
Text Entry in Virtual Reality: Implementation
of FLIK Method and Text Entry Testbed

Eduardo Soto and Robert J. Teather(B)

Carleton University, Ottawa, ON, Canada
easm93@gmail.com, rob.teather@carleton.ca

Abstract. We present a testbed for testing text entry techniques in virtual reality,
and two experiments employing the testbed. The purpose of the testbed is to
provide a flexible and reusable experiment tool for text entry studies, in such a
way to include studies from a variety of sources, more specifically to this work,
from virtual reality text entry experiments. Our experiments evaluate common
text entry techniques and one novel one that we have dubbed the Fluid Interaction
Keyboard (FLIK). These experiments not only serve as a way of validating the
text entry test-bed, but also contribute the results of these studies to the pool of
research related to text entry in virtual reality.

Keywords: Virtual reality · Text entry · FLIK ·Words per minute ·
Head-mounted displays

1 Introduction

According to Ko and Wobbrock, text is a ubiquitous form of verbal communication [8].
Text entry refers to the process of creating messages composed of characters, numbers,
and symbols using an interface between a user and a machine. Text entry has been
extensively studied in the field of human-computer interaction (HCI) over the past few
decades, especially for use in desktop and mobile contexts. Efficient text entry is impor-
tant because it directly impacts the user’s ability to write documents, send messages,
and communicate effectively when verbal communication is not available.

Virtual reality (VR) is defined as the use of computer technology to create simulated
environments. It often employs head-mounted displays (HMD) along with spatially
tracked controllers or hand trackers as input devices.VRhasbecome increasinglypopular
in recent years; increased consumer demand means the interaction effectiveness of VR
systems affects more people than ever. Our work focuses on text entry in VR, such as
entering text in search bars or sending text messages. In such use cases, it is important
to include an effective option to enter text in VR systems as well as an effective method
to evaluate novel text entry techniques and compare with existing techniques.

To type long-form text in aVRenvironment is not yet feasible or likely even desirable.
However, there are many examples where text input of quick messages or short notes is
important, even in VR. For example, consider playing a multiplayer online VR game,
where communicating in written form may be preferable to speech communication. For

© Springer Nature Switzerland AG 2020
C. Stephanidis et al. (Eds.): HCII 2020, LNCS 12428, pp. 225–244, 2020.
https://doi.org/10.1007/978-3-030-59990-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59990-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-59990-4_18

226 E. Soto and R. J. Teather

gaming scenarios, one might find the need to type a quick SMS to a friend inviting
them to come online, without interrupting the gameplay. In scientific fields or even in
architecture, it might be useful to be immersed in a 3D environment and be able to
annotate different components of the environment. In a VR conference call, a user might
like to take notes and potentially send back-channel messages to other attendees.

While speech-to-text technologies couldworkwell for somepurposes, there are cases
where some form of typing in VR might be preferable to voice recognition. Consider,
for example, being immersed in VR whilst in a loud environment, or when you need
to maintain quiet. For example, VR use has increased in areas such as office work,
collaboration, and training, and education. For these applications, inputting text is an
essential part of these experiences and more often than not, precise text entry is required
rather than using a speech-to-text method, which may disturb other people. Modification
of existing text is unreliable and inaccurate as compared to more refined and direct text
entry techniques.

The first contribution of this paper is a text entry testbed. A common issue for text
entry research is consistency and better standardization of methodological practice in
evaluating text entry systems [1]. Methodological consistency is important in text entry
research since usually, analysis is comparative, i.e., involves empirically comparing text
entry techniques to determine which is most efficient. Employment of similar methods
andmetrics to ensure comparability between studies is motivating factor of the text entry
testbed. The text input testbed is a tool for conducting text entry studies which supports
desktop, mobile, VR, and other text input methods, that adheres to standard practice in
HCI text input research. The testbed provides a consistent platform to perform text entry
comparisons regardless of the techniques used.

The second contribution is a novel VR text entry technique called Fluid Interaction
Keyboard (FLIK). FLIK uses two 6-degree of freedom (6DOF) controllers (e.g., Oculus
Touch controllers) together with a simple interface for fast and intuitive text entry. It
operates by selecting characters from a virtual soft keyboard by directly touching the
characters.When eliminatingphysical buttonpresses on the controllers, users are enabled
to type faster using this technique and achieve fluid hand motions to increase the speed
of character selection. FLIK was inspired by another text entry technique, Cutie Keys
[2, 19] and was designed to improve on existing practice in VR text entry. The third and
final contribution is a formal evaluation of FLIK, comparing it to existing VR text entry
techniques through two user studies.

2 Related Work

Text entry has been studied for decades. In typical text entry experiments, the time to enter
a phrase is recorded while transcribing text to provide a measure of entry speed, while
the transcribed text is compared with the original text to measure errors. Entry speed is
a key metric for text entry since the goal of text entry techniques is most commonly to
offer fast ways of entering text into a system. However, entry speed cannot be looked at
by itself; error rate (e.g., number of mistyped characters) is another metric that is used in
text entry studies along with entry speed to find a balance between fast text entry speed
and acceptable error rates.

