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and (d) are images of Point-LF condition, and (e) and (f) are images of Point-HF condition.

ABSTRACT

The goal of this research is to provide much needed empirical data
on how the fidelity of popular hand gesture tracked based pointing
metaphors versus commodity controller based input affects the ef-
ficiency and speed-accuracy tradeoff in users’ spatial selection in
personal space interactions in VR. We conduct two experiments
in which participants select spherical targets arranged in a circle
in personal space, or near-field within their maximum arms reach
distance, in VR. Both experiments required participants to select the
targets with either a VR controller or with their dominant hand’s
index finger, which was tracked with one of two popular contem-
porary tracking methods. In the first experiment, the targets are
arranged in a flat circle in accordance with the ISO 9241-9 Fitts’
law standard, and the simulation selected random combinations of 3
target amplitudes and 3 target widths. Targets were placed centered
around the users’ eye level, and the arrangement was placed at either
60%, 75%, or 90% depth plane of the users’ maximum arm’s reach.
In experiment 2, the targets varied in depth randomly from one depth
plane to another within the same configuration of 13 targets within a
trial set, which resembled button selection task in hierarchical menus
in differing depth planes in the near-field. The study was conducted
using the HTC Vive head-mounted display, and used either a VR
controller (HTC Vive), low-fidelity virtual pointing (Leap Motion),
or a high-fidelity virtual pointing (tracked VR glove) conditions. Our
results revealed that low-fidelity pointing performed worse than both
high-fidelity pointing and the VR controller. Overall, target selection
performance was found to be worse in depth planes closer to the
maximum arms reach, as compared to middle and nearer distances.

Index Terms: Human-centered computing—Virtual reality; Com-
puting methodologies—Perception
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1 INTRODUCTION

Virtual reality (VR) is steadily becoming more widely accessible
as low-cost hardware such as head-mounted displays, motion track-
ers and hand tracking systems becomes more widespread. This
trend toward low-cost consumer VR systems has led to several ap-
plications in VR ranging from motor skills training, rehabilitation,
and others [15, 48]. These simulations often require the user to
move the controller or virtual hand to select a target, and interact
with menus or other objects within the users’ near-field or personal
space. A wide variety of low-cost input devices and techniques
have been implemented in VR systems to facilitate near-field target
selection [1, 41, 53].

Several gesture based input methods have been developed to fa-
cilitate natural interaction in near-field VR applications for selecting
buttons on spatially located menu planes or objects in personal space
interactions [25]. These include low cost infrared depth camera
based input devices such as the Leap Motion [54] and Intel’s Re-
alSense [46], to mid-to-higher end commodity devices such as the
Noitom Hi5 glove [40], CyberGlove III [51] and Vicon [56] that
typically costs thousands of dollars. The low-end commodity ges-
ture tracking systems typically have high latency and low framerate,
poor gesture recognition capabilities that is partially due to computer
vision based tracking systems that often require line-of-sight, may
not be robust to occlusion, and providing a lower fidelity of inter-
action [27]. Whereas high-end consumer gesture tracking systems
typically have low latency, high framerate, and have systems that
track fine finger motions and are robust to occlusions, providing a
high fidelity of interaction [27,36]. On the other hand, VR controller
based spatial selection and manipulation has become commonplace
and is considered a best existing method of interaction in most com-
mercial VR systems [2,25,45]. One reason for this is that in popular
VR systems, such as the HTC Vive or Oculus Rift, the controller’s
position and orientation are tracked using recent advances in high
fidelity tracking systems that are used to track both the users’ head
and controller pose. Therefore, it becomes important to compare and
contrast the efficacy and effectiveness of the interaction and system
fidelity (McMahan et al. [35]) of commodity gesture based input
devices with the standard controller based input device on spatial
selection performance.

A popular method for evaluating the efficacy and effectiveness
of specific input modes is Fitts’ law, and while it has been initially
designed for 1D stylus motions [18] and later 2D interactions [30], it
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has been widely used in recent studies for 3D input devices [1,2,53].
Different factors that have been studied with Fitts’ law include
controller types [45, 53], haptic and pseudo-haptic feedback [7, 52],
using gesture and mouse interfaces [9], spatial offsets [19, 23], and
avatar presence [47]. Researchers have evaluated the efficacy of
spatial selection of popular commodity depth camera based pointing
to controller based input, and they found that controller based spatial
selection was more efficient as compared to low fidelity pointing [2].
However, it is unclear how the fidelity of commodity gesture based
pointing interaction techniques as compared to popular controller
based input affects the performance of spatial selection in personal
space interactions in VR. Thus, our study greatly extends the prior
research and focuses on empirically evaluating how the system and
interaction fidelity of gesture based pointing input techniques as
compared to controller based input differently affects personal space
or near-field spatial selection in VR.

In this paper, we present the results of two experiments using a
selection task to evaluate fine-motor target selection within personal
space or the distance within the users’ maximum arms reach, as
defined by Cutting and Vishton [12]. We evaluated common 3D
input methods, specifically comparing controller-based selection to
two fidelity levels of hand gesture based (i.e., without a controller)
selection in VR. We also studied how selection efficiency and the
accuracy-speed tradeoff is affected by selection target depth, within
the users’ maximum arm’s reach in personal space or near-field
interactions in VR.

In our first experiment, we compared controller and pointing
interactions in a task closely resembling the ISO 9241-9 standard of
a circular arrangement of 13 targets in a plane. We positioned the
targets in a planar configuration in 3D space. Such a task replicates
selecting menu widgets such as buttons in a GUI plane that is placed
as a menu object in personal space. Such tasks are common in
modern VR systems (e.g., the Oculus Home). We centered this
target arrangement around the users’ optical or central viewing axis
at their eye height, and presented the targets at depth planes of either
60%, 75%, or 90% of the user’s maximum arm’s reach, to assess the
influence of near-field target (or menu object) depth in such tasks.

