sense of presence or, the feeling of “being there”. 

Most egocentric interaction techniques fall roughly into one of two broad categories, virtual 

pointer metaphors (remote pointing with a ray) and virtual hand metaphors (direct touch 

for selection). I compare representative selection techniques from each category in this 

thesis, and so review common examples here.  

2.2.1 Virtual Pointer metaphor 

The virtual pointer metaphor, or ray-based interaction, entails selecting a target by 

emitting an infinite ray from a tracked body part, usually the head or hands (or hand-proxy 

such as a wand). Ray-based interaction is one of the most widely used interaction 

techniques for selection tasks [6]. Ray pointing generally requires a tracked controller 

which emits a selection ray. By moving or rotating the controlled object, the ray changes 

direction to point to target objects. The tracked objects can be instruments such as a pen, 

laser mouse, or even limbs. Rays can be easily generated, for instance, using the head 

tracking system; the head ray originates at the head position, and the follows the head’s 

rotation. This style of interaction is widely used with devices such as Microsoft’s 

                                                 

10 https://www.oculus.com/experiences/rift/909129545868758/ 
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HoloLens11 and Google’s Cardboard. High-end VR systems (e.g., HTC Vive and Oculus 

Rift) use hand-held controllers to emit a ray instead; the ray is controlled by pointing the 

controller at targets. 

 It is still questionable that if the head ray is the best pointing technique for Cardboard-

like HMDs. Previous research shows that hand-directed pointing has higher performance 

than eye-directed pointing [18]. Un-instrumented in-air pointing with tracked hands was 

studied in desktop settings for use in situations where a mouse was impractical, such as or 

cooking without an extra hand touch the screens [3]. However, it is difficult to define a 

selection ray by tracking hand motion with a single RGB camera, since such input is 

notoriously noisy. Inspired by Zeleznik et al.’s research on image-plane interaction [37], I 

implemented another pointing technique in my work – the finger ray – as a comparison to 

the head ray.  

The advantage of using pointing rays to select targets is evident when the target is 

located out of arms reach [26]. Also, as mentioned above, rays require comparatively fewer 

DOFs to control: as few as 2DOF – rotation about the x- and y-axes to control the ray 

direction. This can further improve the selection performance since it is easier for users to 

manipulate [7]. In my case, I use the head ray as a representative interaction technique 

commonly used with Google Cardboard. 

However, ray-based techniques also have some disadvantages. For example, the user 

must keep the pointing device steady until confirmation [1]. Movement of the ray’s origin 

during the final steps causes the pointing ray to move out of the target, resulting in missing 

the target. This is compounded by the so-called “Heisenberg” effect [8], where pressing 

                                                 

11 https://www.microsoft.com/en-us/hololens 
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the input device button to indicate selection causes the device to move at the moment of 

selection. Another problem is that standard ray pointing is unsuitable for situations with 

occluded targets [10]. Rays generally support the selection of only the closest target to the 

user; another object in the ray’s direction makes it hard to distinguish which one should be 

selected.  

2.2.2 Virtual hand metaphor 

Using the hand is the most natural interaction style for humans and this makes it one 

of the ideal interaction styles in VR [17]. The traditional virtual hand metaphor is a one-

to-one mapping between the tracked hand, and a hand representation displayed in the VE, 

and supports full 6DOF interaction. However, direct selection using hands in VR is quite 

different from the real world [1]. For example, the user might be unable to see their body 

in the VE but may see only a simple hand avatar [19]. Moreover, the lack of tactile feedback 

yields lower performance [9]. Compared with ray-based techniques, the main limitation of 

using virtual hands is the reachable distance. For remote objects, users must first navigate 

to the target to accomplish selection tasks. Despite this limitation, previous work has shown 

that virtual hand techniques can offer higher performance than ray-based interaction within 

arm’s reach distance [22]. Since virtual hands require full 6DOF control, users have more 

freedom, but this can also cause problems. For example, users must move their hands in 

multiple directions, and the lack of proper depth perception affects performance.  

Besides, absolute 6DOF position tracking is not yet fully realized for normal mobile 

devices. Glove-like input devices can offer full 3D hand tracking (including fingers) using 

various sensors [6]. These techniques require a higher level of sensor fidelity, which is 

inappropriate for common mobile devices. Vision-based tracking, in contrast, has become 
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more popular with the development of technologies like Leap Motion12. This process relies 

on images or videos captured by a camera, then determining the hand pose through 

processing and analyzing. To date, few mobile devices use the kind of depth sensors 

provided by devices like the Leap Motion though. Vision-based hand tracking on mobile 

devices is faced with a different set of challenges, notably the fidelity of the built-in camera, 

and comparatively limited computing power for hand detection and gesture recognition 

[12]. Overall, since my motivation was to better understand hand-based input performance 

in mobile VR, and the fact that virtual hand techniques are popular in modern VR, I 

intended to determine if the advantages of virtual hands held true when tracking was done 

with the single built-in RGB smartphone camera in mobile VR scenarios. 

It is difficult to determine whether ray-based or virtual hand techniques are the better 

interaction method for VEs [26]. Past research has shown that ray-casting techniques result 

in better performance when high accuracy is not required, while virtual hands perform 

better in higher accuracy tasks [26]. A possible explanation is that the user can clearly see 

the virtual hand interacts with virtual objects so that, to some extent, overshooting or 

undershooting can be avoided [26]. Therefore, choosing a suitable interaction method 

depends on the task content. In the present study, different interaction methods for mobile 

VR scenario are compared. Moreover, variables affecting each interaction method’s 

performance are explored.  

2.3 Interaction on Mobile VR 

Due to the low-cost components and simple configurations, mobile VR is facing 

several interaction problems.  First, a limitation of HMDs, like Google Cardboard, is that 

                                                 

12 https://www.leapmotion.com/ 
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users cannot touch the mobile device screen or press buttons on smartphones inside the 

box. To a large extent, this restricts the number of interaction possibilities and has a 

negative influence on application variety [27]. Noting this problem, the first version of 

Cardboard13 was equipped with a magnetic button on the side. Pressing the button triggers 

the smartphone’s magnetometer, which could be used to activate discrete actions such as 

menu or object selection. The second version of Cardboard14 replaced the magnetic button 

with a conductive button which taps the screen of the smartphone inside the box upon being 

pressed. These support simple interactions such as using a ray emitted from the head 

position and controlled by the view direction (I refer to this as head ray in this thesis), along 

with the button to activate the selection. Additionally, higher priced mobile VR HMDs, 

like Google Daydream and Gear VR, are equipped with an extra touchpad controller as 

another way of input. Compared to them, Google Cardboard is designed without an extra 

controller, which makes interaction inconvenient and restricted.  

The interaction methods of existing applications for Google Cardboard can be 

summarized in five types [35]:  

1) using the head ray to find the target object and pressing the side button to confirm 

a selection 

2) using the head ray to find the target object and automatically confirm selection 

3) using the head ray to find the target object and confirming the selection by keeping 

                                                 

13 https://vr.google.com/cardboard/get-cardboard/ 

14 https://vr.google.com/cardboard/get-cardboard/ 
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the ray over the same object for a specific time 

4) using tilt supported by built-in gyroscope to track head's rotation  

5) using extra controllers connected to the phone.   

However, various types of mobile VR games require more efficient and comprehensive 

interaction methods. For example, for navigation games, the player needs to observe 

surroundings and react at the same time; head-based interaction can be unsuitable in such 

scenarios. There has also been little research looking at the effectiveness of buttons in the 

style of that used with Google Cardboard. Yoo et al. [35] found that although most 

applications use Google Cardboard button as the input approach, it offers worse than 

average feedback among the options listed above. Surprisingly, applications requiring extra 

controllers received the worst feedback. One reason is that when users are doing tasks with 

fewer devices, they can focus better on the task rather than get distracted by the devices 

themselves [1]. Based on these observations, hand-based interaction without extra 

controllers has potential as a more expressive interaction style for mobile VR [20]. Besides, 

the hands are universally accessible in mobile VR and thus do not require any additional 

equipment [32]. 

2.3.1 Input devices 

Input devices for mobile head-mounted displays like Google Cardboard can mainly 

be summarized as the following types: 

Controller-less input: Controller-less input does not rely on extra equipment except 

HMD devices and cell phones. This type of interaction usually makes use of the built-in 

sensor such as an accelerometer to track gazing direction. Or, using the built-in cellphone 

camera captures the image then provides pose information after processing and analyzing. 

Fistpointer is a new controller-less technology presented by Ishii et al. that offers a bare-
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hand method for mobile virtual reality [16]. They published a thumbs-up hand gesture for 

target selection game. Using only the rear camera, a players’ hand could be tracked. Their 

software can also detect a clicking gesture to trigger target selection. However, their study 

focused on hand gestures recognition algorithms and did not compare performances 

between different interaction methods. Baldauf et al. proposed a method to detect a users’ 

hand by tracking the points of fingertips [2], which could be applied in both VR and 

augmented reality (AR). However, they did not evaluate their interaction method.  

External Controller Input: In contrast, this type of input needs extra controllers or 

sensors to send information of tracked objects. PAWdio [26] is a technique that uses 

common earphones as input devices to track the distance between user hand and cellphone. 

Through acoustic sensing, distance data is detected by calculating the time difference 

between sound chunks played by the mobile speaker. This is sufficient to give a distance 

estimate, providing 1DOF input. This offers a good solution for interaction along the z-axis 

using only simple extra devices. However, PAWdio only works with built-in head-ray 

pointer for x and y-axis control, in order to provide full 3/6 DOF operation.  