Text Entry in VR: Implementation of FLIK Method and Text Entry Testbed 227

Methodology for conducting text entry studies is detailed by Mackenzie [10]; he
focuses on the evaluation of text entry techniques and laid out strategies in order to do
so. A typical text entry study starts with a working prototype. Users must be able to enter
text, and have it displayed as a result. Once this prototype is implemented, substantial
pre-experimental testing can begin. The first step is to get a rough idea of the entry speed
possible with the technique in question. Next is to decide what the evaluation task will
consist of. For text entry studies, the task is commonly to transcribe a set of phrases as
quickly and accurately as possibly using some text entry technique as the typing method.

For themethodology described above, a set of phrases is needed to conduct the study.
Mackenzie provides such a phrase set for text entry experiments [11] which provides
a consistent metric for text entry research independent of technique used, technology
involved, or even themain researcher conducting a study.Mackenzie’s phrase set consists
of 500 phrases to be used in such studies; this provides easy access tomuch needed source
material to be used in text entry.

Wobbrock et al. [20] describe measures of text entry performance in which they
includewords perminute as a text entry speedmeasure aswell as theminimum string dis-
tance as an error ratemeasure.We now summarize keymetrics of text entry performance,
several of which we employ in our experiments.

Entry speed, in words per minute, is calculated as seen in Eq. 1, as described by
Boletsis et al. [2].

wpm = |T | − 1

S
× 60× 1

5
(1)

where S is the time in seconds from the first to the last key press and |T | is the number of
characters in the transcribed text (i.e., the phrase length). The constant ‘60’ corresponds
to the number of seconds in aminute, and the factor of one fifth corresponds to howmany
characters compose an average word, which is defined to be 5 characters in text entry
experiments. This definition makes results more generalizable and consistent across
varying phrase sets used for input. We subtract 1 from the length since timing starts as
soon as participants enter the first key, hence the first key is not timed, necessitating
reducing the phrase length by 1.

An importantmetric formeasuring text entry accuracy is theminimumstring distance
(MSD) [12, 14–16]. MSD instead is based on an algorithm used in DNA analysis,
phylogenetics, spelling correction, and linguistics for measuring the distance between
two strings. As an example, consider two strings ‘abcd’ and ‘acbd’. To calculate the error
between these two strings you could take the transcribed string and delete the c, then,
insert a c after the b. This requires two actions to make the strings identical, so MSD =
2. Minimum String Distance is denoted MSD(A, B) where A is the presented text and B
is the transcribed text. With this in mind, MSD(A, B) = 0 means A and B are identical.
Further refinement for error analysis [12] notes the difficulty of analyzing errors in text
entry systems, in that the displacement of letters in certain text entry errors might make
correctly typed letters incorrect.

Text entry techniques are the input methods for entering text into a system. These
can include physical keyboards, touchpads, voice recognition, and even pencils. There
has been extensive research done in the area of text entry using physical keyboards
[5–7]. This work typically focuses on conducting text entry experiments using standard

228 E. Soto and R. J. Teather

keyboards to enter text into a computer system, comparing entry speed and accuracy
measures. The main focus lies on physical keyboard text entry studies in the context
of VR use. One prominent topic in the use of physical keyboards in VR includes hand
visualizations when typing on physical keyboards [5–7], and comparing different hand
representations in VR text entry. For example, Grubert et al. [6] made use of the Logitech
Bridge SDK [18], whichwas used to track the physical keyboard and hands, and display a
digital hand representation in VR. The hand representations included no hands, realistic
hands, finger tips only, and VideoHand, where a video pass-through allows the user
to see their hands in VR. They found no significant results on entry speed; however,
participants preferred VideoHand.

VR text entry techniques usually do not use a physical keyboard, as standard key-
boards tend to restrict the user’s mobility, while VR systems often require users to
physically move around. Thus, the two most common techniques are controller pointing
and bimanual text entry. Controller pointing requires spatially tracked controllers to point
at and select keys on a soft (i.e., virtual) keyboard, typically via ray-casting. Bimanual
text entry presents a soft keyboard split into two sides and requires two touchpads or
joysticks to move the cursor on each side of the keyboard to select keys. Each thumb
controls one of the two cursors on the corresponding side of the virtual keyboard [13].
Bimanual entry offers entry speeds as high as 15.6 WPM, but on average 8.1 WPM.
Similar techniques have been included in several studies, which consistently report low
entry speeds between 5.3 and 10 WPM [2, 17].

We finish our discussion of past VR text entry techniques by mentioning BigKey by
Faraj et al. [4], as we employ it in our second experiment, and it is a feature supported by
our text entry testbed. BigKey resizes keys on the virtual keyboard in real-time. It uses
the probability of a letter being typed next to increase the size of the predicted next key,
and decrease the size of less probable keys. On average, this can increase entry speed,
since as described by Fitts’ law, larger targets (at otherwise equal distance) offer faster
selection times [9].

3 Text Entry in Virtual Reality

This section describes the implementation of our text entry testbed, BigKey, word
disambiguation, and the input techniques evaluated in the studies.

