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Abstract 
 

     Head-mounted displays (HMDs) are becoming thinner, lighter and wireless. Soon we 

may see these displays used in public in devices like smart glasses. In this thesis, we 

designed, implemented and evaluated a novel multi-touch marking menu technique for 

use with HMDs. CountMarks extends conventional marking menus (gesture-based radial 

menus) by using multi-finger input on a mobile phone screen. This supports selecting 

items from each of four menus (one for each finger) with a single swipe, reducing the 

need for deeper menu hierarchies. We discuss the design of two variations of 

CountMarks, exploring selection efficiency, public acceptability, and ergonomic comfort. 

We conduct two studies: the first compares CountMarks to a traditional marking menu 

and finds one variation of CountMarks makes faster selections and allows for better 

search accuracy with only a small reduction in selection accuracy. Our second study 

evaluates CountMarks while standing and walking and with interaction occurring on 

hand-held and leg-mounted devices. Our results show that CountMarks can be used in the 

hand while standing or walking, and we confirm the difficulties with leg interaction. We 

evaluate the types of errors made by participants to suggest improvements to CountMarks 

as a whole and for leg interaction in particular. Finally, we present an application 

demonstrating the implementation of CountMarks in an existing user interface and we 

suggest directions for future work. 
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Chapter  1: Introduction 

     As predicted by Moore’s law, computers are getting progressively smaller [1]. 

Computational tasks that used to require a room full of stationary computing machines 

are now done on a smartphone that fits in our pockets. As computer chips and batteries 

became smaller and lighter, computer displays similarly became thinner and lighter. 

When Ivan Sutherland introduced the "Sword of Damocles" head-mounted display 

(HMD) in 1968 [2] it was suspended from the ceiling, required two hands to hold and 

operate and was only able to display wireframes of simple shapes. Today, the Microsoft 

HoloLens1 can process and display dynamic high-resolution augmented reality (AR) 

without external computation and weighs only 1.28 pounds. With the HoloLens and the 

recently announced Oculus Quest2, a stand-alone virtual reality (VR) headset, the future 

of HMDs sees devices getting thinner, more comfortable and wireless to support 

everyday use away from a desktop computer.  

The HoloLens and the most recent version of Google Glass3 are not aimed at 

everyday consumers, but at industry workers. These devices serve as tools to provide 

workers with annotated images and instructions on how to perform their work tasks. 

Companies such as North4 are pushing past industrial uses of HMDs by designing glasses 

that closely resemble regular everyday eyewear (Figure 1). This thesis assumes a future 

where mobile computing has moved from displays on smartphones to displays on glasses 

                                                 

1 https://www.microsoft.com/en-CA/hololens 
2 https://www.oculus.com/quest/ 
3 https://www.x.company/glass/ 
4 https://www.bynorth.com/ 
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that are worn casually in public. We refer to 'smart glasses' as an ideal HMD that looks 

indistinguishable from regular eyewear, but that performs the majority of functions 

smartphones currently do. Similar to how touch interaction is ubiquitous with 

smartphones, we explore interaction with HMDs where directly touching the display 

becomes less appropriate.  

 

Figure 1: Focals by North look like regular glasses except for the bulkier sides 

     Recent surveys on smartphone app usage show that over half of time spent using 

smartphones is on music, multimedia, and other entertainment and communication apps5. 

If smart glasses follow as the evolution of smartphones, they will likely be designed for 

similar purposes, to access and communicate information while on the move in everyday 

life. For example, when running errands your grocery list may be ever-present in the 

corner of your smart glasses leaving your hands free to push a shopping cart and grab 

items from a shelf. At the same time, text and email notifications may pop up that can be 

                                                 

5 http://www.businessofapps.com/data/app-statistics/ 
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dismissed without interrupting or looking away from your task. The consequence of 

moving this information from smartphones to smart glasses is that the user no longer has 

the convenience of direct touch interaction to select and manipulate data. Instead, current 

methods for interacting with HMDs include the use of hand-held devices, such as with 

the Oculus Rift, as well as speech and gesture recognition, such as with the HoloLens. 

The latter two are impractical because speech recognition is inappropriate for use in 

public [3] and in air gestures are prone to arm fatigue [4] and inaccurate detection [5]. 

Handheld devices (e.g. gaming controllers) are more socially acceptable but can be 

expensive and cumbersome to carry around.  

     Interaction techniques must also be designed for the environment they will be used in. 

For example, mobile texting apps were not designed to be used while walking or driving. 

The consequence of this is that 3,450 people died and 391,000 were injured from 

distracted driving accidents in the USA in 20166 and distracted walking from cell phones 

is sending more people to the emergency room each year7. The use of HMDs may 

exacerbate this problem as HMDs can provide ever-present, information-rich displays 

that can be used while navigating through everyday life. Any proposed interaction 

technique for these devices must consider its use in everyday scenarios such as when 

sitting, standing and walking to understand the real-world implications of its use. Ideally, 

this technology should supplement the user’s tasks instead of distracting them, and do so 

in a way that is efficient, ergonomic and disappears into the world [6]. Additionally, such 

                                                 

6 https://www.nhtsa.gov/risky-driving/distracted-driving 
7 https://news.osu.edu/distracted-walking-injuries-soar-for-pedestrians-on-phones/ 
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a technique should be socially acceptable, accurate and take advantage of existing 

technology the user may already own. To satisfy these requirements we first present and 

then empirically evaluate CountMarks, a multi-touch marking menu interaction technique 

that supports selection for mobile HMDs. 

     CountMarks extends marking menus [7] by employing multi-touch interaction, 

supporting up to four finger input instead of the traditional one touch input. With 

traditional marking menus (Figure 2), the user puts a single finger or stylus on the screen, 

and a circular menu appears.  The user then performs a swipe gesture in the direction of 

the desired menu option to activate its selection. This selection could open a second 

marking menu in the direction of the swipe gesture and could continue this way as menu 

depth increases.

 

Figure 2: Hierarchical marking menu interaction by Kurtenbach (1993) [7]. Users can either move 

through one menu at a time (left) or perform a single compound mark (right) to make a selection. 
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CountMarks enables the selection of an individual menu item from multiple groups, 

based on the number of fingers touching the screen (Figure 3). While any multi-touch 

surface can be used with this technique, we implement CountMarks on a smartphone as 

the input device in our experiments; we speculate that the ubiquity of smartphones may 

make them ideal input devices for future HMD-based wearable systems (VR, AR, or 

smart glasses). 

 

Figure 3: A demonstration of CountMarks. From left to right showing a) a user places two fingers on 

the screen to open the 2nd menu. b) Swiping right with two fingers to select the target 

     Numerous studies as early as the 1980s have revealed that pie menus (and their 

evolution, marking menus) offer faster and more accurate selection than linear menus  

[7, 8]. Despite this, marking menus are rarely seen in commercial applications. They are 

found in some design tools (e.g., Autodesk’s Maya, Figure 4) and in some video games 

(e.g., Assassin’s Creed and Dead Island, Figure 5), where they are used for quick 

selection. The main limitation is that within a single menu level, marking menus typically 

only support a maximum of 8 options to minimize error rates [9]. But because of this 

limitation, designers must increase the depth of their menu hierarchies when 

implementing marking menus, which is shown to cause users to make slower and less 
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accurate selections [10]. Deep menu hierarchies do not follow 3 of Nielson and Molich’s 

design heuristics [11]: minimize the user’s memory load, prevent errors and provide 

shortcuts. As such, they are often not ideal to be used in commercial applications. 

 

Figure 4: Marking menus in Maya, a 3D graphics application 

  

Figure 5: Weapon wheels in Assassins Creed: Brotherhood (left) and Dead Island (right) 
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1.1 Contribution 

In this thesis, we present CountMarks, a newly designed mobile marking menu 

technique that allows for greater menu breadth than traditional marking menus by using 

multi-finger interactions. We first compare two variations of CountMarks to traditional 

marking menus and demonstrate the effectiveness of increased breadth in marking menu 

selection. We then assess and evaluate one of these variants and its ability to make quick 

and accurate menu selections in a variety of use mobile cases.  

     Our first study provides empirical evidence that CountMarks offers quicker selection 

and improved search accuracy over multi-stroke marking menus at the cost of a small 

decrease in selection accuracy.  

     Our second study compares the effectiveness of CountMarks while standing and 

walking, and while performing interactions with hand-held and leg-mounted devices. We 

provide the first (to our knowledge) evaluation of a marking menu interaction in these 

user stances and device positions. We demonstrate CountMarks’ ability to be used 

successfully in handheld conditions while standing and walking, outperforming reported 

results from other marking menu variants. To improve upon the less accurate results for 

leg interactions, we analyze a selection of errors and provide suggestions for improving 

accuracy not only for CountMarks but mobile marking menus in general. 

     Finally, we contribute a proof of concept application for how CountMarks allows 

marking menu selection to be better implemented in future interfaces. We describe the 
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strengths and weaknesses of using CountMarks in such interfaces and we suggest future 

work to improve its design. 

1.2 Outline of the Thesis 

    This thesis is divided into 6 chapters. Chapter 2 presents a comprehensive literature 

review on marking menus and its variations, and on interaction techniques, including 

where and how interactions are performed. 

    In Chapter 3 we discuss the design and implementation of two variations of 

CountMarks. This chapter explores the limitations of marking menus and the 

justifications for why it is necessary to explore alternative implementations. 

    Chapter 4 presents an experiment evaluating the effectiveness of both CountMarks 

variants against traditional marking menus. Chapter 5 presents an experiment that 

explores using the higher performing variant of CountMarks in positions and movement 

cases. Both chapters include participants’ information, procedure, apparatus, design, 

results, and discussions. 

    The final chapter summarizes findings and proposes design recommendations for the 

implementation of marking menu interaction with HMDs that are designed to be used in 

motion. We provide an example application of CountMarks and propose directions for 

future research related to marking menu interaction with mobile HMDs. 
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Chapter  2: Related Work 

     This thesis explores marking menus as a method for indirect touch input for mobile 

HMDs as an alternative to direct touch, cursor-based or in-air gesture-based approaches. 

Some of the most common interactions with smartphones are selection tasks such as 

choosing apps, selecting emails or interacting with information in social media feeds8. 

Interactions with smart glasses are likely to follow this trend. While a smartphone screen 

is a convenient location to perform direct touch selections and desktop computers use the 

stable 2D plane of the desk for precise mouse input, these are not suitable for smart 

glasses. The mobile nature of HMDs make it difficult to have a consistent plane for 

precise 2D input, and touch input around the face, while possible for HMDs [12, 13], 

would be impractical for smart glasses because the lenses should remain clean to see 

through. We instead look to menu-based interaction to support indirect interactions, 

rather than direct selection, specifically focusing on marking menus due to their known 

efficiency. 

2.1 Marking Menus 

     Marking menus (see Figure 3) are swipe-gesture based menus introduced in the early 

1990s by Kurtenbach [7] to create shortcuts for item selection. Marking menus have been 

consistently shown to be quicker and more accurate than typical linear menu selection 

                                                 

8 http://www.businessofapps.com/data/app-statistics/ 
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[14]. Due to the performance benefits of marking menus, and the extensive literature on 

linear menus [15], we do not consider linear menus further in our work.  

