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Abstract 

 

In a cloud federation, by using the pay-as-you-go billing model users can relinquish their 

services at any point in time and pay accordingly. Therefore, this thesis aims to study the 

resource assignment problem in the situation where the user relinquishment impacts the 

net profit of a cloud service provider. As a solution, our study 1) proposes a tool to calculate 

the net profit which includes income, electricity expenses, and relinquishment loss; 2) 

compares different ways to predict the user behavior and deduce a better prediction 

technique based on linear regression; and 3) proposes a relinquishment-aware resource 

optimization model to estimate the amount of resources based upon the predicted user 

behavior. Simulations were performed with the CloudSim framework. The results show 

that instead of blindly assigning resources to users, a cloud service provider with a finite 

resource pool can gain more by estimating the resources using better prediction techniques. 
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Chapter 1: Introduction 

 

Cloud computing is known as the most widespread paradigm of distributed and 

parallel computing. The core feature of cloud computing is to provide reliable and 

consistent services to the users. The user requests a service from the Cloud Service Provider 

(CSP) with certain requirements and deadlines. The prices for these services are negotiated 

and then finalized into a Service Level Agreement (SLA) [1]. Based on the SLA, the 

provider leases/rents the amount of resources required to run the service at any place and 

anytime through the medium of the Internet [2]. The resources that are provided to run a 

service are housed by a CSP in a facility called data center which includes CPU, GPU, 

memory, storage [3]. 

Further, virtualization allows CSPs to dynamically scale the resources as per the 

demand of the users. The resource scaling is beneficial on both the ends as providers make 

the money that users save on the hardware [4]. As a result, more and more reputed 

organizations and users are getting attracted to completely shift their business to the cloud. 

The biggest example is the recent deal between a very famous application company called 

Snapchat and Google to rent the entire application development infrastructure through the 

Google Cloud Platform (GCP) service [5] [6] [7]. Other than that, various reputable 

organizations and financial institutions are expected to be multi-billion markets for the 

cloud computing industry [8]. As a result, many academic as well as industry people are 

showing a great deal of interest to carry out research in this emerging field of study.  

Moreover, in the pay-as-you-go model, users have the liberty to give up the 

allocated resources whenever they want. This leads to the situation in which users 
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overestimate the amount of resources their application requires and relinquish the resources 

before their scheduled completion time. As a matter of fact, the provider in a cloud 

federation already reserves the resources for the duration requested by the user and loses a 

chance to earn from those resources if the user relinquishes before its scheduled end time.  

Therefore, it could be beneficial for the CSP to store the users’ history based upon 

their usage of resources in past. Further, that history could be used to predict the user 

behavior (how likely user would relinquish) and allocate the resources based upon that 

when user returns for the service. This way, CSPs could maximize their server utilization 

and minimize their loss. This thesis looks more into this problem by proposing a 

methodology to analyze the impact of the variability in the user’s behavior on the net profit 

of cloud service providers. It digs more into the techniques to accurately predict the user' 

behavior and to optimally estimate the resources to maximize the net profit.  

In the next section, we elaborate the problem statement related to the allocation of 

resources in an environment where user can relinquish their resources at any point in time. 

Then, based on the problem statement, we devise three research objectives followed by the 

methodology which explains how these objectives will be reached. Finally, we describe 

our contributions and present an outline of the thesis. 

 

1.1 Motivation and problem statement 

 Cloud computing is deemed as a revolution in the computing world as it changes 

Capital Expenditure (Capex) to Operating Expenses (Opex) by applying a pay-as-you-go 

pricing model. Users request resources for a time period and get charged for that specific 
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period. The study is carried out on the context that if a user relinquishes before its scheduled 

end time, he only pays for the time the service was used.  

Moreover, as mentioned in [9], the customers (end-users) never fully utilize the 

allocated resources for running their application. Therefore, the application providers 

overbook the customers and rely on infrastructure providers to reserve and scale the 

resources to ensure the service availability in case their users would want to fully utilize 

the allocated resources. For example, if a user requests the on-demand premium video 

service for one month from Netflix [10], the application provider (Netflix) reserves the 

resources required through the CSPs (infrastructure providers like Amazon Cloud Services 

[11]). Amazon reserves the resources for the total duration of the requested service and 

charges Netflix according to pay-as-you-go model. If the customers of Netflix disconnect 

or stop using the service, Netflix will relinquish the resources from Amazon (CSP) before 

schedule end time and pay according to the resources used. This kind of situation is not 

beneficial for the CSPs. This is because, CSPs cannot reuse the reserved resources over 

time as the cloud resources are perishable and lose their value if left un-utilized over time 

[12]. Thus, relinquishment of resources can possibly lead to a loss in revenue as the service 

provider may also have to deny other customers if the resource pool is contended or fully 

utilized.  

 Moreover, the arrival rate of users varies throughout the day leading to variable 

utilization of the data center servers. Servers may be over-provisioned during peak hours 

or under-provisioned during non-peak hours. Likewise, when a user relinquishes, the server 

remains idle until the next request arrives. This idle time could be utilized better (by 

assigning it to other requests for example) if the provider can accurately guess when the 
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user is potentially going to relinquish. Due to these changeable trends, resources are not 

adequately utilized in either case. Accordingly, several models, such as [13] [14], have 

been developed to assign resources to improve utilization. However, they do not cover the 

economic aspects such as the income generated and the electricity expenses incurred by 

the provider. Additionally, various techno-economical models have also been proposed to 

analyze the costs but they do not consider the loss suffered by the provider when users 

leave before their schedule end time. Hence, it becomes important to have a tool which 

incorporates all the parameters discussed above and provide a complete cost-benefit 

analysis on the techno-economical aspects of a cloud service provider. 

 Further, for the optimal assignment of resources, the CSP must be aware of the user 

behavior, that is, the duration for which the user would potentially use the resources. To 

deal with this, various algorithms have been proposed to predict the user behavior by 

simply computing some sort of average based on the users’ history [13] [14]. Although 

these algorithms produced good results, they are not reliable enough in terms accuracy due 

to their use of average approximation algorithms to predict the user behavior. To have a 

steadfast analysis and make better decisions, the accuracy of the predictions needs to be 

improved. Nowadays, machine learning is considered as one of the best approaches to 

make predictions in any field of study. Policies based upon prediction through any machine 

learning algorithms can prove to be handy for optimal resource assignment to maximize 

the net profit of cloud service provider. Furthermore, in an environment where users can 

relinquish, this becomes more complex and leads to the subtle stream of interdisciplinary 

research between computer science and economics. Thus, the scope of this thesis is to study 

the techno-economical aspects from the infrastructure CSPs’ perspective based upon the 
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net profit earned by CSPs through different resource allocation policies. In addition to that, 

a framework is proposed to predict user behavior and find the optimal amount of resources 

to be allocated so that the net profit can be maximized. Figure 1.1 shows the general 

architecture of the cloud used in this study. 

 

1.2 Research objectives 

Based on the problem statement described above, we will now present the research 

objectives. The main goal of this thesis is to develop tools and models to guide the CSPs 

in the complex task of assigning resources in an environment where users can abruptly 

leave the system at any point in time. More precisely, we want to address the following 

three sub-objectives: 

a) Develop a model to calculate the total profit earned by cloud providers. Given a set 

of requests, the model should be able to evaluate the profit and provide a cost-

 

Figure 1.1 Architecture for profit maximization of CSP 
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benefit analysis from any resource assignment scheme available in the literature. 

The model should also account for the loss incurred when users leave the system. 

b) Develop an enhanced prediction algorithm which can accurately predict the users’ 

behavior. If better predictions can be made about the user behavior, then resources 

can be properly allocated. 

c) Develop a mathematical model to assign the optimal amount of resources in order 

to maximize the net profit of the CSPs and at the same time try to entertain as many 

users as possible.  

 

1.3 Methodology  

The work presented in this thesis is built upon the quantitative research 

methodology by reviewing the literature related to the techno-economical aspects of a 

cloud service provider. Based upon that, the thesis proposes a novel cost-benefit analysis 

model that calculates the net profit of cloud service provider. To achieve this objective, we 

will formulate an equation which calculates the income, electricity expenses and the 

relinquishment loss incurred at each time. Further, to check its effectiveness, we will 

compare the net profits of different resource assignment schemes to check the impact of 

relinquishment of users.  

To reach the second objective and improve predictions, we will first look at 

machine learning algorithms and see how they could be applied to our specific problem. 

We believe that linear regression, as suggested as future work in [14], could be an 

appropriate choice to improve the prediction accuracy. To evaluate the accuracy of the 
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predictions, we will compare with other existing algorithms such as the ones proposed in  

[13] and [14]. 

The third objective is the culmination of this work and integrates the previous two 

models/algorithms within a coherent optimization problem. First, we will use the model 

derived from the first objective (i.e. the model to calculate net profit) and use it as an 

objective function to be maximized. Then, we will also define other constraints so that the 

model represents the reality of cloud providers. The prediction algorithm derived from the 

second objective will also be used. In the end, the goal of the model will be to optimally 

estimate the amount resources so that net profit is maximized. To evaluate the model, we 

will run simulation in CloudSim and compare the results with other state-of-art resource 

estimation techniques. 

 

1.4 Contributions 

 Based on the objectives and the methodology mentioned above, this section 

summarizes the contributions of this thesis as follows: 

 

• Relinquishment-Aware Cloud Economic Model (RACE): A profit calculation 

model that considers various parameters such as income, expenses in terms of 

energy consumption, and relinquishment loss in a cloud environment is proposed. 

This is a general pricing model that calculates all the above parameters over time 

for all types of resources being used. The resulting net profit shows the impact when 

users abruptly leave the system. Based upon its results, the model was presented at 

the following conference: 
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SINGH, S., AAZAM, M. and ST-HILAIRE, M., "RACE: Relinquishment-Aware 

Cloud Economics Model", 24th International Conference on Telecommunication 

(ICT 2017), Limassol, Cyprus, pp. 1-6, May 2017. 

 

•  Prediction algorithm based on linear regression to predict user behavior: User 

behavior is predicted by the means of linear regression. The prediction results are 

then compared to previous algorithms proposed in the literature such as [13] and 

[14]. Results show that predictions based on linear regression are more accurate 

than the predictions made by previous approaches. 

 

• Optimization model to maximize the net profit: The mathematical problem 

formulation of the cost-benefit analysis is re-used and the profit maximization 

problem is treated as an optimization problem. Through this, the resources are 

optimally allocated to user requests. In addition to that, an extra parameter is added 

to maximize the number of users being processed while simultaneously maximizing 

the net profit. The model is solved using LP (Linear Programming), which is an 

eminent theoretical technique that can find the optimal solution to an optimization 

problem with specific constraints. 

 

1.5 Thesis outline 

The rest of the thesis is organized as follows. In Chapter 2, background information 

is provided to better understand the remaining of the thesis followed by a review of the 
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literature. Chapter 3 is divided into three sections. The first section aims to describe the 

approach to formulate the cost-benefit analysis model. The second section presents the 

theory of linear regression along with other techniques to predict the user behavior. The 

third section presents the mathematical model to optimize the resources to be allocated. 