3.1 Text Entry Testbed

Noting the need for an experimental framework to conduct text entry studies in VR, we
first developed a text entry experiment testbed. The design and implementation of the
text entry testbed was targeted as a flexible text entry experiment framework developed
with Unity 3D 2018.3.7f1. It was developed for conducting user studies on text entry
in VR for the purpose of this work. However, it doubles as a general purpose text
entry experiment tool since it can be adapted for use with any (i.e., non-VR) text entry
technique. Researchers can develop their text entry techniques and easily integrate it
with the text entry testbed for initial performance test, up to full scale user studies.

Text Entry in VR: Implementation of FLIK Method and Text Entry Testbed 229

Starting the testbed, the experimenter is presented with the welcome screen. The
experimenter enters a participant ID, the number of phrases that will be presented to the
participant in each block, and the number of blocks (i.e., repetitions of all experiment
conditions). For example, if 10 phrases are chosen, and 3 blocks are chosen, 30 phrases
will be typed overall split into 3 blocks.

Upon proceeding, the experimenter is then prompted to select a text entry method
on the next screen. The input technique selection screen presents a list of options which
is customized by the experimenter depending on what text entry techniques they include
in the evaluation. If the study requires multiple levels of independent variables to choose
from, additional options appear allowing the experimenter to choose each condition.
Once everything is set and an initial text entry method to test is chosen, the system will
start with the first block of the chosen method.

When starting the first block and any subsequent block, a new unique log file is
created. In the scene, there are three main components: The phrase to be transcribed,
the text entered so far, and the text entry technique are the main components that the
participant is able to visualize in the scene. The testbed currently uses Mackenzie’s
phrase set of 500 phrases as the default phrases, which are commonly used in text entry
experiments [11], but these can be changed by replacing a file called ‘phrases.txt’ with
any other phrase set as long as it follows the same format as Mackenzie’s phrase set text
file. At this point, the main experiment begins, and is seen in Fig. 1.

Fig. 1. Elements presented to participants during text entry experiment

As each trial commences, the participant sees the target phrase, the text they have
entered so far in a separate text field, and any components that need to be visualized
required for a given text entry technique. The testbed randomly selects a phrase from
the phrase set; this is the “target” phrase, and it is presented to the participant in the
phrase to transcribe section and will wait for the participant to enter the first letter, this is
repeated for the number of phrases selected by the experimenter for each block.When the
participant enters the first character, a timer starts. The timer stops once the participant
hits enter or an equivalent key on the virtual keyboard being used. The timer measures
how long it took the participant to enter the phrase. While the participant is entering text,

230 E. Soto and R. J. Teather

the system records the raw input stream, which corresponds to all characters selected in
order; this includes space, backspace, and modifiers.

When the participant completes a phrase and hits ENTER, the testbed records all
relevant details to a log file (see Fig. 2). In the log file, each trial appears as a single row,
and includes experiment setup details such as the participant ID, text entry technique,
current condition, block number, the phrase to be transcribed, the text that is actually
transcribed by the participant, the raw input stream, time, the calculated entry speed in
words per minute, and error rate in minimum string distance [1].

Fig. 2. Sample log file for one participant covering 3 blocks with 8 phrases per block using one
text entry technique using a particular modifier condition.

3.2 Text Entry Techniques

This subsection describes the main four text entry techniques used in our studies.

FLIK (Fluid Interaction Keyboard). One of our main contributions is the FLIK text
entry technique. This text entry technique was inspired by CutieKeys [19]. CutieKeys
employs a drumstick metaphor, where users enter text by swinging the VR controller
like a drumstick to hit pads corresponding to keys organized in the standard QWERTY
keyboard layout. However, unlike CutieKeys, FLIK supports contacting keys from both
top and bottom directions. In our implementation of FLIK, the virtual keyboard presents
keys as spheres, with each positioned far enough from its neighbor to prevent overlap or
mistaken keystrokes due to accidental collisions between the cursor and the key sphere.
FLIK uses bimanual 3D tracked controllers. A selection cursor sphere is attached to
the tip of each controller; these selection spheres are what the user manipulates, and
intersects with the key spheres to issue a specific keystroke. Intersection between the
selection cursor and the key sphere simultaneously selects and confirms the key input; no
further button presses are required with FLIK. Upon intersecting a key sphere, the user
can move in arcs in both direction, and loop back through the keyboard to the desired
key. In contrast, CutieKeys requires that the user move the controller back (upwards)
from below upon striking a key, then move back down again from above to strike the
next key; FLIK effectively cuts the total movement to half that required by CutieKeys.

Text Entry in VR: Implementation of FLIK Method and Text Entry Testbed 231

Although this difference between FLIK and CutieKeys is subtle, we anticipate that this
minor difference will improve entry rates due to the continuous movement of the hands.
In contrast, with CutieKeys, the user has to tap on a key, and then reverse the direction
of movement to stop selecting the key. See Fig. 3.

Fig. 3. Fluid intersection keyboard (FLIK). (A) Shows the phrase to be transcribed before the
user has entered any text. (B) The user selects the character ‘n’ by moving his right hand through
it so that the red selection cursor touches and goes through the character as seen in (C) where the
sphere cursor is now behind (and partially occluded by) the ‘n’ character key sphere. (D) Again,
shows the same right hand having looped around the bottom of the keyboard and selecting the
‘o’ character key sphere from beneath. (E) As the right hand exits the character ‘o’, the left hand
now moves through the spacebar to select a space character. (F) User continues in this manner
selecting the next character.