Marking menus extend the concept of pie menus – circular menus that appear around 

the cursor when invoked [8], by allowing for compounded marks as shortcuts to items in 

deeper menu levels (Figure 2). Modern marking menus show that multiple individual 

strokes improve selection speed and accuracy [16]. The primary limitation of marking 

menus is that they only support up to 8 items per menu and two levels of depth to retain 

90% selection accuracy [9]. This is a problem, since past research shows that broad 

menus (i.e., menus with more items in a single menu level) performs better than deep 

menus (i.e., menus requiring drilling down into a hierarchy, increasing the number of 

selections required to select an item). This is likely because users tend to get lost in deep 

menu hierarchies [17]. As a result, variations of marking menus have been created to 

increase breadth: the flower menu [18] (Figure 6a) which uses curved instead of linear 

strokes, and the zone and polygon menus [19]  (Figure 6b and c) which let users make 

different selections based on where their swipe gesture begins. These variations 

demonstrate that increased breadth can increase selection speed and/or accuracy. 

Increasing breadth by having “overflow” items (those that do not fit in the 8 item 

marking menu) sit underneath in a linear menu was proposed in a patent by Kurtenbach 

[20] but does not appear to have been formally evaluated.  
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Figure 6: Marking menu variations that increase menu breadth - from left to right: a) Flower Menu 

(Bailly et al. 2008 [18] b) Zone Menu and c) Polygon Menu (Zhao et al. 2006 [19]) 

Perhaps the most closely related project to ours, Lepinski et al. [21] first explored 

multi-touch input for marking menus as a way to increase menu breadth. By holding 

different combinations of fingers (chords) to a touch surface different menus popup 

which the user can swipe on to make selections on a large touch surface (Figure 7a). 

Chording gestures are recognized with a camera near the touch surface. Most chords were 

found to be difficult to perform, but a simple set of chords (Figure 7b) were shown to 

make faster selections than modern multi-stroke marking menus. 

 

 

Figure 7: A multitouch marking menu user creating a chord gesture to open a marking menu (top). 

The set of chords used (bottom) (Lepinski et al. 2010 [21]). 
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     Finger Count menus [12] use simpler chording gestures that let users select menus and 

items according to the number of fingers used in a gesture, regardless of which fingers 

are used. This technique uses two hands: one hand to select one of 5 menus and the other 

hand to select one of 5 items from that menu (Figure 8). Users can perform this type of 

gesture in the air [22, 23] or on touch surfaces [24]. On touch surfaces, Count Menus 

were found to be simple to use and easy to learn, although it was recommended that the 

thumb not be used due to ergonomic concerns of it being shorter than the other fingers. 

In-air Finger Count gestures were found to be faster than other in-air gesture-based menu 

selection techniques and twice as fast as 3D marking menus [25] while maintaining 

similar accuracy [23].  

 

Figure 8: Count Menu (Bailly et al. 2012 [24]). Selecting a menu (left) and an item (right). 

     Our technique, CountMarks, employs Count Menus to simplify the chording structure 

of multi-touch marking menus to create an easy to use marking menu selection technique 

with expanded breadth. This thesis chooses to compare CountMarks to multi-stroke 
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marking menus [26] because this variation is shown to be faster and more accurate than 

Kurtenbach’s hierarchical marking menu. 

2.2 Novice vs Expert Menu Selection  

     A major advantage of marking menus is that they seamlessly transition the user from 

Novice to Expert selection [7]. Most casual software users perform what would be 

considered “Novice” menu selections. Novice selection occurs when the user has a task 

to accomplish but may not be sure of how or where to find a menu item to accomplish 

that task. In graphical user interfaces, this involves the user searching through different 

menus until they find their target. Shneidermann [27] partially credits the success of the 

graphical user interface to its Novice appeal of “see and point versus learn and 

remember”, when comparing the recognition of graphical user interfaces to the memory 

recall needed for command line interfaces.  

In contrast, more experienced users may already know how to access a desired target 

item and either maneuver through the menu to select it without requiring search, or 

otherwise use shortcuts provided by the system. An example of Expert selection that most 

people use every day is the keyboard command Ctrl + V for pasting a copied item onto a 

page. If memorized, this is much quicker than using the mouse to navigate to the Edit 

menu and selecting the "paste" item, but the shortcut requires concerted learning and 

practicing efforts before it is quick to use. Due in part to this effort, these Expert tools are 

comparatively rarely used [28]. This is true even for experienced users who know that 

there are quicker tools available for selection [29]. Cockburn describes this as "being 

trapped in beginner mode" [30], where the user's familiarity with their current technique 

makes it more difficult to want to learn a more efficient one. When Kurtenbach 
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developed marking menus [7], he aimed to eliminate this learning curve; users train 

themselves on the Expert commands without realizing it. With marking menus, the same 

series of swiping gestures used to navigate through a Novice menu are used for the 

Expert command. The challenge is that the user must first learn this new menu 

organization.  

     Depending on the type of menu there may be challenges at different levels of learning 

which can be addressed in different ways. Findlater et al. [31] simplified the Novice 

learning of menus by showing the most relevant items first and having the rest slowly 

fade in to help the user identify the few likely relevant targets. OctoPocus [32] focused on 

transitioning Novices into Experts by offering the user semi-transparent stroke 

suggestions to facilitating the learning of complex swipe gestures. The psychology and 

learning theories behind how users move from Novices to Experts in selection is out of 

the scope of this thesis but is detailed elsewhere [30]. 

2.3 Interaction Techniques 

     In-air gestures are the obvious choice for interacting with HMDs because they offer 

the freedom to interact with all of the space in front of the user at any time. This 

“anywhere, anytime” convenience is desirable for any interaction technique where users 

may be walking or standing. However, interaction techniques designed for public use 

must consider social acceptability. For an interaction technique to be socially acceptable 

the user should be able to operate it with "subtle and intuitive gestures" that do not attract 

attention from their surroundings [33]. Good examples are gestures that look or feel 

similar to everyday actions, and interactions that are similar to existing technologies [34]. 

In-air gestures can be obtrusive, attention-grabbing and often unnatural or dissimilar to 
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normal gestures which can make them potentially embarrassing to use in public settings 

[13, 35, 36]. Additionally, in-air gestures have the well-known problem of “gorilla arm 

syndrome” where gesture can yield excessive arm fatigue [4]. 

     To obtain the benefits of free-hand “anywhere, anytime” interaction without the 

potential side effects of fatigue, researchers have explored mounting depth trackers to the 

shoulder [37] or hip [38] to turn normal surfaces into touch surfaces or allow for in air 

gestures without raising the arm. Instead of optical depth trackers, other approaches use 

wearable capacitive devices to detect touch contact [39, 40]. These touch recognition 

techniques provide the benefit of haptic (touch) feedback to the user which is shown to 

increase gesture recognition accuracy and precision [41]. Aside from touch input on 

external devices, several researchers have considered using touch on the body itself as an 

input source. There is a growing body of work on employing the user’s skin specifically 

as an input source [42-45]. Skin makes an interesting surface for interaction due to the 

large number of gestures one could perform such as grab, pull, press, scratch shear, 

squeeze and twist gestures [46].  We will discuss variations below. 

2.3.1 On hand input 

     A gesture elicitation study on skin input [3] indicates that the palm was the most 

desirable place for touch interactions, with 51% of users eliciting actions there. 

PalmGesture [47] showed that multi-stroke palm gestures can be captured with 90% 

accuracy using an infra-red camera and a laser-line projector (Figure 9). They also found 

that users can comfortably interact with their hand in a variety of orientations, but that 

users prefer to perform gestures on just the palm and avoid interacting with their fingers.  
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Figure 9: Examples of using PalmGesture for opening an email (left) or entering text for search 

(right) (Wang et al. 2015 [47]) 

     Other research explores using magnetic field detection to capture smaller, more 

precise between-finger input. With FingerPad [48], users perform gestures including 

writing numbers, scrolling, swiping and tapping. FingerPad was designed to offer users 

privacy in their interactions. Similarly, uTrack [49] detects thumb to finger interactions to 

enable 3D pointing, and NailO [50] uses finger interactions on the thumbnail for pressure 

and swipe gestures. Google's project Soli takes a different approach and uses Radar 

sensors to detect millimeter scale interactions between fingers [51]. Ring wearable 

devices are another popular field of research. Rings can take advantage of twisting 

gestures that wearers naturally perform on them [52], and can provide a convenient place 

to hold a depth sensing fish-eye lens camera for hand gesture recognition [53]. A full 

review of finger wearables is out of the scope for this thesis, for a more comprehensive 

look into finger wearables the reader is referred to Shilkrot et al.’s survey [54]. 

2.3.2 On body input 

     Most body interaction research focuses primarily on the forearm or back of the hand, 

but some look at input to the ears [55, 56]. SkinMarks [44] captures many such gestures 
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by using rub-on tattoos with functional ink that can detect capacitive touch, squeeze and 

bend gestures anywhere on the body. Instead of pressure input, SkinTrack [45] uses 

electromagnetic waves to capture touch input on the skin near a smartwatch with up to 

99% accuracy. Similarly, WatchSense [57] uses a forearm mounted depth camera to track 

both touch and mid-air gestures, capturing 3D touch and gesture input from the back of 

the hand with one or two fingers. 

     Despite 9% of all gestures from Tung et al’s gesture elicitation study [3] being 

performed on the leg (compared to 51% on the hand, 12% on a ring, 10% between 

fingers), there is little to no research conducted on using the legs as places for input. 

Some researchers have looked at nearby areas. For example, Dobbelstein et al. [58] 

experimented with using belts as an input at the waist because “As the body’s center of 

gravity, the hip is relatively steady while walking” and found it to support touch gestures 

in mobile settings. Additionally, methods for capturing input on a smartphone through 

fabric have been proposed [59] to allow for touch input to the outer thigh or wherever one 

has pockets. PocketMenu [60] takes this a step further and has users perform tap and 

swipe gestures through their pocket for manipulating a music application on a 

smartphone while in mobile settings. Tap and swipe gestures are performed at different 

heights on the phone in the pocket to determine which function is performed (Figure 10). 
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Figure 10: The four main gestures for PocketMenu (Pielot et al 2012 [60]) 

    Using everyday wearable fabrics and accessories for input have been of growing 

interest to many researchers. For accessories, Weigel & Steimle created DeformWear 

[61] a tiny nub that can take pressure, shearing (slide + push), and pinching gestures for 

input on rings, necklaces, and bracelets. Performance was worst with bracelets likely due 

to interactions occurring between two arms in motion. Yoon et al [62] created a single 

layer smart textile worn as a finger sleeve that can take bend and pressure input, 

demonstrating accuracy greater than 80% while walking, running and driving. For a full 

summary of smart textiles and fabrics, the reader is referred to Yoon et al.’s survey [62]. 

Whereas Dobbelsteain’s belt prototype required the user to rest their hand on their pants 

pocket for comfortable interaction, and PocketTouch required the user to use corners of 

the phone for reference for their touch interactions, there is no research quantitatively 

examining reference-free leg interaction.  