FaceTouch [13] offered a back-of-device gesture for mobile virtual reality by 

attaching three extra touchpads in the back, the left and the right side of a head-mount 

device respectively. Users can interact with a virtual environment directly by using their 

fingers. Similarly, Wigdor et al. [33] created a back-of-device interaction method called 

LucidTouch for small screen mobile devices. The main difference is that LucidTouch 

allows fingers to be visible with a semi-transparent figure so as to avoid colliding with 

menu or objects on the screen while FaceTouch does not offer this feature.  

As mentioned in the previous section, controller-less input is more welcomed in the 

mobile application market nowadays [9]. There are no researches on controller-less input 
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for mobile VR HMDs with quantitative evaluation in the past. In my work, since I focused 

on selection tasks, it is worthwhile to think about compatible selection techniques in such 

scenarios. Besides, since users cannot directly touch the cellphone’s screen in the box, it is 

also important to explore the suitable selection activation mechanisms coupling with 

selection techniques. 

2.4 Fitts’ law 

Fitts’ law [21] has been used widely in the measurement of pointing performance, and 

I use it in my experiments. This has been formalized in the ISO 9241-9 standard [15] for 

pointing device evaluation. 

Fitts’ law models the relationship between movement time (MT) and selection task 

difficulty as a linear regression model: 

    MT = a + b ID  Equation 1. 

Where ID is index of difficulty, the selection task difficulty based on target size (W) 

and distance to the target (A). ID is thus given as: 

    ID = log2(A/W + 1) Equation 2. 

  Throughput is a metric which combines movement time and accuracy, and is 

calculated as: 

𝑇𝑃 =
log2(

𝐴𝑒

𝑊𝑒
+1)

𝑀𝑇
         Equation 3. 

TP represents throughput, and the log term is the effective index of difficulty (IDe). 

IDe better captures actual participant performance in an experiment through an accuracy 

adjustment, treating missing selections near the target as hits on an effectively larger target 

so as to correct experimental error rate to 4% [15]. We is effective width and Ae is the 

effective amplitude (distance) of movements. Ae is calculated as the average of the actual 
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movement distances. We is calculated as: 

𝑊𝑒 = 𝑆𝐷𝑋 × 4.133       Equation 4. 

We is calculated from the standard deviation ( 𝑆𝐷𝑥 ) of selection coordinate 

over/undershoot lengths, projected onto the task axis (the line between subsequent targets). 

This “flattens” the selection task into 1D, since Fitts’ law was originally derived for one-

dimensional movements. SDx is then multiplied by 4.133 [8], which corresponds to a z-

score of  2.066−
+  on the normal distribution, the scores at which 96% of the values fall 

under the curve. In the case of target selection, this corresponds to 96% of selections hitting 

the target, or in other words, a 4% error rate. We thus corrects the experimental error rate 

to 4% via this accuracy adjustment, which enables comparison with other studies, and 

better captures the task performed by users, rather than the task presented. 

In my experiments, I adopted a previous methodology [31] for extending a 2D Fitts’ 

law task into 3D scenarios. For ray techniques 𝑊𝑒 was calculated by projecting the target 

point onto the task axis (the vector from the last target to this target) while for air touch, is 

calculated by the straight-line distance from the target to the selection coordinate instead. 

For ray techniques, 𝐴𝑒 , effective movement distance, is the averaged actual movement 

distances from projected cursor point on previous trial to projected cursor point on the 

present trial. For hand-based techniques, 𝐴𝑒 is the Euclidean distance between the previous 

cursor point to present cursor point [31]. These are calculated differently between the two 

interaction techniques, since this better capture the effect of target depth on pointing 

performance. 

 To explore the relationship between accuracy, speed, and throughput, Mackenzie and 

Isokoski conducted a study in which data were collected separately in three different-

oriented tasks, speed-oriented, accuracy-oriented and speed-accuracy balance. The result 
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shows that throughput is constant regardless of participant tendency towards accuracy or 

speed [21]. In my studies, participants were told to finish the task as well as possible with 

both accuracy and consumed time where they can successfully select an object would be 

considered as performance.  

2.5 Summary 

In desktop computing and even VR selection tasks, the mouse is generally accepted 

as the most efficient input device so far [14]. However, I argue that a key requirement of 

mobile VR interaction is that it does not require a secondary input device, in order to 

maintain portability. Hence, external control devices such as the mouse are unattractive for 

use in mobile VR contexts. I instead opt for camera-based approaches. 

My observations prior to my experiments are that the tracking reliability of the 

phone’s camera is considerably lower than a mouse. A survey on present vision-based hand 

tracking technologies also suggests that generally speaking, hand posture estimation 

relying on a single camera is quite challenging [11]. However, there are no previous 

research on camera-based interaction in mobile VR, it is still unclear how much better or 

worse camera-based interaction techniques are than other existing techniques, like head-

ray based selection. Also, it is worth exploring what kind of current camera-based 

interactions offer the best utilization of built-in cellphone cameras. For example, using 

interaction techniques which rely on depth precision might result in reduced performance, 

or camera-based input may be best suited to discrete actions, e.g., as alternatives to buttons. 

Based on these unknowns and potential, the present study is intended to give some 

guidance on the possibilities of interaction design in mobile VR. 

In terms of the experiment settings, since performance is influenced by factors such 

as background colour and lighting, which affect the contrast between the hand being 
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tracked and the background, my experiments controlled these factors for optimal 

conditions; the background colour was black, and the lighting was bright. While simpler 

and more appropriate than a real-world situation, my camera-based techniques were too 

unreliable under “general” usage conditions. I note that this is a limitation of my 

experiment, but that my results should be considered best-case with current technologies.   

In summary, and based on the past research reviewed above, I have found that there 

are no previous Fitts’ law evaluations of camera-based selection methods for mobile VR. 

Such experiments would give a good sense of the “ranking” of camera-based input on 

mobile; a principle advantage of the ISO 9241-9 methodology is that throughput facilitates 

cross-experiment comparison of results. In my case, I decided to compare different 

interaction methods for target selection, specifically focused on those commonly used with 

mobile VR presented on a Google Cardboard, as described above. Since camera-based 

tracking can also support gestural selection activation, I also conducted an experiment 

comparing button-based selection activation to gestures. My present work is thus designed 

to evaluate: 

 1. How effective are two alternatives, finger ray and air touch for hand-based 

interaction tracked by a smartphone RGB camera, compared to head-based input provided 

by the internal IMU?  

 2. How effective is gesture-based selection activation, tracked by the smartphone 

camera, compared with using a button? 

 

 



 

 21 

3    Chapter: Experiment 1 

In this experiment, I compared three different selection techniques using a mobile VR 

HMD, specifically a Google Cardboard. The selection task was based on that provided by 

ISO 9241-9 [15].  

The three selection techniques investigated included the head ray, finger ray, and air 

touch. The head ray is a representative interaction technique used in real mobile VR 

scenarios, as described earlier. Selection is performed using a ray originating from the 

user’s head, with the ray direction controlled by the users’ head orientation (via the mobile 

IMU). See Figure 2. 

 

Figure 2 Participants with Head ray pointing to targets in different positions 

The finger ray technique is modeled after image-plane interaction [37] and also uses a ray 

originating at the head. However, the ray direction is instead controlled by tracking the 

users’ index fingertip with the mobile device camera. See Figure 3. 

 

Figure 3. Participants with Finger ray pointing to targets in different positions 
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Finally, the air touch technique is an example virtual hand and works exactly like 

touching objexts in the real world; the user must physically tap the targets in space (Figure 

4). This is accomplished by tracking the finger position with the mobile phone camera. 

Hand depth is estimated using the Manomotion SDK15, normalized between 0 and 1, where 

0 is the maximum hand area supported (80% of the camera view) and 1 is the minimum 

hand area supported (the furthest distance, 2% of the camera view). 

 

Figure 4. Participants with Air touch pointing targets in different position 

3.1 Hypothesis 

 My hypotheses include: 

H1: Finger ray will produce the highest accuracy because, as found in previous 

research, hand postures can help determine the selection target positions [37]. Also, 

working with the hand and head together is arguably more natural than aiming with the 

head only, as with head ray. 

H2: Head ray will yield the shortest movement times, since it is only controlled by 

the head (and thus requires fewer DOFs to control than finger ray) and the IMU hardware 

provides relatively more stable position/orientation data than the computer vision library 

                                                 

15 https://www.manomotion.com/tutorials/sdk-general-overview/ 
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used with the finger-based techniques. 

H3: Air touch will take longest movement time since it takes time to adjust depths on 

the z axis. 

3.2 Participants 

I recruited 12 participants (2 females and 10 males) aged between 18 and 30 years old 

(mean≈ 22.67 years old). Two were left-handed. All were Carleton University students 

with two having prior experience with Google Cardboard, and three having previously 

experienced VR with other hardware. The rest had no prior VR experience. None had 

vision or motor problems.  