Then, the results produced by the contributions from Chapter 3 are explained and presented 

in Chapter 4. Lastly, concluding remarks and the future work are mentioned in Chapter 5. 
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Chapter 2: Background and related work 

 

This chapter presents the background and a literature review related to the thesis. 

More precisely, Section 2.1, discusses the current basic concepts and definitions prevalent 

in the field of cloud computing. In Section 2.2, the literature review relevant to the profit 

calculation model is presented. Then, in Section 2.3, basics of machine learning and 

applications of linear regression are discussed. Section 2.4 provides a survey of various 

cloud resource estimation techniques based upon user behavior and batch workloads. 

Finally, Section 2.5 compares the objectives of this thesis with the current state-of-art.  

 

2.1 An overview of cloud computing 

Cloud computing has been one of the favorite topic amongst the IT research 

community since 2007 [1]. Various multinational companies save enormous amounts of 

the money spent on Operating Systems (OS) and other hardware resources by using cloud 

services. The major reason being the elimination of buying and maintenance cost of the 

computing hardware and its storage space. Moreover, cloud computing satisfies its users 

with an aim of providing on-demand services for which users pay the CSP according to the 

pay-as-you-go model [2]. The resources are in the form of hardware resources (such as 

processor, memory, storage) and software (such as OS, applications) which are leased to 

the user over a network (Internet) [2].  
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2.1.1 Background of cloud computing 

Generally, cloud computing is termed as cloud. The entire process at the backend 

of requesting and providing services is invisible. Various user interfaces are used to make 

this process easily operable. The simplest application of this process is the storage service. 

Users store data on the “cloud” and access it whenever and wherever it is required. At the 

backend, the data is stored in data centers owned by the CSPs [15]. The CSPs are usually 

the companies or the vendors that rent the resources publicly or privately using public and 

private clouds respectively.  

In public clouds, any user can request and use the service. Services on the public 

cloud are free (example Gmail) or the CSP provides services and charges according to pay-

as-you-go model. Even if the CSP owns and manages all the data stored by the user, there 

are lot of security concerns with this type of cloud [16]. A secure option is to use private 

clouds which are dedicated to only a single organization. The organization is solely 

dependent for managing the users using the services. Specifically, in-house data centers 

can be termed as private clouds. These clouds have high Capex and hence are not widely 

used. However, to mitigate the limitations of both public and private clouds, users prefer 

to use the hybrid clouds. In hybrid clouds, a part of the infrastructure runs on a private 

cloud and the other part runs on a public cloud. In this way, these clouds provide more 

flexibility as compared to private clouds while there is a tighter control over the data which 

makes it secure for the organizations using it [16]. The key players amongst the pool of 

cloud computing companies which provide these services are IBM, Amazon, Microsoft, 

Google and Salesforce [17].  
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The three types of clouds use the service oriented model that offers “Everything as 

a Service” (XaaS) [2]. The XaaS model can be elaborated into three major on-demand 

service models: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and 

Software-as-a-Service (SaaS) [15]. Before discussing these services in detail, a brief 

description about virtualization is required for better understanding.  

Virtualization is a key component which is widely used by the CSPs to offer these 

services. Authors in [18] even recognize virtualization as the major element in the success 

of cloud computing technology.  In terms of cloud, virtualization allows the hardware 

resources (such as CPU, GPU, memory and storage) to be duplicated and partitioned into 

multiple independent Virtual Machines (VMs). A VM is an emulation of a physical 

machine [19]. It may be viewed as a logical processing environment overlaid on a physical 

device which acts like an actual computing machine with specified properties of its own 

CPU and run its own operating system. Further, the hardware can be shared to create 

multiple VM instances and even VM resources can also be shared amongst each other to 

assign tasks [20].  With the help of a single server, providers can accommodate several 

users by virtualizing resources and renting them. Unlike traditional distributed systems, 

cloud service providers rent these resources using a pay-as-you-go model [15]. 

Hence, making the most of virtualization technology, the following cloud services are 

offered: 

• Infrastructure-as-a-Service (IaaS): The most widely used type of cloud 

service is IaaS in which users lease computational resources using various 

virtualization techniques. This service model provides on-demand virtual 

infrastructure to compute-oriented users in the form of VMs. The VMs are bought 
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as a replacement of the computational resources in which users install various 

software to develop their applications on their own end. Amazon EC2 is the most 

prevalent example of IaaS. Moreover, the VMs are networked by the means of 

Internet Protocols (IPs) within the data center [21]. Moreover, according to the 

International Data Corporation (IDC), IaaS is the fastest growing form of cloud 

service as it best supports the on-demand access to the available resources in the 

cloud facility of the provider [22]. 

• Platform-as-a-Service (PaaS): PaaS users rent the higher-level services 

(say, software development frameworks). The platform uses the computing 

resources which typically are billed like IaaS products although the infrastructure 

is abstracted away below the platform [23]. The biggest example is the Google App 

Engine which provides PaaS services using GCP. Users can easily build their 

applications and run them even under heavy load [7]. 

• Software-as-a-Service (SaaS): In this type of service model, CSPs provide 

the running software and application to the users. SaaS products are available 

through the medium of web browsers or mobile applications (more prevalent these 

days). Customers only use the end products without taking care of the infrastructure 

or the development environment. All social media applications are examples of 

SaaS services. Other than that, Salesforce provides various Customer Relationship 

Management (CRM) tools for end users. 

Apart from these services, cloud computing resources are characteristically elastic 

and scalable as well. The provider on its end can scale the resources as per the current 

resource demand. Moreover, the resources dedicated to each user can also be dynamically 
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increased or decreased depending upon the user’s requirement. For example, if an 

application deployed on the cloud abruptly exhibits poor Quality of Service (QoS), 

resources can be scaled up to meet the QoS requirements. Similarly, if a user feels that the 

resources leased are not being fully used, it can relinquish the desired amount of resources 

at any time and pay only for the current usage. As discussed earlier, this activity on the 

providers’ end is not beneficial as they already had reserved the resources for the requested 

duration of the user. This can lead to a potential monetary loss for the provider. In Section 

2.2, we will discuss the work of various researchers that was done on the economic aspects 

of cloud computing. Before that, we would present recent advancements in the field of 

cloud computing in the next sub-section. 

 

2.1.2 Advancements in cloud computing 

Cloud computing provides flexibility to both the providers as well as the users. This 

feature has opened many new possibilities for cloud computing companies and the 

organizations of other areas to collaborate with each other. From Internet of Things (IoT) 

to e-healthcare, cloud computing is being explored in every possible way. The major reason 

being the introduction of Mobile Cloud Computing (MCC) [24] which integrates the 

concept of cloud computing into mobile environment. Consequently, the gigantic amount 

of data (named Big Data) is being gathered and processed using the services mentioned in 

the previous sub-section. These three fields have collectively attracted the attention of 

researchers as a solution to green IT [25] whereas the CSPs eye the revenue generated 

through it [26]. 
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2.1.2.1 Using cloud computing for IoT and e-healthcare 

Talking more on it, Botta et al. [27] named the integration of cloud computing and 

IoT as CloudIoT. IoT is basically the network of sensors and devices interconnected with 

each other based on standard communication protocols [28] [29]. As claimed in [30] that 

IoT is going to be one of the major technology to bring revolution by 2025, its impact can 

already be clearly seen in day to day lives. Moving further, though the healthcare is totally 

a separate field, experts in this field believe that adopting IoT can significantly improve 

the quality of medical services. Thus, a lot of mobile devices suited for health information 

delivery are being used to automate the process of collecting and delivering the real-time 

data [31]. Therefore, e-health has turned out to be one of the widely used applications of 

IoT which uses Wireless Body Sensor Networks (WBSNs) to communicate with each other 

[12]. Further, new service oriented paradigms have been by enabled CloudIoT as an 

extension to XaaS. These are Sensing and Auction-as-a-Service (SAaaS) [32], Sensor 

Event-as-a-Service (SEaaS) [33], Video Surveillance-as-a-Service (VSaaS) [34] and many 

more. The communication of IoT devices has become a source of Big Data which made it 

obligatory to blend IoT with cloud (CloudIoT) to process that data [35]. This blend also 

has introduced the new resource management techniques associated to optimizing 

utilization and maximizing the profit on the CSPs’ end.  

2.1.2.2 Cloud federation 

With the growing amount of data going through the internet, the resources from a 

single provider may not be sufficient enough. As a result, the number of CSPs is also 

growing to provide computing and storage services. Moreover, with more users migrating 

to the cloud, CSPs are collectively looking to provide flexible services. Therefore, by 
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adopting an evolutionary approach called cloud federation, CSPs are reshaping their 

business structures to dynamically scale the resources by interconnecting, cooperating and 

sharing the resources with each other [36]. Cloud federation includes services from 

different CSPs technically combined into a single pool of resources. It supports three basic 

interoperability features at the backend: resource migration, resource redundancy and 

combination of complementary resource respective services [37]. Not only beneficial for 

the users, this approach has tempted many CSPs for better utilization of their resources and 

increasing their profit by processing more users. Figure 2.1 shows an overview of a cloud 

federation. We use the similar cloud architecture to carry out the study in this thesis.  

As can be seen, different CSPs provide their services from different geographical 

locations. All the user requests they receive and process are also come from various parts 

of the world. In this situation, it becomes much more complex to manage these requests in 

 

Figure 2.1: Overview of cloud federation process 
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a cloud federation environment. Therefore, to maintain the quality of service and monitor 

the provisioning of resources, an administrator is required. Hence, in this evolution of 

business process, a strong and intelligent system is required to handle and manage the 

dynamic changes in a cloud federation. To ensure this, CSPs use cloud brokers as a key 

component to make end to end communications [38]. The broker acts as a centralized 

control point to manage end to end communication of users and CSPs [39]. The details of 

the cloud broker are discussed in the following sub-section. 

2.1.2.3 Cloud broker 

“The broker is a third-party agent used which acts an intermediate between the 

purchasing and the selling parties to make the negotiations so that both the parties agree 

with each other for a business agreement [40]”.  

The history of using brokers in computing is not new. The concept has already been 

used in distributed computing to monitor the jobs being processed at grid sites on the behalf 

of users [40]. With the advancements in computing, from distributed to cloud and from 

cloud to federation of clouds, the concept of broker has added a new value to carry out the 

business in utility computing. By definition, a cloud broker is an entity used by CSPs in a 

cloud federation environment to make negotiation with the cloud users. Various 

researchers have proposed their “own” brokers which carry out the resources estimation 

[13], manage SLA requirements [41], satisfy QoS [42] and negotiate resource prices to 

help CSPs in a federation to reach an agreement with the users. Moreover, on the users 

end, brokers help them to discover and compare different services offered by the CSPs and 

chose the best one in the federation. The cloud broker earns its profit by satisfying 
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requirements of both parties. It uses methods like data sharing and integration across data 

sharing services to achieve the best possible deal [2]. Figure 2.2 shows the communication 

between the user, the CSP and the broker.  

As seen in Figure 2.2, the broker has various properties for building the relationship 

between a CSP and the user. The key properties are briefly discussed below: 

 

 

 

Figure 2.2: Broker's architecture [13]  
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• Compatibility determination: Checks the compatibility of user request with 

available resources. 