2.4 Mobile input 

    If the device is being used in public, it is likely the user may be mobile. Due to public 

safety concerns, any method for interacting with mobile technology should consider how 
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interactions may be performed during different levels of mobility.  While some 

interaction techniques made for wearable technology fail to be tested in mobile 

conditions [63], others test a range of scenarios such as walking [35, 60], running [56], 

simulated driving [62] and while grasping other objects [64]. Studies with NotifEye [35] 

and PocketMenu [60] both required participants walk down sidewalks to test their 

devices in the wild. NotifEye had participants view and dismiss floating semi-transparent 

notifications in an Epson Moverio BT-100 see-through interactive HMD. The study 

showed that participants were able to manage interacting with notifications using a small 

finger rub pad while navigating through a public street. PocketMenu similarly showed 

that users were able to pause and change music volume quickly and accurately on their 

phone through their pocket while walking.  

Other researchers take more controlled approaches in studying mobile interaction by 

having participants use a treadmill. Skinput [43] is a device worn near the bicep that 

allows users to perform touch input on their forearm. Because it is acoustically driven, 

the researchers were sensitive that using it while walking and running could be unreliable 

due to environmental noise. They found that walking produced 100% reliable input for 

males (86.7% for females) but while jogging it dropped to 83.3% (60% for females), 

providing practical information for how their device performs in real-world use cases. 

When testing FingerPad [48] the researchers included a walking condition to evaluate 

how their private gesture system really performs. This walking condition yielded 

significantly more selection errors than standing. Wristwhirl [65] avoids the drawbacks 

from walking by using wrist input instead of touch. The authors found that arm 

movements while walking, are mostly independent of wrist movements. Because of this, 
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users were able to draw "high-quality images" even while walking. Yoon et al’s [62] 

smart textile finger sleeve takes mobility testing a step further and attempts to assess a 

full range of motion by including standing, walking and simulated driving tasks. They 

found that gripping a driving wheel created much more noise for hand input than input 

while standing or walking.  

2.5 Summary 

     This thesis aims to expand the understanding of mobile interactions by evaluating 

CountMarks where the user is sitting, standing and walking. While marking menus have 

been designed for smartphone use [63], they have never been empirically evaluated in 

mobile use cases. We additionally aim to explore different locations of input, testing 

tabletop, hand and leg interaction locations. This requires us to simply and refine multi-

touch marking menus [21] to be used on smaller touch surfaces that may be used in 

motion. While hands and arms have been extensively discussed in the literature above, 

we identified limited research on leg interactions. To our knowledge, this is the first 

evaluation of marking menu interaction while in motion and with input at the leg. 
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Chapter  3: Design and Implementation of CountMarks 

     In this chapter we describe CountMarks. CountMarks is a novel mobile interaction 

technique for HMDs based upon marking menu selection [7].  CountMarks expands on 

marking menus by adding a finger count component where the number of fingers placed 

on the touch surface allows for up to 4 times the number of selections possible in each 

swiping direction. It takes advantage of the speed, accuracy, and scale-invariant nature of 

marking menus and adds the simplicity and intuitive nature of Count Menus [24]. While 

Count Menus use both hands for interaction, we limit the current implementation of 

CountMarks to one hand for simplicity and practicality reasons. Furthermore, based on 

previous findings [24], we do not include the thumb in CountMarks interaction.  

Marking menus can reliably hold up to only 8 menu items in a single menu level, or 

64 items over two levels. In contrast, CountMarks can fit 32 items in a single menu level 

(four fingers, eight directions each) and 1024 (322) items over two menu levels. We use 

at most eight items on each submenu, corresponding to the eight cardinal directions and 

the upper limit on marking menus [7]. To support a larger number of menu items, we 

include a mode-changing technique whereby the user double taps the screen with one 

finger to access another set of menus or items. This effectively doubles the number of 

items in one level to 64 and up to 4096 (642) items across two levels. The mode change 

toggles the state of selectable options. This does not reset after each selection but instead 

can be toggled on and off depending on which menus or menu options the user wishes to 

interact with. For example, the regular set of swipe interactions could select from main 
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content on an app, but a double tap could be used to begin selecting auxiliary settings 

visible in the same screen.  

     The primary advantage of CountMarks is that it supports a larger number of menu 

items in fewer sub-menu layers than marking menus. Previous work [17] has shown that 

hierarchical navigation with marking menus can be difficult because users can forget 

where they are in the hierarchy and can take longer to make a selection. More menu 

levels also require the user to rely on memory to recall where items are located, whereas 

broader menus allow users to merely recognize the item on the screen [27] . It is well 

known that people are better at recognition than memory recall.  

     We design CountMarks specifically with smart-glasses in mind, due to the challenges 

faced by their public and mobile nature. We describe these design considerations next. 

3.1 Social acceptability 

     Because of the public nature of smart glasses, we designed CountMarks to comply 

with Hsieh et al.'s [33] recommendations for social acceptably:  

1. Isolate sensing technology from the glasses,  

2. Use relative pointing for adapting to various postures,  

3. Design small movements for subtle interaction,  

4. Aim for intuitive gestures,  

5. Enhance tangibility.  

CountMarks is designed to be subtle, intuitive and attract less attention from the user’s 

surroundings by using small touch gestures on a peripheral surface. Noting the poor 

precision of in-air interaction due to the lack of haptic feedback [5], we employ 

CountMarks on a touch-sensitive surface. In this thesis, we implement CountMarks on a 
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smartphone which allows users to take advantage of hardware that they already own and 

eliminates the need to buy and carry around an additional device. Future versions could 

instead be implemented on smart textiles or devices that allow for skin input. Swipe 

gestures on skin or clothing give users precise haptic feedback while allowing them to 

perform gestures wherever is most comfortable. We predict this may be on the hand or 

the upper leg.  

    Hsieh et al.'s recommendations were intended for improving in-air gestures so they 

suggest relative, not absolute, pointing for different postures. For example, instead of 

pointing directly at an object in a display (absolute pointing), the hand could control a 

cursor which moves in the same direction as the hand regardless of where the hand 

begins its movement (relative pointing). Since we are instead using touch interaction, we 

use relative swipe gestures in the form of marking menus. Marking menus allow the user 

to begin a swiping gesture at any point on a touch surface such that the detected 

movement is relative to where the user starts the interaction. This facilitates eyes-free 

interaction as the user does not need to see the surface because they can to begin a 

selection anywhere. It also means that gestures can be performed in any posture and 

swipe directions can remain relative to the surface of interaction. Finally, we believe that 

because swipe gestures are commonly used in laptops and smartphones, users will find 

marking menu interaction intuitive to perform.  

     We next discuss two proposed variations of CountMarks: MenuCount and ItemCount.  

3.2 Variation 1: MenuCount 

     The MenuCount variation of CountMarks presents different marking menus 

depending on the number of fingers touching the screen. By holding their fingers on the 
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screen, users can open and preview each menu. Releasing their fingers closes the menu. 

Adding or removing fingers will change which menu is displayed. For example, in Figure 

11 the user has placed two fingers on the screen to activate the “Animals” menu. 

 

Figure 11: The user presses two fingers to the touch surface and the second menu opens with a 

cursor in the middle. 

Note that the user does not need to touch the "Animals" tag but can place 2 fingers 

anywhere on the screen. Opening the menu highlights its tag. To make a selection, the 

user simply swipes in the direction of the desired menu item with the same number of 

fingers used to open the menu. Our current implementation supports up to four different 

menus (corresponding to up to four fingers contacting the screen), but if extra menus are 

needed then the aforementioned double-tap mode change can be used. As seen in Figure 

11, the arrow icon on the right side of the menus indicates to the user that there is another 

set of menus available. After the mode change has been performed, the menus change 

and the arrow switches to the left to let the user know they can double tap again to return 

to the previous menus. This combination of finger-count and marking menu selection 
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allows the user to choose from multiple menus and select their desired item in one fluid 

gesture. Due to the clear one-to-one mapping of menus to the fingers, and the limited 

amount of information shown at any given time, we anticipate this to be the more 

intuitive variation of CountMarks. 

3.3 Variation 2: ItemCount 

     The second variant of CountMarks is ItemCount. ItemCount starts with a large radial 

menu containing up to eight linear sub-menus in each of (up to) eight directions. Each of 

these linear menus can display up to four individual items at once. These items can be 

selected by touching the screen with the appropriate number of fingers, and a swiping in 

the direction of that item’s menu. Holding down fingers highlights all menu items 

selectable with that number of fingers; one finger highlights all top menu items, two 

fingers highlight all the second items, etc. The user can then swipe in the direction of the 

desired sub-menu to make their selection. For example, in Figure 12, if the desired menu 

item was "Chicken" (the 2nd item in the list on the left side of the radial menu) the user 

would hold two fingers to the touch surface and swipe left. We present only four items in 

each linear sub-menu due to the number of fingers available to make one-handed 

selections. Similar to the mode change used with MenuCount to show additional menus, 

ItemCount instead uses a mode change to show four additional items. The availability of 

the mode-change is depicted by ellipses at the bottom of each sub-menu seen in Figure 

12. Once activated, the items change and the ellipses move to the top of the menus. We 
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expect that due to the information density of displaying 32 items at once, users will have 

a more difficult time finding their target before making a selection.   

 

Figure 12: The user presses two fingers to the touch surface which highlights all the 2nd options for 

each sub-menu 

      Each variation of CountMarks is designed to be performed using the user’s body as 

an interaction surface. We considered two locations: the hand and the leg which will be 

discussed below. 

3.4 Location of Interaction 

     We anticipate that CountMarks will work best when performed on the human body 

because it is comfortable and easy for people to interact with [46]. Body interactions 

provide haptic and proprioceptive feedback that may allow for more precise and well-

coordinated interactions. While capturing on-body interactions is an on-going 

engineering challenge [45, 46, 48], we implement our prototype on a smartphone to take 

advantage of its touch sensing capabilities. Smartphones are also a practical tool for 
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implementation as they are already used and carried around by most people and may be a 

viable solution for interacting with HMDs until on-body sensing technology improves. 

With the ideal scenario being on-body interaction and the current practicality of a 

smartphone implementation, we look at two main locations for interactions: the palm and 

leg.  

Palm interaction represents the most intuitive on-skin implementation since people 

naturally perform on-skin interactions with their palm [3]. Additionally, it is also the 

most natural place to interact with a smartphone. While we acknowledge that hand-held 

marking menu interactions requires users to use their phone in an unfamiliar way, we 

expect this is still a comfortable way to use CountMarks due to the amount of time people 

spend holding their phone daily. The leg is a less obvious but potentially ergonomic and 

efficient location for interaction. Notably, palm interactions require the use of both hands 

– the acting hand and the receiving hand. In a mobile setting where people are interacting 

with the environment as well as their devices, this is not desirable. It also requires both 

hands and arms to be held in front of the user which is tiring, much like in-air gestures. If 

a user is to interact with an HMD like smart glasses repeatedly, palm interaction will be 

impractical due to fatigue and potential for repetitive stress. With interaction occurring on 

the leg, however, the user can rest their arms at their side, as they naturally do while 

standing, and perform interactions where their hand meets their leg. This relaxed 

interaction may allow the user to use CountMarks without fatigue. This also gives the 

user a free hand to interact with the world around them or interact other possible devices. 

