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ABSTRACT
We present a method to track a smartphone in VR using a fiducial
marker displayed on the screen. Using WebRTC transmission proto-
col, we capture smartphone touchscreen input and the screen con-
tents, copying them to a virtual representation in VR. We present
two Fitts’ law experiments assessing the performance of select-
ing targets displayed on the virtual smartphone screen using this
method. The first compares direct vs. indirect input (i.e., virtual
smartphone co-located with the physical smartphone, or not), and
reveals there is no difference in performance due to input indirec-
tion. The second experiment assesses the influence of input scaling,
i.e., decoupling the virtual cursor from the actual finger position
on the smartphone screen so as to provide a larger virtual tactile
surface. Results indicate a small effect for extreme scale factors. We
discuss implications for the use of smartphones as input devices in
VR.
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1 INTRODUCTION
Many VR head-mounted displays (HMDs) now provide full 6
degrees-of-freedom (6DOF) pose tracking out of the box via tracked
controllers with several buttons and joysticks in addition to motion
tracking capabilities. Such controllers are not universally available,
e.g., on smartphone-based VR devices such as Google Cardboard.
Smartphones offer a potential opportunity as an interaction device
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in VR. In recent years, smartphones have acquired many new ca-
pabilities, becoming full-fledged personal computers with various
sensors such as gyroscopes that provide good orientation tracking
and accelerometers, cameras, and GPS sensors for position track-
ing. These features are used in much cheaper smartphone-based
VR HMD options, such as Google Cardboard1. However, this is
just one example of VR-smartphone integration; smartphones offer
potential not just as a display, but also as VR interaction devices.

Given the ubiquity of smartphones, it would be beneficial for
VR users to be able to use a smartphone in VR, without context
switching. Consider playing a VR game: if the player receives a call
or message on their smartphone, they must remove the VR headset,
use the smartphone, and put the headset back again when done.
This impacts immersion and causes breaks in presence. Moreover,
the smartphone touchscreen provides a potentially useful inter-
action surface, offering the well-known benefits of passive haptic
feedback in VR [20, 24, 26]. Recent VR headsets, such as the Oculus
Quest are equipped with outward-facing cameras. These cameras
can support optical smartphone tracking, enabling direct use of a
smartphone in VR either to avoid breaks in presence (i.e., “general
purpose” smartphone usage in VR) or as an input device. Support-
ing smartphone tracking in VR may increase the use of HMDs in
users’ routines, by streamlining smartphone usage. This could be
used in VR teleconferencing (e.g., managing a presentation). Even
low-cost smartphone-based HMDs (e.g., Google Cardboard) can
use the outward-facing smartphone camera to support tracking
a second smartphone. This may be especially useful in providing
improved interaction capabilities for budget HMDs that otherwise
do not include a 3D tracked controller (assuming a user has two
smartphones available).

There are several studies examining the use of smartphones or
wearable devices as VR input devices [2, 6, 15, 18, 24, 46–27, 36, 44].
To date, none tracked the smartphone’s 6DOF pose without attach-
ing a bulky VR controller or tracking device to it. While affixing a
VR controller to a smartphone provides good tracking, it requires
an extra VR controller or sensor and makes the smartphone less
ergonomic. Thus, the smartphone becomes uncomfortable and awk-
ward to use both in and out of VR until detaching the controller
from the smartphone. Tracking systems like Vicon2, are prohib-
itively expensive and generally constrained to one room. These
limitations make it impractical to track a smartphone in VR in such
a fashion. Moreover, with the exception of recent work by Bai et
al. [4], none of the previous solutions supported integrating the
smartphone’s capabilities in VR, to support normal smartphone
usage.

1https://arvr.google.com/cardboard/
2https://www.vicon.com/
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Currently, there are virtually no mobile apps that allow a smart-
phone to be used in VR without additional hardware, and few
studies on using a smartphone as a VR controller. We propose a
technique using an on-screen display of fiducial markers to support
a 6DOF tracking of a smartphone in VR, requiring no additional sen-
sors. Our method also presents a virtual replica of the smartphone
in VR and copies the smartphone screen to the virtual replica. The
user can thus interact with the smartphone in VR similar to reality.

Our paper presents two main contributions. First, is our method
of tracking the smartphone itself, and using it as a tactile surface in
VR. In our case, we used a Google Cardboard-like smartphone VR
device, but our approach also applies to other HMDs with outward-
facing cameras. Second, we present two experiments on the effec-
tiveness of using a smartphone in VR. The VR smartphone need
not perfectly replicate realistic input, introducing the possibility
of redirected input. We thus investigate co-location and input scal-
ing to determine which offers the optimal input conditions VR
smartphone use.