• Customer manager: Manages the types of users’ devices. 

• Customer assessment manager: Fetches the history of user from the respective 

CSP. 

• Customer resource manager: Estimates the amount of resources to be allocated. 

• Discovery manager: Discovers CSPs with suitable resources for a use request. 

• Deployment manager: Deploys infrastructure for CSPs. 

• Identity manager: Responsible for the admission control. 

• Local resource manager: Manages the resources required for local processing 

(broker itself). 

• Monitoring manager: Monitors the provisioning of resources (deadlines, service 

times). 

 

Figure 2.3: Lifecycle of a cloud broker [43] 
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• Match-maker: Makes use of various algorithms to match the user request with 

CSPs. 

• Service registration manager: Registers the service when broker receives a 

service from cloud provider to allocate it to user. 

• SLA manager: Finalizes the service level agreement between both the parties. 

 

The cloud broker uses APIs and a standard abstract API to perform the tasks using 

these properties. The interaction of CSPs and the cloud broker happens through the inter-

cloud gateway which is a kind of frontend for CSPs used to manage and monitor the APIs 

[43]. Further, Figure 2.3 depicts the steps of the service brokering cycle for a cloud. 

  

2.2 Techniques to estimate the net profit in clouds 

To analyze the service provider’s earned profit, various revenue calculation 

methods are proposed that are either based on utilization or the energy consumption of the 

data centers. For example, the authors in [13] and [14] use the concept of relinquish 

probability (how likely the user leaves the service before the schedule end time) to prevent 

the loss associated to relinquishment of users. In [14], Hu proposes a reactive resource 

management model which allocates resources based on historical records of the customers 

and current server utilization. Their results showcase an increase in server utilization in a 

finite resource pool. However, their income-only calculation technique gives a foggy idea 

on the net profit of the CSP.   

Aazam et al. [13] introduced a pricing mechanism and a resource allocation method 

using the concept of relinquishing probabilities. Their work determines the price of the 
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resource according to the history of the user. Additionally, they include the income and 

refund mechanisms to determine the net profit. The work is majorly done the users who 

reserve their resources earlier and pay the premium. When they call off the service, the 

refund is given by the CSP. Their pricing methodology is different but not able to decide 

whether their model is better in terms of profit margin or not when users call off the service. 

In [44], Emeras et al. made a cost analysis of running a workload on a cloud as compared 

to processing it on local high-performance computing platforms. A pricing model was 

proposed to compare the costs of running high performance computing applications on 

local clusters of an in-house facility with Amazon EC2 instances. The goal of the work was 

to find the best investment options and cost saving aspects from a CSC’s prospective. It 

showed that it is cost-effective to run a workload demanding high performance computing 

(HPC) on a local premise as compared to running on a rented EC2 instance. Hence, cost 

breakdown to analyze the profit from CSP’s end is missing. Macias et al. [45] introduced 

a resource manager to fulfill the business level objective of increasing profit and acts as a 

bidirectional communication channel to share revenue information between the broker and 

the resource manager. This knowledge is further used by the resource manager to optimize 

the allocation of resources to increase profit and prevent SLA violations at the same time. 

The authors calculated revenue as a function of penalty in which the cloud provider pays 

if it violates the SLA to achieve its business level objective. Nevertheless, this work does 

not focus on the loss incurred by the cloud provider if the user relinquishes. Likewise, it 

lacks to model the power consumption which prevents it from being a complete revenue 

calculation model. 
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 Other than this, Mazzuco et al. [46] maximize the earnings of cloud providers by 

putting forward a method which allocates the resources via energy aware policies. To do 

so, they calculate the revenue by only considering the electricity cost as the major expense 

which intensely depends upon the number of actively running servers. The results of the 

paper suggest that decisions, such as how many servers should be switched on, can have a 

significant effect on the revenue earned by the provider. Another framework to calculate 

the total profit was adopted by Xu et al. [47] in which they calculate the income at each 

unit of time using different pricing policies. The pricing is dependent upon the state of the 

system in which it is running. Hence, the related losses are discussed. Further, using the 

dynamic pricing, an infinite horizon revenue maximization framework was presented by 

the authors.  An average reward dynamic program was formulated for the infinite horizon 

case. Its optimality conditions and structural results showed that the revenue could be 

maximized by increasing the optimal price at low arrival rates.  

Cui et al. [48] present a pricing model which calculates the revenue as a function 

of the service performance. Income is measured in the form of reward and electricity 

expenses and the expected income if the cloud provider fails to execute a task is also 

considered. Therefore, the revenue calculated in this study reflects the performance errors 

made by the cloud providers but ignores the loss due to user relinquishment. Further, the 

study reveals that the system static power plays a critical role in the tradeoff between the 

desired level of fault-tolerance, profit maximization and energy consumption. Babu et al. 

[49] used a revenue calculation technique which uses cooperation and competition amongst 

the CSPs as its major metrics. The revenue generated from the competition approach was 

formulated using game theory. The pricing mechanism is treated as a game where provider 
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guesses the selling price of the requested resource. If the user is satisfied with the price, he 

is charged with the guessed price else the price keeps on updating according to the state of 

the market. The results of the study show that for a single cloud, this approach generates 

higher revenue.  Melendez et al. [50] introduced the concept of blocking ratio which they 

use to increase the total resources after a certain threshold of the blocking probability is 

reached. To scale the resources, they use the term Grade of Service, which is based on the 

workload and revenue. Workload is the total number of users in the cloud to be supported 

and revenue is a function of operational cost that is increased by the proposed method. 

Hence, the total resources are automatically scaled and the extra step of a priori capacity 

analysis is eliminated. 

Further, studies have also been carried out on analyzing the techno-economical 

aspects of CSPs in a cloud federation. Hadji et al. [51] carried out a cost analysis of the 

CSPs in a cloud federation. The work focuses to opt for a light federation where providers 

are not forced to engage in a complex and compelling federation level agreement. They 

suggest that providers should only declare the prices to each other and locally make 

outsourcing and insourcing of the resources. So, they followed the approach of calculating 

the income considering the insourcing and outsourcing dimensions. Insourcing means that 

the user requests is processed in the CSPs own facility while outsourcing stands for the 

resources shared with the other CSPs in the cloud federation. Further, they estimate the 

electricity expenses of the CSP just by including the electricity consumed by the number 

of active servers to jointly serve the insourced and outsourced requests. Although the 

results of this study maximize the revenue, they do not consider the cases where the 

incoming rate of the users affects the utilization. Hence, the electricity consumed by the 
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servers during the idle durations is ignored. Besides that, Lampe et al. [52] carried out an 

auctioning approach to increase the net profit of the service provider. To calculate the 

revenue generated, they consider the income and fixed and operating costs of the physical 

and virtual machines respectively. Interestingly, the income from a user includes the cost 

of allocated resources at a given price of resource finalized during the bid. With these 

parameters, they formulate a pricing model and optimize it to find the optimal price of the 

resource which can maximize the revenue. Their approach was split into two phases, VM 

pricing and VM distribution. The results determined the equilibrium prices for all VM 

types such that the profit from the served bids was maximized. Subsequently, the virtual 

resources requested in these bids were cost-efficiently distributed across the physical hosts.  

 

2.3 Machine learning and its applications 

Machine learning is the domain of computational intelligence which is concerned 

with the question of how to construct computer programs that automatically improve with 

experience [53]. This technology is directly related to statistics as the predictions are made 

by analyzing the historical data. The predictions are made by using various self-learning 

algorithms. These algorithms improve their computational efficiency over the time series. 

The time series is a set sequence of observations which are generally ordered in time. The 

daily life examples of time series are recording the temperature, power consumption, web 

logs, activity of sales, history of users and many more. The authors in [54] claim that 

making these algorithms learn complex relationships and patterns from empirical data from 

time series can help us to make accurate or closer to accurate choices.  
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2.3.1 Supervised and unsupervised learning 

The authors in [55] mentioned that machine learning can be classified into two 

types: supervised and unsupervised learning. Supervised learning is used to deduce a 

functional relationship from training data that generalises well to testing data. The 

supervised learning algorithms are inputted with the class of examples which happened 

over time, linearly or non-linearly [56]. This type of learning is widely used in the form of 

regression problems. The regression problems use the relationship between historical 

inputs and their corresponding outputs to predict the continuous output values. Regression 

typically involves linear regression, neural networks and support vector machine 

algorithms to carry out the predictions. On the other hand, unsupervised learning seeks to 

discover relationships between samples or reveal the latent variables behind the 

observations. The most widely used unsupervised learning approach is cluster analysis 

which is used to find hidden patterns in data and form clusters. The clusters consist of 

similar kind of data defined on metrics such as Euclidean or probabilistic distances [57]. 

 

2.3.2 Use of linear regression in cloud computing 

Linear regression is a statistical modeling technique used to describe a continuous 

response variable as a function of one or more predictor variables [58]. Apparently, this 

technique has been used in various areas to deduce better predictions. In other words, it has 

opened a new path to merge statistics with computer science. Cloud federation is a new 

and trending area but is prone to various security issues, says Salman et al. [59]. Therefore, 

they used linear regression to detect and categorize anomalies in Intrusion Detection 

Systems (IDS) in cloud federation environments. The results showed more than 99% 
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detection accuracy and categorization accuracy of 93.6%. Belusso et al. [60]  presented 

their entire work in Spanish with English only title and abstract. The information in their 

abstract mentions that they used linear regression to model the process of resources on the 

CSP end. The work provides a solution which aims to help CSPs to select the best instance 

to deploy and execute integrations solutions in the cloud. Moreover, linear regression has 

also proved to be a great tool to carry out green computing. The study of Farahnakian et 

al. [61] predicts the future utilization of the hosts to carry out the VM migration. If linear 

regression predicted the CPU to be underloaded, then the migration was carried out and 

the underloaded server was turned off to sleep mode. The simulations carried out in 

CloudSim showed that 51% of energy can be saved by using this approach in VM 

migrations. More details about linear regression will be discussed in Chapter 3.  

 

2.4 Resource management in cloud computing 

With the emergence of cloud federation, the resource pool has become huge but it 

is still limited since it must be shared by multiple users at once. No matter which type of 

cloud is deployed, efficient resource management strategies are needed to harness the 

power of the underlying resource pool of the cloud. Through effective resource 

management strategies, providers can increase the profit earned while improving the 

resource utilization at the same time. There is a rich literature available on the resource 

management of clouds focusing on various areas. In context to this thesis, we present the 
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studies that have used various predictions schemes and used batch workloads for allocating 

resources to maximize the net profit. 