Controller Pointing. Controller pointing requires two 6DOF controllers, each of which
emits a selection ray. Participants can bimanually (using both controllers, one in each
hand) remotely point at a virtual (i.e., soft) keyboardpresented in front of them. Individual
keystrokes are issued upon pressing the primary thumb button on the controller. Visual
feedback is provided by changing the colour of the intersected key. Vibrotactile feedback

232 E. Soto and R. J. Teather

and auditory feedback (a “click” sound) are also provided when the button is pressed.
Both rays pointing at the same key would not have any side-effects. See Fig. 4.

Fig. 4. Images showing the Controller Pointing keyboard

Continuous Cursor Selection. With continuous cursor selection, the virtual keyboard
is divided in left and right halves to support bimanual entry. Keys on the right half of
the keyboard are selected via a cursor controlled by the right hand and vice versa. A 2D
selection cursor is initially placed at the midpoint on each keyboard half. These selection
cursors are controlled by moving the corresponding (right or left) joystick (e.g., with an
Oculus Touch controller) or sliding a finger/thumb on the controller’s touchpad (e.g.,
on an HTC Vive controller). The cursors move in the direction of joystick or touchpad
movement. Once the cursor hovers over the desired key on the virtual keyboard, a button
press on the corresponding controller confirms selection and issues the keystroke. The
same feedback mechanisms described above for the controller pointing technique are
employed with this technique as well. See Fig. 5.

Fig. 5. Continuous Cursor Selection. By dragging each thumb on their respective touchpads, the
cursors move on their respective half in order to select characters from the virtual keyboard.

Text Entry in VR: Implementation of FLIK Method and Text Entry Testbed 233

Physical Keyboard. Lastly, as a baseline condition, we included a tracked physical
keyboard with virtual hand representations via the Logitech Bridge API [18] and an
HTC Vive individual tracker mounted on a keyboard. The hand representations are pro-
vided by the Logitech Bridge API via the HTC Vive’s integrated camera and Logitech’s
proprietary computer-vision hand recognition techniques. This technique behaves the
same as using a physical keyboard except that the user sees a virtual representation of
the keyboard (and a video image of their hands) rather than the physical keyboard itself
(Fig. 6).

Fig. 6. Logitech Bridge virtual keyboard with hand representation

3.3 Text Entry Aids

The testbed supports the following add-on features that can be applied with any of the
above text entry techniques (or any other that could be added). This demonstrates the
flexibility of the testbed in providing a way to add different techniques with varying
levels of complexity. The testbed currently supports two such aids, BigKey and word
disambiguation, described below.

BigKey: BigKey [4] employs a custom algorithm which analyzes the input stream of
the current word. The higher the probability a letter will be typed next, the bigger the
size of its key on the virtual keyboard. The algorithm starts when an initial character for
a new word is entered (i.e., following press of the space key). Prior to entry of the initial
character for a new word, all keys are the same average size.

Following the first keystroke for the new word, the algorithm searches the phrase
set for all possible words that start with entered character. Since the testbed included
only a fixed phrase set size, there are a limited number of possible words that can be
entered, so the overall computing time for finding matches is short. Prior to entering the
next character, the system calculates the frequency of all subsequent next characters.
This is done by counting the occurrences of each character in sequential order, starting
with ‘a’, ‘b’, ‘c’, and so on, that directly follow the entered character for all words in the
array. After this calculation is complete, all letters with 0 frequency (i.e., those that never
follow the initial character) are scaled to the smallest size, while the letter or letters with
highest frequency, are scaled up to the maximum size. Letters with frequencies between
0 and the highest frequency are scaled by a factor multiplier which starts with the scaling

234 E. Soto and R. J. Teather

factor of the letter with the highest count. The highest ranked letter would be scaled up
by a factor of 1.75, the second by a factor of 1.7, and so on in decrements of 0.05. This
ensures that all characters that might follow the initial character receive some scaling
multiplier, with the more probable ones being scaled proportionally larger. See Fig. 7.

Fig. 7. Image showing keys rescaling on virtual keyboard based on BigKey algorithm. In every
slide, a new character is selected, and the rest of the characters are resized based on the words
found with those characters as an option to be typed next.

Word Disambiguation: In every language, there are frequencies of how often each
word appears. From these frequencies, one can implement a general Word Disambigua-
tion system that can be used with most text entry scenarios. The testbed implements this

Text Entry in VR: Implementation of FLIK Method and Text Entry Testbed 235

in the form of suggestions, every time the user enters a key, the system computes the
most likely word to be typed in order of ranking, then it displays the top three ranked
words as selection options to complete a word in one selection rather than finishing the
whole word.

This systemworks in a similar way to howkey prediction is implemented for BigKey.
Themain difference is that with disambiguation, the ranking for every word in the phrase
set is used. Along with Mackenzie’s phrase set, a list of word rankings is provided. This
list contains all words used in the phrase set along with their ranking. The rankings are
in the form of a simple integer number, representing the frequency of use of this word.

4 User Study 1

This section presents the first user study using the text entry testbed comparing four VR
text entry techniques. This first experiment consists of a performance comparison of the
four text entry techniques for VR: Controller Pointing, Continuous Cursor Selection,
FLIK, and Physical Keyboard.