3.3 Apparatus 

I used a Samsung Galaxy S816 smartphone as a display device (Figure 5, left) to 

display the VE. The device has a 5.8 in. screen at 1440x2960 pixels resolution and 12-

million-pixel main camera. It weighs 155g, and its dimensions are 5.86 x 2.68 x 0.31 in. I 

used a Google Cardboard v2 (Figure 1) as the HMD. The Version 2 Cardboard has a 

conductive button on the right side; pressing the button taps the mobile touchscreen inside 

the HMD. I considered that the right-sided button on Google Cardboard would prevent the 

use of the right hand to perform hand postures, specifically in the finger ray and air touch 

conditions. However, since most of my participants (and people in general) are right-

handed, using the left hand to perform hand postures while using the right hand to press 

the button would certainly provide unrealistic performance results. Consequently, I used 

an extra touchpad device, a Xiaomi cellphone17, as external selection activation mechanism 

                                                 

16 https://www.samsung.com/ 

17 https://www.mi.com/en/minote2/ 
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for all conditions. The Xiaomi touchscreen phone was connected to the Samsung Galaxy 

8 through Bluetooth as a touchpad for confirming selections (Figure 5, right). The 

secondary mobile phone was positioned at the middle of the table in front of the participants, 

displaying a virtual game controller. In all conditions, selection was confirmed by tapping 

the “A” button on the touchscreen. All virtual environments were developed on Unity3D 

5.5 and C#.  

           

    Figure 5. Samsung Galaxy 8 (left). Xiaomi touchpad (right). 

I used the Manomotion SDK18 to acquire the hand position for use with both the finger 

ray and air touch conditions. Manomotion uses the built-in RGB camera on the back of a 

smartphone to track the users’ hand, providing the coordinates of the fingertips and palm 

center. More details about software can be find in 5.2Appendix G   

3.3.1 Software Design 

In my software environment, one target sphere appears in each selection trial at a 

specified position. The target was initially blue upon appearing and became pink when 

being hit. The first target appeared at the top of the ring cycle. The overall targets sequence 

                                                 

18 https://www.manomotion.com/tutorials/sdk-general-overview/ 
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is seen in Figure 6   

 

Figure 6 Appearance sequence of targets in a ring 

         In the head ray condition, the ray is cast from the head and follows the head’s 

orientation tracked by IMU hardware inside the smartphone (Figure 2). A black dot in the 

center of the viewport provided a cursor to use for selection. When the participant turned 

their head, the cursor always remained in the center of the viewport. Pressing the “A” 

button on the secondary touchpad (Xiaomi mobile phone) “clicked” the target. Upon 

clicking, the target disappeared immediately, and the next target appeared, whether the 

target was hit or not by the selection ray. The same style of “clicking” targets was used 

with the other two techniques as well. 

          In finger ray condition, the ray is cast from the head and the direction follows the 

participant’s the index fingertip (see Figure 3). The position of the index fingertip is tracked 

by the rear camera at the back of the smartphone. A black dot at a specific distance on the 

ray provides a cursor for selection.  

           In the air touch condition, the participant’s position of index fingertip was tracked 

by camera and depths was computed by cellphone’s CPU (Figure 4). A black dot followed 
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tracked index fingertip’s position as a cursor for selection.  

  

Figure 7.  Virtual environment(left)  and user study environment setup(right).  

3.3.2 Software Development Challenges 

Initially, I designed the software using 12 same-sized spheres arranged in a ring 

centerd on the center of the view. The smallest target size was considerably smaller (radius 

0.1 m) than that finally used in the experiment. However, pilot testing revealed that 

performance was very low with air touch. This is because the hand-tracking reliability of 

the mobile camera was related to the hand position. For example, when the target was 

located in the lower part of the target ring (i.e., corresponding to the bottom of the camera 

viewing area) the tracking accuracy was not good enough to capture the fingertip’s position; 

the input was simply too noisy to select targets this small. Accordingly, I adjusted all target 

sizes to be larger and only one object appeared on screen at a time. This also avoids the 

problem of accidental selections of the wrong target due to input noise. 

In addition, since the hand gesture condition may potentially result in the failure 

selection by hardware problems, I set a timeout (15s) to exclude some trails. A failed 

selection is defined as a target that cannot be selected due to technical issues. Such failed 

trials were excluded from analysis; I filtered these trials after the experiment during data 

analysis. Only trials that were deemed “successful” (i.e., ended upon selection of the target, 
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or upon missing the target in under the timeout) were included in the analysis. 

Since the built-in mobile device RGB camera has no depth sensor, the depth 

coordinates of the tracked hand were determined by the Manomotion SDK proprietary 

algorithms. The further the hand moves from the camera the larger the reported z value. To 

ensure the farthest targets were still reachable with the air touch condition (which required 

directly touching targets and hence precision in depth) I iteratively adjusted a scale factor 

between the VE and the Manomotion provided depth coordinates many times. In the end, 

a distance of 2 m in the VEs mapped to approximately 70 cm of actual hand motion in 

reality. This ensured that the farthest targets (2 m into the screen) were still reachable in a 

seated position with air touch. 

3.4 Experiment design 

The experiment employed a 3×2×3 within-subjects design. The three independent 

variables included selection technique, object size, and object depth (the distance between 

objects and the player’s eyes). 

Selection technique: Head ray (HR), finger ray (FR), and air touch (AT); 

Object depth: close (1.3m), medium (1.7m) and far (2m); 

Object size: big (0.7m) and small (0.4m); 

For each selection technique, participants completed 6 blocks (3 object depths × 2 

object sizes) of 12 selection trials, for a total of 72 selections with each selection technique 

per participant. Each selection trial required selecting one target sphere. Within a block, 

both target depth and target size were constant. Target depth increased with experiment 

block, and target size order was counterbalanced. Each selection technique was crossed 

with 2 target sizes and 3 target depths. I conducted 12 selection trials for one combination 

of one target size × one target depth. Selection technique order was counterbalanced 



 

 28 

according to a Latin square. Overall, there were 12 participants × 3 selection techniques ×  

2 target sizes ×  3 target depths × 12 selections = 2592 trials in total.  

      The dependent variables included movement time (s), error rate (%) and throughput 

(bit/s). Movement time was calculated from the beginning of a selection trial when the 

target appears, to the time when the participant confirmed the selection by pressing the 

button on the secondary touchpad. The error rate was calculated as the percentage of trials 

where the participant missed the target in a given block. Throughput was calculated 

according to Equation 2 presented in Chapter 2, section 2.6. Finally, I also collected 

subjective data using questionnaires and interviews after each participant completed the 

experiment.  

3.5 Procedure 

First, participants were given an introduction and explanation of the whole 

experiment. After they signed the consent form, they filled out a questionnaire asking about 

their experience with VR.  Next, they sat down and put on the HMD, and I gave them 

instructions about how to control each selection technique and gave them about a minute 

to practice using the system. These practice trials were not recorded.  

During testing, the first target sphere would appear at the center of the viewport. After 

selecting the first target, the formal test began. Participants confirmed each selection by 

tapping the touchpad button. Upon tapping the touchpad button, the current target 

disappeared immediately, and the next target appeared, whether the target was hit 

accurately or not. Targets appeared in the VE following the ring pattern common to ISO 

9241-9 evaluations, as described above [15]. See Figure 6. Upon completing one condition, 

which consisted of 72 trials (12*2*3), participants were given approximately 1-2 minutes 

to rest and get ready for the next condition. After all conditions were completed, they filled 
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out the questionnaires and were interviewed for subjective feedback.  

3.6 Result and Discussion 

Results were analyzed by using repeated-measures ANOVA at 5% significance level. 

Full ANOVA test result can be found in 5.2Appendix G   

3.6.1 Movement time 

Movement time (MT) is the average time to select a target. Mean movement time for 

each interaction method is seen in Figure 8. Movement time was analyzed using repeated-

measures ANOVA. The result (𝐹2,18=33.98, p < 0.05) shows that selection method had a 

significant main effect on MT. Overall, air touch took much longer to select targets than 

the other selection techniques at 1.86 s, about 50% slower than head ray and almost twice 

as long as finger ray. Head ray was, on average, slower than finger ray. Post hoc testing 

with the Bonferroni test (at the p < 0.05 level) revealed that the difference between all of 

selection techniques was significant. This result indicates that air touch performed much 

worse in terms of speed and finger ray was much more efficient than air touch and head 

ray. 

 

Figure 8 Overall mean movement time by selection techniques. Error bars show ±1 SD. 

Figure 9 below illustrates the average movement time for each selection method, 
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further separated by target size and target depth. There were significant interaction effects 

between selection technique and target size (𝐹2,18=3.906, p < 0.05), as well as selection 

techniques and target depths (𝐹4,36=2.98, p < 0.05). Predictably, smaller size targets took 

longer for all selection techniques. The effect (p < 0.05) was most pronounced with air 

touch, where small targets were about 60% worse than large targets. Target size only 

affected (p < 0.05) the ray-based techniques when the distance was close or medium. There 

was no significant interaction effect between target depth and selection technique. 

 

Figure 9. Movement time by different target sizes (Large and Small), depth (Close, Medium and 

Far) and selection techniques (Air touch, head ray, and finger ray). Error bars show ±1 SD. 

I had initially predicted that air touch would take longer to select targets than finger 

ray and head ray. Air touch necessitated a “two-stage” selection – first, lining up the target 

in the plane, then adjusting the hand along the depth axis to select the target. In contrast, 

since finger ray and head ray are both ray pointing techniques, participants only needed to 

work in a plane; depth was handled automatically.  

Camera noise was also expected to affect selection speed as well. It is encouraging 

that despite this camera noise (which was not a factor with head ray) finger ray still offered 

faster selection, especially with smaller targets. As noted earlier, the combination of large 

target size and closer target distances (close and medium) resulted in a significant 

difference in movement time between head ray and finger ray. This is likely because head 
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ray required more head motion than finger ray, which supported subtle finger or arm 

movements. This is consistent with previous research that also found that finger-based 

selection was faster than the head when reaching a target [28].   