 

2.4.1 Resource management in clouds using various prediction techniques 

Several researchers have used prediction techniques to estimate the amount of 

resources to be dynamically allocated. For example, Aazam et al. [13] carried out a unique 

study in which they predict the amount of resources to be allocated to the user based upon 

its historical usage records. The authors suggest that the relinquish probability of the users 

must be checked before allocating all the resources that are requested by the users. Based 

upon the historical relinquish probabilities, they predicted the current relinquish probability 

which is used to estimate the amount of resources to be allocated. The history of the user 

is divided into two parts: Service Oriented Probabilities (SOP) and Average Overall 

Probabilities (AOP). SOP is the probability of using the requested service and AOP is the 

average probability of using all the services collectively. Both these probabilities are used 

in an approximation algorithm to make predictions. Variance is an additional parameter 

used to mitigate the fluctuations in the user behavior. This unique work sets the basis of 

our study to predict include user behavior as an important parameter for estimating the 

resources. Moving along, Hu [14] improved the model from [31] by considering an extra 

parameter (current utilization of the system) before assigning resources. For example, the 

amount of allocated resources will be greater in case of low server utilization but smaller 

when the server is over utilized. Overall, this study managed to improve the server 

utilization but did not mentioned anything about the net profit of the provider. 
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Putting more weight on the same idea of [13] and [14],  Moreno et al. [62] says that 

user behavior is important to study in characterizing the workload of the system. Their 

results show that the task and the user dimension vary significantly every day. This 

dynamicity and diversity of users have a momentous impact on the resource utilization and 

energy costs. Furthermore, they claim that in most of the cases, users overestimate the 

amount of resources requested. This overestimation impacts the utilization if they end the 

service before their requested duration. Based upon that, authors tend to improve the 

utilization and energy efficiency by understanding the relationship between the user and 

the kind of tasks within a workload. Similar kind of study was presented by Fang et al. [63] 

in which they predict the load using an Autoregressive Integrated Moving Average 

(ARIMA) model. The resources were allocated according to the normal and sudden spikes 

in the utilization. For predicted normal workload, the resources were scaled accordingly 

while the coarse-grained capacity scaling approach was used in case of sudden spikes. The 

main idea of their study was to propose a prediction framework which can handle sudden 

hike of the workload during peak times. 

Sadeka et al. [64] use time-series analysis for adaptive resource allocation. A neural 

network algorithm was used to predict the future surge in resource demands for proactive 

scaling of the resources. The future utilization was predicted for a varying sliding window 

sizes to assure the accurate predictions with respect of time. The accuracy was further 

tested by the means of error correction methods for neural network algorithms. Resource 

scaling improved the performance and generated higher profit for the CSP. While most of 

the prediction studies were generally carried out for the resources like CPUs, memory and 

storage, Truong-Huu et al. [65] proposed an algorithm to handle the uncertainties in the 
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demand of bandwidths to maximize the revenue of the CSP. They modeled the bandwidth 

allocation problem as a Markov Decision Process (MDP). The demand predictor uses the 

algorithm based upon Bellman equation and solves the MDP problem to estimate the 

bandwidth to be allocated for a future time slots. The inputs for the model to make 

predictions was uncertainty of resource utilization of reservation requests and future 

demands of on-demand flexible requests. The results showed a 27% surge in revenue as 

compared to the techniques which do not use the predictions for future demands. 

 

2.4.2 Resource management schemes for batch workloads 

The techniques described in this sub-section carry out the resource management in 

cloud computing for a batch workload to maintain the resource utilization and improve the 

profit of CSPs. Authors in [66] mention that the batch jobs are generally delay tolerant up 

to a relatively loose deadline. The deadlines can be met until the fulfillment ratio is 

guaranteed. The fulfillment ratio is the ratio of execution time of a job to its scheduling 

duration. The prices charged by the provider are set according to the fulfillment ratio. High 

prices were charged for high fulfillment ratio (on-demand service) while users pay lesser 

price for low fulfillment ratio (spot instances). The problem stated in their study addresses 

the lack of cost effective solution for processing the batch of users with deadline 

guarantees. As a result, the authors propose a flexible instance which uses service 

fulfillment ratio as a pricing factor and at the same time guarantees the jobs to be executed 

within a given deadline. The users are free to decide the fulfillment ratio and they will be 

charged accordingly. To automatically adapt resource prices to the demand supply relation 

and to maximize provider revenue, pricing schemes were derived from a well-designed 
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pricing curve and the Nash bargaining solution, respectively. Moreover, the flexible 

instance allows providers to utilize the ideal resources as users can ask to scale up the 

resources at a reasonable price. The results showed the increase in utilization which 

eventually increased the net profit of the provider. Besides, electricity cost has become a 

big concern of commercial cloud service providers with the rapid expansion of network-

based cloud computing. Hence, Li et al. [67] addresses the issue of electricity expenses by 

limiting the delay in response by following the price-sensitive and cooling efficiency-

enabled batch computing workload dispatch approach. The results of a Mixed Integer 

Programming (MIP) -based resource demand management solution show that aggregating 

the batch requests with similar deadlines can decrease the energy consumption by 30%. In 

the long run, it adds up to the saving of the CSP and increases the net profit. Furthermore, 

authors in [68] introduce an online learning algorithm to allocate the resources to address 

the trade-off between the computation cost of the provider and resources allocated to the 

batch jobs to maintain the performance. The algorithm incorporates history of spot prices 

and workload characteristics to allocate the resources to meet the performance 

requirements. Authors compare their approach with a hindsight (optimal) approach. The 

aim of the study focuses on minimizing the regret on the CSP end by minimizing the 

difference between the cumulative performance of the sequence of its decisions and the 

cumulative performance of the best fixed decision in hindsight. The outcomes showed that 

the difference between the regret of both approaches for allocating resources to a batch 

converges to zero with the proposed approach acquiring a single rate-centric policy with 

fixed bid. This pricing policy is a result of learning from the history of the highly variable 

spot and bid prices. 
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2.5 Comparison of proposed research with related work 

Different resource management schemes for predicting the future workload, 

processing batch request and maximizing the revenue of CSPs were discussed in the 

previous sections. Various researchers in the literature talked about the problem of 

maximizing the net profit on the CSPs’ end by addressing the issues of idle resources being 

un-utilized.. On the other hand, the studies focused on managing the execution delays have 

also been proposed in the past to reduce electricity loss and increase net profit while 

maintaining the performance.  

However, in case of using prediction techniques, most of the work is done for 

predicting the collective workload. A couple of studies worked around predicting user 

behavior but either failed to improve overall utilization or lacked a mechanism which could 

maximize the CSPs’ net profit. Moreover, in Section 2.2, none of the profit calculation 

techniques included the loss incurred by the CSP when the user leaves the service before 

the scheduled end time. Furthermore, the works with batch processing do not carry out 

prediction of user behavior to allocate resources. Instead, most of the researchers worked 

in the area of scheduling the jobs after the batch is processed. Additionally, the techniques 

using the batch workload showed an increase in CSPs’ profits by scaling the resources. 

However, none of the approaches increased the profit by considering the finite capacity 

environment of a CSP. The reason being, as mentioned in Section 2.1.2.2, even with the 

federation of clouds, the collective resource pool is still finite. Therefore, it becomes 

necessary to propose a resource management mechanism which maximizes the net profit 

in a finite capacity environment. This is the focus of attention for this thesis along with 

objective of maintaining the market value by maximizing the number of users to be 
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processed in each batch All in all, none of the existing works have dealt with all the aspects 

of the problems of concern of this thesis.. 

 The key contributions of this study are to propose a complete profit calculation 

model which includes income, electricity expenses and most importantly the 

relinquishment loss. Then, using the techniques which can make better prediction of a user 

behavior, an optimization model is presented to increase the net profit of CSPs which 

considers the loss incurred when a user leaves before the requested duration. Most of the 

works related to batch processing entertain the jobs with heterogeneous properties. The 

issue with this is that individuals with different goals can lead to a situation where the profit 

of one goes to the disadvantage of the others [69]. Therefore, since the optimal allocation 

of resources in a finite capacity is a core concern of economics [69] and this thesis as well, 

the jobs in the batch are assumed to be homogeneous. Hence, the user behavior is made the 

key component to optimally assign the resources to the users in a batch. In summary, the 

thesis presents a novel study to overcome the limitations in resource management 

techniques of current state-of-art that are related to economics of cloud computing. 
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Chapter 3: Cost-benefit analysis and prediction based resource 

optimization model to maximize the net profit  

 

 As the cloud computing technology is emerging at a significant pace, more and 

more users are starting to rely on the cloud for day to day operations. Obviously, each user 

has its own behavior and preferences for their usage of the cloud. Users request resources 

to be consumed for a specific duration and can potentially relinquish before they fully 

utilize their resources for their scheduled requested duration. Since cloud providers in a 

cloud federation practically have a finite resource pool, an important consequence of this 

variation is that it introduces a vital optimization problem to be addressed regarding the 

optimal allocation of this finite data center capacity [70]. 

In this chapter, we first propose a cost-benefit analysis model (called RACE) for 

calculating the net profit. Then, the linear regression is used to improve predictions based 

on user history. In the concluding section of this chapter, considering the dynamic nature 

of user arrivals, the cost-benefit analysis model and the predictions based on user behavior 

are jointly used to derive an optimization model. The proposed model estimates the optimal 

amount of resources to be assigned to each user in a batch so that the profit for the CSP is 

maximized.  

 

3.1 RACE model to analyze net profit 

In this section, a new model to evaluate the net profit from the perspective of a 

cloud provider is proposed.  

Since cloud-based computing is a market-driven process, all cloud providers tend 
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to maximize profit by using optimized ways to assign the resources. Due to the perishable 

nature of resources, they cannot be reused if a user relinquishes. This is due to the fact that 

in on-demand services, the user does not pay a reservation premium at the start of the 

service [71]. With SLA providing them liberty to revoke the service at any moment, 

providers potentially lose some time which could have been allocated to other users. This 

time is comparable to monetary value as various expenses are still incurred when a user 

impulsively calls off a service [72]. In the scope of this work, these expenses include the 

electricity expenses for the time the system is idle. In addition to that, the provider also 

loses the income that could have been earned if the user had fully used the service. In 

economic terms, this income is called the expected income or the opportunity cost [73]. 

Hence, to minimize the opportunity cost loss, proper resource estimation is required. The 

loss associated to the missed opportunity cost is therefore termed as the relinquishment 

loss. Figure 3.1 shows the key parameters used to calculate net profit in this study. 

 

        Figure 3.1: Key components used to calculate the net profit 
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 Further, Equation 3.1 formulates the net profit (ȵ) earned by the CSP. The net profit 

is the difference between the income (ƪ) generated by allocating resources to the users and 

the expenses (Ƹ) required to operate the data center. Although other models, such as [74], 

[75] and [76], have been proposed to calculate income and overall profit using electricity 

and other general operating expenses such as software costs, network costs, they do not 

consider the loss in the form of opportunity cost specifically incurred from idle/un-utilized 

server due to user relinquishment. However, the along with the general operating expenses 

discussed above, the other costs of ownership such as building costs, facilities maintenance 

cost and employment costs are ignored in this model as the focus of the research is on 

evaluating the impact of opportunity cost loss due to user relinquishment. Therefore, the 

main contribution of the model is that it considers the summed-up loss incurred at each 

time when user relinquishes its service before the scheduled end time. Moreover, the 

income and electricity expenses at each time, that are dependent upon the current server 

utilization are also included in the proposed methodology. The proposed tool can be 

extremely useful for CSPs to evaluate the effect of different resource management schemes 

as it covers the noteworthy aspects related to income as well as expenses. Once they have 

a complete picture, they can select a scheme that eradicates the problem of underutilization 

and maintains high profit margins. In the next section, we present the notation used to 

expand this general equation to include all the related components.  