4.1 Participants

This study included 24 participants, 14 male, 10 female, and aged 18–30 (SD = 2.96).
All participants stated that they are comfortable with basic or advanced computer use.

4.2 Hardware

The experiment was conducted using a VR-ready laptop with an Intel core i7-6700HQ
quad core processor, an Nvidia Geforce GTX 1070 GPU, and 16 GB of RAM, running
the latest build of Microsoft Windows 10. The Logitech G810 was used as the physical
keyboard due to integration requirement with the Logitech Bridge SDK. We used the
HTC Vive HMD with its two touchpad-enabled 6DOF controllers. The HTC Vive pro-
vides a 1080 × 1200-pixel resolution per eye, 90 Hz refresh rate, and 110 degrees of
field of view.

4.3 Software

The study employed the text entry testbed described above. It was developed in Unity
3D and it integrates easily with any text entry technique. The study included four text
entry techniques: Controller Pointing, Continuous Cursor Selection, FLIK, and Physical
Keyboard. Each text entry technique used in this study was developed in Unity indepen-
dent of the text entry testbed and was then integrated with the testbed in order to use the
full functionality of the system.

236 E. Soto and R. J. Teather

4.4 Procedure

Upon arrival, participants were informed of their right to withdraw from the experiment
at any point without any obligation to finish the experiment if at any time they felt
uncomfortable or nauseous. Participants were then asked to try the HMD, and were
presented with their first text entry technique (based on counterbalancing order). They
were given around two minutes to practice with the technique, to become familiar with
the general system and the first text entry technique they would use.

The task involved transcribing presented phrases using the current text entry tech-
nique. Participants performed 3 blocks with each of the four text entry techniques, where
each block consisted of 8 phrases to be transcribed. When all three blocks were finished,
the next text entry technique was chosen and the process repeated. Participants were
instructed to transcribe the phrases presented as quickly and accurately as possible.

4.5 Design

The experiment employed a within-subjects design, with two independent variables,
text entry technique with four levels (FLIK, controller pointing, physical keyboard, and
continuous cursor selection) and block with three levels (block 1, 2, and 3). The order
of text entry technique was counterbalanced using a Latin square.

We recorded three dependent variables (entry speed, error rate, and NASA-TLX
scores). Entry speed was measured in words per minute (WPM), and calculated as seen
in Eq. 1. Error rate was based on the MSD, see Eq. 2.

Error Rate% = 100×MSD(P,T)

max(|P|, |T |) (2)

TLX scores are the overall results from the NASA-TLX questionnaire. Across all 24
participants, this yielded 3 blocks× 8 phrases× 4 text entry techniques× 24 participants
= 2304 phrases transcribed.

4.6 Results

Task Performance. We first present quantitative results in terms of task performance,
computed per participant, for each text entry technique, and averaged per block. Entry
speed ranged from 12.32 WPM for Continuous Cursor Selection to 49.56 WPM for
Physical Keyboard. See Fig. 8 for full results.

Repeated-measures analysis of variance revealed that the effect of text entry tech-
nique on entry speed was statistically significant (F3, 69 = 54.886, p < .0001), as was
the effect of block on entry speed (F2, 46 = 88.432, p< .0001). A Post Hoc Bonferroni-
Dunn test at the p < .05 level revealed pairwise significant differences between some
text entry techniques, represented as horizontal bars on Fig. 8.

Error rates ranged from 1.83% error for physical keyboard to 4.03% for continuous
cursor selection. Analysis of variance revealed that the effect of text entry technique on
error rate was not statistically significant (F3, 69 = 0.431, ns), nor was the effect of block
(F2, 46 = 1.681, p > .05). See Fig. 9.

Text Entry in VR: Implementation of FLIK Method and Text Entry Testbed 237

Fig. 8. Text entry speed average comparison chart. Error bars show standard deviation. Black
horizontal bars show pairwise significant differences between text entry techniques.

Fig. 9. Average error rate (%) comparison chart, error bars show standard deviation.

User Preference. User workload was assessed using Hart and Staveland’s NASA Task
Load Index (TLX). NASA TLX. A lower overall score signifies less workload and
thus greater overall preference to a technique. Results were analyzed using a Friedman
test, with Conover’s test as a posthoc. Significant pairwise differences (p < .05) are
represented on Fig. 10 by horizontal bars between each text entry technique.

238 E. Soto and R. J. Teather

Fig. 10. Average results of NASA TLX questionnaire with standard error bars. Lower scores
represent more positive results. Black bars depict significant pairwise differences.

4.7 Discussion

The physical keyboard condition did best overall, however, this was expected. After that,
FLIK did about as well as controller pointing, with an average entry speed of 23 WPM
on the third block, where the top entry speed achieved on any block was 28WPM.When
it comes to user preference and workload, FLIK scored worse on mental and physical
demand. This is reasonable since this technique is similar to playing drums, where focus
is placed on managing the accurate movement of hands as well as the physical effort of
moving both hands continuously. Despite this, FLIK makes up for this in performance
and low frustration, which are important factors when it comes to user preference. Due
to the fact that these text entry techniques are, for the time being, meant to be used in
short text entry tasks, the physical demand aspect becomes less of an issue since users
would not be writing long form text, hence, reducing fatigue. Ranking first overall as
participants’ favorite text entry technique, it serves as proof that standard VR text entry
techniques such as controller pointing, and continuous cursor can be outperformed and
potentially replaced by more performant and preferred alternatives.