Similar to the first experiment, the second experiment used a cir-
cular configuration of 13 targets centered around the users’ viewing
axis. However, the main difference was that rather than arranging all
targets in a single depth plane, we positioned each individual target
at a random depth plane at either 60%, 75%, or 90% of the user’s
maximum arm’s reach. This made it difficult to predict at which
depth the next target would be. As a result, the user would have to
dynamically adjust their end-effector depth from one selection to
the next along the viewing axis. This second experiment allowed us
to evaluate the selection of menu widgets and buttons in a manner
similar to a hierarchical menu GUI system, such that the buttons may
be arranged at different depth planes along the viewing direction.
This scenario also typifies VR personal space selection in which
users’ may not know what target they will acquire next, as the next
target may appear at an arbitrary depth in the near-field.

Together, our experiments attempt to robustly investigate how
the fidelity of pointing based interaction and a controller-based
interaction affects selection performance in both the lateral side-to-
side direction and forward-backward (viewing) direction movement
axes of the 3D space. We designed these experiments to fill a void
in the literature relating to selection efficiency in low-fidelity and
high-fidelity pointing versus controller interactions in personal space
or near-field interactions.

2 RELATED WORK

2.1 Brief Background on Fitts’ Law
Fitts’ law is a predictive model stating that the movement time (MT)
for an aimed motion is linearly related to the Index of Difficulty
(ID), which in turn is based on the target size (known as width or W )

and the distance between the current cursor position and the target
(known as amplitude or A). This relationship is described by the
following equations:

MT = a+b∗ ID (1)

where
ID = log2(

A
W

+1) (2)

in Equation 1, a and b are constants determined through linear
regression, and this can extend from 1D and 2D interactions [18,30].

2.1.1 ISO 9241-9 Standard
The ISO 9241-9 standard was proposed to standardize the evaluation
of pointing devices, adjusting W and A for the accuracy of the aimed
movements [38]. These adjustments also adjust the value of ID to
what is called the effective Index of Difficulty, or IDe, depicted as:

IDe = log2(
Ae

We
+1) (3)

The variable We, the effective width, is calculated as

We = 4.133∗SDx (4)

where SDx is the standard deviation of the displacements from the
target center. To derive We, this error is multiplied by 4.133, which
corresponds to a z score of ±2.066, which accounts for 96% of the
selections. Thus, this accuracy adjust normalizes the experiment
error rate to 4%, facilitating comparison between experiments with
varying error rates [50]. Similarly, Ae is the average of how far the
users actually moved the cursor rather than the distance that was
presented to them. The ISO 9241-9 standard most commonly im-
plements a reciprocal tapping task that involves moving the selector
to different targets that are laid out in a circular arrangement of
different amplitudes and target widths.

This extension to ID is in turn used to calculate pointing through-
put (T P). Throughput combines speed (via movement time) and
accuracy (via the accuracy adjustment of We) to produce a metric
of task performance that is stable despite speed-accuracy trade-offs
commonly observed in such tasks [31]. Throughput is calculated as:

T P =
IDe

MT
(5)

This helps to facilitate comparison between different studies
rather than simply comparing movement time, and thus it can be used
to more easily compare and contrast different interaction methods.

2.2 Fitts’ law in Virtual Reality
Fitts’ law is a model of paychomotor behavior in rapid aimed move-
ments [18]. Derived from Shannon’s Theorem, this principle states
that the time to reach a target is linearly related to the difficulty of
the task, which is itself dependent on the distance to the target and
the size of the target [30]. This was initially used in one-dimensional
movements, specifically evaluating reaction time within two tar-
gets [29]. MacKenzie et al. then helped to extend Fitts’ law to
two-dimensional interfaces. They list six 2D input modes: mouse,
trackball, joystick, touchpad, helmet-mounted sight, and eye track-
ing [30]. Fitts’ law was then used as a basis for these modes in order
to evaluate the tools consistently, as the differences between them
could make it difficult to compare them accurately by conventional
means. Since that original study, the results and the findings of
Fitts’ original study have been widely applied to many experiments
and interfaces, including video game controllers [38], eye-tracker
selection [44], and mobile device tilt control [32].

It is worth noting that several researchers have applied Fitts’ law
to 3D selection of targets in mid-air. To evaluate the benefits of
tactile feedback, for example, previous researchers have compared
mid-air selection and selection against a hard surface. Teather and
Stuerzlinger [53] compared 2D interfaces with solid surface and 3D
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interfaces with mid-air targets using Fitts’ law. They found that the
efficacy of spatial selections using input devices in 3D interactions
in VR environments conforms to the Fitts’ law model. In addition,
Batmaz et al. [6] compared mid-air interactions with passive haptics
with VR controllers and hand tracking. They found that the mid-air
interactions were faster without passive haptics, potentially due to
the vibration feedback that was provided.

2.3 Hand Gesture and Controller Input Metaphors
As VR evolves, so too is the way that users interact with their
environments. The most common form of user input in VR is the
motion tracked controllers provided with devices like the Oculus
and HTC Vive headsets [2, 25, 45]. Pham et al. compared user
performance in pointing using with a mouse versus a Vive controller
or a 3D pen. They found that user performance was best with the
3D pen, showing that a precision grip offered the best pointing
performance [41].

LaViola et al. divided the process of selecting object into six
basic modes: grasping, pointing, surface, indirect, bimanual, and
hybrid [24, 25]. Their particular focus was in grasping metaphors,
which were divided further into hand-based and finger-based grasp-
ing. The former uses a single point tracked by a glove or a hand-held
controller, while the latter tracks the individual’s fingers separately.
In addition, the Leap Motion gesture tracking system is a common
low-cost method of tracking a user’s hands and fingers [54]. Per-
formance in gesture based selection was similar with this method
to selection using the Microsoft Kinect [11]. Other studies have re-
vealed that 2D selection with such devices offers lower performance
than a mouse [8]. Similarly, earlier results from Johnsgard revealed
that the mouse offered more efficient selection than using tracked
VR glove-based input [22].