3.6.2 Error rate 

A selection error is defined as missing the target, i.e., performing the selection while 

the cursor is outside the target. Error rate is calculated as the percentage of targets missed 

for for each experiment block (i.e., 12 selections). Average error rates for each selection 

method are seen in Figure 10. The ANOVA test result (𝐹2,18=385.52, p < .05) revealed 

that there was a significant main effect for selection technique. Post-hoc testing with the 

Bonferroni test (at the p < 0.05 level) showed there were significant differences between 

each pair of them as well (p < 0.05). Air touch yielded a significantly higher error rate than 

other two selection techniques, five times that of head ray, and around double that of finger 

ray. Moreover , there was significant interaction effects between selection technique and 
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target size (p < 0.05) as well as selection technique and and target depth (p < 0.05). 

  

Figure 10. Error rate (%) in different input methods. Error bars show ±1 SD. 

  

 shows error rates separated by target depth and target size for each selection 

technique. Interestingly, post-hoc testing with the Bonferroni test (at the p < 0.05 level) 

showed no significant difference between the three target depths with either finger ray or 

head. This is likely both of the ray-based techniques did not require accuracy in depth. 

However, there were significant differences between target depths with air touch. This is 

unsurprising, given the technique required participants position their finger at the correct 

depth with air touch. Overall, medium distance (1.7m) had the lowest error rate for all 
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selection techniques. Air touch and head ray performed significantly worse at close 

distance than other two depths.  

  

Figure 11. Error Rate for two target sizes, three target depths, and three selection techniques. 

Error bars show ±1 SD. 

Post-hoc testing revealed a significant difference (p < 0.05) between target sizes with 

air touch, but not the other two selection techniques. The error rate increased dramatically 

with the smaller target size when using the air-touch interaction method. Generally, smaller 

target sizes had a higher error rate for each selection technique. 

As seen in Figure 11, air touch was much less precise and had a higher error rate than 

other two selection techniques, especially with different target depths. This indicates that 

participants had difficulty identifying the target depths when using direct touch. 

Conversely, this was not a problem with the ray techniques. Medium distance produced 

the lowest error rate for all selection techniques. 

3.6.3 Throughput 

Throughput (TP) is a metric which combines both speed and accuracy to evaluate the 

performance of a selection technique [21]. I calculated throughput for the three selection 

techniques as described in Section 2.6. The average throughput for each selection technique 



 

 34 

is seen in Figure 12. ANOVA revealed that selection technique had a significant main 

effect on throughput (𝐹2,18 = 90.63, p < 0 . 05). Post-hoc testing with the Bonferroni test 

(at the p < 0.05 level) showed that all three selection techniques were significantly different 

from one another (p  < 0.05). Finger ray had the highest throughput at 2.62 bit/s, followed 

by head ray (1.88 bit/s) and then air touch (1.01 bit/s). Throughput for head ray was in line 

with previous work [28] which reported about 1.9 bit/s when using a similar head-based 

selection method. Finger ray also offered higher throughput than using a mouse in a HMD-

based VR environment. This suggests there is merit to using camera-based finger tracking 

as an alternative to common head-based selection in mobile VR. 

 

Figure 12. Throughput for three selection techniques. Error bars show ±1 SD. 

3.6.4 Subjective data 

Participants completed a questionnaire ranking the selection techniques. Overall, air 

touch scored lower than the other two. Most participants gave air touch 3 out of 5 and the 

rest of them gave it a lower score. All participants gave finger ray and head ray 3 or higher 

score out of 5. The average score for finger ray (4.1) is slightly higher than head ray (4.0). 

See Figure 13. 
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 Figure 13  Number of participants giving each score in the subjective questionnaire ranking 

preference for each interaction method. 

3.6.5  Interview 

I conducted an interview with each participant after Experiment 1 and asked their 

feedback about each selection technique. Most participants mentioned physical fatigue 

with the air touch condition. They felt it difficult to hit the target because they needed to 

adjust their hand position forward and back constantly to find the target position in depth. 

This result is similar to previous research on visual feedback in VR  [30], which reported 

the same “homing” behaviour, and found that highlighting targets on touch increased 

movement time, but decreased the error rate. 

Physical fatigue was especially high at the farthest target distance; participants had to 

stretch their arms further to reach the targets, which made their upper arms and shoulder 

even more tired. Besides, as reported in previous work [29], stereo viewing appeared to be 

insufficient for them to reliably detect the depth of targets with air touch, necessitating the 

use of extra visual feedback. Although I added colour change upon touching a target and 

used a room environment to help facilitate depth perception, it seemed participants still had 
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difficulty determining target depth. 

Head ray also yielded some neck fatigue, especially when targets were very close. 

Close targets increased the amount of required head motion as compared to farther targets, 

as targets could be potentially partially outside the field of view, necessitating greater head 

movement. Several participants noted that the Google Cardboard HMD felt uncomfortable 

on their nose as well. Before the experiment, I noticed this myself and put an extra nose 

pad to compensate, but this appears to have been insufficient as several participants 

mentioned it.  

Despite the poor performance results, two participants reported that they preferred air 

touch because the found “it is interesting to really use my finger to touch blue balls rather 

than just turning around my head and touching the button.” They found the latter “very 

boring.”  

All participants found that head ray was most efficient. “It is very easy to control and 

fast.” However, 10 participants said they would choose finger ray as their favourite because 

“it is convenient to move my fingers slightly to hit the target. I do not even need to move 

my head and arms.” 

3.7 Summary 

Overall, contrary to my initial hypotheses, head ray yielded the lowest error rate, while 

finger ray had the advantage on speed. Medium distance (1.7 m) and large target size (0.7m) 

offered higher accuracy, consistent with previous research [13].  

Air touch yielded higher fatigue in the shoulder and forearm, and subsequently was 

much less preferred. This is likely largely affected by camera noise; while this was also a 

factor with finger ray, depth detection with a single RGB camera is much more problematic 
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than determining the 2D coordinate of the fingertip for finger ray.  

Overall, ray-based techniques were superior to the hand-based air touch. I next present 

an experiment focusing on using different selection activation methods, noting the earlier 

design decision to use a secondary touchpad to activate the selection.       
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4    Chapter: Experiment 2 

From Experiment 1, I concluded that finger ray and head ray can offer higher selection 

performance than air touch in mobile VR scenarios. However, an external tool, a touchpad, 

was used as selection activation mechanism. The main motivation of this thesis was to 

assess the effectiveness of interaction methods for low-cost mobile VR HMDs. As argued 

earlier, interaction without any external controllers would offer better portability. 

Moreover, the action of confirming a selection also affects selection accuracy [1]. Hence, 

choosing proper selection confirmation methods is also important for overall selection task 

performance. Consequently, Experiment 2 focuses on evaluating different selection 

activation mechanisms – in other words, how the user “clicks” a target. The options studied 

included the built-in Google Cardboard button (CB), a hand gesture tracked with the 

smartphone camera (HG). I compared these to the corresponding conditions using the 

touchpad (TP) from Experiment 1. I also reused the same experimental software 

environment from Experiment 1. 

According to previous research, the index finger performs better than other fingers on 

back of device interaction [33]. Simple gestures also generally yield higher performance 

than complex ones and are easier to remember. My hand gesture condition thus used the 

“Tap” gesture. This is the gesture performed when selecting an icon on a touchscreen 

device ( Figure 14) [25]. I originally considered a different gesture, Pinch, which involved 

bending index finger and thumb like a “C” shape, then closing the fingertips. However, I 

decided against using this gesture as I found the tracking SDK was unable to reliably detect 

the Pinch gesture. As a result, the Pinch gesture usually took longer to complete a selection 

than Tap. Consequently, I chose Tap as an easier and more reliably recognized gesture.  
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Figure 14. Air Tap hand gesture 

4.1 Hypothesis 

 The touchpad data from Experiment 1 was included as a basic comparison point, 

since it is similar to clicking a mouse. When using the touchpad, users only need to slightly 

lift a finger up over touchscreen and press down, yielding a potentially shorter movement 

time. In contrast, pressing the Cardboard button may take more time since the depth of 

button is longer. Moreover, the hand gesture is likely affected by several factors, including 

the individual factors (e.g., finger flexibility/dexterity) but more importantly, tracking 

quality.  Based on these observations, I hypothesized the following: 

H1: The combination of finger ray + touchpad condition will retain the fastest-speed 

spot, since finger ray was faster than head ray in Experiment 1 and the touchpad has higher 

sensitivity.  

H2: The combination of finger ray + hand gesture condition will produce the second 

highest speed as the gesture can be performed directly with same hand and there is no need 

to operate two hands. 

H3: The combination of head ray + Cardboard button will produce the lowest error 

rate because of the comparative reliability of the hardware. 
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4.2 Participants 

The same 12 participants (2 females and 10 males) who participated in Experiment 1 

also participated in this experiment right after. Their ages ranged from 18 to 30 years old 

(Mean≈ 22.67 years old). Two were left-handed. None had vision or motor problems.  

4.3 Apparatus 

I used the same hardware setup as in Experiment 1, including the Samsung Galaxy 8 

smartphone, and Google Cardboard HMD. 

I also used the same software environment in Experiment 2 as in Experiment 1. See 

Section 3.4.1 for a full description. This experiment used a subset of the selection 

techniques from Experiment 1. These included head ray and finger ray. Descriptions of 

those techniques can also be found in Chapter 3, before Section 3.1.  

The two new selection activation methods studied included the Google Cardboard 

button and the Tap hand gesture described earlier. These, like the touchpad selection 

activation method all resulted in the present target disappearing immediately, and the next 

target appearing.  