Physical keyboard was fastest, with a top entry speed score of 49.6WPMon the third
block. While there were some cases of low scores among some of the participants, with
one participant scoring the lowest of 15.7 WPM, this is far offset with the proficiency of
participants using regular keyboards, with most being able to type without looking at the
keyboard. Cases where scores were low could be attributed to poor tracking, appearing
as the virtual hands not aligning perfectly with real world hands. Such occurrences were
rare and the mismatch between the virtual and real hands was not extreme. While the
physical keyboard offered performance double that of the other techniques, we again
note that the physical keyboard is, in many ways, a sub-optimal choice as a VR text
entry technique due to several issues unrelated to performance. For example, the extra
hardware (specific Logitech keyboard, attachment piece for the keyboard, and external
HTC Vive sensors) and software required is not readily available with out of the box
VR headsets. This decreases the adoption rate of such a technique, at least until these
components become an integrated part of a HMD package. The most negative factor is

Text Entry in VR: Implementation of FLIK Method and Text Entry Testbed 239

that physical keyboards are not very portable. VR users tend to be standing and walking,
rotating in place, and generally changing their position more often than not. Carrying a
full-sized keyboard does not lend itself very well for this type of activity since it would
need to be stationary.

Controller pointing is currently the most commonly used technique in commercial
VR products, and was shown to offer good performance as well. However, with text
entry speed results coming in below FLIK (although not significantly worse), and being
overall ranked second as participants’ favorite choice of text entry technique, there is
room for improvement when it comes to the standard method of entering text in VR. The
continuous cursor technique, which is also commonly available in commercial products,
was by far the least preferred and worst performing technique, further demonstrating
that the industry VR software developers have gravitated towards several sub-optimal
techniques.

5 User Study 2

We present a second user study comparing performance between Controller Pointing
and FLIK with the addition of text entry aids described earlier, BigKey and word dis-
ambiguation. To further demonstrate the flexibility of the text entry testbed, we used
an Oculus Rift CV1 in this study instead of the HTC Vive, which have different setup
requirements and APIs.

5.1 Participants

This second study consisted of 24 participants, 13 male, 11 female, and aged 18–55 (SD
= 9.01). None of these participants completed the first user study.

5.2 Hardware

The experiment employed same hardware as the first study, with the exception of using
an Oculus Rift CV1 HMDwith two Oculus Touch 6DOF controllers instead of the HTC
Vive. The Oculus Rift CV1 provides a 1080 × 1200-pixel resolution per eye, a 90 Hz
refresh rate, and 110 degrees of field of view.

5.3 Software

The text entry testbed was again used for this study. We used a subset of the text entry
techniques from the previous study. The only new additions to the software were the
BigKey and word disambiguation aids.

5.4 Procedure

Upon arrival, participantswere told that if at any time they felt uncomfortable or nauseous
that they were free to stop the experiment without finishing. Participants were then asked
to try the HMD, followed by presenting them with their first text entry technique with

240 E. Soto and R. J. Teather

the first condition (no aids, BigKey, or word disambiguation), where they were free to
try it out and practice for around two minutes. Once they felt comfortable, the study
began with that text entry technique.

This study employs the same procedure as the first study, but with the techniques
and aids described below.

5.5 Design

The experiment employed a within-subjects design, with three independent variables:

Text entry technique: FLIK, controller pointing.
Aid: no aid, BigKey, Word Disambiguation.
Block: 1, 2, and 3.

The text entry techniques and aids were counterbalanced using a Latin square. With
all 24 participants, this resulted in 3 blocks * 8 phrases * 2 text entry techniques * 3 aids
* 24 participants = 3456 phrases transcribed.

5.6 Results

Task Performance. The slowest conditionwasController Pointingwith no aid, at 18.12
WPM. The fastest condition, at 27.8 WPM was FLIK+BigKey. See Fig. 11.

Fig. 11. Study 2 average entry speed comparison table. Error bars show standard deviation. Black
horizontal bars show pairwise significant differences between some text entry techniques

Text Entry in VR: Implementation of FLIK Method and Text Entry Testbed 241

Repeated-measures ANOVA revealed that the effect of text entry technique on entry
speed was statistically significant (F1, 23 = 67.705, p < .0001), as was aid (F2, 46 =
41.098, p < .0001) and block (F2, 46 = 107.446, p < .0001). The interaction effects for
text entry technique-block (F2, 46 = 5.338, p< .01) and aid-block were also statistically
significant (F4, 92 = 6.179, p < .0005). Post Hoc Bonferroni-Dunn test at the p < .05
level results are represented as horizontal bars showing individual significant results for
each text entry technique + aid combination.