2 RELATEDWORK
2.1 Smartphone usage in VR
Several projects have looked at incorporating smartphones into VR.
While modern smartphones offer several features useful for VR,
interaction on planar surfaces (e.g., a touchscreen) is also beneficial
in VR selection and manipulation [20, 24, 26]. Amano et al. [2]
used VR as a testbed for smartphone navigation maps using GPS
and Wi-Fi to locate the user in the map. The system captured the
smartphone screen and streamed it to a PC over USB, which then
presented it in VR. The authors reported latency on the order of
695.5ms to 729.0ms, which is over double what we achieved using
the WebRTC protocol. Such high latency is impractical for inter-
active applications. Huidong et al. [4] attached a VR controller to
a smartphone for pose tracking and attached a depth camera to
the HMD to capture hand gestures. The smartphone display was
mirrored in real-time in VR, although the authors did not specify
how. They reported using a private network connection with a 170
ms average delay. The authors report that user preference question-
naires for common smartphone tasks (e.g., calling, taking pictures,
using social media apps) were significantly better for reality. Of the
VR conditions, calling and photography had the highest subjective
preference scores while typing instant messages had the lowest.
Yet, their application required depth cameras which to date, are not
readily available on VR devices.

Other studies used a smartphone in VR as a touch input device
or VR controller. Mohr et al. [33] introduced TrackCap, which used
the Vuforia SDK3 to track a fiducial marker mounted a Microsoft
Hololens4. Fusing the smartphone’s 3DOF gyroscopic data with
the smartphone’s fiducial marker tracking allowed detection of
the smartphone’s 6DOF pose relative to the HMD. Experiments
comparing selection and manipulation performance with TrackCap
to gyroscope-only tracking revealed TrackCap offered significantly
better performance. While the technique also switched between
cameras depending on the smartphone orientation, the authors

3https://developer.vuforia.com/
4https://www.microsoft.com/hololens

reported significant delay during camera switching and concluded
this feature was impractical.

Gebhardt et al. [15] used a smartphone as a menu system input in
a VR application presented in a VR CAVE, thus did not implement
tracking or screencasting. An expert review and user study revealed
that experts appreciated the system, but user acceptance was lower
than expected. Menzner et al. [32] compared an above surface inter-
action technique with a 2D on-surface input for VR map navigation.
The system used a smartphone as a surface and tracked both the
smartphone and the user’s fingers with an OptiTrack system. While
above-surface interaction performed significantly better, the Opti-
Track requires external tracking and markers.

2.2 Direct vs. Indirect Input
Since the user cannot actually see the physical smartphone in VR,
neither the virtual smartphone nor its input space needs to be
physically co-located with the physical smartphone or use a 1:1
input mapping. This introduces the possibility of having a larger
virtual surface than that physically provided by the smartphone or
positioning the virtual smartphone somewhere more comfortable.
Results on direct vs. indirect input have yielded mixed results. For
example, Forlines et al. [11] found that users benefit from direct-
touch input on bimanual tasks. Another study [12] on pointing and
crossing tasks found that while direct input was significantly more
efficient in crossing, direct and indirect were equivalent in point
selection. Other research indicated that older adults were more
influenced by the input device choice [31].

Other research [39] on 3D target selection did not find significant
differences between co-located and disjoint input spaces. However,
Imamov et al. [19] found that context switching time increases if the
information was displayed far from the task position. Participants
found it more preferable when content was placed at eye level or
below and positioned at medium distances.

Introducing mismatches between the physical and virtual screen
plane positions and employing surface warping are examples of in-
put redirection. Haptic retargeting, such as Azmandian’s approach.
[3], rotates the immersive virtual environment to align real and
virtual objects [45]. Azmandian et al. [3] conducted a study where
such retargeting was applied to create the illusion of multiple tan-
gible cubes in the VR environment, despite only using a single
physical. They found the highest presence and satisfaction scores
when combining body and world warping.

Other research [16] compared two remapped reaching tech-
niques: static translational offset between the virtual and physical
hand before a reaching action and one that dynamically interpo-
lates the position of the virtual hand during a reaching motion.
This is similar to the well-known Go-Go technique [35]. The results
showed that the static translational shift performed better than
the dynamic one and was more robust for situations with larger
mismatches between virtual and physical objects.

Overall, results generally show little difference between direct
and indirect conditions, as suggested by the prism adaptation re-
search [1, 5, 8, 13, 14]. This is promising for designing smartphone-
based interaction in VR, as it supports decoupling the physical and
virtual smartphone positions for ergonomic reasons.

https://developer.vuforia.com/
https://www.microsoft.com/hololens
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2.3 Effects of Scale on Selection Performance
Another type of input scaling is control-display (CD) gain, which
is not typically used with touchscreen input. CD gain can be ap-
plied in VR to increase the size of an interaction surface. This is
potentially useful to make small tactile surfaces (e.g., smartphones,
smart-watches) behave like a larger virtual surface. Among vari-
ous possible applications, CD gain can increase the smartphone
thumb-zone without drastically decreasing efficiency.

There have been several studies on warped input surfaces in VR.
Kohli et al. [22] used the Fitts’ law reciprocal tapping task [10, 38]
to compare one-to-one and scaled conditions on a plane oriented
at various angles. Non-inferiority statistical testing indicated that
selecting warped targets was statistically no worse than selection
without scaling (1-to-1). A follow-up study [23] found that with
training, participant performance was no worse in a warped virtual
space than in an unwarped one. Didehkhorshid et al. [9] scaled
stylus input on a tracked drawing tablet in VR, comparing selection
performance across different scale factors (from 1-to-1 to a 2.4 scale
factor). While scale factor significantly affected movement time,
the throughput and error rate was no worse with scaling than the
1-to-1 mapping, similar to the results of Kohli et al. [22]. Thus, there
is evidence that small scale factors have relatively little impact on
performance. A goal of our study is to verify if such techniques can
be applied with the smaller touchscreen surface of a smartphone.