CountMarks could even be implemented on both legs, using two hands to double the 

number of fingers available for interaction. We note that although in this research we 



28 

 

implement our prototype using a smartphone strapped to the user’s thigh for leg 

interactions, we are not proposing that users actually strap a phone to their leg. Instead, 

this is an exploration of how CountMarks might be implemented when using smart 

textiles or a device that can detect touch input through fabric. While this thesis focuses on 

body interaction, we note that future work could explore implementing CountMarks on 

accessibility devices such as wheelchairs. 

3.5 Limitations 

    The primary limitation of marking menus in general is that users must be taught how to 

use them. While other research has addressed learnability of marking menus [14], that is 

out of the scope of this thesis. We merely ensure the usability of CountMarks is on par 

with other marking menu variants. A limitation of CountMarks specifically is that it does 

not work when the touch surface is small and the display. After all, if a user placed more 

than one finger on a smartphone display, they would occlude most of the screen. We 

instead intend that CountMarks be used with HMDs like smart glasses. We also note that 

the current hand-held smartphone implementation of CountMarks requires both hands to 

perform interactions: one hand holds the smartphone, one hand to make swipe gestures. 

However, because CountMarks required mobility of all fingers, one-handed operation is 

not currently possible while holding the smartphone. Future work may explore different 

grips to allow for one-handed use. One-handed use also gives concern for scalability. 

While we will later demonstrate CountMarks in an example application, we will also 

discuss how 4 finger interaction will become difficult with more complicated UI. In these 

cases we argue that such a UI would not be suited for use in mobile setting and as such 

CountMarks may not be the best interaction method for the task. We believe CountMarks 
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will be best suited for selection when there are 64 or fewer items available for selection at 

any one time. While CountMarks is capable of going into deeper menu structures, 

participants may struggle to navigate through more than one level of depth due to the 

exponential number of items potentially available (1 level = 64 items, 2 levels = 4096 

items). 

     We ran two studies to evaluate our design of CountMarks that we will discuss next. 

The first compares the two versions of CountMarks against each other and a traditional 

marking menu. The second evaluates the different device positions and mobility 

conditions we described in this chapter. 
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Chapter  4: User Study 1 

    We conducted a user study to compare two variations of CountMarks against a 

traditional marking menu. Instead of Kurtenbach's original hierarchical marking menu 

[7], we compare CountMarks against the multi-stroke marking menu [26] (in this chapter 

referred to just as Marking Menu) due to its faster selection speed, improved selection 

accuracy and reduced UI space needed for menu depth. Additionally, the multi-stroke 

gestures are more similar to CountMarks gestures than the compound strokes from 

Kurtenbach's marking menus. The ethics protocol for this user study was reviewed by the 

Carleton University Research Ethics Board with CUREB-B clearance. 

4.1 Participants 

    We recruited 18 participants. Their average age was 25.95 years (SD = 6.19 years), 10 

were female, all were right-handed. Participants were recruited via posters around 

campus as well as through a post on a Carleton research Facebook page. 

4.2 Apparatus 

 We used a Samsung Galaxy S8 smartphone (running Android 8.0) as the touch input 

device. The smartphone was centered horizontally and secured to the desk with Velcro 10 

inches from the participant. A 23.5-in. BenQ 1920 x 1080p computer monitor was 

positioned 19 inches away from the participant (Figure 13). The participant interacted 

with a Unity Android 7.0 application that controlled the desktop Unity app. The desktop 
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computer used an Intel Core i7-7700K CPU at 4.20GHz with 32 GB of RAM and 64-bit 

Windows 10.  

 

Figure 13: Apparatus showing relative position of desktop, smartphone, and participant chair. 

  The application started with the experimenter entering the experimental condition. 

After that point, text displayed in the middle of the screen said “Double tap to begin next 

trial”. The phone mirrored the desktop display using the Unity Remoting player which 

allowed the desktop application to receive touch input. In this fashion, participants were 

instructed to watch the desktop monitor and to only use the smartphone for interaction. 

The software detected the number and movement of fingers for making selections with a 

swipe gesture.  

  Upon beginning a trial, participants would see a series of menus and menu items they 

could interact with through swiping gestures on the phone. In each condition, the 

participant was shown a menu style with a target listed at the bottom of the screen. The 

user was tasked with selecting every instance of the target item from all the target menus. 
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The visual layout of each menu changed according to the menu style, the number of root 

menus and the number of items per menu. MenuCount had four rectangles along the 

bottom of the screen representing different menus which when selected showed a radial 

menu in the middle of the screen. ItemCount was made up of a larger radial menu with 

multiple items per swipe direction. Marking Menu used radial menus with two depths 

such that the second level of the menu was shown overtop the first level after the user 

made their first selection (Figure 14).  

     

Figure 14: The 3 menu styles in their level 3, 8 x 8 configurations (from left to right) – a) MenuCount, 

b) ItemCount and c) Marking Menu 

     The software also recorded total trial time, number of correct selections and number of 

erroneous selections per trial. Execution time and number of fingers were recorded per 

selection. 

4.3 Procedure 

     Upon arrival, participants were briefed on the design and purpose of the experiment. 

After providing informed consent, we gave participants instructions on how to complete 

the experimental task. Participants performed selections over 3 levels of difficulty using 

each of 3 different menu styles: MenuCount, ItemCount and Marking Menu. With each 

new menu style, participants were given a 3-minute training period where they were able 
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to practice on an unrecorded trial. Difficulty level varied based on the number of menus, 

items per menu, and whether a mode change gesture was required. Trials started and 

ended when the participant double tapped the smartphone screen with two or more 

fingers. The first two trials of each block were practice trials. These had no target and 

were not recorded to give participants time to understand the task before it began. Most 

participants skipped the practice trials by double tapping with two fingers. 

    The task is taken from Bailly et al’s study on Novice selection for wave menus [66] 

and required selecting a target city name from a series of menus that had the titles of 

countries and continents (see Figure 14). The menus were randomized such that half of 

them were the target menu. Similarly, the menu items (cities) were randomized and in 

each target menu, the target item appeared as half of the menu items plus or minus one. 

For example, with 8 menus and 8 items per menu, there would be 4 menus that included 

the target, and each of those menus would (randomly) contain either 3, 4 or 5 instances of 

the target item. The menu items (cities) always corresponded to the menu region. The 

total number of targets was the same for each trial in a level. This randomization ensured 

that participants could not count targets in each menu but would have to visually search 

for the targets to confirm none were left. After a target item was correctly selected it 

disappeared from the menu leaving a blank space (or dashed lines for ItemCount). When 

participants believed they had found all target instances, they double tapped with two 

fingers to end the trial. This task is used to best simulate visual search used in Novice 

selection without biasing the participant based on semantic knowledge. Bailly et al. [66] 

argue that Novice selection is guided more by semantics and as such when a user goes to 

find their target, they will be looking at all the related terms in the relevant menu and not 
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just for the one item they select. This is the justification for selecting multiple targets 

within one menu. Compared to single target selection tasks, this reduces variation in 

results that are dependent on where participant begins their search. In single selection 

tasks, participants will find the target quicker if they happen to begin the search with that 

target. Selecting from variable numbers of targets requires a real search component 

regardless of where the search begins. Participants were instructed to complete each trial 

as quickly but accurately as possible. 

     Once a set of trials was completed, the experimenter set the participant up with the 

next difficulty level. Although participants could take breaks between trial levels, none 

opted to do so. After completing three levels of trials for each of the three menu styles 

participants were asked to complete a survey choosing their subjective preference for the 

menu styles.  

4.4 Design 

     Our experiment employed a 3 x 3 within-subjects design. The independent variables 

included menu style (ItemCount, MenuCount and Marking Menu) and level of difficulty 

(levels 1, 2 and 3). Participants experienced each menu style in a different order that was 

counterbalanced according to a Latin square. For each menu style, participants 

progressed through 3 levels of difficulty.  

Due to the different layouts of MenuCount and ItemCount, not all menu styles had the 

same number of menus and items per menu within a level of difficulty, however, they all 

had the same number of total items. The experiment conditions are summarized in Table 

1, which also indicates the total number of menu items in each condition. For MenuCount 

and ItemCount, level 2 had the same total number of items as level 1 but required a 
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mode-change gesture (Figure 15). Level 3 looked exactly like level 1, but with indicators 

that a mode change was required which doubled the number of items (Figure 14). 

   

Figure 15: Menu layout for level 2 of MenuCount (left) and ItemCount (right) 

Table 1: Conditions of the experiment conditions. Note that levels 1 and 2 of the CountMarks 

variants are not the same, but are ordered by whether or not a mode shift is required 

Each difficulty level contained a block of 7 trials with each trial containing 7 (for 

difficulty levels 1 and 2) or 15 (for level 3) target selections, averaging 9.67 target 

selections per trial across the 3 levels of difficulty. Across 18 participants x 3 menu styles 

x 3 levels of difficulty x 7 trials each x 9.67 selections per trial, participants completed a 

 Menu style 

 Marking menu MenuCount ItemCount 

Difficulty 

Level 

1 2 3 1 2 3 1 2 3 

# Menu Items 4x8 8x4 8x8 4x8 8x4 8x8 8x4 4x8 8x8 

Mode change 

required 

No Yes Yes No Yes Yes No Yes Yes 
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total of 10965 target menu selections over 1134 trials. The experiment took participants 

approximately 1 hour to complete. 

     Dependent variables were total selection time (broken down into reaction time and 

execution time), selection accuracy and search accuracy. Total selection time is the trial 

time divided by the number of selections. Execution time is measured as the time from 

touching the screen to releasing the finger from the screen. This represents how long it 

takes to perform a selection gesture. Reaction time is measured as the total selection time 

minus execution time for selections in a trial. This represents the time it took for 

participants to understand the stimulus and begin a selection by placing their finger(s) on 

the touch surface. Selection accuracy is the number of correct selections divided by the 

total number of selections. Because participants could end the trial without selecting all 

the targets, search accuracy is the number of correct selections divided by the total 

number of targets presented.  

Our main hypotheses were: 

• H1: CountMarks will be a) faster and b) have greater accuracy (for both search 

and selection) than Marking menus.  

• H2: Learning effects over the difficulty levels will result in faster and more 

accurate selections. 

• H3: The more fingers used per selection, the greater the selection time and the 

lower the selection accuracy. 

4.5 Results 

     We conducted a two-way (menu style x difficulty level) repeated measures ANOVA 

on each dependent variable. Note that Marking Menu requires two stroke gestures from 
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the participant to make a selection (one to open the menu, one to select the target), 

however, due to a software error, only the final gesture was recorded. Because of this, the 

values for reaction and execution time below are doubled for Marking Menu selections. 

Doubling these values accurately reflects the total selection time for Marking Menu 

selections as recorded in each trial. 

4.5.1 Total Selection Time 

     A summary of selection time broken down by reaction and execution time and by 

menu style and difficulty level is found in Figure 16. 

      

Figure 16: Mean Execution and Reaction time plotted against the menu style (IC = ItemCount, MC = 

MenuCount, MM = Marking Menu) and level of trials. 

 Total selection time is the time to complete each trial divided by the total number of 

selections in that trial and is the sum of reaction time and execution time for a selection. 