In the Cardboard button condition, participants pressed the capacitive button built into 

the cardboard frame. I note that since I had expected most participants would be right-

handed, I added a second button on the left side of Google Cardboard (see Figure 15). After 

all, the built-in right-side Cardboard button would prevent participants from using their 

right hand to perform hand postures (e.g., in the finger ray selection technique) and thus 

would likely affect performance. Adding the left-side Cardboard button ensured that 

participants could always select with their dominant hand, and activate selection using their 

non-dominant hand.  
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Figure 15. Modified Google Cardboard with both left and right-sided buttons. 

In the hand gesture condition, participants performed the “air tap” gesture [25] 

described above within the camera viewport to accomplish the selection. See Figure 14 

This was done using the dominant hand when using the finger ray selection method (i.e., 

the same hand used to determine the ray direction). Participants were told to use the same 

hand whatever the selection technique is. Participants had to keep the pointing finger stable 

until the tap gesture is performed. Finally, the touchpad operated the same as in Experiment 

1 and used the same extra hardware.   

4.4 Experiment Design 

To investigate potential interactions between selection technique and selection 

activation methods, this experiment included both finger ray and head ray from Experiment 

1. The experiment thus employed a 2×2×3×2 within-subject design with the following 

four independent variables:  

Pointing method: Head Ray (HR), Finger Ray (FR); 

Selection activation mechanisms: Cardboard button (CB), hand gesture (HG); 

Object depth: close (1.3m), medium (1.7m) and far (2m); 

Object size: big (0.7m) and small (0.4m); 



 

 42 

Participants completed Experiment 2 immediately following Experiment 1. Each block 

consisted of 12 selection trials for each combination of target size and target depth. 

Selection techniques and selection activation mechanisms were counterbalanced according 

to a Latin square. Overall, there were 12 participants × 2 pointing methods × 2 selection 

activation mechanisms ×  2 target sizes ×  3 target depths × 12 selections = 3456 trials in 

total.  

I calculated dependent variables including movement time (s), error rate (%) and 

throughput (bit/s). Movement time was calculated from the beginning of a selection trial, 

the target appears, to the time when the participant confirms the selection. The error rate 

was calculated as the percentage of trials missing the target in each block. Throughput was 

calculated according to Chapter 2, section 2.6. Finally, I also collected subjective data by 

questionnaires and interviews after each participant accomplished experiments.  

4.5 Procedure 

Experiment 2 immediately followed Experiment 1. First, participants sat down and 

put on the HMD, and I gave them instructions about how to control each pointing method 

and selection activation mechanism. I gave them about a minute to practice using the 

system. These practice trials were not recorded. The first target sphere would appear at the 

centre of the viewport. After selecting the first target, the formal test began. Participant 

confirmed each selection by different mechanisms, no matter the target was hit accurately 

or not, the current target disappeared immediately, and the next target appeared. Targets 

appeared in the VE following the ring pattern common to ISO 9241-9 evaluations [15]. 

Upon completing one condition (1 pointing method  × 1 selection activation mechanism), 

which consisted of 72 trials (12*2*3), participants were given approximately 1-2 minutes 

to rest and get ready for the next condition. After all conditions were completed, they filled 
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out the questionnaires and were interviewed for subjective feedback. 

4.6 Results 

Results were analyzed by using repeated-measures ANOVA at 5% significance level. 

For all dependent variables, I included data from Experiment 1 for the finger ray and head 

ray conditions. Since Experiment 1 exclusively used the touchpad, this was added as a basis 

of comparison with the two new selection activation mechanisms. Full ANOVA test result 

can be found in 5.2Appendix G   

4.6.1 Completion time 

Completion time (CT) is the average time to select a target. Mean completion time 

for each condition combination is seen in Figure 16. Completion time was analyzed using 

repeated-measures ANOVA. The result ( 𝐹5,20 =22.44, p < 0.001 ) shows that the 

combinations of selection techniques and selection activation mechanisms have significant 

effects on completion time. Post hoc testing with the Bonferroni test (at the p < 0.05 level) 

revealed there a significant difference (p < 0.05) between head ray and finger ray when 

using the Cardboard button. Pairwise differences are visualized in Figure 16 as arrows 

indicating condition pairs that are significantly different. There was no significant 

difference when using hand gestures between finger ray and head ray, nor when using the 

touchpad between head ray and finger ray. Also, there were significant differences between 

touchpad and either Cardboard button or hand gesture when using finger ray as the 

selection technique.  

Finger ray with either Carboard button or hand gesture had much higher completion 

time compared to the touchpad. Finger ray also took longer with Carboard button than head 

ray with Carboard button. This is surprising given how fast the condition was when using 

the touchpad in Experiment 1. This highlights the importance of investigating selection 
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activation mechanisms in conjunction with pointing techniques. 

 

Figure 16. Average completion time for combinations of techniques. Error bars show ±1 SD 

Two-way arrows (→) indicate the pairwise significant different between them with post hoc test at 

5% significance level, and best performance one was highlighted by red. 

Results separated by target depth and size are seen in Figure 17. Generally, smaller 

target size required a longer time to complete selections. Like Experiment 1, the medium 

target depth yielded faster movement times compared to the far and close target distances. 

The finger ray + touchpad still hold the top which takes the shortest time to complete 

selections for every target size and depth.  

 

Figure 17. Completion time in depths, sizes, and combination techniques. Error bars show ±1 

SD. 
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4.6.2 Error rate 

Average error rates for each technique combination is shown in Figure 18. Repeated-

measures ANOVA result ( 𝐹2,8 =16.57, p < 0.001)  shows that the combinations of 

techniques have a significant effect on error rate. Post hoc testing with the Bonferroni test 

(at the p <. 05 level) revealed there were significant differences between finger ray + 

Carboard button and using head ray with all three selection activation mechanisms. 

Pairwise differences are visualized in Figure 18 as arrows indicating condition pairs that 

are significantly different. The highest error rate was with the finger ray + Cardboard button 

condition. Notably, hand gestures worked better with both finger ray and head ray, than 

either selection method worked with Cardboard button, which had highest error rate for 

both selection methods. 

  

Figure 18 Error rate in combinations of techniques. Error bars show ±1 SD. Two-way arrows 

(→) indicate the pairwise significant different between them with post hoc test at 5% significance 

level, and best performance one was highlighted by red. 

According to a Bonferroni post hoc test (at the p = 0.05 level), target depth did not 

have significant effects on error rate except finger ray + hand gesture combination. Finger 
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ray + Cardboard combination had higher error rate in each combination of target depths 

and sizes than other interaction methods (see Figure 19). 

 

Figure 19. Error rate by techniques combination. Error bars show ±1 SD. 

4.6.3 Throughput 

Repeated measures ANOVA (𝐹2,8=70.08, p < 0.001) revealed that the combinations 

of techniques have a significant effect on throughput. Average throughput for each 

technique combination is shown in Figure 20. Post hoc testing with the Bonferroni test (at 

the p <0.05 level) shows when using head ray as selection technique, the throughput was 

significantly different between each selection activation mechanism (p < 0.05), with hand 

Figure 20 Throughput for each combination technique. Error bars show ±1 SD. Two-way 

arrows (→) indicate the pairwise significant different between them with post hoc test at 5% 

significance level, and best performance one was highlighted by red.  
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gesture performing worst and Cardboard button performing best. Pairwise differences are 

visualized in Figure 20 as arrows indicating condition pairs that are significantly different. 

With finger ray, throughput was significantly lower with hand gestures and the Cardboard 

button than with the touchpad. 

4.7 Subjective results  

From the questionnaire results (see Figure 21), participants rated head ray + touchpad 

as lowest and head ray + Cardboard button as the highest. Finger Ray + touchpad is at the 

second position, flowed by finger ray + Cardboard button combination. Upon interviewing 

participants, they mentioned that performing with hand gestures was more convenient than 

pressing the button or touchpad. Notably, the Cardboard button was sometimes a bit 

unresponsive, requiring they press it harder at times. Some also mentioned that the HMD 

was not tight enough when they pressed down the button. They had to hold it with another 

hand sometimes. No participants mentioned any physical fatigue in Experiment 2, even 

though they needed to perform hand gesture in the air.   

   

Figure 21 Number of participants giving each score in the subjective questionnaire ranking 

preference for each combination of techniques. 
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performance was notably worse. This was a surprising result, given that in Experiment 1, 

finger ray was faster than the head ray. This suggests that either hand gesture or Cardboard 

button might not a suitable selection activation mechanism to work with finger ray. 

As I expected from hypothesis H1, finger ray with touchpad was fastest. This is likely 

because the touchpad was more sensitive than either the Cardboard button or using hand 

gestures recognized by the camera. As mentioned earlier, participants sometimes found the 

Cardboard button somewhat unresponsive. Similarly, the hand gestures were not always 

perfectly recognized by the tracking SDK. On the other hand, using head ray with the 

Cardboard button yielded significantly lower completion times. I suspect this is because 

head and neck movements resulted in more whole-body movement than simply using the 

fingers with finger ray. For example, when using the head ray, participants had to turn their 

bodies slightly to face the target. During such movement, it was faster to press the 

Cardboard button (since it is positioned on the HMD) rather than tapping the touchpad 

(which is fixed on the table).  