2.4 Fitts’ Law
We employ the Fitts’ law selection task in our study, so briefly
describe it here. Fitts’ law predicts selection time as a function of
target size and distance [34]. The model relies on these equations:

MT = a + b · ID where ID = log2

(
A

W
+ 1

)
(1)

TP =
IDe

MT
where IDe = log2

(
Ae

We
+ 1

)
(2)

Ae =

∑N
i=1Ai

N
(3)

We = 4.133 · SDx (4)

In Equation 1 MT is movement time, and a and b are empirically
calculated via linear regression. The ID is the index of difficulty
(the overall selection difficulty), based on the amplitude A – the
distance the cursor travels to select the target, and W, the target
width (i.e., target size). As seen in Equation 1, the index of difficulty
will thus increase by increasing the amplitude and/or decreasing
the target width.

Equation 2 presents throughput (TP), which combines speed and
accuracy and is unaffected by the speed-accuracy trade-off com-
monly seen in such tasks [28]. IDe is the effective index of difficulty
and gives difficulty of the task users actually performed, rather
than the task presented. It is thus widely used and recommended
by the ISO 9241-9 standard as a primary metric for pointing device
comparison. In contrast, selection time and error rate are less con-
sistent between studies, as they vary with individual participant
biases towards speed or accuracy. Throughput has been shown to
be more stable in both 2D and 3D selection studies [7, 37, 42, 43].

Figure 1: Fitts’ law task, arrows indicate where the target
would move after each selection.

Equation 3 presents effective amplitude, Ae , the mean move-
ment distance between targets. Finally, Equation 4 presents effec-
tive width,We . This first requires calculating SDx , the standard
deviation of selection endpoints projected onto the vector between
the two targets. It incorporates selection coordinate variability
and is multiplied by 4.133, which corresponds to ±2.066 standard
deviations from the mean. This effectively resizes targets post-
experimentally, such that 96% of selections hit the target. This
process normalizes the experimental error rate to 4%. This accu-
racy adjustment facilitates the comparison of throughput scores
between studies with varying error rates by first normalizing accu-
racy [29]. Figure 1 illustrates the selection task. Users must select
the highlighted target repeatedly; the target moves as indicated by
the arrows showing the target location for the next selection trial.

3 VR SMARTPHONE IMPLEMENTATION
This section details and rationalizes the implementation of the
prototype used in our studies. While the proposed method for
presenting a smartphone in VR could be implemented using almost
any HMD, we decided to first experiment with Cardboard VR5
to facilitate remote experiments during the COVID-19 pandemic.
Such devices typically have limited interaction capabilities, thus
we were also interested if our technique improved smartphone-
based VR interaction. Our current implementation thus required
two smartphones: the SVR device (Smartphone for VR, used in the
HMD), and the SHI device (Smartphone for Hand Input, held by
the user during the study. The system software consisted of three
applications, VRPhone, FittsStudy, and RTC. All project source code
is available on GitHub6. Descriptions of each application follow.

3.1 VRPhone
We developed VRPhone in Unity to run on the SVR device to present
the virtual environment seen by the user, and track and display the
second smartphone. VRPhone performs 6DOF tracking of the hand-
held SHI smartphone in real-time via a fiducial marker displayed on
the SHI screen and displays corresponding virtual models using the
SHI pose data. The fiducial marker (presented on the SHI device)
is seen on the top half of the virtual smartphone. The application

5https://developers.google.com/cardboard
6https://github.com/Staskkk/VRPhone.git

https://developers.google.com/cardboard
https://github.com/Staskkk/VRPhone.git
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Figure 2: VRPhone application screenshot during the selection task. (Left) Direct mode, where the virtual smartphone is col-
located with the actual SHI device position. (Right) Indirect mode, where the virtual smartphone is in a fixed position.

also scans a QR-code displayed on the SHI device provided by the
RTC application to establish a WebRTC connection between the
two devices. See Figure 2

For camera-based tracking of the fiducial marker, we used the So-
lAR framework, based on OpenCV7 which provides robust marker-
tracking performance for a smartphone. SolAR sometimes loses
marker tracking, which increases virtual smartphone model lag.
To mitigate this, we also constantly send the SHI gyroscope data
via the WebRTC UDP data channel to provide the virtual model
orientation when the fiducial marker tracking is lost, and between
rotation updates from the SolAR framework. Gyroscope data is used
relative to the last orientation received from the marker-tracking
library. An absolute gyroscope orientation was not used because
of the noticeable shift between SVR and SHI compass values and
their measurement errors. Study-related data (condition, etc.) was
sent via WebRTC over the TCP transport layer.