We found a significant main effect for menu style on selection time (F2,34 = 25.03, 
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p < .001). Post-hoc testing with the Tukey-Kramer test was performed and revealed that 

MenuCount offers faster selections (2.64s) than both ItemCount (3.00s) and Marking 

Menu (2.97s). This supports our H1a that the increased breadth of CountMarks allows for 

faster total selection time over menus with two depths.  

 ANOVA also found a significant effect for difficulty level on selection time (F2,34 = 

62.49, p < .001). Post-hoc testing with the Tukey-Kramer test shows that difficulty level 

3 offered faster selection (2.39s) than levels 2 (3.18s) and 1 (3.02s). This supports H2; 

since difficulty levels were always presented in the same order (1, 2, then 3), it 

corresponds to participants improving with practice. There was no significant difference 

between Levels 1 and 2, suggesting the added difficulty of introducing the mode change 

gesture offset any gains from learning effects. ANOVA did not detect an interaction 

effect between menu style and difficulty level. 

4.5.2 Execution time 

     Execution time is the time from when the participant touches the screen until they 

release their finger for a selection. This reflects the actual time required to perform a 

selection, irrespective of any time mentally preparing for the task. Execution time was 

recorded for each selection and averaged out across the trial. The total execution time for 

Marking Menu is the sum of the execution times for the two strokes required to make a 

selection. Analysis of variance revealed a significant main effect for menu style on 

execution time (F2,34 = 537.5, p < .001). A post-hoc Tukey-Kramer test revealed both 

ItemCount (0.73s) and Marking menu (0.72s) offered significantly faster execution time 

than MenuCount (1.17s). Thus, this refutes our hypothesis H1a; CountMarks was not 

faster to execute than Marking menus. That MenuCount offers slower execution times is 
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likely a reflection of where search takes place and will be discussed shortly. Analysis of 

variance also revealed a significant effect for difficulty level on execution time (F2,34 = 

33.51, p <0.001) that shows level 2 had quicker execution time (0.79s) than level 3 

(0.87s), which in turn, had quicker execution time than level 1 (0.95s). This refutes our 

hypothesis H2. The mode change required in difficulty level 2 effectively splits the items 

from level 1 into two pages reducing the number of selectable directions from 8 to 4 (as 

seen in Figure 15). Selecting from fewer target directions likely allows participants to 

execute faster selections in level 2 than levels 1 or 3. Level 3 outperforming level 1 is 

likely due to a learning effect.  

     We conducted an analysis of variance on the number of fingers used for selection in 

both CountMarks variants against the execution time for each selection. We found a 

significant main effect for number of fingers used for selection on execution time (F3,52 = 

44.31, p < .001). A post-hoc Tukey-Kramer test revealed a significant effect where 

adding more fingers to a selection increases its execution time (Figure 17). This supports 

our hypothesis H3, that it is more difficult to perform selections with multiple fingers. 

There was no interaction effect found. 
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Figure 17: Execution time by the number of fingers used for selection 

4.5.3 Reaction time 

     Reaction time is Total Selection Time – Execution Time for each trial. Reaction time 

is the time spent mentally preparing for a selection. This can include searching for the 

target and preparing the correct hand position to begin a selection. The total reaction time 

for Marking Menu is the sum of the reaction times for the two strokes required to make a 

selection. This requires time to first search for the correct menu, then for the target. An 

analysis of variance revealed a significant main effect of menu style on reaction time 

(F2,34 =71.61, p <.001). A post-hoc Tukey-Kramer test indicated that selections using 

MenuCount offer quicker reaction time (1.46s) than ItemCount (2.26s) and Marking 

Menu (2.28s or 1.14s * 2 selections). This supports our hypothesis H1a that CountMarks 

will be faster than Marking Menus. We also found a significant main effect of difficulty 

level on reaction time (F2,34 = 64.64, p <.001). A post-hoc Tukey-Kramer testing revealed 

that level 3 has a quicker reaction time (1.51s) than level 1 (2.07s) which has a quicker 
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reaction time than level 2 (2.40s). This supports our H2 that participants should get faster 

with practice. Like total selection time, we speculate that Level 2 being slower than Level 

1 reflects the difficulty added by introducing the mode change double tap gesture. There 

was no interaction effect found. 

4.5.4 Selection Accuracy 

     Selection accuracy is the number of correct selections for a trial divided by the total 

number of selections made in that trial. A summary of selection accuracy broken down 

by menu style and difficulty level is found in Figure 18. 

 

Figure 18: Mean selection accuracy by menu style and difficulty level 

     Analysis of variance revealed a significant main effect of menu style on selection 

accuracy (F2,34 = 14.26, p <.001). A Tukey Kramer posthoc test revealed that Marking 

Menu was significantly more accurate (97.91%) than MenuCount (95.00%) which is 

more accurate than ItemCount (88.44%). This does not support our H1b. By introducing 

the added complexity of extra fingers to perform selections, CountMarks has more 

opportunity for errors to be made and thus has lower selection accuracy than Marking 

Menu. The particularly low selection accuracy of ItemCount will be discussed further 
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below. There was no significant effect of difficulty level on selection accuracy. This does 

not support our H2 and could be the result of participants being focused more on making 

the correct selection while learning the different menu styles, and less on performing the 

selections quickly. There was no interaction effect found.  

4.5.5 Search Accuracy 

     Search accuracy is the total number of correct selections divided by the total number 

of targets for that trial. This represents the likelihood of a participant accurately selecting 

their intended target. A summary of search accuracy broken down by menu style and 

difficulty level is found in Figure 19. 

     We found a significant main effect of menu style on search accuracy (F2,34 = 100.98, 

p  < .001). A post-hoc Tukey-Kramer test showed that MenuCount (97.43%) and 

ItemCount (96.45%) are significantly more accurate in finding targets than Marking 

Menu (92.16%). This supports our H1b that CountMarks can improve search accuracy by 

increasing menu breadth. We also found a significant main effect for difficulty level on 

search accuracy (F2,34  = 3.73, p <.05), a post-hoc Tukey test was performed that shows 

level 2 to be significantly less accurate than level 1 or 3. This does not support our H2 

and is likely due to participants missing items behind the newly implemented mode-

change gesture. There was no interaction effect found.  
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Figure 19: Mean search accuracy by menu style and difficulty level 

4.5.6 Survey 

     Participants were asked to identify which menu style they thought was the easiest to 

learn, which was their favorite, which was the quickest to perform and which was the 

most tiring to perform. For each question, the participant could select only one menu 

style. Marking Menu was ranked as the easiest to learn (56% of responses), quickest to 

perform (44%) and the least tiring to perform (22%). MenuCount was ranked most as the 

favorite menu style to use (44%). The full breakdown is shown in Figure 20. We note that 

during the 3-minute training task none of the participants showed difficulty 

understanding either variation of CountMarks. 
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Figure 20: Survey response of favorite interaction technique by factor 

4.6 Discussion 

     CountMarks is designed to reduce or eliminate depth in Marking menus by providing 

more accessible menu breadth using multiple fingers for selection. The goal of our 

experiment was to compare two variations of CountMarks against traditional Marking 

menus. Our results are summarized below: 

4.6.1 CountMarks vs Marking menus 

     This study finds that the MenuCount variant of CountMarks outperformed Marking 

Menu in selection speed and search accuracy while Marking Menu performed better in 

selection accuracy. Despite the strong performance from MenuCount, Marking Menu was 

ranked as the easiest to learn and the least tiring to perform by participants. This is 

expected as Marking Menu only required one finger to use, which may be a more familiar 

interaction for participants. Interestingly, Marking Menu was also ranked subjectively as 

the quickest menu style for performing selections despite the results showing otherwise. 

We believe this may be due to its more simplistic nature. Two participants did mention 
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that they believed MenuCount would be the quickest with more practice. What was not 

expected is that despite favorable rankings for Marking Menu, MenuCount was narrowly 

ranked most as participant’s favorite menu style. Whereas Marking Menu required 

repetitive swiping with one finger, perhaps participants found MenuCount more engaging 

because of the added complexity of choosing how many fingers to use for each selection.  

     Overall, our results align with Lepinski et al’s study [21] comparing multitouch 

marking menus to the multi-stroke marking menus (the Marking Menu style in this 

study). Lepinski et al found that by increasing menu breadth with multi-finger chording 

gestures, that their multi-touch marking menu could decrease selection speed. While 

Lepinski et al did not find any significant difference in selection accuracy between their 

technique and multi-stroke marking menus, we believe this may be due to their smaller 

sample size (12 participants) and not reflective of worse performance for CountMarks.  

4.6.2 CountMarks variants 

     Of the two CountMarks variants, MenuCount outperformed ItemCount on almost 

every performance measure. MenuCount was faster, more accurate and was ranked more 

often as a participant’s favorite menu style. Of particular note is how much worse 

ItemCount’s selection accuracy was. We believe this may be due to two factors: item 

location did not always perfectly match its selection direction and participants may have 

been confused how many fingers to select with due to blank spaces left by previously 

selected items. Because ItemCount places a very large number of items on the screen at 

once, it was often not clear which direction the target item was in. For example, if the 

target was at the bottom of the bottom left menu (e.g. Seattle in Figure 21), it may look 

like the participant should swipe to the bottom of the screen to select it, instead of 
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swiping to the bottom left. Alternatively, participants may have been confused by how 

many fingers were required for selection. ItemCount had over twice as many errors from 

selecting an item that had already been selected compared to MenuCount. Whenever a 

target was correctly selected it was removed and replaced with dashed lines to signify 

empty space. Perhaps participants believed that after a menu item was removed, the 

remaining items were supposed to move to take that item’s place. For example, if as in 

Figure 21, the first item in a linear submenu was correctly selected (e.g. Seattle in the 

rightmost menu), the participant may then believe that the menu items move up in the 

menu such that the 2nd item now needs only 1 finger to select it. As a result, if the 

participant tries selecting the 2nd item they may only use 1 finger to do so which would 

result as an error. In fact, all selections that used fewer than 4 fingers for ItemCount 

selection recorded twice as many errors from these empty selections (if the fourth item is 

selected, no item would take its place).  

 

Figure 21: Example of how ItemCount arranges menu items for selection 
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     The two CountMarks variants also had vastly different execution and reaction times. 

ItemCount requires the user to search for the target amidst many options, place the 

correct number of fingers on the screen and then swipe in the direction of the target item. 

This long search component happens before the execution begins, so the time required for 

search is added into its reaction time. In contrast, MenuCount requires the user to first 

search to find the target menu from a small number of options, and only once they have 

placed down the correct number of fingers do they search for the target item. Because of 

this, MenuCount had the longest execution time out of the three menu styles. Despite the 

longer execution time MenuCount still had the quickest total selection time, showing that 

by breaking the search component up into smaller, more easily accessible and reversible 

components (menus can be quickly previewed by placing a number of fingers down and 

releasing them) it was quicker to complete a selection. ItemCount did have better search 

accuracy than MenuCount. We believe this reflects the ability for participants to see more 

items at once and determine whether any targets remain. The obvious drawback of this is 

that search takes longer with so many items and selection time suffers.  

4.7 Limitations 

     The findings for total selection time are limited by how it was recorded. By recording 

selection time as total trial time divided by the number of selections, the time to end the 

trial and search through remaining menus is included. While this does reflect the time 

required for users to fully complete their search, it should otherwise not be included in 

the individual selection times. Similarly, this poses a limitation on reaction time because 
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instead of calculating a reaction time per selection, it was averaged out by trial based on 

the total selection time described above.  