Error rates ranged from 0.73% error for Controller Pointing+ BigKey to 4.11% for
FLIK+word disambiguation. Repeated-measures analysis of variance revealed that the
effect of text entry technique on error rate was statistically significant (F1, 23 = 6.456,
p < .05). The effect of aid on error rate was statistically significant (F2, 46 = 23.412, p
< .0001). The text entry technique-block interaction effect was statistically significant
(F2, 46 = 13.855, p < .0001). The aid-block interaction effect was significant (F4, 92
= 12.067, p < .0001). A post hoc Bonferroni-Dunn test at the p < .05 level showed
individual significant results on error rate for each of the text entry technique + aid
combination and are represented by horizontal bars on Fig. 12.

Fig. 12. Study 2 average error rate (%) comparison table. Black horizontal bars show pairwise
significant differences between some text entry techniques.

User Preference. As seen in Fig. 13, FLIK + None and Controller Pointing + None
scored similarly to corresponding conditions in study 1. Friedman post hoc pairwise
comparison using Conover’s F test results are represented by horizontal bars between
each text entry technique.

242 E. Soto and R. J. Teather

Fig. 13. Averages of study 2 NASA TLX results

5.7 Discussion

Using BigKey with FLIK improved both performance and satisfaction, yielding the
highest entry speed at 27.9 WPM. This suggests that there is potential in alternative VR
text entry techniques, and how they can be improved with different tweaks and aids, even
offering better performance than common commercial approaches, such as controller
pointing.Word disambiguation offered poor results and actually caused some frustration
and higher mental demand than other text entry technique + aid combinations. BigKey
offered the best overall performance with FLIK.

Given the error rates and entry speeds observed, we speculate that choosing and
selecting fully suggested words from the suggestion list increases mental workload,
particularly since VR text input is already something new to most people. On the other
hand, BigKey is non-intrusive and works with the participant in the task of purely typing
character by character, making it easier and more obvious to type the next character in
the sequence, achieving a greater flow in the typing task as well as user satisfaction. The
higher performance of BigKey can be attributed to Fitts’ law, which states that the time
required to rapidly move to a target area is a function of the ratio between the distance
to the target and the width of the target.

6 Conclusion and Future Work

Wedeveloped a general-purpose text entry testbed focused onVR text entry experiments.
Using the testbed,we conducted two comparative studies that evaluate different text entry
techniques.

Our results for controller pointing and for continuous cursor selection are comparable
to results provided by Speicher et al. [17]. While our scores for controller pointing were
slightly higher than either Speicher et al. [17] or Boletsis and Kongsvik [3], our results
reflect the same relative difference between controller pointing and continuous cursor
selection. Boletsis and Kongsvik [2] evaluation of CutieKeys, which is the basis of our

Text Entry in VR: Implementation of FLIK Method and Text Entry Testbed 243

technique FLIK, reveals similar performance between the two techniques, and the same
relative difference between these techniques and others. Table 1 summarizes these results
for easy comparison.

Table 1. Text entry speed (WPM) comparison to similar studies.

Our studies Speicher [17] Boletsis [2] Grubert [6] Knierim [7]

Controller pointing 19.13 15.44 16.65 – –

Continuous cursor
selection

13.9 8.35 10.17 – –

FLIK 21.49 – *21.01 – –

Physical keyboard 45.64 – – 38.7 40

*Used CutieKeys technique, which is the most similar to Flik.

Grubert et al. [6] reported an entry speed of 38.7 WPM text entry speed on their
VideoHand technique,which iswhat our physical keyboard technique is basedon.Table 1
again shows that these related papers report similar results on keyboard entry speeds in
VR. These papers also report high standard deviation with keyboard-based input, likely
due to including participants with varying typing proficiency, like our studies.

For future iterations of the testbed, a main focus is to improve extensibility, to require
less programming ability to add new text-input techniques and/or keyboard layouts. This
could use, for example, XML-based approaches to define new techniques/layouts.

Other future work could explore different kinds of text entry experiments using
this software. From plain desktop text entry techniques to virtual or augmented reality
techniques, as well as other types of human-computer interactions other than these such
as wearable devices (smart watches, smart glasses…), brain-computer technologies such
as EEG’s like EMOTIV devices [3]. Conducting studies comparing different types of
HMDs and controllers is also an important study to perform since this could potentially
be a significant factor when it comes to text entry in VR.

Acknowledgments. Thanks to all participants for taking part in the experiments. Thanks toAidan
Kehoe of Logitech for providing the Logitech Bridge hardware. This work was supported by the
Natural Sciences and Engineering Research Council of Canada.

References

1. Arif, A.S., Stuerzlinger, W.: Analysis of text entry performance metrics. In: IEEE Toronto
International Conference on Science and Technology for Humanity (TIC-STH), pp. 100–105
(2009). https://doi.org/10.1109/tic-sth.2009.5444533

2. Boletsis, C., Kongsvik, S.: Controller-based text-input techniques for virtual reality: an empir-
ical comparison. Int. J. Virtual Real. 19(3), 2–15 (2019). https://doi.org/10.20870/ijvr.2019.
19.3.2917

3. EMOTIV: EMOTIV. https://www.emotiv.com/. Accessed 10 Feb 2020

https://doi.org/10.1109/tic-sth.2009.5444533
https://doi.org/10.20870/ijvr.2019.19.3.2917
https://www.emotiv.com/