The software also presented the virtual model of the smartphone
in either direct or indirect mode. In direct mode, the virtual smart-
phone screen was co-located with the virtual smartphone, much
like a real smartphone. The direct mode requires 6DOF tracking
of the SHI smartphone. In indirect mode, the virtual screen was
rendered floating in space at a constant position above the virtual
table, slightly below the user’s eye level. The screen always rotated
around its vertical axis to orient itself facing the user. The virtual
smartphone model was still displayed but showed a black screen so
as to keep the smartphone GPU and CPU load similar for both con-
ditions. This feature is optional for indirect mode; both it and the
camera tracking could be disabled in indirect mode, which would
significantly decrease heat and battery usage of the smartphone.

For the “cardboard” display mode we used “Google VR SDK for
Unity”8 – a free SDK for VR Cardboard app development provided
under MIT license. The virtual environment presented a small lab
room with a table in front of the user and some furniture around
the room. For the virtual smartphone model, we used a Samsung
Galaxy S10 from TurboSquid9 under academic usage allowance. For

7https://opencv.org
8https://github.com/googlevr/gvr-unity-sdk
9https://www.turbosquid.com

the QR-code scanning, we showed the smartphone’s camera feed on
the screen with an overlay hint at the start of the app. The scanning
feature was provided by the ZXing library10 (Apache-2.0 license).
WebRTC protocol was employed from the MixedReality-WebRTC
library11 by Microsoft (MIT License).

Finally, since the user could not see their hands/fingers in VR,
the SVR device also displayed a cursor on the virtual smartphone
screen (in both direct and indirect modes) to show the contact point
on the screen. This cursor was optionally subject to scaling, em-
ploying the warped virtual surfaces (WVS) technique described by
Didehkhorshid et al. [9]. We used this technique in our second ex-
periment. The method uses a linear proportion relative to an origin
point, based on the specified scale factor specified (SF). For example,
when the SF equals 1, the cursor moves in 1-to-1 mapping with the
finger on the touchscreen. WVS allows users to interact with an
arbitrary-sized virtual surface, while the physical interaction space
or touchscreen is always the same (e.g., a touchscreen). We imple-
mented the VWS technique to determine if it could provide easier
access to the targets on the edges or outside of the thumb-zones of
a touchscreen. Our study is also the first to test such a technique
with one-handed finger input. Since we use only part of the touch-
screen, the results may also indicate the applicability of VWS to
small wearable devices (e.g., smartwatches) with a touchscreen.

3.2 FittsStudy
The FittsStudy application ran on the SHI device and was based on
FittsLawUnity12 byHansen et al. [17] providedwith a BSD-3-Clause
license. The software presents a Fitts’ law reciprocal selection task
for different input devices such as a mouse, eye gaze, joystick, etc.
We modified the code to add finger input, made adjustments to the
logs, study configuration settings, and add Android OS support.
The app sends the display condition parameters to the RTC app
via the Android Broadcast method. We shifted the center of the
target’s circle lower to improve suitability for one-handed thumb-
based input. To track the device during the study, we incorporated

10https://github.com/zxing/zxing
11https://microsoft.github.io/MixedReality-WebRTC/index.html
12https://github.com/GazeIT-DTU/FittsLawUnity
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Figure 3: Fitts application screenshots. (Left) Study config-
uration menu. (Right) Study during execution, depicting a
fiducialmarker at the top of the screen to support SHI device
tracking. This also depicts the screen, captured and transmit-
ted to the SVR device, as described above.

a fiducial marker image on the upper part of the screen. Finally,
we implemented a script that emailed data logs directly to the
experimenter at the end of the study. See Figure 3

3.3 RTC app
The RTC app also ran on the SHI device. It did not require graphics,
so we developed it in Android Studio rather than Unity to make
the project smaller and increase compilation speed. It was based on
the ScreenShareRTC project13 under the Apache-2.0 license. The
RTC app copied the smartphone screen from the SHI device to the
virtual smartphone displayed in the SVR application via a local
Wi-Fi network at 1280×720 pixels resolution. This was sufficient to
both clearly render the SVR screen and minimize latency.

During development, we found that the WebRTC protocol with
Android screen-capturing greatly outperformed screenshots sent
over UDP, the method used in another study [2]. WebRTC requires
a signaling server to establish communication between endpoints.
Therefore, we implemented a signaling server in the RTC app as a
separate service and used the ZXing library (same as in VRPhone)
to create a QR-code with the IP address of the smartphone. The
SVR device then scanned the QR-code to establish the connection.

3.4 Latency Measurement
We measured screen transmission latency by recording both the
SVR and SHI screens simultaneously using a 60 FPS video camera.
We then analyzed the recorded video frame by frame to obtain the
latency for 12 selections using a stylus (to make it easier to see
when the target was selected). We measured two delays:

4- system latency, the time from the stylus entering the target
and the system registered selection (i.e., the target circle
becomes empty) on the SHI device

13https://github.com/Jeffiano/ScreenShareRTC

4- and transmission latency, the time from when the selection
registered on the SHI devicewas registered on the SVR device
(i.e., network latency).