     Secondly, the results of execution time for Marking Menu is limited by recording only 

the 2nd of two strokes in a selection. Because of this we doubled the execution time of the 

single strokes instead of using the sum of two individual strokes as the total execution 

time. It is unclear the effect this has on the results, but it only affects the reaction and 

execution times, not the total selection times as these were recorded separately. 

Regardless, the results shown are consistent with the length of time it took participants to 

complete each trial and so the overall finding of MenuCount outperforming both 

ItemCount and Marking menus in terms of selection time and search accuracy remain 

valid.  

    Finally, there are concerns of ecological validity with both the chosen task and our 

participant sample. The task is not representative of real-world use and our participants, 

being primarily young students, may not be representative of the general population. The 

next chapter will explore the performance of the MenuCount variation of CountMarks in 

various device positions and user stances. 
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Chapter  5: User Study 2 

     We conducted a second user study to evaluate MenuCount in more realistic use cases. 

Consistent with past studies on marking menus [66], we tested participants' performance 

in both a Novice task that required searching for targets prior to selecting them and an 

Expert task which required no search. Participants completed these tasks with the 

smartphone mounted on the hand, and the leg while standing or walking. The ethics 

protocol for this project was reviewed by the Carleton University Research Ethics Board with 

CUREB-B clearance. 

5.1 Participants 

     We recruited 20 participants, average age 24.6 years old (SD = 4.31 years), 60% were 

female, all were right-handed. Average height was 170.5cm (SD = 9.69cm). Nine 

participants reported often texting while walking, 8 sometimes texted while walking and 

3 others always, rarely, or never did so. Six participants had participated in the previous 

CountMarks study (see Chapter  4:). Participants were recruited via posters around 

campus as well as through a post on a Carleton research Facebook page. 

5.2 Apparatus 

     We used a Samsung Galaxy S8 smartphone running Android 9.0 as the touch input 

device. We used a Microsoft HoloLens as the HMD, to more realistically simulate usage 

scenarios with smart glasses. The software was built in Unity and used Unity’s built-in 

networking tools, UNet, to take input from the Android app to a desktop computer. The 

desktop display was wirelessly mirrored to the HoloLens using the HoloLens Remoting 

app.  
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The desktop computer had an Intel Core i7-2600K CPU at 3.40GHz with 16 GB of 

RAM, running 64-bit Windows 10. Selection was performed on the smartphone and 

using UNet’s native scripts, the software sent updated cursor position and menu 

information to the HoloLens every 0.05s. Depending on the condition, the smartphone 

was either held in the participant’s non-dominant hand or mounted with Velcro on the 

upper part of the leg, so that their dominant hand could comfortably reach it. Participants 

walked on a Tempo Fitness 610T treadmill. Figure 22 depicts the hardware setup.  

 

Figure 22: A pilot study participant performing CountMarks on a smartphone mounted to his leg to 

interact with the Microsoft HoloLens while walking 

For the Novice task, the software recorded the reaction time, execution time, and 

selection and search accuracies. The expert task did not track search accuracy but did 

track the types of errors made and the end positions of each selection in addition to the 

other measurements. 
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5.3 Procedure 

5.3.1 Setup 

     Upon arrival, participants were briefed on the design and purpose of the experiment. 

After providing informed consent, participants were given a demonstration of how to 

properly position the HoloLens to see the full display. We began the experiment by 

identifying which way participants thought was “up” when swiping on their leg. This is 

non-obvious because “up” depends on the participant’s frame of reference, and could 

refer to the top of the participant, the forward direction they are facing, or the direction 

their hand is pointing at the time of interaction. Participants were asked to stand about 3 

feet in front of the computer monitor and were shown an image of an arrow pointing to 

the top of the monitor. They were asked to perform a swipe gesture in the direction of the 

arrow at the point where their hand rests at their leg. The experimenter held the input 

device to their leg for this selection and recorded the direction of their gesture.  

Participants then completed a demographic questionnaire before receiving 

instructions on how to use CountMarks to complete the Novice Task. They were given 3 

minutes to practice CountMarks with an unrecorded Novice trial. During the practice 

trial, participants were seated wearing the HoloLens with the input device horizontally on 

the desk. Participants would receive an additional 3 minutes of practice time for the 

Expert task after completing Novice trials.  

After practicing CountMarks, we determined a comfortable walking speed for each 

participant to use in the remainder of the experiment. We asked participants to walk on 

the treadmill at a speed of 2.0 mph while wearing the HoloLens. Participants could 

increase or decrease the speed by up to 0.5 mph (the smallest increment on the treadmill). 
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No participant chose to go higher than 2.0mph, but 12 participants chose to go slower. 

After determining walking speed, participants stepped off the treadmill, and we attached 

Velcro straps to their leg to mount the smartphone. The straps were positioned where the 

fingers naturally rest by the leg when the participant relaxed their arms.  

5.3.2 Task 

     Participants performed both Novice and Expert selection trials in each of four 

conditions consisting of the combinations of standing vs walking and holding the 

smartphone vs mounting the smartphone on the leg. With Novice selection, the user must 

visually search for their target. Expert selection occurs when the user already knows the 

gesture to select a given target, and thus just execute the selection. All participants started 

with Novice trials before the Expert trials. In pilot testing, we found that Novice trials 

take substantially longer to complete than the Expert trials. Consequently, participants 

completed fewer Novice trials than Expert trials, so each task took around the same 

amount of time. Participants performed 4 trials per condition for the Novice task and 8 

trials per condition for the Expert task. The order of the conditions was counterbalanced 

and was kept the same for Novice and Expert tasks.  

A trial started when the participant performed a double tap gesture with 3 or more 

fingers. In walking conditions, the participant stood on the treadmill while it moved at a 

comfortable speed determined earlier. In the standing conditions, participants stood on 

the deactivated treadmill. The Novice task was identical to that used in Study 1 (see 

Chapter 4.4).  

     The Expert task simulated expert usage where the participant had memorized item 

locations and did not require visual search. Instead of showing a menu, it instead showed 
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a number and a direction arrow. This indicated which direction they should swipe, and 

with how many fingers, simulating true expert usage (Figure 23).  

 

Figure 23: An example of selection to be made in the Expert task require a double tap with one finger 

followed by a two-finger swipe gesture up. 

Some selections required a double tap before the swipe gesture. Such trials were 

indicated by two dots before the number. This simulated the item being accessible only 

after performing a mode change, similar to some selections in the Novice task. For each 

trial in the Expert task, there were 4 groups of 3-5 selections. Each grouping combined a 

different number of fingers and some included double tap dots. Within each grouping, all 

swipe directions were different. This emulated the Novice task since each Novice trial 

had targets on 4 menus with each menu containing 4 targets, plus or minus 1. After the 

participant performed a selection, they received feedback indicating if their selection was 

successful (a green checkmark or red x), and the target would change. Participants were 

instructed to complete each trial as quickly but accurately as possible. Both the Novice 

and Expert tasks had a tiny red dot cursor in the middle of the screen to give feedback as 

to which direction their fingers were moving during selection. Participants were given 5-

minute breaks between the conditions where they could remove the HoloLens. After 

completing all 4 conditions for both tasks, participants completed a questionnaire about 

their experience with the different conditions. 

5.4 Design 
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     The experiment employed a 2×2×2 within-subjects design, with the following 

independent variables and levels: 

• Device position (hand, leg) 

• User stance (standing, walking) 

• Task (Novice, Expert) 

The Novice task was always performed first. The order of device position and user stance 

conditions were counterbalanced via a Latin square. 

     The dependent variables were reaction time, execution time and selection accuracy. 

Reaction time is measured as the time from the beginning of the trial or end of the last 

selection to the first touch of the smartphone screen to start a selection. This represents 

the time it took for participants to understand the target stimulus before beginning their 

selection. Execution time is measured as the time from touching the screen to completing 

the selection. Selection accuracy is the number of correct selections divided by the total 

number of selections. The Novice task includes search accuracy as a dependent variable. 

and is measured by the number of correct selections divided by the number of targets. 

This does not apply to the Expert task because no search is required. The Expert task 

tracked the final XY coordinates of the red cursor as well as the selection itself to 

categorize error types. 

     In total, 20 participants were tested across 2 user stances with 2 device positions 

through 2 tasks. In the Novice task, participants completed 4 trials consisting of 15 

selections each, for a total of 20 participants x 2 user stances x 2 device positions x 15 

selections per trial * 4 trials = 4800 Novice selections across 320. Participants completed 
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twice as many trials for the Expert conditions, or 9600 Expert selections across 640 trials. 

Our main hypotheses were: 

• H1: Both the leg position and the walking stance will have slower selection 

(execution and reaction) time. 

• H2: Both the leg position and walking stance will have lower selection accuracy 

• H3: The Expert task will have greater selection (execution and reaction) time and 

lower accuracy than the Novice task. 

5.5 Results 

     We analyze our results using two-way repeated measures ANOVA for each dependent 

variable. The results of participants who also participated in Study 1 did not significantly 

differ from the rest of the sample in this study. 

5.5.1 Reaction time 

     A summary of the results for reaction time broken down by task and condition is 

found in Figure 24. 

 

Figure 24: Execution and reaction times broken down by task and condition 
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     Analysis of variance revealed a significant main effect of task on reaction time (F1,19 = 

83.73, p<.001), where participants showed quicker reaction times with Novice selections 

(0.820s) than with Expert selections (0.960s). This does not support H3 and may reflect 

the Novice user’s desire to start the selection so they can search for their target, whereas 

the Expert user may need to prepare the correct number of fingers and correct selection 

direction. 

     Analysis of variance revealed a significant main effect of device position on reaction 

time (F1,19 = 5.68, p<.05). Holding the device in the hand offered quicker reaction time 

(0.897s) than interacting with the device on the leg (0.933s). This supports H1 and is 

likely because the leg is an unfamiliar place for interaction it may take more thought to 

begin a gesture there. Analysis of variance revealed a significant main effect of user 

stance on reaction time (F1,19 = 16.74, p<.001), where participants showed quicker 

reaction times while standing (0.884s) than while walking (0.944s). This supports H1 as 

walking adds complexity to the task.  

     Interaction effects were found between device position and user stance (F3,57 = 9.86, p 

<.01). See Figure 25. When walking, reaction time was much higher when the 

smartphone was mounted on the leg than with the device in hand. In contrast, device 

position had little impact when the user was standing. 
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Figure 25: Interaction effect between user stance and device position on reaction time 

5.5.2 Execution time 

     A summary of the results for execution time broken down by task and condition is 

seen in Figure 24. 

     Analysis of variance revealed a significant main effect of task on execution time (F1,19 

= 1644.20, p<.001), where participants executed Expert selections quicker (0.390s) than 

Novice selections (1.382s). This supports H3 as Novice selections require the participant 

to search for the target after placing their fingers down and beginning to execute the 

selection. In contrast, Expert selections are executed knowing which direction to swipe 

in.  