One must also consider the level of both visual and interaction
fidelity offered by a given tracking technology. Li et al. evaluated
how participants completed 3D pointing tasks with different offset
conditions, and report that participants were the most efficient with-
out an offset applied to their end effectors [26]. Hand models and
avatars are another aspect of tracking users’ end effectors. Pusch et
al. conducted a study on hand visual fidelity, comparing a static 3D
hand model to a realistically tracked 3D hand model [43]. Although
the realistic hand model was preferred, it did not improve objective
performance. Conversely, Ebrahimi et al. compared different levels
of visual fidelity of self-avatar hands on near-field distance estima-
tion, concluding that as the visual fidelity of the self-avatar increased
so did the participants’ spatial perception [17]. Batmaz and Stuer-
zlinger studied how movements were effected by rotational jitter,
and they found that jitter noticeably affected error rate, throughput,
and movement time at different thresholds [5].

2.4 Personal Space or Near-Field Interactions
Interaction spaces are divided into three areas: near-field or personal
space (within participants’ maximum arms reach or slightly beyond),
action space (between 6 to about 30 m), and vista space (beyond 30
m) [12]. Near-field interactions require accurate depth perception in
order to carry out fine motor actions. In personal space, monocular
and binocular perceptual cues, stereoscopic viewing, retinal disparity
and motion parallax are important factor in accurately presenting
depth. Research shows that stereoscopic is most effective in a near-
field space for motor actions in VR [21, 34].

In a related study, Machuca and Stuerzlinger studied virtual se-
lection efficiency using a stylus as compared to a virtual pointing
tasks in a large-screen stereoscopic display [3]. They found partici-
pants’ selection performance was more erratic when moving along
the viewing axis, but this discrepancy did not take place when in
a real-world environment. This study also found that movement
time was strongly influenced by the change in target depth. Lubos
et al. analyzed user performance in different spatial locations rel-

ative to the user’s viewpoint [28]. They found that the error rate
was highest along the viewing axis as compared to movement axis
within perpendicular menu plane. Finally, Batmaz et al. also showed
that participants were more efficient along the lateral axis than they
were in moving front-to-back along the viewing axis in near-field
spatial selection in VR and AR [4]. These studies were all conducted
using controller based input. Our work extends this research in sys-
tematically evaluating the effect of interaction fidelity of pointing
metaphors as compared to controller based input on near-field spatial
selection efficiency in VR.

3 EXPERIMENT DESIGN AND SYSTEM DESCRIPTION

3.1 Research Questions and Hypotheses
The main contribution of this study was to examine the efficiency
of spatial selection in personal space or near-field in two levels of
fidelity of gesture based pointing as opposed to controller based
interaction. Our research questions were as follows: 1. To what
extent is the efficiency of selection measured by the linear relation-
ship between movement time and effective index of difficulty different
between low-fidelity and high-fidelity pointing metaphors and con-
troller input in personal space? 2. To what extent is the accuracy
versus speed trade-off, as defined by Fitts’ law Throughput, different
between low-fidelity pointing, high-fidelity pointing and controller
input in personal space spatial selection in VR? To address these
questions, we propose the following hypotheses:

H1: With regards to condition, the regression profiles (slopes
and intercepts) and throughput of the participants’ selection in the
controller condition are expected to be different than either of the
pointing conditions.

H2: With regards to condition, the regression profiles and
throughput of the participants’ selection in the low-fidelity condition
are expected to be different than that of the high-fidelity pointing
condition.

H3: With regards to personal space interactions, the regression
profiles and throughput of the participants’ selection of targets in
the 60%, 75%, and 90% depth planes of the participants’ maximum
arm’s reach are expected to be different.

H4: With regards to personal space interactions, the regression
profiles and throughput of the participants’ selection of targets be-
tween depth planes are expected to be different from the regression
profiles and throughput within the same depth plane.

H1 is based on the expectation that participants’ performance
modeled by linear regression is expected to be characteristically
different between the conditions of the experiment. H2 is based on
the expectation that the fidelity of gesture based tracking for pointing
based input is expected to affect the participants’ performance. H3
is based on the expectation that the based on the biomechanics of
reaching behaviors, participants are expected to easily reach targets
in the middle of their personal space as compared to reaching to
targets close to the critical reach boundary [14]. H4 is relevant
to experiment 2, where participants’ target selection efficiency is
expected to be different when participants are selecting targets within
the same depth plane as compared to between different depth planes.
Thus, we want to rigorously evaluate the efficiency and the speed-
accuracy trade-off of two levels of fidelity of pointing based methods
against controller based interaction on near-field spatial selection in
VR, using the Fitts’ law ISO 9241-9 framework.

3.2 Participants
We recruited 60 participants in Experiment 1 and 60 participants in
Experiment 2. The participants who took part in experiment 1 and
2 were distinct and there was no overlap in participants whatsoever.
Participants ages ranged from 19 to 28 years, and they were from
diverse backgrounds and majors. All participants had 20/20 vision
or corrected with contact lenses. All had normal motor functions,
and had little to no experience with VR. As a between subjects
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experiment, participants were randomly assigned to one of the three
conditions (Controller, Point-LF, or Point-HF).

3.3 Apparatus and Interaction Scenario

Our experiment simulation used a PC with an NVIDIA GeForce
GTX 1080Ti graphics card. We used an HTC Vive VR headset with
a refresh rate if 90 Hz and a horizontal field of view of 110 degrees.
For user input, we implemented three conditions: the Controller
condition used the Vive controller as the input device, the Low-
Fidelity Pointing (Point-LF) condition used a Leap Motion gesture
tracking device [54], while the High-Fidelity Pointing (Point-HF)
condition used a Noitom Hi5 VR Glove [40] (See Figure 1). The
simulation was developed using the Unity game engine [55].