The sum gives the end-to-end latency. We measured latency in
this fashion using two sets of devices, a Sony Xperia X as the SHI
device with a Samsung Galaxy S10 and Xiaomi Mi 10T Pro as SVR
devices for 12 measurements each. The average system latency was
150 ms (SD = 21 ms), and the average transmission latency was 193
ms (SD = 25 ms). Thus, the average total latency was 343 ms (SD =
24 ms, min. 317 ms, max. 383 ms). Overall, this delay was noticeable
but would likely be lower on a superior VR device (e.g., a dedicated
device not using a smartphone).

4 METHODOLOGY
We conducted two Fitts’ law experiments evaluating our approach.
For space reasons, and because the two experiments were similar,
we first describe the common methodological elements. We con-
ducted both studies remotely with no physical participant contact
due to the COVID-19 pandemic.

The first experiment was intended to determine which of di-
rect or indirect input modes offered better user performance and
preference. Past studies have mostly revealed only small and non-
significant differences in selection performance between direct and
indirect input conditions [12, 39]. Thus, a motivating hypothesis
was that direct and indirect input would perform comparably; to
this end, our analysis uses statistical equivalence testing. Such a
result would be promising for future implementations since the
indirect mode requires less computing power and battery consump-
tion.

The second experiment also included the WVS technique de-
scribed above, to determine if input scaling significantly impacts
user performance. Previous work indicates that scale factor did not
affect selection throughput [9]. However, a smartphone’s screen
is much smaller than the tablet used in previous work, and one-
handed finger input on a smartphone is different from the stylus
input on a tablet. Thus, we hypothesized that while low scale factors
likely would improve thumb reach without harming performance,
higher scale factors (e.g., 2.0 and up) would likely yield significantly
lower throughput than a 1-to-1 mapping.

4.1 Participants
We recruited 12 participants for both studies. The first study in-
cluded 6 men and 6 women (aged 19 to 49, µ = 30.33, σ = 10.32).
One participant was left-handed. In terms of VR experience, 58.3%
reported having no VR experience, 41.7% reported several times
a year. The second study included 7 men and 5 women (aged 18
to 50, µ = 26, σ = 8.16). Two were left-handed, 41.7% had never
used VR, 50% used VR several times a year, and 8.3% experienced
VR several times a month. Eight participants participated in both
studies. Participants were recruited from university students and
acquaintances via email. Participants did not receive compensation
but were provided with a VR Shinecon (valued at $15 CAD) that
they kept after the study.

https://github.com/Jeffiano/ScreenShareRTC
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Figure 4: Study apparatus. Typical setup for the study: a) chair with armrests; b) Smartphone-based VR headset (provided to
participants); c) Two Android OS smartphones. d) SVR view of study environment. e) SHI device real view.

4.2 Apparatus
Each participant required two smartphones to participate in the
studies, one SVR device (i.e., the smartphone acting as a VR dis-
play), and one SHI device (i.e., the smartphone for hand input).
We provided each participant with a smartphone-based VR head-
set, a VR Shinecon Box3D model DV626-9686f (see Figure 4b) to
house their SVR device. These devices were ordered online and
shipped directly to participants to avoid direct contact during the
COVID-19 pandemic. Since the studies were conducted completely
remote each participant used a different pair of smartphones as
apparatus. We recorded the smartphones used for both the SVR
and SHI devices for each participant. All participants used their
own standard home-use smartphones ranging from Redmi Note 7
to Samsung Galaxy S20 Ultra. Participants were seated in a chair
with armrests to reduce physical strain during the study. Figure 4
depicts a typical setup, required to participate in studies.

During studies, the SVR device was placed inside the VR headset,
used as the HMD, and used the integrated back-facing camera to
track the SHI device, as described in Section 3. The virtual model
of a smartphone showed in a VR environment at the tracked SHI
position. The SHI screen feed is also translated to VR environment
and rendered in the direct or indirect mode in experiment 1, and
always in the indirect mode in experiment 2. Meanwhile, SHI was
running the Fitts’ law task, recording the participant selection
performance data, sending the screen feed to SVR, and rendering a
fiducial marker at the upper part of the screen. The VR and real-
world first-person view of the system are seen in Figure 4 (d, e).

4.3 Procedure
To minimize contact during the COVID-19 pandemic, we conducted
the experiments remotely. We sent the VR headsets to participants
via mail. Before starting a study, participants completed consent
forms and a demographic questionnaire online. The instructions in-
cluded detailed how to set up and use the software on smartphones
and study details. We used video calls with the participants during

the studies to provide extra assistance and answer questions. Figure
5 depicts a participant during the study.

Both studies employed the Fitts’ Law reciprocal selection task.
The task involved selecting circular targets, placed in a circle, as
typical in Fitts’ law-based experiments. See Figure 5 (right). Par-
ticipants were instructed to select the targets as quickly and as
accurately as possible. Each sequence started by a double-tap on
the SHI smartphone screen. The system tracked the participants’
finger position only when their fingers touched the screen. Partic-
ipants thus had to hold their fingers pressed to the screen at all
times during a sequence. The target was considered selected when
the cursor’s center was placed inside the target circle’s border. The
timer for the sequence started with the selection of the first target.
Targets that were not selected within 10 seconds were considered
errors. Regardless if a target was hit or timed out, the next target
in the sequence activated. Errors trials were not redone but were
excluded from the statistical analysis.