 

ȵ = ƪ − Ƹ   (3.1) 
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3.1.1 Nomenclature 

We propose the following formal notation which is composed of sets and input 

parameters. 

 

Sets 

• I, set of time slots where time slot i ∈ I 

• J, set of all resource types j where j ∈ J 

• K, set of user requests in the system where k ∈ K 

• L, set of geographical locations of data centers in a cloud federation where l ∈ L 

Input Parameters 

• 𝑝𝑗, price for service j 

• 𝑇𝑗
𝑖, total amount of resources of type j being used in the cloud at time i    

• Cl, unit price of electricity at location l in $/kWh  

• Pl, power used to operate all the servers at location l when fully utilized 

• 𝑢𝑗 
𝑖 , utilization % of a resource of type j at time i 

• 𝑡𝑟 
𝑘 , time at which user k relinquishes where 𝑡𝑟∈ I 

• 𝑡𝑒 
𝑘 , time at which user k was supposed to end where 𝑡𝑒∈ I 

• Ek, duration between the relinquishment time of user k and the next user arrival  

• 𝐶𝑝, total electricity/power expenses  

• 𝐶𝑅𝐿, total relinquishment loss 

• 𝑎𝑗
𝑘, allocated resources of type j to user k 

• 𝑡𝑐 
𝑘 ,  time till which the relinquish loss for user k is considered where 𝑡𝑐∈ I        
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3.1.2 Income 

 Most service providers will charge users based on the amount of resources they will 

consume (i.e. pay-as-you-go). Even though one of the economic interests of cloud 

computing is to convert Capex into Opex [77], the pay-as-you-go model does not fully 

benefit the cloud service providers in terms of financial aspects. Practically, the resource 

pool consists of heterogeneous virtual resources typically including CPU, memory, GPU 

and storage. To generate revenue from the users requesting resources, the provider 

estimates the amount of resources using different allocation schemes and provision them 

accordingly. This implies that distinct types of resources collectively generate revenue over 

time. Further, if all the user requests are provided the on-demand services, resources are 

variably utilized over time as users have the liberty to relinquish the service at any time. 

Thus, the overall income can be calculated by checking the amount of allocated resources 

at each point in time. Likewise, authors in [78] state that income is the product of the total 

quantity of resources allocated, the price per unit time usage and the duration for which it 

is used. Therefore, to calculate the income generated from the allocated resources for a 

specific duration, we use Equation (3.2) which is the product of the price and the amount 

of allocated resources at each time unit. 

 

ƪ = ∑ 𝑝𝑗 ∑ 𝑇𝑗
𝑖  

𝑖 ∈ 𝐼𝑗 ∈ 𝐽

 (3.2) 

 

3.1.3 Electricity expenses 

Cloud computing companies like Amazon, Google and Microsoft have invested a 

large amount of money to deploy their data centers in various parts of the world. These 
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data centers contain several servers working 24×7 to make virtual resources available to be 

leased within or across the organizational boundaries. When the servers are turned on, no 

matter if they are over utilized, moderately utilized or even if they are idle, there is a certain 

fixed cost for the constant consumption of electricity to operate them [79].  

Moreover, as server utilization and energy consumption are highly coupled, the 

electricity cost is also dependent upon the amount of resources being used, the number of 

servers running in the cloud, the unit price of electricity and the power consumed per server 

[76] [80] [81]. In addition to that, the authors from [82] state that the prices of electricity 

depend upon the location of the data center as well. Therefore, the geographical location in 

which the data center is located also plays a vital role in calculating electricity expenses of 

a cloud provider. Moreover, as a matter of fact, the unit price of electricity charged during 

different times of the day would also vary at each geographical location which may affect 

the total electricity expenses of the provider.  As discussed earlier, the amount of resources 

used at each time unit varies resulting in frequent changes in the server utilization. Hence, 

incorporating all the factors that contribute to the electricity expenses is important. The 

electricity expenses for the utilized resources of the data center can be derived as:  

 

 𝐶𝑝 = ∑(𝐶𝑙 × 𝑃𝑙)

𝑙 ∈ 𝐿

 ∑ ∑ 𝑢𝑗
𝑖

𝑖 ∈ 𝐼𝑗 ∈ 𝐽

   (3.3) 

 

where    𝒖𝒋
𝒊 =  

𝑇𝑗
𝑖

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠  
 

 

 (3.3a) 
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Algorithm 3.1 Calculating electricity expenses  

Input: Start time, relinquish time/end time and resources allocated to each user 

Output: Total Electricity expenses for I time units 

1: for each user entered in I do 

2:      for all resources J do 

3:          allocatedResourses[i][j] ← Get allocated resources to each user from input 

4:            for start time to relinquish time  

5:                   for all locations L do 

6:                   resourceUsage [i][l] = sum of allocatedResources 

7:                  end for 

8:              end for 

9:        end for 

10: end for 

11: for all resourceUsage do 

12:     Calculate utilization (𝑢𝑗
𝑖) using Equation 3.3a 

13:      electricityExpense[i][l] = 𝐶𝑙 × 𝑃𝑙  ×  𝑢𝑗
𝑖 +

2

3
(1 − 𝑢𝑗

𝑖) 

14:       sum electricityExpense 

15:  end for      

 

The point to be noted is that if a system is not fully utilized, the provider still has to  pay 

for the electricity of all the idle servers. According to [83], an un-utilized part of the server 

costs two-third of the electricity expenses as compared to a server running at its maximum 

utilization rate. For example, if a server is used at 60%, then the remaining 40% in idle/un-

utilized state will use two-third of the total power. Consequently, the cost of electricity 

incurred over all these idle intervals will add up to the total electricity expenses. Therefore, 

the total cost of electricity as an expense can be written as:  

 

 

          𝐶𝑝 =  ∑(𝐶𝑙 × 𝑃𝑙)

𝑙 ∈ 𝐿

∑  ∑ {𝑢𝑗
𝑖  +

2

3
(1 − 𝑢𝑗

𝑖)}   

𝑖 ∈ 𝐼𝑗 ∈ 𝐽 

 (3.4) 

 

Equation 3.4 provides the total electricity expended paid by the cloud provider for 
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the utilized and idle duration in a cloud federation. The process of calculating the electricity 

expenses is further explained in the Algorithm 3.1. As described in the Algorithm 3.1, with 

the given amount of allocated resources to each user, first the utilization at each is 

calculated which is further used to determine electricity expenses. 

 

3.1.4 Relinquishment loss 

Relinquishment loss is a form of opportunity cost loss. This cost is the amount that 

a CSP is expected to earn if the user had not relinquished. The cloud provider estimates 

and reserves resources on demand for each user request. However, when a user gives up 

his resources before the scheduled end time, the expected income after that time is 

considered as the opportunity cost for which the provider misses the chance to earn [84]. 

This expected income is termed as relinquishment loss and the approach to calculate this 

loss is discussed below. The relinquishment loss of the provider practically depends upon 

the time at which the next user arrives into the system. This is because the system is only 

 

Figure 3.2: Relinquishment loss from a user when Ek ≤ (𝒕𝒆 
𝒌 − 𝒕𝒓 

𝒌 ) 
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idle until the next request enters the system and not the duration for which the user was 

supposed to end its service. This kind of situation generally arises during peak hours when 

the arrival rate of user requests is high. As seen in Figure 3.2, the relinquishment loss is 

calculated only for the duration for which the resources released by the relinquished users 

are actually idle i.e. from time 𝑡𝑟 
𝑘  = 6 to 𝑡𝑐 

𝑘
 = 8. This is estimated according to the duration 

Ek. It would have led to an over estimation of the relinquishment loss value if the relinquish 

duration would have been considered from 𝑡𝑟 
𝑘  to 𝑡𝑒 

𝑘
 instead of considering it till the next 

user arrives.  

On the other hand, the situation may arise where the arrival rate is very low, say 

during off peaks. In these circumstances, the actual interarrival times (Ek) could be greater 

than the duration (𝑡𝑒 
𝑘 − 𝑡𝑟 

𝑘 ). This is the duration from the time the user relinquishes till the 

time the user was supposed to end. In this case, if only the interarrival time is taken as the 

relinquish duration to calculate the loss, it can lead to an over estimation of the loss. As 

can be seen in Figure 3.3, the user leaves at time 6. If the relinquish duration would have  

 

Figure 3.3: Relinquishment loss from a user when Ek > (𝑡𝑒 
𝑘 − 𝑡𝑟 

𝑘) 
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Algorithm 3.2 Calculating relinquishment loss 

Input: Start time, relinquish time/end time and resources allocated to each user 

Output: Total relinquishment loss for I time units 

1: for all users in K do 

2:          for all resources in J do 

3:           allocatedResourses[k][j] ← Get allocated resources to each user from input 

4:           if (te [k] – tr [k]) ≥ (nextUserArrival – tr [k]) 

5:               tc = nextuserArrrival 

6:           else 

7:                 tc = te 

8:            end if 

9:                    for 𝑡𝑟 
𝑘

 to 𝑡𝑐 
𝑘 do 

10:                   relinquishmentLoss [i][j] ± allocatedResourses[k][j] × pj 

11:                   end for 

12:       end for 

13: end for 

14: for all relinquishmentLoss do 

15:           sum relinquishmentLoss 

16: end for 

 

been calculated with the approach discussed in Figure 3.2, then it would have led to an 

over estimation of the loss. Hence, as depicted in Figures 3.2 and 3.3, the minimum value 

between Ek and ( 𝑡𝑒 
𝑘 − 𝑡𝑟 

𝑘 ) is considered to calculate the relinquishment loss from a user. 

To make it clearer, refer to Algorithm 3.2 which explains the implementation of how the 

loss is calculated. Parameter 𝑡𝑐 
𝑘  represents the time till which the loss is calculated, where  

𝑡𝑐 
𝑘  = min {( 𝑡𝑟 

𝑘 + Ek), 𝑡𝑒 
𝑘 }. Thus, the total loss incurred due to the relinquishment of can be 

written as: 

 

                       𝐶𝑅𝐿  = ∑ 𝑝𝑗 ∑ ∑ 𝑎𝑗
𝑘

𝑡𝑐 
𝑘

𝑡𝑟 
𝑘    

             {𝑡𝑟 
𝑘 , 𝑡𝑐 

𝑘} ∈  𝐼 

𝑘 ∈ 𝐾 𝑗 ∈ 𝐽
 

 

 

(3.5)) 

Therefore, summing up the electricity expenses and the relinquishment loss, the total 

expenses which impact the net profit become: 
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Ƹ =   𝐶𝑝 +  𝐶𝑅𝐿          (3.6) 

 

3.2 Various approaches to predict relinquish probability  

 In a cloud computing environment, resources are allocated to users based on 

demand. Many researchers have focused on the allocation problem based upon various 

aspects such as VM scheduling [85], VM migration [86], VM consolidation [87], QoS [88]. 

Many studies related to resource estimation also suggest that the amount of resources to be 

allocated could be estimated based upon the user’s history and the server utilization. To 

make better resource estimation decisions, the behavior of users should be known. This 

way, it can be predicted how much resources will be consumed based upon the usage 

history.   