Our conditions represent very popular interaction metaphors and
techniques for the direct selection and manipulation of targets in the
near-field [25]. Users can use tools like controllers or articulated
virtual hand representations to point to targets in menu planes and
select them in personal space interactions. Gesture tracked pointing
interaction metaphors afford natural direct fine-motor interaction
with targets, as compared to using a hand held tool to select targets
in the Controller condition. However, the system fidelity of tracking
varies a lot in gesture based input devices. Devices like the Leap
Motion [54] use depth camera based tracking to users’ hands, but
these systems require line of sight with the participants hands and
fingers and suffer from low latency and low frame rate issues [37].
Whereas glove based systems are more robust to tracking of hand and
finger poses, and are more robust in terms of latency and framerate
[27]. Therefore, it is important to evaluate how the fidelity of popular
hand gesture based interaction metaphors affect the efficiency of
near-field target selection as compared to controller based technique
in VR.

The first step of the experiment procedure was a calibration phase.
The HTC Vive system, the Hi5 Glove, and the Leap Motion input
device’s native tracking system’s innate calibration routines were
run. Then, in both pointing conditions, we first ensured that the
self-avatar hand was the same size and scale as the participants’
physical hand, by measuring the dominant and non-dominant hands
and scaling the virtual hand’s length, width and thickness to match
that of the participant’s physical hand. Thus, we ensured the virtual
hand (including fingers and palm) in both pointing fidelity conditions
were exactly the same and closely matched the dimensions of the
participants’ hand.

In the Point-LF condition, we measured the exact position and
orientation of the Leap Motion device’s origin to the HMD’s Vive
tracking system origin, and applied a transform in the scene graph
that reported the Leap Motion tracker’s hand position and orientation.
In the Point-HF condition, the tracking system of the Hi5 Glove di-
rectly uses the HTC Vive tracker as part of its innate tracking, so the
position and orientation of the virtual hand was accurately tracked
by the Hi5 glove’s tracking system. We found that the position and
orientation calibration of the virtual hand was not necessary with the
Hi5 glove.

Finally, in order to verify the size, scale, and pose of the virtual
hand matched that of the real hand in both pointing conditions, we
used visuo-haptic feedback method by running a Vive controller
through the silhouette of the palm, back of the hand and fingers to
insure that the physical and visual location of controller on the hand
was as accurate as possible. When we noticed an offset, then the
transform described above was adjusted to eliminate any mismatch
in the pose between the virtual and the physical hand. For the
controller condition, we ensured that the virtual Vive controller was
in the same physical position on the dominant hand of the participant,
using visuo-haptic feedback by using a second controller and running
it on the surface of controller in the participant’s hand.

In the interest of space, we refer the reader to the technical speci-
fications of the different components of our experiment simulation

HTC Vive [20], Noitom Hi5VRGlove [40] and Leap Motion [54]
to the references provided. We conducted a system evaluation of
latency and framerate in all three conditions (Controller, Point-HF,
and Point-LF) using Niehorster et al.’s method [39]. The evalu-
ation consisted of a study to measure 10 samples of latency and
framerate for the different conditions for simple translational and
rotational movements. The method involves using a high framerate
camera, such as a Go Pro sports camera, with a capture framerate
of 240FPS that was attached to a stand to capture the real controller
or hand as well as the virtual representation of the same through
a monocular view port of the HMD (with the lens removed). For
measuring translation latency, the hand or controller was moved in
a straight line multiple times capturing several trial data. For mea-
suring rotational latency, the hand or controller was rotated about
the vertical axis multiple times. Footage was captured for each of
these movements, and analyzed using video editing software (Adobe
Premiere). Using the known framerate of the high-speed camera, we
calculated the latency from the number of frames it took for the time
of movement/rotation of the physical hand or controller to the corre-
sponding movement/rotation of the virtual counterpart over multiple
trials. Our analysis revealed that the mean framerate for the different
conditions were as follows: Point-HF (70.5Hz), Point-LF (62Hz),
Controller (73Hz). The mean end-to-end latency of the conditions
were as follows: Controller (Pos. lag and Ori. Lag = 33.33ms),
Point-LF (Pos. lag = 70.83ms, Ori. Lag=87.5ms), Point-HF (Pos.
lag = 29.2ms, Ori. lag = 37.5ms).

We used spherical targets for the selection tasks in a manner
similar to prior Fitts’ law research [2,4,5,28,53]. The selected target
was rendered as red, and all the others were rendered as white. In
the Point-HF and Point-LF conditions, participants used their index
fingers on the dominant hand, and in the Controller condition they
used the Controller on the dominant hand to select the target.

3.4 Procedure

In each experiment, after the informed consent process, the partic-
ipants were randomly assigned to one of 3 conditions (Controller,
Point-LF, or Point-HF). They completed a demographics question-
naire and were led to the experiment simulation. There, the partici-
pants inter-pupillary distance (IPD) and maximum arms reach were
measured and used to calibrate the HMD/stereo graphics pipeline
and target presentation distance, as described above.

To ensure that differences in hand gesture did not influence the
results, all participants in the Pointing condition were instructed to
point using their index finger straightened out with the other fingers
folded inwards towards the palm of the hand. Also, in order to ensure
that targets were not rendered outside of the critical reach boundary
(or the maximum reach without shoulder rotation), participants were
told not to rotate or extend their shoulders in providing the maximum
arms reach measurement at the start of the study. This ensured
that targets were not rendered in the range between critical reach
boundary (maximum arms reach distance without shoulder motion)
and absolute reach boundary (maximum arms reach distance with
shoulder motion), which requires additional motor effort [10, 33].

Participants were then given 2 practice trials, after which the
participants started selection of targets presented in each trial config-
uration as described in the section below in VR.

3.5 Trials and Target Presentation

Our experiment included the following independent variables, as
illustrated in figure 2: Interaction Metaphor: Controller, Point-LF,
Point-HF, Target depth: 60%, 75%, or 90% of maximum arm’s
reach, Target distance: 5 cm, 9 cm, and 18 cm, Target width: 0.65
cm, 0.85 cm, 1.05 cm.