Prior to starting each study, participants did 3 unrecorded prac-
tice sequences using direct mode in User Study 1 and using the
1-to-1 mapping in User Study 2. Participants could rest between
sequences, as the timer stopped at these points. During these breaks,
they could remove the HMD as desired.

Upon completing both studies, participants gave comments on
their experience and completed a brief questionnaire. They were
then debriefed and reminded to keep the Shinecon HMD as compen-
sation. Each experiment took about 60 minutes, with participants
selecting targets in VR for ∼45 to 50 minutes. We next describe the
specific details for each user study in the following sections.

4.4 User Study 1 Experiment Design
User Study 1 used a within-subjects design with two independent
variables: Input Mode and Index of Difficulty (ID). The Direct and
Indirect input modes are described fully in Section 3.1.

Input Mode: Direct, Indirect;
ID: 1.1, 1.3, 1.5, 1.8, 2.1, 2.4, 2.7, 3.0, 3.3, 3.6
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Figure 5: (Left) A participant during the study with a smartphone aligned with the virtual screen in VR. (Right) Close-up of
the experiment task presented on the SHI device.

Table 1: Index of Difficulties with their corresponding Amplitudes and Widths.

ID 1.1 1.3 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6

A 115 145 295 400 265 345 220 350 440 445
W 100 100 160 160 80 80 40 50 50 40

The ID values were calculated according to Equation 1 from the
following 10 combinations (chosen to fit on the smartphone display)
of amplitude and width (in pixels, Table 1):

To counterbalance input mode, half of the participants did direct
first, while the other half started with indirect. The study contained
6 blocks, 3 for each condition. Each block had 10 IDs in random
order, with one ID per sequence of 15 targets. Each participant
completed 6 blocks × 10 IDs × 15 targets = 900 selections in total.
Over all 12 participants, this yielded 10800 target selections in total
or 5400 per condition. The dependent variables included:

Throughput: calculated according to the ISO 9241-9 standard
and based on Equation 2, in bits per second (bps), where a higher
score is better.

Movement time: the average selection time, in milliseconds,
where a lower score is better.
Although Fitts’ law studies commonly also measure error rate, we
did not measure this as it was not possible to end a trial with a miss
in our experiment.

4.5 User Study 1 Results
4.5.1 Throughput. Mauchly’s test did not reveal a violation of
sphericity in TP data. RM-ANOVA revealed no significant difference
for input mode on throughput (F1,11 = 0.29, ns). We also conducted
a power analysis (µ1 = 2.109, µ2 = 2.139, σ = .45, α = .05), and
found the power was 0.93 for a 2-sided test. The mean TP difference
was just 0.0297 bps. See Figure 6

To test our hypothesis – that there was no difference in direct
vs. indirect input – we employed an equivalence test (α = .05, δ =

Figure 6: Mean TP by input mode. Error bars show 95% CI.

1 bps) since standard statistical ANOVA tests do not determine
equivalence, only differences. In other words, a non-significant
ANOVA result does not indicate two conditions are equivalent.
Thus, for non-significant ANOVA results, we also conducted equiv-
alence testing for Throughput. While this kind of statistical test is
not commonly used in HCI studies, it is common in medical studies
(e.g., drug comparisons). We used the same indifference zone (1 bps)
as previous studies used for a similar non-inferiority test [9, 22].
The choice of 1 bps for an indifference zone was first chosen by
Kohli, and the rationale explained in his dissertation [21]: “This
value was chosen because a 2004 survey of ISO 9241-9 studies found
that the range of throughputs for computer-mouse pointing in five
studies was 3.7-4.9bps, a range of 1.2bps [37]. Moreover, in Fitts’
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Table 2: Mean TP differences and equivalence test results.

Pair Mean Diff. Direct 2-tailed 90% CI Indirect 2-tailed 90% CI p1 p2

Direct-Indirect 0.0297 -0.199
+0.560

-0.401
+0.321

< 0.0001 < 0.0001

Figure 7: Mean MT by input mode. Error bars show 95% CI.

1954 paper, he labeled 10-12bps, a range of 2bps, as consistent [34]. I
conservatively chose a tighter indifference zone of 1bps”. We opted
to use the same indifference zone based on this argument. Although
the indifference zone is based on computer mouse input studies, we
use this to define our indifference zone as there are comparatively
few Fitts’ law studies comparing touch input. An indifference zone
of 1 bps indicates that the mean difference between the compared
conditions and the bounds of the two-tailed confidence intervals
should be lower than 1 bps to be considered equivalent. We used
the 2-tailed 90% confidence interval because its equivalent to two
one-tailed 95% intervals in opposite directions. Table 2 shows the
results of the equivalence test.

Based on this analysis, throughput for the direct and indirect
input modes was considered equivalent. This result suggests that
throughput is not affected by virtual screen position, in line with
our hypothesis, and is consistent with past results on decoupling
control/display spaces [11, 12, 22, 39].