 Most of the cloud providers require the user to determine and specify the amount 

of resources required to process and complete the job. Experienced cloud customers may 

be able to gather historical data and properly determine the required amount of resources. 

However, most users may not have data to estimate the resource needs of their applications. 

Subsequently, these users request much more resources than what is needed for running 

their applications. For example, it has been observed that many userss tend to purchase 10 

times the amount of resources than what is actually needed for the operation of their jobs, 

resulting in low server resource utilization [89]. As time goes on and users keep using 

services, the cloud provider stores information about the behavior of the users over time. 

Based upon their history, users can be categorized into three main categories: 1) loyal (or 

high-utility) users typically use the maximum portion of their requested duration; 2) 
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average utility users use around half of their requested capacity and 3) disloyal (or low-

utility) users typically relinquish shortly after the start of their service. However, according 

to the pay-as-you-go model, users have the freedom to relinquish resources at any point in 

time. This is not a beneficial activity for cloud service providers as they reserve resources 

for the whole requested duration. 

Consequently, there is a lot of research performed on the prediction of the current 

server workload [90] [91] in order to scale resources [92] to increase net profit. However, 

there is minimal work done on anticipating the behavior (relinquish probability) of a user 

based upon his usage history. Thus, it is important to examine resource prediction 

approaches that can improve the prediction accuracy and therefore yield better server 

utilization and increased revenue. This section focuses on the comparison of different 

resource prediction methods such as linear regression, Broker-as-a-Service (BaaS) [13] and 

Reactive Prediction (RP) [14] for different profiles of users. All these methods use the 

history of the users to make predictions.  

 

3.2.1 Broker-as-a-Service (BaaS) model to predict relinquish probability  

Aazam et al. [13] predicted the amount of resources to be allocated to run a job 

requested by a returning user. The relinquish probability is used as a crucial factor to make 

decisions. To make predictions, the history of the users was used to calculate two metrics: 

Service Oriented Probability (SOP) and the Average Overall Probability (AOP). SOP is 

the average of the relinquish probabilities of a specific service while AOP is the average 

of the relinquish probabilities across all services. The following equation was used in their 

study to predict the user behavior: 
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r = ((1-SOP)– σ2) * (1 – AOP) (3.7) 

Where r is the predicted probability of user to use the resources. Therefore, r’ could be 

regarded as the predicted relinquish probability of a user where, 

r’ = 1 – {((1-SOP) – σ2) * (1 – AOP)} (3.8) 

3.2.2 Reactive Prediction (RP) model to predict relinquish probability 

Hu [14] proposed a different model to estimate the amount of resources to be 

allocated. His model is motivated by the model discussed in Sub-section 3.2.1 with slight 

changes to it. According to the history of the user and the current server utilization, he 

predicts the amount of resources needed to complete the job. Suppose the user has history 

length of m, therefore in order to estimate the amount of resources to be assigned, he 

predicts the relinquish probability of the user for m+1th
 time by the following equation, 

where z is the predicted relinquish probability 

 

z =
2 

3
 𝑆𝑂𝑃 +  

1

3
 𝐴𝑂𝑃 (3.9) 

 The logic behind this formulation is that the average based on the currently 

requested service (SOP) is a better indicator as it is based on the history of the same service.  

 

3.2.3 Predicting user behavior using linear regression  

Machine learning is a form of artificial intelligence [55] which uses different 

algorithms that continuously improve themselves using the input fed to them. Linear 
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regression is one of the branches of machine learning and a form of supervised learning 

which involves the prediction of the value of a continuous variable based on one or more 

continuous variables. It generally quantifies the relationship between several input feature 

variables and a corresponding linear output variable. It is assumed that the output variable 

y is linearly related to the various input feature variables {x1,..,xp}, where p is the number 

of features used to make a single prediction output y . Equation 3.10 represents the testing 

sets for linear regression algorithm where m represents the length of the training set. 

 

𝐗 = |

𝑥𝑖𝑝 … 𝑥𝑝 

:
𝑥𝑚𝑝 … 𝑥𝑚𝑝 

|      and      𝐘 = |

𝑦𝑖 

:
𝑦𝑚 

|    (3.10) 

 

In our comparative study, p=1 is considered as we use a single feature: history 

length of a single user. Univariate linear regression (linear regression technique for a single 

feature) is used to predict output y (relinquish probability) related linearly to feature x. In 

this algorithm, the results are predicted by mapping the previous continuous outputs to the 

inputs. In other words, the input is mapped to some continuous function to obtain a 

hypothesis, as shown in Figure 3.5 which helps to predict the desired output. For example, 

given a data set about the model year (feature) of different cars, one may want to predict 

the price of the car. Predicting price as a function of the model year is a continuous output.  

To understand it better, we need to go through the cost function J of linear 

regression algorithm. For accurate predictions, the best possible slope (hypothesis) is 

required to be fit into the graph containing the training set where the Y-axis represents the 

previous outputs and inputs are plotted on the X-axis. Equation 3.11 below represents the  
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dependent variable y and the independent variable x, where x and y are the elements of 

vectors X and Y respectively (as shown in Equation 3.10) and a0 is the intercept point on 

the Y-axis and a1 is the slope of the hypothesis in Figure 3.4 

                                                    y = a0 + a1x                                                               (3.11) 

In Equation 3.11, we can choose arbitrary values for coefficients a0 and a1, say a0’ 

and a1’. With the initially chosen values of a0 and a1, arbitrary value of y in Equation 3.12 

becomes ha(xi) which represents the inaccurate hypothesis function obtained by the initial 

iteration. This value needs to be minimized further to get an accurate hypothesis. 

 

Figure 3.4: An example of data showing the relationship between relinquish probability  

                   and history length of a user returning for 21st time 
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 The accurate value of ha(xi) is obtained by minimizing the cost function J(a0, a1). 

The cost function is a squared error function whose curve is in the form of a bowl with a 

single global minimum. The coefficients are solved by a least square method which 

estimates the best fitting straight line or hypothesis. The values of the hypothesis are the 

minimized error values as compared to the actual data. The cost function J is as follow:  

 

𝐽(𝑎0, 𝑎1) =
1

   2𝑚
+ ∑(ℎ𝑎(𝑥𝑖 ) − 𝑦𝑖)2

𝑚

𝑖=1

  (3.13) 

 

where m is the length of the training set (history) of the input feature. Here (ha(xi) – yi )
2 is 

the squared difference between the predicted value (ha(xi)) from Equation 3.12 and y from 

Equation 3.11. This function is minimized to find the minimum values of a0 and a1 

 There are two methods to minimize the cost function J, namely Gradient Descent 

and Normal Equation method. Both methods are useful to solve the hypothesis function in 

their own way. The gradient descent method is generally used when we have multiple 

features p and primarily larger length of history m, where m >100k [93]. A multiple 

iterative process with desired learning rate is carried out to obtain global minimum for the 

function in this case. To figure out the correct learning rate, the algorithm is initially 

required to run for a few times [93]. Whereas, the normal equation method is efficient for 

a smaller history as it requires lesser computational time. Practically, we consider that users 

 

           ha(xi) = a’ 0 + a’1 x 

 

 (3.12) 
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returning to the cloud providers will have history m <100k. Therefore, the Normal Equation 

method is used in our study. 

Normal equation method: In this minimization approach, optimal values of a are 

calculated analytically. Instead of carrying out many iterations, the derivative of the cost 

function presented in Equation 3.13 with respect to a is directly equated to zero to minimize 

the residual sum of squares [94]. Assume that the input with length {xi …. xm}is loaded in 

a vector matrix X and the corresponding output in vector matrix Y. Therefore, after solving 

Equation 3.13, the least square solution of the normal equation becomes equivalent to: 

            a = (XT X)-1 XT Y  (3.14) 

Here, XT is the transpose of the matrix X and (XT X)-1   gives the inverse matrix vector where, 

 

𝐗 = |
1
1
1

  𝑥𝑖 

:
   𝑥𝑚 

|    𝑎𝑛𝑑   𝐘 = |

𝑦𝑖 

:
𝑦𝑚 

| 

 

An extra column of ones is added into the X vector because there must be at least 

two features to solve the normal equation matrix multiplication [93]. Hence, adding a 

column of ones as an additional feature would not affect the end predicted results. In the 

context of this study, for an incoming user returning for m+1th time, matrix X is loaded 

with the m number of times the user has returned (history length) for {xi …. xm}. The results 

are depicted in the next chapter of this thesis. 
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3.3 Proposed optimization model for resource estimation 

In this section, a mathematical model is proposed to increase the net profit of cloud 

providers in the context where users can leave the system at any point in time. The model 

is derived from the cost-benefit analysis model (RACE) that we presented in Section 3.1. 

As a reminder, RACE is used to calculate the overall net profit earned by the cloud 

providers using different resource allocation schemes. For the proposed optimization 

model, the parameters used to calculate the net profit in Section 3.1 are reused in context 

of estimating the optimal resources for the users with known history. The history represents 

the user behavior and based upon that the model estimates the amount of resources that 

should be assigned to maximize the net profit.  

Equation 3.1 calculates the net profit of the cloud provider with user relinquishment 

being the principal factor which affects the resulting net profit. In the following sections, 

the RACE model is used to derive a profit function, denoted P(r), which is used to estimate 

the amount of resources to assign to a user request to maximize net profit. The resources 

are estimated based upon the predicted relinquish probability done by the linear regression 

model discussed in the previous section.  

 

3.3.1 Extended nomenclature 

To create the model and solve it, we extend the notation from Section 3.1 with the 

following additional information. 

 

Set 

• N, set of user requests in an incoming batch where n ∈ N  
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Input Parameters 

• rn
, predicted value of the relinquish probability of the user n through linear 

regression   

• Dn, requested duration by user n  

Constants 

•  𝑅𝑗 
𝑛, amount of resources requested by user n for service j 

•  𝑉, remaining capacity of the cloud when an incoming batch is processed    

Decision Variables 

•  𝑎𝑗 
𝑛, amount of allocated resources of service j to a request n of the batch  

•  𝑥𝑗 
𝑛, binary variable such that 𝑥𝑗 

𝑛=1 if and only if request n in the batch is allocated 

resource for service 𝑗 ∈  𝐽, otherwise  𝑥𝑗 
𝑛 = 0 if the request is not processed 

 

3.3.2 Objective function 

The aim of the profit function presented in Equation 3.15 is to maximize the net profit 

by allocating the optimal amount of resources while considering the current available 

capacity of the resource pool, the relinquish probability, and the arrival rate of the requests. 