Interaction metaphor was assigned between-subjects, while all
other independent variables were assigned within-subjects. We
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Figure 2: Target presentation depth (a), distance and width (b).

arranged targets in a circle, in accordance with the ISO 9241-9 stan-
dard [50]. The widths and distances were chosen to match those
used by Teather and Stuerzlinger, who compared selection perfor-
mance with targets in 2D or 3D in the near-field [53]. Participants
completed 13 selection trials in each condition, and completed two
sets of all conditions. Thus, in total, each participant performed 702
trials (2 sets x 3 depth planes x 3 target distances x 3 target widths x
13 trials).

In Experiment 1, we presented each arrangement of 13 targets
in each combination of distance, width and depth, selected once
in random order (i.e., a total of 27 combinations). Experiment 2
employed a similar design, with each arrangement of targets being
selected in a random combination of widths and distances. However,
the main differences is that in a given arrangement, each target was
placed at a random depth that varied from one target to the next,
so each target in a set of 13 could be within 60%, 75%, or 90% of
the maximum arm’s reach. As a result, this task simulated selecting
targets randomly within and between depth planes and both in the
Fitts’ law movement axis as well as the viewing/depth axis, as often
done in selection of targets in hierarchical 3D menus where the
targets may vary in different depth planes [13, 42]. In experiment
2, the movement axis (amplitude) for each trial was defined as the
center-to-center axis between the start and destination target (either
along the viewing or depth axis, or between targets on the same
depth plane), based on which Ae was calculated as the participant’s
movement during selection projected along that axis.

4 EXPERIMENT 1 RESULTS

4.1 Multiple Regression Analysis
We conducted a multiple regression analysis to evaluate how effec-
tive index of difficulty of the targets, target depth, and the interaction
metaphor conditions predict the efficiency of movement time to the
targets. We first conducted an analysis of standardized on the data
to identify any outliers, using which data that were beyond ± 3.0
of the standardized residuals were removed. The final standardized
residual minimum was -1.50 to +1.50. Tests to see if the data met
the assumptions of collinearity indicated that multicollinearity was
not a concern (Effective Index of Difficulty, Tolerance = 1.0, VIF =
1.0; Conditions, Tolerance = 1.0, VIF = 1.0; Target Depth, Tolerance
= 1.0, VIF = 1.0). The data met the assumptions of independent
errors (Durbin-Watson value = 1.47). The histogram of standardized
residuals indicated that the data contained approximately normally
distributed errors, as did the P-P plot of standardized residuals, which
showed that the data were close to a linear regression profile. The
scatterplot of standardized residuals showed that the data met the
assumptions of homogeneity of variance and linearity, as well as the
data met the assumptions of non-zero variance.

We conducted a multiple regression to examine if effective index
of difficulty, condition (gesture vs. controller), depth of target by
arms reach (60%, 75%, and 90% of maximum arms reach) pre-
dicted movement time. We found a significant regression equation
F(3, 1559) = 382.57, p < 0.001, with an R2 = 0.43. Participants’

predicted movement time was equal to −203ms+199.42× IDe−
16.74×Condition+417.58×TargetDepth; where effective index
of difficulty (IDe) was measured in bits, condition 1 was controller,
2 was gesture condition, 3 was glove condition, and depth of target
(TargetDepth) was coded as 60% = 0.60, 75% = 0.75 and 90% =
0.90. Movement time increased by 199.42ms for every bit of effec-
tive index of difficulty, 417.58ms for an adjacent difference in target
depth within maximum arms reach, and a difference in -16.74ms was
calculated on average between two adjacent conditions. All three
independent variables, effective index of difficulty (p< 0.001), con-
dition (p = 0.0054) and depth of target (p < 0.001) were significant
predictors of movement time.

In order to evaluate the significant interaction effects, the con-
tinuous independent variable of IDe were mean centered in order
to eliminate multicollinearity effects and then the interaction terms
were computed such as Effective ID x Target Depth, Effective ID x
Condition, Target Depth x Condition, Effective ID x Target Depth x
Condition, which were added to the model in a hierarchical multiple
regression. The regression model with the interaction variables was
found to be significant, F(7, 1559) = 165.88, p < 0.001, with an R2

= 0.41 (with the change in R2 of 0.003). The model did not reveal
any significant interaction effects.

By condition, the linear regression equation for the controller
condition (R2 = 0.395) is movement time is equal to 21.85ms+
207× IDe, the linear regression equation for the low fidelity pointing
condition (R2 = 0.43) is movement time is equal to 95.26ms+212×
IDe, and the linear regression equation for the high fidelity pointing
condition (R2 = 0.375) is movement time is equal to 120ms+178×
IDe (See Figure 3(a)). By target depth, the linear regression equation
for targets at 60% of the participants’ maximum arms reach (R2 =
0.41) is movement time equals to 76.26ms+187× IDe, the linear
regression equation for targets at 75% of the participants’ maximum
arms reach (R2 = 0.43) is movement time equals to 36.15ms+205×
IDe, and the linear regression equation for targets at 90% of the
participants’ maximum arms reach (R2 = 0.37) is movement time
equals to 117ms+206× IDe (See Figure 3(b)).

4.2 Comparative Analysis of Regression Coefficients
and Throughput

In order to evaluate if there are any systematic statistical differences
in R2, Slopes and Intercepts between conditions, random depth in
the relationship between index of difficulty and movement time
in experiment 1, we subjected these variables extracted from each
participant’s data to a 2 (condition) x 3 (target depth) repeated mea-
sures ANOVA analysis with condition and random target depth as
independent variables. The analysis of slopes revealed a significant
main effect of condition F(2, 186) = 4.88, p = 0.009, η2 = 0.10.
The mean slopes in the Point-HF condition (M=182.71, SD=66.35)
was significantly lower than the mean slope for the Point-LF condi-
tion (M=212.67, SD=76.11) p = 0.007, and the mean slope for the
Controller condition was in the middle (M=205.76, SD=66.83).