4.5.2 Movement time. No violation of sphericity was revealed
by Mauchly’s test in MT values. RM-ANOVA failed to find a
significant difference in movement time between input modes
(F1,11 = 3.18, p = 0.1, ns). See Figure 7

Despite this non-significant difference, we did not conduct the
equivalence test for movement time, because, as suggested by Kohli
et al. [22], it is not clear what indifference zone for movement time
would be reasonable.

4.5.3 Linear Regression Analysis. We conducted a linear regression
to model and confirm the linear relation between MT and ID mod-
eled by Fitts’ law for each input mode. As can be seen in Figure 8,
both input modes had a strong correlation as expected (i.e., R2 ≈
0.95). IDe ranged from 1.37 to 4.69 and 98.5% of the values are in a
range from 1.5 to 4.3.

4.5.4 Questionnaire. We asked participants 4 5-point Likert scale
questions about their subjective experience. The questions and

Figure 8: Linear regression of Movement time on Index of
Difficulty for both conditions. Points represent average MT
for all IDs across all participants.

their results (including Friedman analysis comparing the direct to
indirect for each question). See Figure 9

4.6 User Study 1 Discussion
The most important result of the study is that the difference in se-
lection throughput between direct and indirect input was both very
small and considered statistically equivalent per the result of our
equivalence test. This suggests that when using a smartphone in
VR, the direct (i.e., real world-like co-located smartphone) condition
is not necessary. This is important for VR solutions where tracking
methods have high power and processing time requirements; if
indirect input works as well as direct input, then such tracking may
be unnecessary. For example, when using Cardboard VR, camera-
based tracking requires that the camerawas always activated, which
greatly increases battery drain and smartphone temperature. Dur-
ing our study, 4 participants had their smartphones overheat and
needed a 5-minute break to wait for the smartphone to cool down
to finish the study. With indirect input, it is possible to use tracking
only when the user needs to pick up the smartphone, and tracking
can be disabled when the user is otherwise touching the screen.

While most participants were excited about the tracking method,
half said that it was sometimes harder to see the virtual screen
contents due to tracking problems (e.g., small virtual screen drift).
Some noted that indirect was more ergonomic; for long usage, they
did not need to lower their head or raise their hand to see the
screen. Only one commented that indirect was less natural than
direct. Thus, if VR smartphone input is used for a realistic game (e.g.,
as a game object), direct input may be preferable. Three participants
(who were familiar with VR) said it would be a nice feature to be
able to use a smartphone during a VR session.
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Figure 9: Subjective preference assessment.

Table 3: Index of Difficulties with their corresponding Amplitudes and Widths.

ID 1.1 1.5 1.8 2.2 2.5 2.9 3.2 3.6

A 115 295 400 290 375 325 410 445
W 100 160 160 80 80 50 50 40

4.7 User Study 2 Experiment Design
User Study 2 used a within-subjects design with two independent
variables: Scale Factor, and Index of Difficulty (ID).

Scale Factor (SF): 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4;
ID: 1.1, 1.5, 1.8, 2.4, 2.5, 2.9, 3.2, 3.6
ID values were calculated according to Equation 1 from the

following 8 amplitude/width pairs (in pixels, Table 3):
The SFs were applied to the cursor position using the WVS tech-

nique as described earlier. The study contained 8 blocks in total, one
SF per block. The order of SFs was counterbalanced according to a
balanced Latin square. Within each block, ID order was randomized,
with one ID per sequence of 15 targets. In total, there were 8 blocks
× 8 IDs × 15 targets = 960 selections per participant. Across all 12
participants, this yields 11520 target selections in total.

Our dependent variables included:
Throughput: calculated according to ISO 9241-9 and based on

Equation 2, in bits per second (bps).
Movement time: the average selection time, in milliseconds.

Like User Study 1, we did not include an error rate measurement.

4.8 User Study 2 Results
4.8.1 Throughput. Mauchly’s test did not reveal a violation of
sphericity, thus we employed ANOVA. RM-ANOVA on throughput
revealed a significant difference for scale factor (F7,77 = 8.05, p <
0.001). Mean TP values and posthoc pairwise differences test results
are seen in Figure 10, where lines and brackets (i.e., “[”) indicate
pairwise significant differences between scale factors and groups
of other scale factors based on Bonferroni corrected posthoc tests.
Larger SF values tended to yield lower throughput; participants
were more effective with lower SFs. This confirms our hypothesis
regarding throughput.

4.8.2 Movement time. RM-ANOVA revealed significant differences
for movement time as well. There was a significant main effect of
scale factor on movement time (F7,77 = 3.81, p = 0.001). Results
indicate that scale factors greater than 2.0 yielded lower selection

Figure 10: Mean TP for each SF value and their pairwise sig-
nificant differences. Error bars indicate 95% CI.

Figure 11: MeanMT for each SF value and their pairwise sig-
nificant differences. Error bars indicate 95% CI.

times, confirming our hypothesis. Post-hoc pairwise differences
and mean MT scores are seen in Figure 11
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Figure 12: Linear regression of Movement time on Index of
Difficulty. Points represent averageMT for all SF and ID com-
binations across all participants.