     Analysis of variance revealed a significant main effect of device position on execution 

time (F1,19 = 50.39, p<0.001), where participants perform selections quicker with the 

device in the hand (0.637s) than with the device on the leg (0.787s). Similar to the results 

of reaction time, this supports H1 as the leg is an unfamiliar place for interaction to occur 

and may take more thought to execute a gesture there. Furthermore, we anticipated 

participants may perceive “up” differently when swiping on their leg. This difference in 
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perception may cause participants to correct their thinking when executing selections 

with the device on their leg and thus increase the execution time. 

     No significant main effect was found for user stance on execution time. This does not 

support H1 as we would expect walking to add more difficulty to each selection and 

therefore increase execution time for the walking stance. 

     Interaction effects were found between device position and task (F3,57 = 39.03, p < 

.001), and between user stance and task (F3,57 = 22.25, p< .001). See Figure 26. Novice 

selections were more strongly affected more by changes in both user stance and device 

position. 

 

Figure 26: Interaction effects for task vs user stance (left) and task vs device position (right) on 

execution time. 

5.5.3 Selection accuracy 

     A summary of error percentages broken down by task, condition and number of 

recorded fingers is seen in Figure 27.  
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Figure 27: Selection accuracy by condition vs task (left) and by recorded number of fingers vs task 

(right). Error bars showing SE. 

     Analysis of variance revealed a significant main effect of task on selection accuracy 

(F1,19 = 303.85, p<.001), where participants were more accurate making Novice 

selections (90.21%) than Expert selections (73.11%). This supports H3 and is likely 

because the Expert task gave no feedback for whether the participant was using the 

correct number of fingers and it did not display boundaries of the swipe directions. While 

expected, the particularly low accuracy for Expert selections was surprising and will be 

discussed below. 

     Analysis of variance revealed a significant main effect of device position on accuracy 

(F1,19 = 201.98, p<.001), where selections with the device in the hand are more accurate 

(85.46%) than selections with the device on the leg (72.13%). As before, this is likely 

because the leg is an unfamiliar interaction location.  

     Analysis of variance revealed a significant main effect of user stance on selection 

accuracy (F1,19 = 40.10, p<0.001), where participants were more accurate while standing 
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(81.94%) than while walking (75.94%). This supports H2 as walking adds complexity to 

the task. 

     Interaction effects were found between device position and user stance (F3,57 = 7.97, p 

<.01), and between user stance and task (F3,57 = 10.01, p <.01). This is shown in Figure 

28 where user stance affects accuracy more in leg-mounted conditions than hand-held 

conditions and affects Novice accuracy more than Expert accuracy. 

  

Figure 28: Interaction effects of device position vs user stance (left) and task vs user stance (right) on 

selection accuracy. 

     A further breakdown of errors for Expert selections is found in Figure 29. Because the 

Expert task had a specific target for each selection, we could identify the types of 

mistakes participants made. These will be discussed below. 
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Figure 29: Expert selection error rates by number of fingers and error type (left) and expert selection 

error rates using the wrong number of fingers by target number of fingers vs detected number of 

fingers (left). 

     For Novice selections, no significant main effects were found for user stance or device 

positioning on search accuracy. We note that the search accuracy for novice selection in 

this study was lower (93.55%) than in our first study (97.43%). 

5.5.4 Data correction and limitations 

     Due to a software error the final trial of some of the first 5 participants was not 

recorded. Of the remaining 13649 recorded selections, we filtered selections faster than 

0.001s reaction or execution times, and those with longer than 10 s reaction or execution, 

leaving 13337 selections. These times were either too fast or slow to be intentional and 

were thus software or hardware errors. Additionally, some participants noted that the 

double tap stopped working during Expert trials. These participants were instructed to 

finish the task to the best of their abilities. Figure 29 shows these types of errors, along 

with naturally occurring Double Tap errors account for less than 5% of all selections. 

Finally, because the input device had to connect wirelessly to a desktop computer which 
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then was wirelessly tethered to the HoloLens, there could be noticeable lag at times. This 

lag was only visual as the actual selection occurred on the input device. 

5.5.5 Calibration, Hand Positions and Survey results 

     At the beginning of the study we asked participants how they would swipe “up” on 

their leg using an arrow pointing to the top of the computer monitor as a reference. 

Results showed that 40% said they would swipe from back to front, 30% said they would 

swipe towards their feet and 30% said they would swipe towards their head. We were 

surprised by the even variety of responses and suggest that future work explore how this 

preconceived orientation of swipe gesture affects performance. 

     In the hand-held device position condition, we observed participants’ hand positions 

while they held the smartphone. Because multi-finger marking menu selection is not a 

usual task to perform on mobile phones, participants were permitted to hold the phone 

however was comfortable. Participants held the phone in various grips, see Figure 30. 

 

Figure 30: Phone grips across participants in the hand-held conditions. From left to right (a) 20% 

gripped the phone on fingers between pinky and thumb, (b) 20% on their fingers held out, (c) 20% 

on their hand sideways between thumb and index finger (d) 15% on their fingers against the palm in 

a cusped hand, and (e) 10% on the tips of their fingers away from palm, 
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    The variety of unprompted grips should be considered whenever asking users to 

perform marking menu gestures on a mobile device.  We also noted that all but one 

participant held the phone around chest height.  

Finally, participants completed a 5-point Likert-scale questionnaire asking how 

comfortable and easy each condition was. Results are summarized in Figure 31, showing 

that participants’ feelings of ease and comfort of performance are largely tied to the 

efficacy of those interactions. We believe this may be a response to our input device 

being a smartphone and that participants rated their feelings based on this bias of what 

interacting with a smartphone should feel like. We suggest the comfort and ease of 

performing marking menu selection in mobile conditions be further explored with this 

bias removed.  

 

Figure 31: Survey response data, 1 is low 5 is high. Questions were asked about the ease and comfort 

of performing CountMarks in different user stances and at different device positions. 
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5.6 Discussion 

      The goal of this study was to assess realistic use cases of CountMarks by testing 

different device positions (the hands vs the leg) with different user stances (standing and 

walking) and analyzing the effects for both in Novice and Expert selection tasks. Our 

results are summarized below: 

5.6.1 Novice vs Expert Selection 

     One of the main benefits of marking menus is their ability to facilitate the transition 

from Novice to Expert selection [7]. Novice selection requires the user to search for the 

target. With Expert selection, they simply perform the correct gesture. We will discuss 

the results for selection speed and accuracy below. 

5.6.1.1 Selection speed 

     Despite search being required for Novice selections, reaction times differed between 

the two tasks by only 0.14 seconds, whereas execution time differed by almost a full 

1.00s. CountMarks requires two search components: the first to choose a menu, and the 

second to find the target within the menu. The smaller than expected difference is likely 

because participants returned to the same menu multiple times already knowing where to 

find the target in the Novice task. So, while the first selection would require reaction time 

to search for the correct menu, subsequent reactions may be performed more like Experts. 

Additionally, Expert reaction time may be greater than expected if the participant needs 

to plan both the number of fingers to use and the direction to swipe in before placing their 

fingers down, instead of just the number of fingers needed to open a menu in a Novice 

selection. 
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     The bigger difference between Novice and Expert is seen in execution time where 

participants were over 3.5 times quicker to execute Expert selections. This reflects how 

Novice users wait for the menu to open before searching for the target item. Table 2 

shows that for CountMarks, Novice selection speed (when performed standing with the 

phone in the hand) outperforms (or equaled) Expert selection from most other marking 

menus. Our Novice selections were also more accurate. While our Expert selection was 

substantially faster than our Novice selection, it suffered greatly from poor selection 

accuracy which will be discussed below.  

Name of technique Selection 

type 

Selection 

speed 

Selection 

accuracy 

 

Kurtenbach marking menu [16] Expert ~2.3s 80% 

Multi-stroke marking menu [16] Expert ~2.3s 93% 

Polygon menu* [19] Expert ~2.0s 95% 

Multi-touch marking menu [21] Novice 2.37s 93.6% 

Multi-touch marking menu [21] Expert 0.81s 85.1% 

CountMarks ** Novice 1.99s 96.5% 

CountMarks ** Expert 1.33s 80.2% 

Table 2: A comparison of performance for different marking menu styles using 8 x 8 menus. Note 

that while the methodologies are not identical for each evaluation, they correspond to the same or 

similar tasks. *Polygon uses 12 x 12. **CountMarks in the standing, handheld condition. 

    We also found that double tap gestures added only 0.87s to an Expert selection, 

showing that they are quicker to perform than a full Expert selection (whose average 

selection time without a double tap 1.50s). Therefore, if a target is not found in the first 

menu level it is quicker for the user to change modes to find more items than to make a 
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full selection and access a deeper menu level. This validates our design decision to use a 

mode changing gesture rather than adding menu depth with an additional selection.  

5.6.1.2 Accuracy and Error Rates 

     In his evaluation of marking menus, Kurtenbach [7] noted that acceptable accuracy 

depends on the consequence of errors and how difficult it is to undo errors. Compared to 

other styles of marking menus (Table 2), ideal accuracy should be around 95%, but these 

studies only tested selection while sitting at a desktop computer with a stationary input 

device. It is unclear what an acceptable error rate is for mobile interactions, especially 

when standing or walking.  

     In our study, the largest factor affecting accuracy was the task, where Expert 

selections were 16.91% less accurate than Novice selections. We attribute two main 

reasons for this: The Expert task gives no feedback for how many fingers the user is 

selecting with, and we believe there were software errors in detecting the number of 

fingers used for a selection. The Novice task provides visual feedback in the form of 

menus appearing, corresponding to the number of fingers the user is selecting with. This 

helps ensure that users perform selections with the right number of fingers. In contrast, 

the Expert task gives no such feedback; the user may accidentally use the wrong number 

of fingers without realizing it or may not be aware if the device is not sensing the 

intended number of fingers. We argue that the exceptionally low accuracy rate in the 

Expert task is primarily due to software errors of finger recognition rather than user 

errors. Additionally, a software bug sometimes prevented double taps yielding some 

additional errors. Figure 29 shows an unequal distribution of error types where almost 
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30% of 4-finger selections had errors due to the wrong number of fingers being used by 

the participant. In contrast, this only occurred with 5% of 1-finger selections. Almost 

15% of selections requiring 4-fingers, recorded the participant using 1 finger. If users 

were simply had difficulty using the correct number of fingers, then we would expect a 

more even distribution of errors based on number of fingers used. While there is the 

possibility that participants get confused and use the wrong number of fingers when no 

feedback is presented, we rarely recorded instances where the participant uses 4 fingers to 

select a 1 finger target.  

     Lepinski et al. [21] created a similar style of multi-touch marking menu and found a 

related problem. Their Expert selections had similarly low accuracy (Table 2) which they 

attributed to contact points being lost when they were moving too quickly. We tried to 

address a similar issue by not allowing the recognized finger count to change while 

contact points were moving. However, if participants began Expert selections with their 

fingers in motion (since they begin the selection knowing which direction to swipe in) 

this may cause the software to record only the first few fingers that touch the screen. This 

is not a problem in the Novice task because participants usually wait for visual feedback 

of the correct menu appearing before moving their fingers to make a selection. This is 

speculation, but it mirrors the reactions of participants during the study. Most participants 

mentioned some sort of frustration or surprise when starting the Expert task because they 

were making wrong selections despite feeling they were making the correct ones. In the 

post-study questionnaire, 3 participants specifically mentioned they thought the device 

had finger recognition issues with 3 others referring only to poor recognition on 4 finger 

swipe gestures. Furthermore, this explanation is coherent with the findings from both our 



68 

 

Novice task and Lepinski et al’s Novice task where participants showed no difficulty 

articulating the correct number of fingers for a selection.  