Finger ray + hand gesture took longer than head ray + hand gesture, which was 

inconsistent with my hypothesis H2. I had expected that the hand gesture could be 

performed with the same hand being used to perform the finger ray selection so that 

completion time would be less with finger ray + hand gesture combination. I had thought 

this would be a fast process, since after all, participants could perform the hand gesture as 

soon as the ray intersected the target, which may thus be faster than pressing the Cardboard 

button. The comparative lack of camera sensitivity likely explains this result. Usually, the 

participants’ tap gestures were not recognized on the first try; multiple hand gestures thus 

increased the time to select targets.  

I was surprised by the significantly higher error rate for finger ray with the Cardboard 
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button. This may be because of the so-called “Heisenberg” effect in 3D selection [3], where 

the selection activation mechanism sometimes moves the pointing device at the instant of 

selection, resulting in missing the target. In my case, I observed when pressing the 

Cardboard button, their bodies and head would move slightly, which likely influenced the 

head ray. Similarly, since the HMD was not as secure as more expensive HMDs, pressing 

the button also moved the HMD slightly, further affecting the selection ray. However, 

when using head ray, participants frequently used their other hand to hold the Google 

Cardboard, so the error rate was fairly stable. However, this factor still influenced the 

overall error rate, contrary to my expectation (H3) that error rate for head ray + Cardboard 

should be lowest. Head ray + Cardboard button had a higher error rate than head ray + hand 

gesture combination. In contrast, when using the finger ray, participants used one hand to 

direct the ray, and the other to press the button. As a result, the error rate increased in that 

condition. Due to the overall better movement time and accuracy with the Cardboard button, 

throughput was also higher with this condition.  

From the questionnaire data and interviews, the head ray + Cardboard button was 

rated best, followed by finger ray + Cardboard button. This indicates that smooth operation 

during pointing is an important factor for users. Further, there was no physical fatigue was 

reported during the experiment 2, which might because the air touch condition in 

Experiment 1 caused the physical fatigue reported by participants. This also suggests that 

using finger ray causes much lower level fatigue than air touch. In general, head ray + 

Cardboard button still had the advantage on both throughput, error rate and completion 

time. However, both head ray and finger ray with hand gestures were not far off, and could 

be a potential alternative in the future, especially with advances in camera-based tracking.  
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4.9 Summary 

Above all, it is difficult to simply conclude which technique combination is the best 

from my experiment result since they have different advantages and disadvantages. 

However, the combination of head ray and the Cardboard button achieved relatively stable 

performance in every metric. As I hypothesized in H3, this combination would further 

benefit from greater physical stability of the hardware. Head ray + hand gesture offered 

lower error rates than head ray + cardboard button despite hardware noise (e.g., jitter). This 

result supports the idea that using the finger offers good utility in mid-air selections [37]. 

Moreover, although finger ray + hand gesture had higher error rate than head ray + 

cardboard button, there was no significant difference between them. This suggests the 

higher average error rate may just be due to only a few participants with poor performance. 

I suspect that the combination of finger ray or head ray plus hand gestures could produce 

better performance with more reliable camera detection. Finally, although the touchpad 

offered good performance overall, I again argue that it is not a practical choice for mobile 

VR scenarios. 
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5    Chapter:  Conclusion 

In my work, I focused on comparing potential selection techniques for low-cost 

mobile VR. My objective was to assess if alternatives to common head-based selection 

methods were feasible with current technology, especially employing computer vision 

tracking approaches on the mobile. To this end, I simplified my hardware condition to only 

a smartphone and a cardboard-made HMD. In Experiment 1, I compared three selection 

techniques, air touch, head ray and finger ray in selection tasks, finding that overall, air 

touch performed worst. In Experiment 2, I compared different combinations of selection 

techniques and selection activation methods. Results indicated that an external touchpad 

worked well with finger ray, despite its impracticality. The built-in Cardboard button 

worked well with head ray.  

While previous researches proposed some new interaction techniques for Cardboard 

type HMD devices, nobody has evaluated the performances of different selection 

techniques and selection confirmation methods with ISO 9241-9 [15] standard and Fitts’ 

law. My work measured performance by several metrics including error rate, movement 

time, and throughput as well as participant feedback. From experiments results and analysis, 

I suggest that finger ray is a promising input technique for mobile VR. Although head ray 

had the highest accuracy, finger ray was competitive, especially in light of sensor noise in 

the tracking SDK. Despite this difficulty, finger ray had higher speed and throughput than 

head ray and air touch. Besides, finger ray had high preference as well from the post-test 

questionnaire and interviews. Air touch, in contrast, it is not an ideal choice for simple 

selection tasks; single-camera tracking of the hand seems to be currently incapable of 

reliably determining hand depth. My user study shows that dealing with higher DOFs might 

cause lower performance, which is consistent with previous research [9]. Besides, 
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comparing to two ray techniques, air touch caused much more obvious physical fatigue in 

both arm and shoulder areas. Head ray caused neck fatigue as well when pointing to close 

targets. Overall, from Experiment 1, there seems to be some promise for future selection 

techniques based on camera tracking for mobile VR scenarios. 

In Experiment 2, different combinations between the two ray techniques (head ray 

and finger ray) and selection activation methods (hand gesture, cardboard button, touchpad) 

yielded surprising performance results. However, it is hard to conclude which combination 

is best for mobile VR scenarios from my experiment results, as each combination offered 

different pros and cons. Currently, it appears that the “default choice” (i.e., industry 

standard) head ray + cardboard button offers the most stable combination. Head ray 

+cardboard button is competitive on all metrics. However, I suspect that the combination 

of either finger ray or head ray plus gestures could offer higher performance if the gestures 

could be more reliably detected. This might be possible in future with more robust vision-

based tracking software, which would likely necessitate more powerful smartphone 

hardware. Likewise, Cardboard button performance could increase with a more stable 

HMD configuration, reducing hardware noise. In addition, participants with the head ray 

can be easily controlled and confirm with the hand gesture is more natural.  

Additionally, although the touchpad conditions worked well, I note again that these 

are not realistic for true mobile VR scenarios, as it necessitates additional hardware and 

setup. Another problem is that it is easy to lose such an external controller when using 

immersive VR.  

Finally, compared to the result from Experiment 1, I can see the importance of 

choosing the proper selection activation mechanisms in relation with selection techniques. 

I hope my research results can help design of human-computer interface on mobile VR 
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devices in the future. 

5.1 Limitations 

  My current work is based on lab settings with particular lighting levels and 

background colour. As discussed earlier, this was done to optimize conditions for the 

tracking SDK. Despite these optimizations, during the experiment, I still noticed constant 

cursor jitter. In real-world usage, interference factors would be much more complicated. 

Hence, I take my results as a “best-case” with current technologies.  

Due to the extreme jitter, the target size was also limited by the camera. It would be 

impossible to hit very small targets; previous work has shown that once jitter approaches 

half the target size, selection accuracy falls dramatically [24]. In pilot testing, I modified 

the experiment interface to account for this problem, but in real-world VR selection 

scenarios, target size could be clearly be much smaller. 

Another limitation is that I only used the tap gesture for the hand gesture condition. 

In pilot testing, the tap was deemed more reliable than the pinch gesture I also considered. 

However, other gestures may also be feasible, and could be tested in future work. 

Finally, I note that the depth of the virtual hand in the air touch condition was 

calculated using a scale factor between Manomotion SDK and the VEs coordinate systems. 

However, the scale factor in the z-axis was fixed in my study, which was not ideal for all 

participants. For example, one participant with shorter arms had difficulty in reaching the 

farthest targets. Customizing this ratio for each participant would provide a smoother user 

experience. 

5.2 Future work 

The current studies only have used two levels of Fitts’ index of difficulty. As a result, 

I did not get a strong linear regression for my pointing techniques. This limits the generality 
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of the results and could be improved in a future study using a broader range of target sizes 

and distances, yielding a more comprehensive range of task difficulties. This would allow 

for better prediction of indices of difficulty not tested, through calculation of linear 

regression models between MT and ID (See Equitation 1, Section 2.4). 

Due to the aforementioned hardware constraints, I used the built-in RGB camera to 

detect the hands and gestures. The hand depth relied on calculations described earlier rather 

than pure detection. As a result, my smallest target size is just 0.4m in VEs due to the 

unreliability of the tracking. In future work, I propose to use a depth camera to get more 

accurate tracking. I speculate that in the future, many companies will begin to include depth 

cameras in their mobile devices, and some devices (e.g., Google Tango) are already 

available.  
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Appendices 

Appendix A  Consent form 
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Appendix B   Pre-test Questionnaire 
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Appendix C  Post-test Questionnaire  
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Appendix E  ANOVA Analysis results for Experiment 1 

Significance marks: *** represents <0.001, **<0.01 )* represents <0.05 

  

Effect Movement time   Error rate       Throughput 

                d.f.   F   p F p F p 

Tech(T)        2,18 33.98 *** 385.52 *** 90.63 *** 

Size(S)          1,9 35.46 *** 3.99 ns 11.38 ** 

Depth(D)       2,9 12.20 *** 71.62 *** 8.04 ** 

T*S              2,18 3.91 * 6.60 ** 7.39 ** 

T*D             4,36 2.98 * 78.39 *** 2.23 ns 

S*D               2,18 2.86 ns 14.97 *** 11.56 ns 

T*S*D           4,36 2.30 ns 15.69 *** 4.92 ns 
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Appendix F  ANOVA Analysis results for Experiment 2 

Significance marks: *** represents <0.001, **<0.01 ,* represents <0.05 

  

Effect Movement time   Error rate       Throughput 

                   d.f.   F   p F p F p 

Tech(T)          5,20 22.44 ** 16.57 *** 70.08 *** 

Size(S)            1,4 48.24 ** 24.89 **  NS 

Depth(D)         2,8  NS  NS  NS 

T*S                 5,20     NS  NS  NS 

T*D                 2,8  NS  NS  Ns 

T*S*D           10, 40 3.43 *  NS 4.36 ** 
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Appendix G  Software structure 

I developed my software on Unity3D in C#. For different techniques, the software 

framework is slightly different. Main prefabs in Unity editor are Game Manager, Level 

Manager, Objects Manager, Player, Objects and Techniques. The UML below shows the 

relationship between these main classes for Finger Ray project. 