We examined throughput, which is calculated as the effective
index of difficulty divided by movement time. Throughput is a
measure of performance and a tradeoff between speed and accuracy,
and is measured in bits per second. The throughput values were
subjected to a 3 (condition) x 3 (target depth) mixed model ANOVA
analysis. The ANOVA analysis revealed a significant main effect
of condition F(2, 186) = 18.6, p < 0.001, η2 = 0.17, a main effect
of target distance F(2, 186) = 13.0, p < 0.001, η2 = 0.13 (see
Figure 3(c)). Post-hoc pairwise comparisons using Tukey’s HSD
method on conditions revealed that the throughput in the Point-LF
condition (M=4.82b/s, SD=0.60) was significantly lower than the
Controller condition (M=4.82b/s, SD=0.75) p < 0.001, as well as
the Point-HF condition (M=4.96b/s, SD=0.68) p < 0.001. Post-hoc
pairwise comparisons using Bonferroni method on the target depth
revealed that the throughput in the selection performance at 90% of
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Figure 3: (a) Expt 1: Movement time (MT ) vs. Effective ID (IDe) graph showing the linear regression profiles of the different conditions. (b) Expt 1:
Movement time (MT ) vs. Effective ID (IDe) graph showing the linear regression profiles of the different depth of target presentation. (c) Expt 1:
Graph of mean Throughput (bits/sec) by the different conditions and target depth. (d) Expt 2: Movement time (MT ) vs. Effective ID (IDe) graph
showing the linear regression profiles of the different conditions. (e) Expt 2: Movement time (MT ) vs. Effective ID (IDe) graph showing the linear
regression profiles of the performance in the different target depth. (f) Expt 2: Graph of mean slope of participant’s regression profiles of their
performance by presented target distance.

the maximum arms reach (M=4.37b/s, SD=0.67) was significantly
lower than selection performance at 60% of the maximum arms
reach (M=4.94b/s, SD=0.72) p < 0.001, as well as 75% of the
maximum arms reach (M=4.76b/s, SD=0.68) p = 0.002.

5 EXPERIMENT 2 RESULTS

5.1 Multiple Regression Analysis

In this experiment, participants randomly reached to targets between
60%, 75%, 90% of their maximum arm reach within the same recip-
rocal tapping target configuration. In a manner similar to experiment
1, the selection data from the participants between the Controller,
Point-LF and Point-HF selection metaphors were collected, and an
analysis of standard residuals was carried out on the data to identify
any outliers. After removing outliers, the range of the standard resid-
uals were from a min of -1.5 to max +1.5. Tests to see if the data met
the assumptions of collinearity indicated that multicollinearity was
not a concern (Effective Index of Difficulty, Tolerance = 0.722, VIF
= 1.38; Condition, Tolerance = 0.721, VIF = 1.38; Target Distance,
Tolerance = 0.996, VIF = 1.00). The data met the assumption of
independent errors (Durbin-Watson value = 1.23). We also verified
that the data met the assumptions of normality, homogeneity of
variance and linearity.

A multiple regression was conducted to examine if effective in-
dex of difficulty, condition (Controller vs. Point-LF vs. Point-HF),
random depth of target by arms reach (60%, 75%, and 90% of maxi-
mum arms reach) predicted movement time. A significant regression
equation was found F(3, 6680) = 719.39 p < 0.001, with an R2 =

0.25. Participants’ predicted movement time is equal to 406.37ms+
174.92× IDe–85.46×Condition+10.35×TargetDepth, where ef-
fective index of difficult is measured in bits, condition 1 is Controller,
2 is Point-LF and 3 is Point-HF, and depth of target presented is en-
coded as within 60% = 1, within 75% = 2, within 90% = 3, between
60% and 75% = 4, between 75% and 90% = 5, and between 60%
and 90% = 6. Movement time increased by 174.92ms for every bit
of effective index of difficulty, 10.35ms for a difference in target
depth within maximum arms reach, and movement time decreased
by -85.46ms for a difference between conditions. Three independent
variables, effective index of difficulty (p < 0.001), condition (p <
0.001), and target depth (p = 0.008) were all significant predictors
of movement time.

In order to evaluate the significant interaction effects, the indepen-
dent variables were mean centered and the interaction terms centered
IDe x Target Depth, centered IDe x Condition, Target Depth x Con-
dition, and centered IDe x Target Depth x Condition were derived
and added to the model. The hierarchical regression model with
mean centered independent variables and interaction terms were
found to be significant F(7, 6688) = 310.52, p < 0.001, with an R2 =
0.26 (with the change in R2 of 0.01). In additional to the significant
independent variables, the second level model found a significant
condition by effective index of difficulty interaction (p = 0.040).

In order to examine the interaction effects, we examined them
via multiple simple linear regression analysis. By condition, the
linear regression equation for the Controller condition is 236ms+
171×IDe (R2 = 0.22), the linear regression equation for the Point-LF
condition is 198ms+213×IDe (R2 = 0.25), and the linear regression
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equation for the Point-HF condition is 198ms+ 178× IDe (R2 =
0.19) (see Figure 3(d)).

By target distance, participant selection performance within 60%
of arms reach is 255ms+168× IDe (R2 = 0.19), within 75% of max
arms reach is 263ms+ 174× IDe (R2 = 0.19), and within 90% of
max arms reach is 276ms+ 188× IDe (R2 = 0.19). For selection
performance between 60% and 75% is 39ms+ 209× IDe (R2 =
0.13), between 75% and 90% is 215ms+191× IDe (R2 = 0.10), and
between 60% and 90% of max arms reach is −206ms+259× IDe
(R2 = 0.12) (see Figure 3(e)). As we have seen in experiment 1,
quantitatively and qualitatively the regression profiles for 60% and
75% of the max arm’s length reaches are similar, but the perfor-
mance for 90% of max arms reach is different requiring more time
at that plane of selection. The performance of random selection
between 60% to 75% of max arms reach has a more gradual slope
and intercept closer to 0. The slope of the reaches between 60%
to 75% and between 75% to 90% are similar, but the intercept for
reaches between 75% to 90% of the maximum arms reach is high at
215ms. Whereas, the intercept for the reaches between 60% to 90%
has the lowest intercept and the highest slope as compared to any
other random depth of target selection. The 75% to 90% reaches for
selection has the highest intercept among the random distances of
selection, and has a gradual slope similar to performance at other
random distances.