     A pattern also emerges from errors caused by performing selections in the incorrect 

direction. These errors contributed to less than 10% of all Expert selections. We believe 

most of these errors have two main causes: the participant has a different understanding 

of which way "up" is when swiping on the device, and that participants do not swipe in 

straight lines.  At the beginning of our experiment, we asked participants to swipe in the 

direction of an up arrow on their leg. Participants swiped in one of three directions: 

towards their head, towards the front of their body or towards the floor. We design 

CountMarks so that swipe orientation is fixed regardless of if the smartphone is hand-

held or attached to the leg. Consequently, leg interactions are inverted: the phone goes 

from being upright when facing the user in their hand to upside down when facing away 

from the user on the leg. We argue that such a design make sense if CountMarks is 

performed when transitioning from performing gestures on the top of the thigh while 

sitting, to performing gestures side of the leg while standing. As seen in Figure 32, 

participants were confused by this, often swiping down when they should swipe up 

(yellow dots on the bottom), and vice versa (red dots on the top). The inconsistency of 

participants’ default “up” swipe direction and the resulting errors from it suggest that a 

calibration setting may be beneficial to CountMarks. Future implementations may want 

to let the user choose their desired swipe orientation.  
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Figure 32: Location of the end point of incorrect Expert selections 

Figure 32 also shows straight lines of errors from targets in diagonal directions. These 

lines of colour show that participants often selected just outside the boundary of the 

intended target. Moreover, they mostly made errors on only one side of the target. This is 

likely a result of participants swiping in an arch. Because our fingers, hands, and arms 

move on joints, our movements are naturally curved rather than perfectly straight. We 

show that these curved movements are relatively consistent across right-handed users. 

Participants appear to finish their swipe gesture closer to the horizontal axis of selection 

or in a clockwise direction if the target is directly above or below on the vertical axis. 

This is supported by fewer errors being shown for targets that were on the horizontal axis 

(left and right directions). We would recommend that the target areas for selection be 

modified to account for this type of movement by decreasing the size of the left and right 

selection areas and expanding the selection areas for the diagonal swipe gestures. 
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Additionally, the top and bottom regions may be expanded slightly in the clockwise 

direction. 

5.6.2 User Stance and Device Positioning 

     In this study we evaluated marking menu selections in two previously unexamined 

domains: while standing vs. walking, and with the input device handheld vs. leg-

mounted. The first main surprise was that walking only mildly affected performance. 

Walking slowed reaction times by only 0.060s while showing no significant effect on 

execution speeds. This shows that users are able to perform CountMarks almost as 

quickly while in motion as while standing still. Since CountMarks is designed to be used 

with a mobile HMD this is very important.  

The real problem is that Walking dropped the accuracy of selection by 6% on average 

across all conditions. This is primarily caused by an interaction effect of user stance and 

device position. Accuracy differed by only 2% between user stance conditions when the 

input device was in the participant’s hands but dropped 17% when it was mounted to the 

leg. Leg interaction while standing had an accuracy of 92.5% in the Novice task which 

remains in the range of other marking menu techniques (Table 2), but the accuracy drops 

considerably to 75.9% when walking. We anticipated lower accuracy for the 

Leg/Walking condition due to device location being on the body part used for motion. 

This motion causes the plane of the interaction surface to be constantly changing. As the 

leg moves while walking, the touch surface shifts its orientation with the leg such the 

horizontal axis of the phone is not the same at all times. Therefore, swipe directions may 

need to be relative to the orientation of the device in motion. Eight participants 

specifically mentioned the difficulty of coordinating hand and leg movements when 
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making selections. Despite this difficulty and the possible finger recognition problems 

described above, we were surprised with how accurate user were able to perform 

Leg/Walking gestures. We propose that future work investigate adjusting the user’s swipe 

direction based on the input device’s change in orientation while walking. We 

hypothesize that by fixing issues of orientation during leg movement, calibrating for 

users preconceived notion of "up", and adjusting selection areas and finger count 

recognition that leg interaction may become a viable option for mobile marking menu 

interactions. While some of the study’s limitations are mentioned above, we note that 

similar to Study 1 the results are limited by the unrealistic use case of the Novice 

selection task, and by our participants being primarily young students which are not 

representative of the general population. We will conclude this thesis with examples of 

how CountMarks may be implemented into existing user interfaces 

 

 



72 

 

Chapter  6: Example Applications and Conclusions 

6.1 Example Applications 

    Our studies show that CountMarks is a viable variation of marking menus, improving 

upon metrics such as selection speed, search accuracy and in some cases selection 

accuracy. This is likely because CountMarks supports greater menu breadth rather than 

depth. With this greater breadth, designers may not need to trade off minimizing the 

user’s memory load and error prevention in order to make shortcuts available to their 

users. We demonstrate this by implementing CountMarks in a mock Netflix app (Figure 

33). This app is designed to be viewed on an HMD or a distant display like a TV. Using 

regular marking menus to select a movie in a Netflix app would be very difficult. The 

user would have to first identify the desired movie’s genre through lists of 8 genres at a 

time and would then have to drill down into that genre’s movie list to identify their 

selection. The user would also need a way to move back up the menu hierarchy if they 

changed their mind. Regardless of the implementation, it would most likely require a 

drastic redesign of Netflix’s current interface.  
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Figure 33: Two screen shots of a mock Netflix demo with CountMarks implemented for selection. 

From top to bottom, (a) shows two fingers held beginning a selection, (b) shows three fingers held 

down beginning a selection. 

    By using CountMarks, we can keep the layout of the app the same and merely change 

the interaction method. The user can scroll vertically by sliding one finger on the screen. 

Touching two or more fingers on the screen activates CountMarks to select from different 

movie genres. Touching two fingers activates the top row, three fingers activate the 
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middle, and four fingers activate the bottom row. Upon activating a row in this fashion, it 

becomes highlighted, and small arrows appear in the corner of the movie images 

corresponding to the swipe direction required to select that movie. Swiping left or right 

with the desired number of fingers will horizontally scroll the specified row. Finally, a 

double tap toggles the selection mode to focus on the top bar of items where the user can 

select settings and other options.  

     This mockup uses the MenuCount variation of CountMarks, allowing users to place a 

desired number of fingers to activate a desired menu (in this case genre). This is easily 

implemented for Netflix because users must first decide what genre they would like to 

watch before selecting an item from that menu. This works particularly well because the 

menus (genres) are neatly arranged in the UI. The limitation of this is that MenuCount 

can only select from 4 menus or semantic groupings at a time before adding complexity 

with a mode change gesture. In this application, the mode change is used to access 

secondary selectable items such as settings, search and account info.  

    Applications that have a greater number of menus but fewer items to select in each 

menu may benefit more from the ItemCount variation of CountMarks. An example of this 

could be a design application with a toolbar that is broken into 8 sections, where each 

section has only a few tools that are commonly used. The number of fingers used for each 

selection would determine which item (tool) is selected, and the user swipes in the 

direction that corresponds to that tool’s section. 

    The biggest challenge for future implementations of CountMarks is identifying how 

CountMarks can be generalized to map onto any existing interface. The internet, and 

applications in general, have been completely redesigned over the last decade and a half 
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to accommodate the smaller screen size of smartphones. While it is unclear how 

application interfaces will change with the future for HMDs, we aim to design 

CountMarks to be flexible enough to be implemented onto these new (as well as current) 

interfaces. The Netflix app above shows that CountMarks is easily implemented for 

interfaces with structured sets of items. But not all interfaces contain easily grouped or 

structured content. Wikipedia, for example, presents dozens of clickable links or photos 

at once (Figure 34). These links are placed wherever the editor deems necessary and 

appear unorganized. Future work includes exploring how to generalize the mapping of 

CountMarks to webpages and apps that are dense with selectable items like this. This 

should be done in a consistent way such that users intuitively know how to use 

CountMarks to interact with any new user interface.  

 

Figure 34: An image of a Wikipedia page showing how many clickable links can fit on a screen at one 

point 
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6.2 Conclusion 

     In this thesis, we designed, implemented and evaluated a novel multi-touch marking 

menu technique designed for mobile interactions with HMDs. This work was inspired by 

previous research on Count Menus, marking menus and on-body interaction, to create an 

interaction technique that is designed to be fast, accurate, ergonomic and appropriate for 

use in a public setting.  

     We conducted two experiments to evaluate CountMarks. The first compared two 

variations of CountMarks to existing marking menus. The second experiment evaluated 

the efficacy of CountMarks in various mobile use cases. CountMarks overcomes the 

limited breadth of traditional marking menus by allowing 32 items in a single depth and 

up to 64 items with a mode shifting double tap. Our findings show that the MenuCount 

variation of CountMarks offers quicker selection and improved search accuracy than 

multi-stroke marking menus at the cost of a minor decrease in selection accuracy.  

     Using the MenuCount variation, we then tested CountMarks in multiple use cases. We 

had participants use CountMarks to perform Novice and Expert selections in a Microsoft 

HoloLens while standing and walking and with the phone held in the hand and attached 

to the leg. Expert selection showed a much lower accuracy than Novice selection, but we 

believe this is due to hardware and software limitations of finger recognition and that by 

solving this problem the error rate should be reduced to an acceptable level. Walking 

showed only a minor effect on selection time but did cause a significant decrease in 

accuracy when the input device was at the leg. Leg interactions in general were slower 

and more prone to errors than handheld interactions. Overall, we show that Novice 

selection using CountMarks outperforms even Expert selection from most other marking 
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menu variations. We further propose solutions for reducing error rates by fixing finger 

recognition issues, adjusting the sizes of the selection areas and calibrating selection 

orientation for participants. With these adjustments, we anticipate Expert selections will 

approach the accuracy of Novice selections while being significantly faster and that leg 

interaction may still be viable for mobile marking menu interaction. Future work should 

also explore the ergonomic and social acceptability of CountMarks. 

     We also demonstrate how by increasing the breadth of Marking menu interactions, 

designers can more easily implement CountMarks into user interfaces. We provide an 

example of how CountMarks could be applied to a Netflix application without needing to 

redesign the app. 

     Altogether we contribute an improved marking menu style of selection using multiple 

fingers. We provide empirical evidence into the strengths and weakness of performing 

these interactions while in mobile settings and with different device input locations. 

Expanding upon well-established marking menus, we believe CountMarks is a viable 

alternative for mobile interaction with HMDs that would otherwise use in-air gestures, 

voice or joystick-based controls. 
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Appendices 

Appendix A    

A.1 Consent Form for CountMarks vs Marking menu Study 
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A.2 Demographic Form for CountMarks vs Marking menu Study 
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A.3 Questionnaire for CountMarks vs Marking menu Study 
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A.4 Consent Form for CountMarks Position and Movement Study
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A.5 Demographic Form for CountMarks Position and Movement Study 
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A.6 Questionnaire for CountMarks Position and Movement Study 
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