244 E. Soto and R. J. Teather

4. Al Faraj, K., Mojahid, M., Vigouroux, N.: BigKey: a virtual keyboard for mobile devices. In:
Jacko, J.A. (ed.) HCI 2009. LNCS, vol. 5612, pp. 3–10. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02580-8_1

5. Grubert, J., Witzani, L., Ofek, E., Pahud, M., Kranz, M., Kristensson, P.O.: Text entry in
immersive head-mounted display-based virtual reality using standard keyboards. In: Pro-
ceedings of IEEE Conference on Virtual Reality and 3D User Interfaces, pp. 159–166
(2018)

6. Grubert, J., Witzani, L., Ofek, E., Pahud, M., Kranz, M., Kristensson, P.O.: Effects of hand
representations for typing in virtual reality. In: Proceedings of IEEE Conference on Virtual
Reality and 3D User Interfaces, pp. 151–158 (2018)

7. Knierim, P., Schwind, V., Feit, A.M., Nieuwenhuizen, F., Henze, N.: Physical keyboards in
virtual reality: analysis of typing performance and effects of avatar hands. In: Proceedings of
ACM Conference on Human Factors in Computing Systems, pp. 1–9 (2018). https://doi.org/
10.1145/3173574.3173919

8. Ko, A.J., Wobbrock, J.O.: Text entry. User Interface Software and Technology. https://faculty.
washington.edu/ajko/books/uist/text-entry.html. Accessed 18 June 2020

9. MacKenzie, I.S.: Fitts’ law. In: Norman, K.L., Kirakowski, J. (eds.) Handbook of Human-
Computer Interaction, pp. 349–370. Wiley, Hoboken (2018). https://doi.org/10.1002/978111
8976005

10. Mackenzie, I.S.: Evaluation of text entry techniques. In: MacKenzie, I.S., Tanaka-Ishii, K.
(eds.) Text Entry Systems: Mobility, Accessibility, Universality, pp. 75–101 (2007). https://
doi.org/10.1016/b978-012373591-1/50004-8

11. MacKenzie, I.S., Soukoreff, R.W.: Phrase sets for evaluating text entry techniques. In:
Extended Abstracts on Human Factors in Computing Systems - CHI 2003, pp. 754–755
(2003). https://doi.org/10.1145/765891.765971

12. MacKenzie, I.S., Soukoreff, R.W.: A character-level error analysis technique for evaluat-
ing text entry methods. In: Proceedings of the Nordic Conference on Human-Computer
Interaction - NordiCHI. 2002, p. 243 (2002). https://doi.org/10.1145/572020.572056

13. Sandnes, F.E., Aubert, A.: Bimanual text entry using game controllers: relying on users’
spatial familiarity with QWERTY. Interact. Comput. 19(2), 140–150 (2007). https://doi.org/
10.1016/j.intcom.2006.08.003

14. Soukoreff, R.W.,MacKenzie, I.S.:Measuring errors in text entry tasks. In: ExtendedAbstracts
on Human Factors in Computing Systems - CHI 2001, pp. 319–320 (2001). https://doi.org/
10.1145/634067.634256

15. Soukoreff, R.W.,MacKenzie, I.S.: Recent developments in text-entry error rate measurement.
In: Extended Abstracts on Human Factors in Computing Systems - CHI 2004, pp. 1425–1428
(2004). https://doi.org/10.1145/985921.986081

16. Soukoreff, R.W., MacKenzie, I.S.: Metrics for text entry research - an evaluation of MSD
and KSPC, and a new unified error metric. In: Proceedings of ACM Conference on Human
Factors in Computing Systems - CHI 2003, pp. 113–120 (2003). https://doi.org/10.1145/642
611.642632

17. Speicher, M., Feit, A.M., Ziegler, P., Krüger, A.: Selection-based text entry in virtual reality.
In: Proceedings of ACM Conference on Human Factors in Computing Systems - CHI 2018,
pp. 1–13 (2018). https://doi.org/10.1145/3173574.3174221

18. Tucker, V.: Introducing the logitech BRIDGE SDK (2017). https://blog.vive.com/us/2017/
11/02/introducing-the-logitech-bridge-sdk. Accessed 18 June 2020

19. Weisel, M.: Cutie keys. https://github.com/NormalVR/CutieKeys/. Accessed 18 June 2020
20. Wobbrock, J.O.: Measures of text entry performance. In: MacKenzie, I.S., Tanaka-Ishii, K.

(eds.) Text Entry Systems: Mobility, Accessibility, Universality, pp. 47–74 (2007)

https://doi.org/10.1007/978-3-642-02580-8_1
https://doi.org/10.1145/3173574.3173919
https://faculty.washington.edu/ajko/books/uist/text-entry.html
https://doi.org/10.1002/9781118976005
https://doi.org/10.1016/b978-012373591-1/50004-8
https://doi.org/10.1145/765891.765971
https://doi.org/10.1145/572020.572056
https://doi.org/10.1016/j.intcom.2006.08.003
https://doi.org/10.1145/634067.634256
https://doi.org/10.1145/985921.986081
https://doi.org/10.1145/642611.642632
https://doi.org/10.1145/3173574.3174221
https://blog.vive.com/us/2017/11/02/introducing-the-logitech-bridge-sdk
https://github.com/NormalVR/CutieKeys/