 

GameManager class is mainly responsible for updating game level (e.g., depth 

increase) and switch scenes (target size). 

ObejctManager class takes responsivity for set each target in specific locations by 

sequences and write coordinates of ray intersect with targets and time of each selection 

takes into console.  

LevelManager class manages game’s current level and max level. 

Target class attached to each target prefab takes responsibility for setting colours 

based on selecting status. For example, when ray is intersecting with the target, set the 

target color into pink. Besides, it monitors if the target is selected successfully when the 
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selection is activated. 

FingerRay class is responsible for creating finger ray. ControlMovementWithHand() 

method controls the movement of black dot following index fingertip position tracked by 

Manomotion class. 

Due to the specific mobile scenario, I used a Log class to writes all logs data onto a 

txt file in the cellphone. Some important codes for each selection technique is listing below. 

FingerRay class 

using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
public class FingerRay : MonoBehaviour { 
    private GameObject hitObject = null; 
    private Camera camera; 
    private Ray myRay; 
    GameObject nailIllustration; 
    RaycastHit hit; 
    public float maxCursorDistance = 30; 
    float detectedDepth, depthAdjustment; 
    #region Singleton 
    private static FingerRay _instance; 
    public static FingerRay Instance 
    { 
        get 
        { 
            if (_instance == null) 
            { 
                GameObject bm = new GameObject("FingerRay"); 
                bm.AddComponent<FingerRay>(); 
            } 
 
            return _instance; 
        } 
    } 
    #endregion    void Awake() { 
                depthAdjustment = 2f; 
        nailIllustration=transform.GetChild(0).gameObject; 
     
    } 
 
    // Update is called once per frame 
    void Update () { 
         
        myRay = ControlMovementWithHand (); 
 
        int  layerMask = 1 << 8; 
        // Raycast 
        if (Physics.Raycast (myRay, out hit, Mathf.Infinity,layerMask)) { 
 
            Debug.Log (hit.collider.name); 
        if (hit.collider.tag=="Ball") { 
                hitObject = hit.transform.gameObject; 
         
                this.hit = hit; 
                hitObject.GetComponent<Ball>().SetGazedAt(); 
            if (Input.GetButton("Fire1")) 
                { 
                hitObject.GetComponent<Ball>().GetPoint(); 
 
                    BalloonManager.Instance.AddHitPosition (hit.point); 
            } 
            } 
        } else { 
 
        if (hitObject != null) { 
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                hitObject.GetComponent<Ball> ().SetGazedAtNot ();     
                hitObject = null; 
            } 
 
        } 
     
    } 
 
    private Ray ControlMovementWithHand() 
    { 
 
        if (ManomotionManager.Instance.Hand_infos [0].hand_info.gesture_info.mano_class == ManoClass.POINTER_GESTURE_FAMILY) {     
 
            nailIllustration.SetActive (true); 
            detectedDepth = Mathf.Clamp (ManomotionManager.Instance.Hand_infos [0].hand_info.tracking_info.relative_depth, 0f, 1f); 
            Vector3 pointerPosition = ManomotionManager.Instance.Hand_infos [0].hand_info.tracking_info.finger_tips [3]; 
            Vector3 camPos = Camera.main.transform.position; 
            //Vector3 pointerPosition=ManomotionManager.Instance.Hand_infos[0].hand_info.tracking_info.finger_tips[(int)(FingerTipIndex.POINTER_INDE
X)]; 
            Vector3 newPos = ManoUtils.Instance.CalculateNewPosition (pointerPosition, detectedDepth * depthAdjustment); 
            Vector3 rayDirection = newPos - camPos; 
            this.transform.position = Vector3.Lerp (this.transform.position, newPos, Time.deltaTime * 10); 
            Ray PointerRay = new Ray (camPos, rayDirection); 
         
 
            Debug.Log ("detectedDepth :" + detectedDepth + "pointerPosition :" + newPos); 
            return PointerRay; 
 
 
        }  
 
        return myRay; 
 
    } 
 
    public RaycastHit HitPoint(){ 
 
        return this.hit; 
    } 
}  

GameManager class 

using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
using UnityEngine.SceneManagement; 
 
public class GameManager : MonoBehaviour 
{ 
    private int counter=0; 
    float[,] PT =new float[16,10]; 
    #region Singleton 
    int level=0; 
    public Scene m_Scene,m_SecScene; 
 
    private static GameManager _instance; 
    public static GameManager Instance 
    { 
        get 
        { 
            if (_instance == null) 
            { 
                GameObject gm = new GameObject("GameManager"); 
                gm.AddComponent<GameManager>(); 
            } 
            return _instance; 
        } 
    } 
    #endregion 
 
 
    // [SerializeField] 
    //  AudioSource levelSound; 
 
    private void Awake() 
    { 
        _instance = this; 
        Camera.main.transform.localRotation=Quaternion.Euler(0f,0f,0f); 
    } 
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    private void Start() 
    { 
    } 
 
    void Update (){ 
         
        m_Scene = SceneManager.GetActiveScene(); 
    }  
    public void LevelCleared() 
    { 
         
            PT = BalloonManager.Instance.ptArray (); 
        Debug.Log ("Fromx   Fromy   Fromz   Tox   Toy   Toz   x   y   z   MT    \r\n "); 
            for (int m = 0; m < 16; m++) { 
 
            Debug.Log (PT [m, 0] + "," + PT [m, 1] + ","+ PT [m, 2] + "," + PT [m, 3] +"," + PT [m, 4] +"," + PT [m, 5] +"," + PT [m, 6] + ","+ PT [m, 7] +","+ PT [m, 
8] +","+ PT [m, 9] + "\r"); 
 
 
            } 
                
              BalloonManager.Instance.iniArray (); 
            Debug.Log ("you miss" +BalloonManager.Instance.counter+"   "); 
 
        BalloonManager.Instance.j = 0; 
            BalloonManager.Instance.counter = 0; 
        Debug.Log ("level" + level); 
 
        level++; 
        if (level == 4) { 
            Application.Quit (); 
        } else { 
 
            LevelManager.Instance.Level = LevelManager.Instance.Level + 1; 
        } 
    } 
} 

ObjectManager class 

using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
using System.IO; 
 
public class BalloonManager : MonoBehaviour 
{ 
 
    private int currentSphereNum = 0; 
    private int randomSphereNum=0; 
    private float minDistanceZ = 3.5f; 
    private float maxDistanceZ = 5.5f; 
    float delta = 24* Mathf.PI / 180; 
    float beta=180*Mathf.PI/180; 
    float radian = 24* Mathf.PI / 180; 
    float centerX; 
    float centerY; 
    float A =1f; 
    Vector2[] positions; 
    public float [,] pt=new float[16,10]; 
    public Material acMaterial; 
    public Material inacMaterial; 
 
    public int  j=0; 
    public int counter=0; 
    private float timeCounter = 0f; 
 
 
    #region Singleton 
    private static BalloonManager _instance; 
    public static BalloonManager Instance 
    { 
        get 
        { 
            if (_instance == null) 
            { 
                GameObject bm = new GameObject("BalloonManager"); 
                bm.AddComponent<BalloonManager>(); 
            } 
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            return _instance; 
        } 
    } 
    #endregion 
 
    private static int _balloonsInPlay=13; 
    public static int BalloonsInPlay 
    { 
        get 
        { 
            return _balloonsInPlay; 
        } 
        set 
        { 
            _balloonsInPlay = value; 
        } 
    }  
 
   
    private void Awake() 
    { 
        _instance = this; 
        this.positions=CaculatePosition (); 
    centerX =Camera.main.transform.position.x; 
        centerY = Camera.main.transform.position.y; 
     
        iniArray (); 
 
 
    } 
 
    public void iniArray(){ 
         
    for (int m = 0; m < 16; m++) { 
 
        for (int n = 0; n < 10; n++) { 
            pt [m,n] = 0f; 
        } 
 
    } 
    } 
    public void clicked(){ 
 
 
        Debug.Log ("ClickSphere"); 
 
        this.counter++; 
     
 
 
 
    } 
    public float[,] ptArray(){ 
 
        return pt; 
    } 
    public Vector2[] CaculatePosition(){ 
 
        Vector2[] positions={new Vector2(centerX + Mathf.Cos (radian) * (A / 2),centerY + Mathf.Sin (radian) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+beta) * (A / 2),centerY + Mathf.Sin (radian+beta) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+delta) * (A / 2),centerY + Mathf.Sin (radian+delta) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+delta+beta) * (A / 2),centerY + Mathf.Sin (radian+delta+beta) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+delta*2) * (A / 2),centerY + Mathf.Sin (radian+delta*2) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+delta*2+beta) * (A / 2),centerY + Mathf.Sin (radian+delta*2+beta) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+delta*3) * (A / 2),centerY + Mathf.Sin (radian+delta*3) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+delta*3+beta) * (A / 2),centerY + Mathf.Sin (radian+delta*3+beta) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+delta*4) * (A / 2),centerY + Mathf.Sin (radian+delta*4) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+delta*4+beta) * (A / 2),centerY + Mathf.Sin (radian+delta*4+beta) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+delta*5) * (A / 2),centerY + Mathf.Sin (radian+delta*5) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+delta*5+beta) * (A / 2),centerY + Mathf.Sin (radian+delta*5+beta) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos (radian+delta*6) * (A / 2),centerY + Mathf.Sin (radian+delta*6) * (A / 2)), 
            new Vector2(centerX + Mathf.Cos( radian+delta*6+beta) * (A / 2),centerY + Mathf.Sin (radian+delta*6+beta) * (A / 2)), 
 