4.8.3 Linear Regression Analysis. A linear regression analysis con-
firmed the linear relationship between ID and MT modeled by Fitts’
law. Figure 12 depicts the regression model with average MT for
each SF and ID combination. As expected, the MT and ID relation
strongly fit the linear model (R2 = 0.94). IDe ranged from 0.75 to
5.1 and 98.3% of the values were between 1 and 4.

4.8.4 Questionnaire. We asked participants if they felt the scale
factor affected their performance. While answers were distributed
from low to high, 33% felt it had a strong influence, and 25% felt it
had a medium effect on their performance.

4.9 User Study 2 Discussion
Unlike the past work with stylus and tablet input in VR [9], we
found significant differences due to Scale Factor on throughput
and movement time. The small SFs (below 1.5) were significantly
better than large SFs (1.6 and above). We believe the reason for
this difference is the physical size difference of smartphone and
tablet touchscreens. Tablets are generally several times larger than
smartphones. In our study smartphones were held with a vertical
orientation in one hand and input with the same hand’s finger,
which made the actual interactive zone even smaller. However, we
used the same SFs as those used with a tablet in the previous study.
Thus, our results suggest the maximum SF which can be applied
to smartphone input without significant influence on performance
appears to be roughly 2.0. This means VR smartphone input can
be scaled to cover twice the size of the thumb-zone with only a
small (albeit significant) drop in efficiency. Even for large “phablet”
smartphones (e.g., around 6 inches) the thumb-zone usually covers
at least half of the screen. A 2.0 SF means that a user could com-
fortably reach targets across the entire smartphone screen using
one-hand thumb input. That said, it may cast doubt on the appli-
cability of such scaled input methods with very small touchscreen
devices, e.g., smartwatches, in VR. This is a topic for future study.

While all the participants noticed some changes in input with
high SF, some could not explain the difference without a hint. Two
participants noted small SFs helped them reach targets on the edge
of the smartphone. They said: “During some conditions, I dragged
my finger on smaller distances to hit the targets, so I didn’t need

to struggle and stretch my thumb to select the ones that were far
away, it was helpful”.

5 REAL APP INTEGRATION PROOF OF
CONCEPT

To demonstrate how our tracking method could be used with “real”
applications (i.e., general-purpose smartphone use in VR) we de-
veloped a proof-of-concept prototype. The key challenge was to be
able to display the entire smartphone screen in VR, despite requir-
ing a fiducial marker for tracking in the direct input mode. If using
the indirect mode, this is easy to implement (i.e., no fiducial marker
is necessary) and the RTC app can stream the screen regardless
of the active application. However, the task is more complicated if
tracking is required, i.e., to support co-locating the virtual with the
real smartphone in direct input mode.

The Android OS supports putting the view on top of all running
apps and allows touch input to “go through” the view. We employed
both features to display the fiducial marker for tracking. However,
at the time of writing, the OS does not support capturing the screen
feed without one particular view, i.e., to exclude the fiducial marker
and get only the screen feed underneath. To resolve this, we made
the fiducial marker view blink as fast as possible (e.g., on alternating
frames), then filtered the frames to exclude those with the fiducial
marker before sending them to SVR. While this workaround allows
real apps to run on a tracked smartphone in VR, it comes at a cost;
the virtual screen frame rate is cut in half and the SHI smartphone
tracking delay doubles. The prototype is seen in Figure 13, which
depicts multiple Android apps running in direct input mode.

6 OVERALL DISCUSSION & CONCLUSIONS
We proposed a method for tracking and using a smartphone as
an input device in VR, and presented two studies evaluating our
solution. At roughly 2 bps, the performance of smartphone-based
target selection in VR is about half that of mouse-based desktop
input [37], but similar to other 3D selection methods [41, 43]. The
well-known performance cost of latency likely influenced the re-
sults as well [30, 40]. Our studies also reveal that the actual position
of the smartphone screen need not be co-located with the actual
tracked smartphone. In User Study 1, per equivalence statistical
testing, performance was statistically the same between our direct
and indirect conditions. In other words, actual 6DOF tracking of
the smartphone may not be necessary at all times, and could be dis-
abled, e.g., between grasps. Our second study determined that there
are limits on how much scaling can be applied before users notice
or are affected negatively by it. The threshold, in our experiment,
seems to be around a scale factor of 1.6. Performance degraded for
scale factors higher than this.

Overall, our results give insight into the use of smartphones
in VR. We argue that smartphones are interesting platforms as
an interaction device in VR, providing tactile feedback (that can
be virtually scaled, to an extent) and a high-precision touchscreen.
Futureworkwill investigate employing ourmethod inmore general-
purpose smartphone tasks, rather than controlled experiment tasks
like selection, and determining the maximum scale thresholds on
even smaller touchscreens (e.g., smartwatches).
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Figure 13: The prototype with multi-app support with device tracking. The fiducial marker is continuously blinking, but
completely absent on the virtual screen. (Left) The Android home screen. (Right) Android calculator app running in VR.
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