The decision variable in this problem is the amount of resources to be allocated to each 

incoming request (𝑎𝑗
𝑛). To fulfill this requirement, the model estimates the income, 

electricity expenses and relinquishment loss by using the predicted value of the relinquish 

probability of the user using linear regression.  
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  𝑷(𝒓) = ∑{𝑝𝑗 (1 −  𝑟𝑛)𝐷𝑛} 𝑎𝑗
𝑛  − 

𝑗 ∈ 𝐽

∑(𝐶𝑙 × 𝑃𝑙)

𝑙 ∈ 𝐿

∑  [ {(1 −  𝑟𝑛)𝐷𝑛 𝑢𝑗
𝑛 }     

𝑗 ∈ 𝐽

+ {
2

3
(1 − 𝑢𝑗

𝑛) 𝑟𝑛  𝐷𝑛} ]  − ∑   𝐷𝑛 𝑝𝑗  𝑎𝑗
𝑛

𝑗 ∈ 𝐽

  

 

where   𝑢𝑗
𝑛  = 

𝑎𝑗
𝑛

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
   

 

   (3.15) 

3.3.2.1 Discussion on the components of profit function 𝑷(𝒓) 

 The first term of the objective function in Equation 3.15 calculates the expected income 

generated for each user. When the users arrive with the amount of requested resources for 

a duration 𝐷𝑛 and relinquish probability 𝑟𝑛, batches of user requests are created before they 

are processed. As seen in Equation 3.16, the model uses the price of each resource (𝑝𝑗), 

relinquish probability and the requested duration of the users in the batch and processes all 

requests in the batch at once. 

 

 𝐼𝑛𝑐𝑜𝑚𝑒 =  ∑(1 −  𝑟𝑛)𝐷𝑛 𝑝𝑗 𝑎𝑗
𝑛 

𝑗 ∈ 𝐽

                     𝑛 ∈  𝑁  (3.16) 

 

At the same time, the predicted electricity expenses (EE) in Equation 3.17 is for the 

utilized duration is and calculated using the predicted usage duration (1 −  𝑟𝑛)𝐷𝑛 while 

the expected electricity consumption for the idle duration is calculated for the duration 

𝑟𝑛 𝐷𝑛. 



 53 

 𝐸𝐸 =  ∑(𝐶𝑙 × 𝑃𝑙)

𝑙 ∈ 𝐿

∑  [ {(1 − 𝑟𝑛) 𝐷𝑛 𝑢𝑗
𝑛 }  + {

2

3
(1 − 𝑢𝑗

𝑛) 𝑟𝑛 𝐷𝑛  } ] 

𝑗 ∈ 𝐽

  𝑛 ∈  𝑁    (3.17) 

 

As far as the relinquishment loss generated from a given request is concerned in 

Equation 3.18, the model uses the predicted duration ( 𝑟𝑛 𝐷𝑛) for which the user would 

not use the service.  

 

    𝑅𝑒𝑙𝑖𝑛𝑞𝑢𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝐿𝑜𝑠𝑠 =  ∑  𝑝𝑗 𝑎𝑗
𝑛

𝑗 ∈ 𝐽

𝑟𝑛 𝐷𝑛
           𝑛 ∈  𝑁 (3.18) 

Moreover, the provider would always want to process the maximum number of 

requests as the users may eventually become loyal in future. Therefore, the sum of the all 

binary variables (𝑥𝑗 
𝑛) should also be maximized where 𝑥𝑗 

𝑛 is assigned the binary value of 

one if user in a batch is processed. This signifies that the maximum number of users should 

be accommodated along with maximizing profit. Hence, the objective function of the 

model becomes: 

  max  ( P(r) + ∑ 𝑥𝑗 
𝑛 ) 

𝑛 ∈ 𝑁

       𝑗 ∈  𝐽 , 𝑥 ∈ {0,1}   (3.19) 

 

3.3.3 Constraints 

The objective function shown in Equation 3.19 is subject to different constraints 

expressed in Equations 3.20, 3.21 and 3.22:     
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∑ 𝑎𝑗
𝑛

 
 𝑛 ∈ 𝑁

 ≤   𝑉                  𝑗 ∈ 𝐽  

 

(3.20) 

𝑎𝑗
𝑛  ≤    𝑅𝑗 

𝑛              𝑗 ∈ 𝐽,   𝑛 ∈  𝑁  (3.21) 

𝑎𝑗
𝑛 ≥   𝑥𝑗 

𝑛 ∗  𝑅𝑗 
𝑛 ∗  0.2      𝑥 ∈ {0,1},  𝑗 ∈ 𝐽 , 𝑛 ∈  𝑁  (3.22) 

Equation 3.20 specifies that the sum of all allocated resources for the entire batch 

must be less than or equal to the current resource capacity ( 𝑉 )  in the system. In addition 

to this, it is important that on the verge on maximizing profit, resources must not be 

overestimated. Therefore, Equation 3.21 specifies that the allocated resources should not 

be greater than the amount of what was requested by the user. Moreover, there might be a 

case where a disloyal user is assigned a very small amount of resources (or even no 

resources). To avoid this, a relaxation is introduced in Equation 3.22 to specify that if the 

request is processed, that is, if binary variable 𝑥𝑗 
𝑛 = 1, then the amount of allocated 

resources 𝑎𝑗
𝑛 must be greater than or equal to at least 20% of the amount of requested 

resources. Based upon the equations and the constraints mentioned above, the model finds 

the optimal amount of resources to be allocated (𝑎𝑗
𝑛) to each user request in the batch. The 

point to be noted is that the calculations of the model are majorly dependent upon the user 

behavior as all other input parameters such as amount of requested duration and resources, 

and the arrival rate of the users are constant for each incoming request. Hence, to achieve 

the objective, an optimization model is generated and results are presented in the next 

chapter. 
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Chapter 4: Performance evaluation 

 

This chapter presents the simulation and result analysis of the study carried in 

Chapter 3. More precisely, this chapter is divided into four different sections. In the first 

section, we present the general simulation environment and the modifications in the tools 

that were made to reach our objectives. Then, the next three sections present the simulation 

results of the RACE model, the prediction model and the optimal model respectively.  

 

4.1 Simulation environment 

The simulations of all the proposed algorithms were implemented in Java using the 

CloudSim toolkit [95]. The tools (simulator and computer) used during the simulations are 

outlined in Table 4.1. The simulations are carried with fixed resource pool of the CSP in 

an environment where users can relinquish.  Our results are deduced based upon the pricing 

of utilizing an “On-Demand windows-based general purpose t2.medium vCPU” from 

Amazon Web Services in Canada (Central) on a usual business day [11]. Besides, the prices 

of electricity vary during different times of the day. Therefore, the mean price of the 

electricity of summers in Ontario is considered [96]. 

 

Table 4.1: Simulation Environment 

Operating System 

 

 

Ubuntu 16.04 LTS 

Processor Intel i7 - 3.6GHz 

Memory 16 GB 

Simulator CloudSim 4.0 

Implementation Language Java 
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4.1.1 Using CloudSim 

All the simulations, unless otherwise mentioned, are performed using CloudSim 

4.0. CloudSim is a library which contains the basic entities of a cloud computing 

environment such as virtual machines, data centers at various geographical locations, 

cloudlets, users, hosts and all the other computational resources required for the simulation 

of cloud scenarios. In other words, CloudSim is a discrete event-based simulator which 

provides a model of cloud computing hardware to run simulations by simply changing the 

behavior of various cloud computing components at no external or setup costs.  

All the components in the CloudSim library are modeled in the form of fundamental 

java classes whose code can be modified to run the simulations with desired input 

parameters. New allocation strategies and pricing methods can also be added by modifying 

the existing classes or even adding new classes into the package org.cloudbus.cloudsim 

which contains all the classes. These classes can be instantiated in the main class which 

uses the package org.cloudbus.cloudsim.core to initiate and maintain the simulations. 

Therefore, to evaluate our proposed work, we modify the existing classes for our proposed 

resource allocation strategy and add a new class which calculates the net profit of the cloud 

service provider. The details of the working of existing classes, modified classes, and 

newly added classes in terms of our work are as follows: 

User – This class is outsourced from the work done by Hu in [14]. This class 

originally does not come by default into the CloudSim package but was added to model a 

cloud customer (typically a SaaS provider) who submits requests with the desired resources 

to run an application.  
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Cloudlet – The object of the cloudlet class instantiates the tasks/jobs submitted by 

the user request. Each user may require multiple cloudlets to be created. Each cloudlet 

contains user ID, name, and history which specifies the computational requirements of the 

user request. The user IDs are further used to re-route the response of the cloud service 

provider. To keep it simple, each user submits a single cloudlet respectively which is 

processed by the cloud service provider. In case of a batch request, the single cloudlet 

models a single batch. 

Datacenter – This class models the core infrastructure services (typically IaaS 

providers) which are provided to the cloud customers by the cloud computing giants like 

Amazon, Microsoft Azure, etc. The infrastructure is provided by the cloud service provider 

by encapsulating the required number of hosts or servers based upon their hardware 

configurations. These total resources of each host are summed up to be used as the total 

capacity of the cloud service provider. Several data centers with distinct locations can also 

be created using this class. For simplicity, our simulations consider a single data center at 

an individual location. 

Datacenter Broker – This class represents the data center broker. The data center 

broker is a multitasking entity which provides services from mapping the user requests 

with different data centers to accomplishing the negotiations between the user and the host 

created in the mapped data center regarding the pricing and amount of resources to be 

allocated. It also performs the matchmaking between the cloudlets and the virtual machines 

containing the amount of resources allocated to process the respective cloudlet. In our 

study, this class plays a vital role as it acts as an interface between the users and the 

provider. Hence, this class has been extended by adding the algorithms used in the state-
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of-art to calculate the net profit and then adding the proposed optimization model for 

comparison purposes. Since a single cloud data center is used to obtain the results, the 

broker only performs the matchmaking decisions between the users and the hosts within a 

single cloud.  

Host – This class instantiates the physical host with specific configurations 

required for the simulation. Several virtual machines can be created using the host to run 

an application. These virtual machines are allocated with the cloud resources present in the 

data center such as CPU, memory and storage. This class is modified in terms of storing 

and updating the history of each user request submitted through the user class. The history 

is further fed to the data center broker to be used in all the resource allocation policies 

which are added. 

Virtual Machine (Vm) –  This class creates a virtual machine with specified 

characteristics which runs on the host to process the cloudlets which are mapped by the 

broker. Each virtual machine can use the available resources in the host. In our case, for 

simplicity and without loss of generality, users only request for the CPUs. The virtual 

machine further accesses the number of CPUs estimated by the broker using various 

resource allocation policies to process the cloudlet. 

RACE – This class has been added for calculating the net profit made by the cloud 

provider using various resource allocation policies. It is coded with different algorithms to 

calculate the income generated, the electricity expenses and the relinquishment loss. The 

difference between income and the total expenses gives the net profit. The RACE 

algorithms are then fed with outputs from different resource allocation strategies to 

calculate the net profit. 
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Figure 4.1 shows the relationship between all the classes of CloudSim that are 

discussed above. As can be seen, a user request is processed using multiple cloudlets. 

Likely, the data center encapsulates multiple hosts which further provide the resources by 

creating multiple virtual machines. Broker finally maps the resources to the cloudlets. 

 

4.1.2 Generating the workload 

To investigate the effectiveness of the proposed models, we generate a synthetic 

workload. The major advantage of generating this workload over real workload is that it 

can be applied repeatedly in a controlled manner to carry out flexible simulations.  

The most imporatant input parmaeter to generate the workload is user behavior. 