            //    return Ballpositions; 
        }; 
        return positions; 
    } 
 
    //Logic of what happens when a balloon is poped. 
    public void BalloonPoped() 
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    { 
 
         j++; 
        BalloonsInPlay--; 
        if (BalloonsInPlay == 0) 
        { 
            BalloonsInPlay = 13; 
                       GameManager.Instance.LevelCleared(); 
 
        } 
 
 
    } 
    public Vector3 SpawnBalloonsAccordingToLevel(float level) 
    { 
        Vector3 pseudoRandomPosition =new Vector3((float)(this.positions[13-_balloonsInPlay].x),(float)(this.positions[13-
_balloonsInPlay].y), (float)(level/3)); 
    //    Debug.Log (_balloonsInPlay+"_balloonsInPlayyyyyyyyyyyyyyyyyyyyyyyyyyyy"); 
        if (_balloonsInPlay == 13) { 
        } else { 
                     pt [j, 0] = (float)(Mathf.Round (this.positions [13 - _balloonsInPlay - 1].x * 1000) / 1000); 
                pt [j, 1] = (float)(Mathf.Round (this.positions [13 - _balloonsInPlay - 1].y * 1000) / 1000); 
                pt [j, 2] = (float)(level/3); 
                pt [j, 3] = (float)(Mathf.Round (this.positions [13 - _balloonsInPlay].x * 1000) / 1000); 
                pt [j, 4] = (float)(Mathf.Round (this.positions [13 - _balloonsInPlay].y * 1000) / 1000); 
                pt [j, 5] = (float)(level/3);       
        } 
        return pseudoRandomPosition; 
 
    } 
 
    public void AddHitPosition(Vector3 Hit){ 
        pt [j,6] = Hit.x; 
        pt [j,7] = Hit.y; 
        pt [j,8] = Hit.z; 
 
 
    } 
 
    public void AddTime(float time){ 
           pt [j,9] = time; 
 
    } 
} 

Object class 

using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
 
public class Ball : MonoBehaviour 
{ 
     
 
    private Vector3 startingPosition; 
    private Renderer renderer; 
    public Material inactiveMaterial; 
    public Material gazedAtMaterial; 
    private const float AUTO_DESTROY_TIME =2f; 
    public float timeCounter = 0f; 
    public bool playerHoveringOver; 
 
 
    void Start() { 
 
 
        renderer = GetComponent<Renderer>(); 
        renderer.material = inactiveMaterial ; 
     
    } 
    void Update(){ 
 
        timeCounter = timeCounter + Time.deltaTime; 
        if (((Input.GetButton("Fire1"))&&playerHoveringOver==false) { 
 
                this.Disappear (); 
 
        }  
 
    } 
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    public void SetGazedAt() { 
        if (inactiveMaterial != null && gazedAtMaterial != null) { 
            renderer.material = gazedAtMaterial ; 
            playerHoveringOver = true; 
            return; 
        } 
    } 
    public void SetGazedAtNot() { 
        if (inactiveMaterial != null && gazedAtMaterial != null) { 
            renderer.material = inactiveMaterial; 
            playerHoveringOver = false; 
            return; 
        } 
    } 
 
    public void GetPoint(){ 
                BalloonManager.Instance.BalloonPoped (); 
                this.renderer.material = inactiveMaterial; 
                this.gameObject.SetActive (false); 
                int sibIdx = transform.GetSiblingIndex (); 
                int numSibs = transform.parent.childCount; 
                sibIdx = (sibIdx + Random.Range (1, numSibs)) % numSibs; 
                GameObject randomSib = transform.parent.GetChild (sibIdx).gameObject; 
                randomSib.transform.position = BalloonManager.Instance.SpawnBalloonsAccordingToLevel (LevelManager.Instance.Level); 
                randomSib.SetActive (true); 
               BalloonManager.Instance.AddTime (timeCounter); 
 
             
                timeCounter = 0; 
 
        } 
 
    public void Disappear(){ 
 
            BalloonManager.Instance.BalloonPoped (); 
            BalloonManager.Instance.clicked (); 
            int sibIdx = transform.GetSiblingIndex (); 
            int numSibs = transform.parent.childCount; 
            sibIdx = (sibIdx + Random.Range (1, numSibs)) % numSibs; 
            GameObject randomSib = transform.parent.GetChild (sibIdx).gameObject; 
 
            randomSib.transform.position = BalloonManager.Instance.SpawnBalloonsAccordingToLevel (LevelManager.Instance.Level); 
            randomSib.SetActive (true); 
            gameObject.SetActive (false); 
            timeCounter = 0; 
        } 
 
    } 

Class for Head Ray 

using UnityEngine; 
using System.Collections; 
using System; 
 
public class SimpleGazeCursor : MonoBehaviour { 
    public Camera viewCamera; 
    public GameObject cursorPrefab; 
    public float maxCursorDistance = 30; 
    int mask; 
    public GameObject hitObject; 
    public RaycastHit hit; 
 
    private GameObject cursorInstance; 
 
    #region Singleton 
    private static SimpleGazeCursor _instance; 
    public static SimpleGazeCursor Instance 
    { 
        get 
        { 
            if (_instance == null) 
            { 
                GameObject bm = new GameObject("SimpleGazeCursor"); 
                bm.AddComponent<SimpleGazeCursor>(); 
            } 
 
            return _instance; 
        } 
    } 
    #endregion 
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    // Use this for initialization 
    void Start () { 
        cursorInstance = Instantiate(cursorPrefab); 
    //    mask = LayerMask.GetMask ("Treasure","TriSphere0","Ball"); 
//        Debug.Log ("mask is"+mask); 
    } 
 
    // Update is called once per frame 
    void Update () { 
        UpdateCursor(); 
    } 
 
    /// <summary> 
    /// Updates the cursor based on what the camera is pointed at. 
    /// </summary> 
    private void UpdateCursor() 
    { 
        // Create a gaze ray pointing forward from the camera 
        Ray ray = new Ray(viewCamera.transform.position, viewCamera.transform.rotation * Vector3.forward); 
 
        int layerMask = 1 << 8; 
        if (Physics.Raycast (ray, out hit, Mathf.Infinity, layerMask)) { 
            // If the ray hits something, set the position to the hit point and rotate based on the normal vector of the hit 
 
            hit.collider.GetComponent<HandController> ().SetGazedAt (); 
            if (hit.collider.tag == "Ball") { 
                 
                cursorInstance.transform.position = hit.point; 
                cursorInstance.transform.rotation = Quaternion.FromToRotation (Vector3.up, hit.normal);  
                hitObject = hit.transform.gameObject; 
 
                hitObject.GetComponent<HandController> ().SetGazedAt (); 
                hitObject.GetComponent<HandController> ().GetPoint (hit.point); 
            } 
        }else 
        { 
            Debug.Log(" not hitttttttttttttttttttt"); 
            // If the ray doesn't hit anything, set the position to the maxCursorDistance and rotate to point away from the camera 
            cursorInstance.transform.position = ray.origin + ray.direction.normalized * maxCursorDistance; 
            cursorInstance.transform.rotation = Quaternion.FromToRotation(Vector3.up, -ray.direction); 
 
            if (hitObject != null) { 
                Debug.Log("hit others"); 
                hitObject.GetComponent<HandController> ().SetGazedAtNot ();     
                hitObject = null; 
            } 
 
        } 
    } 
 
 
    public RaycastHit HitPos(){ 
 
        return this.hit; 
    } 
} 

Class for Air Touch 

using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
 
 
public class Nail : MonoBehaviour 
{ 
 
      private bool isExecuting, userIsPointing; 
    float detectedDepth, depthAdjustment; 
    GameObject nailIllustration,point; 
    Vector3 pointPosition; 
 
    private void Start() 
    { 
        depthAdjustment = 2f; 
 
        ManomotionManager.Instance.SetSelectedHand(SelectedHand.RIGHT_HAND);  
 
              nailIllustration=transform.GetChild(0).gameObject; 
    } 
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    void Update() 
    { 
 
        ControlMovementWithHand(); 
    } 
 
    void ControlMovementWithHand() 
    { 
                    if (ManomotionManager.Instance.Hand_infos[0].hand_info.gesture_info.mano_class == ManoClass.POINTER_GESTURE_FAMILY) 
        {     
            nailIllustration.SetActive(true); 
            detectedDepth = Mathf.Clamp(ManomotionManager.Instance.Hand_infos [0].hand_info.tracking_info.relative_depth, 0f,1f); 
            Vector3 pointerPosition = ManomotionManager.Instance.Hand_infos [0].hand_info.tracking_info.finger_tips [3]; 
            Vector3 newPos =  ManoUtils.Instance.CalculateNewPosition(pointerPosition, detectedDepth*depthAdjustment); 
 
            this.transform.position = Vector3.Lerp(this.transform.position, newPos, Time.deltaTime * 10); 
        } 
        else 
        { 
       
            nailIllustration.SetActive(false); 
                   } 
    } 
} 
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