5.2 Comparative Analysis of Regression Coefficients
and Throughput

In order to evaluate if there are any systematic statistical differ-
ences in R2, Slopes and Intercepts in the participants’ performance
between conditions and random depth in the relationship between
effective index of difficulty and movement time in experiment 2, we
subjected these variables extracted from each participant’s data to a
3 (condition) x 6 (target depth) mixed model ANOVA analysis with
condition as a between-subjects variable and random target depth
as a within-subjects variables. The analysis of slopes revealed a
significant main effect of condition F(2, 360) = 5.92, p = 0.003, η2=
0.04, and a main effect of random target depth F(2, 360) = 3.10, p =
0.01, η2= 0.05. Post-hoc pairwise comparisons using Tukey’s HSD
revealed that mean slopes in the Point-LF condition (M=239.67,
SD=130.61) was significantly higher than the Controller condition
(M=191, SD=91.16) (see Figure 3(f)). Post-hoc pairwise compar-
isons using Bonferroni method revealed that the slope for the target
selection distance between 60% and 90% of the maximum arms
reach was the largest (M=259.50, SD=408.17) and was significant
higher than target selection within 60% of the maximum arms reach
(M=169.05, SD=78.38) p = 0.007 and within 75% of the maximum
arms reach (M=180.90, SD=88.12) p = 0.033.

A similar analysis of the intercepts of the participants’ selection
performance also revealed a significant main effect of random target
depth F(5, 360) = 3.24, p = 0.007, η2= 0.05. Intercepts of the partici-
pants’ target selection performance of targets between 60% and 90%
of the participants’ maximum arms reach was different and lower
than any other presented distance. Post-hoc pairwise comparisons
using Bonferroni method revealed that the mean intercepts of the
participants’ target selection between 60% and 90% depth of the
participants’ maximum arms reach (M=-190.23ms, SD=1506) was
significantly lower than target selection within 60% of the maximum
arms reach (M=254.28ms, SD=368.06) p = 0.022, target selection
within 75% of the maximum arms reach (M=237.17ms, SD=352.86)
p = 0.034, and target selection within 90% of the maximum arms
reach (M=224.74ms, SD=397.66) p = 0.045.

In experiment 2, we also examined throughput, which is calcu-
lated as the effective index of difficulty divided by movement time.
Throughput is a measure of performance and a tradeoff between
speed and accuracy, and is measured in bits per second. The through-
put values were subjected to a 3 (condition) x 6 (target depth) mixed

model ANOVA analysis. The ANOVA analysis revealed a signif-
icant main effect of condition F(2, 360) = 49.45, p < 0.001, η2=
0.22, and a main effect of target depth F(5, 360) = 8.29, p < 0.001,
η2= 0.11 (see Figure 4). Throughput in the Point-LF condition
(M=3.97b/s, SD=0.45) was significantly lower than the Controller
condition (M=4.63b/s, SD=0.65) p < 0.001 and the Point-HF con-
dition (M=4.61, SD=0.70) p < 0.001. Interestingly throughput
in the random target distance between 60% and 75% (M=4.67b/s,
SD=0.72) was the highest, and throughput in the within 90% target
distance (M=4.04b/s, SD=0.60) was the lowest. Throughput for tar-
get selection between 60% and 75% of the participants’ maximum
arms reach was significantly higher than target selection between
75% to 90% of the participants’ maximum arms reach p = 0.015,
target selection within 75% of the participants’ maximum arms reach
(M=4.36b/s, SD=0.61) p = 0.048, and target selection within 90%
of the participants’ maximum arms reach p < 0.001. Throughput
of trials in the within 90% target distance (M=4.04b/s, SD=0.61)
was significantly lower than other target presentation distances (p <
0.001) except between 75% and 90% of the participants’ maximum
arms reach.

Figure 4: Graph of Throughput (bits/sec) in the different conditions of
experiment 2 by different target distances presented as a proportion
of the participants’ maximum arms reach

6 DISCUSSION

Overall, we found that as effective index of difficulty increases,
movement time also linearly increased in all three conditions. For
each input condition and for each depth ratio, the movement time had
an upward slope with effective index of difficulty. This is important
as it shows that regardless of input fidelity and the depth ratio, Fitts’
law was able to successfully model the relationship between target
amplitude and width.

Our first hypothesis was that the slopes, intercepts, and through-
put of the participants’ selection in the controller condition are
expected to be different than that of either of the pointing condi-
tions, and our second hypothesis was that the slopes, intercepts, and
throughput of the participants’ selection in the low-fidelity pointing
condition are expected to be different than that of the high-fidelity
pointing condition. Both of these hypotheses were partially sup-
ported. In the multiple regression analysis for both experiments,
the input condition was a significant predictor of movement time.
Concerning the first hypothesis, our analysis only revealed that the
slope was different between the controller and pointing conditions
in Experiment 2, and even then, only the low-fidelity condition had
a different slope. This information tells us that as the index of dif-
ficulty rose in Experiment 2, the movement time rose faster in the
low-fidelity condition than in the controller condition, implying a
higher level of performance in the controller condition than in the
low-fidelity pointing condition. There was no significant difference
in the intercepts between any of the three conditions, which is a
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novel result.

Concerning the second hypothesis, the slopes in the two pointing
conditions were different in Experiment 1 and 2, as evidenced by
Condition being a significant predictor of movement time and by
significant difference in slopes in the coefficient analysis. In both
experiments, the slope was higher in the low-fidelity pointing con-
dition than it was in the high-fidelity pointing condition, implying
that the robustness of hand gesture tracking had a great impact on
user performance in selection tasks efficacy. Finally, our analysis
showed that throughput was lowest in the low-fidelity pointing con-
dition and that the high-fidelity pointing condition was similar to
using a VR controller. Both of these results have the possible im-
plication that with sufficiently robust tracking, pointing based input
could yield higher performance in a manner similar to a standard
controller. In experiment 2, slopes were different. This may be
due to the influence of varying target depth randomly in both the
lateral(movement) axis and forward(viewing) axis motion. These
results help to explain the findings of Batmaz et al. [6], whose ex-
periment showed superior performance with a controller than with
hand tracking when participants were selecting targets presented
in a square grid at only a single depth. However, their experiment
used the Leap Motion, which is the same tool that we used in our
low-fidelity pointing condition. The differences found by that study
combined with the findings listed above in our study can indicate that
the level of tracking fidelity, potential due to the difference in latency,
is the most likely cause of the lowered performance in low-fidelity
pointing condition. With a sufficiently robust tracking mechanism, it
is possible that hand tracking can yield similar results as a standard
consumer-level VR controller in near-field spatial selection.

Our third hypothesis was that the slopes, intercepts, and through-
put of the regression profiles of the participants’ selection of targets
in depths of 60%, 75%, and 90% of the maximum arm’s reach are
expected to be different. This hypothesis was also partially sup-
ported. The multiple regression analysis revealed that target depth
was a significant predictor of movement time. While there was no
difference in the intercepts for the regression models, our analysis
revealed that as index of difficulty increased the subsequent increase
in movement time was more pronounced when selecting objects at
90% of users’ maximum arm’s reach than it was at 60% or 75% of
maximum arm’s reach, regardless of the end-effector representation
(pointing or controller). Participants had the lowest throughput at
90% of the arm’s reach, and it was significantly different than 60%
and 75%. These findings support the notion that performance is
superior when the targets are selected towards the middle of the
users’ personal space, than when the targets are closer to the users’
reach envelope or maximum arm’s reach in the absence of shoulder
motion. These findings support relevant research that shows that
near-field depth perception may be poor closer to our maximum
reaching boundary [16, 49]. However, the results of this study imply
a threshold for how far selection of objects and menu buttons in the
near-field can be performed before performance starts to degrade,
in common commodity controller based or virtual pointing based
interaction metaphor using a glove or a depth camera based input.

Our fourth hypothesis was that the slopes, intercepts, and through-
put of the regression profiles of the participants’ selection of targets
between depth planes are expected to be different from the pro-
files within the same depth plane. This hypothesis was partially
supported. The slope was the highest when moving from 60% of
maximum arm’s reach to 90% of maximum arm’s reach. Specifi-
cally, it was higher than the conditions within 60% and within 75%
of the maximum arm’s reach. These results are in line the findings
of Machuca and Stuerzlinger [3], who showed that movement time
goes up proportionally with the change in target depth in addition
to the index of difficulty and that performance is worse when target
depth changes rather than when it is constant. However, unlike
their work, we found that the average movement time at 90% of

the maximum arm’s reach was slower than the average movement
time moving between 60% and 75% of maximum arm’s reach. In
addition, at 90% of maximum arm’s reach, average throughput was
lower than any of the conditions where the user moved from one
depth plane to another. This could imply that there may be a limit
to how change in target depth can explain movement time, and that
the effects of target depth can be diminished when the user’s arm is
extended closer to the maximum reach or critical boundary without
shoulder motion [33].

Regarding system differences between the Point-LF (Leap Mo-
tion) vs. Point-HF (Hi5 glove), the reason we used the two dif-
ferent systems is to empirically examine the differences between
two popular commodity interaction metaphors that differ in system
fidelity (gesture tracking quality, latency and framerate) for direct
gesture based input on the efficacy of selection in the natural or
native manner in which they are used in VR interaction. Similar
empirical evaluations comparing between input devices have been
conducted in Fitts’ Law research and selection/manipulation stud-
ies, i.e. [2, 7, 28, 53]. The purpose of our research is to provide a
rich baseline of data on how selection efficiency and throughput
(speed-accuracy tradeoff) is affected overall by the fidelity of pop-
ular commodity gesture tracked direct interaction metaphors and
controller based interaction in near-field target selection in VR.

Limitations: Our experiment compared three methods of com-
mon interaction techniques that afforded either a controller or two
levels of fidelity of a virtual articulated hand based pointing, on the
efficiency of near-field selection. But, there are other specialized
interaction metaphors such as pen or stylus based input that we have
not yet studied in this paradigm. Our results show that tracking
fidelity in pointing metaphors (perhaps the difference in latency)
could potentially be the root cause of the difference in performance
in personal space selection efficiency in our experiment. However,
the current experiment design is unable to tease apart if the result
we are seeing is due to inherent differences in the tracking quality or
latency.

7 CONCLUSION AND FUTURE WORK

Our contribution shows that the interaction and system fidelity of
pointing input metaphors significantly impacts personal space target
selection efficiency and the speed-accuracy tradeoff. High-fidelity
pointing metaphors can perform at similar efficiency and throughput
to the standard VR controller in personal space target selection. This
important finding suggest that potentially minimizing latency and
improving tracking in popular commodity gesture based input sys-
tems can greatly enhance the efficiency of near-field spatial selection
in VR. Although, on one level our results can seem intuitive, on
the other, there was a lack of data on how the fidelity of pointing
metaphors affected near-field or personal space target selection ef-
ficiency and speed-accuracy tradeoff. Our research provides this
much needed data to the research, development and consumer com-
munity. Our contribution also shows that regardless of the input
method employed or the interaction fidelity, target selection is more
efficient at 60% (towards the middle) of the participants’ maximum
arms reach and at movements between 60% and 75% of the partic-
ipants’ maximum arms reach. This suggests that with regards to
menu placement and hierarchical target selection in personal space
depth planes, 3D buttons and target selection is more efficient in the
middle of the participants’ arms reach rather than at the edge. Future
work will focus on raycasting vs. pointing vs. controller based target
selection in personal space XR interactions.
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