Figure 4.2 depicts the process of genrating and populating the history of the user. By 

definination, the relinquish probability is the ratio between the duration for which the user 

has not used the service and the total requested duration. For example, if a user requested 

100 hours of service and relinquished after 40 hours, it means that 60% of the requested 

Figure 4.1: Relationship between the classes of CloudSim 
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duartion was not used and therefore, the relinquish probability will be recorded as 0.6. 

Therefore, the value average relinquish probability is generated for each user to know the 

general behavior of user and the integer value of  history length between U (1, 60) of each 

user is obtained randomly using built-in random integer generator in CloudSim.  

 

 

Figure 4.2: Process to generate history of users 
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Generating the average relinquish probabilities (ARPs): The average relinquish 

probabilities are the values that are randomly generated to define the general behavior of a 

user. More specifically, the value of ARP gives an idea of what kind of user is requesting 

the resources based on how much, on average, it has used in the past. A request with an 

ARP ≥ 0.7 is considered as disloyal whereas a user with an ARPs ≤ 0.3 is given the loyal 

status. Users that fall between 0.3 and 0.7 are considered average users. Therefore, to obtain 

the data of realistic ARPs, the in-built gaussian distribution function in CloudSim with 

mean 0.5 and standard deviation (SD) 0.3 is used to generate the values. According to the 

definition of the gaussian distribution, 70% of the values generated will be between 0.5 ± 

0.3, 95% will be between 0.5 ± 0.6 and 99% of the values will be between 0.5 ± 0.9. The 

value greater than one is considered as 1 and the value less than one is given the value 0.  

Using ARPs to populate the history: A user can be a first-time user or could have 

used the service multiple times. A first-time user is treated as a loyal user. Whereas for 

returning users, based upon the history length of each user (the number of time the user is 

returning for), the corresponding value of the user’s ARP is used as the mean for the 

gaussian distribution to populate the relinquishing probabilities for each time the user 

relinquished. For example, if a user is returning for 5th time and its ARP comes out to be 

0.59, then using mean 0.59 and standard deviation 0.2, its usage history is populated for 

the last 4 times. Further, the other inputs for generating the workloads are used according 

to the requirement of the proposed techniques and would be discussed before presenting 

their respective results.  
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4.2 Assessment of relinquishment-aware cloud economic (RACE) model 

As mentioned earlier, the goal of the RACE model is to provide an economic 

perspective on various resource assignment policies that can be used by the could 

providers. It is the tool which provides a cost-benefit analysis for the specific duration and 

uses the data traces as its input that is provided by the cloud provider for that duration. The 

novelty in the RACE model is that it can also calculate the loss incurred when users will 

leave the system preemptively. To that end, this section presents the results generated by 

running the RACE model on CloudSim for four different resource assignment scenarios.  

Before discussing the scenarios, we discuss the input parameters to generate the 

workload (input parameters in place of real data traces) to carry out the simulations. To 

check the reliability, the model is tested with different arrival rates of users. In this study, 

we assume that users submit requests based on the M/M/1 queuing model. The set of arrival 

rates (λ) used to test the models is {0.064, 0.032, 0.016, 0.008} req/sec. The lowest arrival 

rate value used is λ=0.008 req/sec. The arrival rate values are doubled to add a new value 

to the set of arrival rated mentioned above. Hence, the set of interarrival times of the 

requests are generated randomly by the exponential distribution of mean E[x] = {1/0.064, 

1/0.032, 1/0.016, 1/0.008} secs. We assume that the user requests a single service type, that 

is, vCPU with a minimum of 500 GHz and maximum of 900 GHz for a specific duration 

between the limit of 2-4 hours. Based upon the arrival rates, a set of total number of user 

enters (mentioned in Table 4.2) in the interval of 25 hours is used. 

The input parameters used are user history (generated according to Section 4.1.2), 

interarrival time of user requests, start time of the users, end time of the users, amount of  
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Table 4.2: Input Parameters 

Parameters Value 

Arrival rate of users (λ) {0.064, 0.032, 0.016, 0.008} 

Total resource pool Fixed at 200k 

Power of server 1 server of 525w 

Total duration 25 hours 

Requested duration by 

user 
U(2, 4) hours 

Requested resources by 

user 
U(500, 900) 

Requested service type 

by the user 
vCPU 

On-demand price of 

service 
CAD 0.1/hour 

Total no. of users 

arrived 
{5500, 2700, 1450, 750} 

Mean electricity price in 

Ontario for summers 
$0.132/kwh 

Schedule end time of 

user 

Sum of start time and requested 

duration of respective user 

Relinquish duration of 

user 

Relinquish probability times the 

actual requested duration. 

 

requested resources by the users, requested duration by users, used duration by the users. 

Table 4.2 summarizes all the input parameters used during the simulations. The start time 

of the user is the time when the user begins using the resources and start getting charged 

for the service. The difference between two start times is the interarrival duration generated 

by exponential distribution described earlier. The requested durations and the requested 

resources of the users are randomly generated within the limits stated in Table 4.2 using 

the built-in uniform random generator in CloudSim. The current relinquish probability is 

still generated by the gaussian distribution. The scheduled end time of a user is the sum of 

its start time and the requested duration. If the user relinquishes, the used duration of the 

user is the requested duration times the current relinquish probability. The relinquish time 

then becomes the sum of start time and the relinquish duration. Else, if the user does not 



 64 

relinquish, that is the relinquishing probability is zero, then the requested duration is 

considered as the duration used by the user.  

 

4.2.1 Scenarios under which the model is tested 

We used the RACE model to analyze four different scenarios as described below: 

 

Scenario 1 - In this baseline scenario, users get assigned resources based on the 

service they requested. In other words, complex resource estimation is not required 

since users get exactly what they requested. Also, in this scenario, we assume that 

users do not relinquish and use the service until completion. Therefore, the income 

is calculated based on the allocated resources and the requested duration.  

Scenario 2 – This scenario is similar to scenario 1, except that users can leave 

(relinquish) before the scheduled end time. Therefore, in this scenario, the profit 

depends upon both the income generated as well as the relinquishment loss.  

Scenario 3 – In this scenario, the resources are assigned based on the BaaS method 

described in [13]. The authors calculate the amount of resources to be assigned 

using the history of the users in the form of relinquishing probability. The main 

idea is to assign lesser resources to users who have a disloyal behavior (i.e. users 

who tend to leave before the scheduled end time). 

Scenario 4 – In this scenario, resources are assigned according model proposed in 

[14]. In this model, resources are allocated based on predicting user behavior using 

RP method and the current server utilization. The model uses different assignment 



 65 

schemes depending if the server is underutilized, moderately utilized, or over 

utilized. 

By simulating the four scenarios described above and using the proposed RACE 

model, a cost-benefit analysis is carried out to see which models are the most profitable 

and whether improving the overall server utilization would also increase profit or not. 

Further, scenarios 3 and 4 are used as the state-of-art with which we carry out the 

comparisons to check the effectiveness of the relinquishment aware resource optimization 

model proposed in Section 3.3. 

 

4.2.2 Simulation results of the RACE model 

The net profit and overall utilization of all scenarios described above are plotted for 

the different arrival rates mentioned in Table 4.2. All the simulations were performed for 

a duration of 25 hours and run 20 times to obtain reliable results. The average values of the 

results are presented. The confidence intervals were negligible and hence not plotted. 

Figure 4.3 depicts the overall utilization and the net profit at each time for all arrival rates 

for scenario 1.  

Figure 4.4 (a) shows more details on the relationship between the average overall 

utilization (AOU) of scenario 1 and the electricity expenses for all arrival rates whereas 

Figure 4.4 (b) shows the relationship between the average overall utilization and the overall 

net profit (ONP).  As we can see, at λ=0.064 req/sec, scenario 1 reaches the maximum 

level of its utilization and net profit. Although not realistic as users never relinquish, this 

scenario provides an upper bound. Since users get assigned what they ask, the utilization 

goes up quickly and after some time, the provider is fully utilized. Scenario 1 has the 
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highest average overall utilization (around 86%) and generates the maximum profit 

($551k) at this arrival rate.  

Further, at λ=0.032 req/sec with 2700 requests arrived in 25 hours, the system 

almost reaches its saturation point. So, if we compare the utilization and the net profits for 

λ=0.032 req/sec and λ=0.064, we see that the net profit increases slightly even if the arrival 

rate of users gets doubled. The reason being this scenario already runs at almost full 

capacity at λ=0.032 req/sec. This contrasts with the situation when the arrival rate of users 

is increased from λ=0.016 req/sec to λ=0.032 req/sec where the utilization and net profits 

always got doubled. This is because, with the given limit of requested resources, the 

available resources in the system are gradually utilized as comparatively less user requests 

are processed at low arrival rate of users. Noticeably, as no user relinquishes, the net profit 

 

(a)             (b) 

Figure 4.3: (a) Utilization vs (b) Net profit for scenario 1 at different arrival rates 
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at each arrival rate is observed to be affected by the system utilization as the profit almost 

entirely depends upon the income generated by the resources allocated to the users. 

Although there are electricity expenses paid by the provider, those are very minimal 

as only a single server is used to provide the finite resource pool. Consequently, the 

electricity expenses do not make a significant difference in the net profit. It can also be 

seen that the electricity expenses in Figure 4.4 (a) are not directly dependent upon the 

utilization. The reason being that the electricity expenses (according to Equation 3.4) are 

not only related to the utilization, but also depend on a fixed part when the system is un-

utilized/idle (due to less users in the systems or users relinquishing). For example, when 

the average utilization is 16.6% (at λ=0.008 req/sec), the electricity expense for the period 

of 25 hours is $1.3. On the other side, when the system shows an average utilization of 

84.3% (at λ=0.064 req/sec), the electricity expenses only increases to $1.8. 

Apart from that, from Figure 4.5 (a) and (b), we can see that when users can 

relinquish their services (i.e. scenario 2), a small decrease in the utilization significantly 

 

             (a)                                     (b) 

Figure 4.4: Relationship between (a) Average overall utilization and electricity expenses (b) Average overall 

utilization and overall net profit for scenario 1 
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affect the profit. This is because users may leave the system before the scheduled end time. 

A similar trend is seen for all arrival rates in scenario 2. For instance, at time 10:00, net 

profit dips more as compared to the dip in utilization at the same time when the users are 

arriving at λ=0.032 req/sec. Similarly, at time 16:00, net profit line drops more than the 

 

(a)                               (b) 

Figure 4.6: Relationship between (a) Average overall utilization and electricity expenses (b) Average overall 

utilization and overall net profit for scenario 2 
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   (a)      (b)  

                        Figure 4.5: (a) Utilization vs (b) Net profit for scenario 2 at different arrival rates 
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corresponding utilization line. This reduction can be explained by the loss of income and 

the loss associated to the relinquishment (see Equation 3.5). Whereas, at λ=0.064 req/sec, 

the net profit goes one on one with the utilization. This is because the relinquishment loss 

is calculated till the next request arrives. So, at such a high arrival rate, the time between 

arrivals is very small and hence the calculated relinquishment loss is also reduced.  

Moreover, the impact of relinquishment on ONP of scenario 2 can be clearly seen in Figure 

4.6 (b) where the ONP line does not grow linearly as compared to the ONP line of scenario 

1 (Figure 4.5 (b)) where the ONP is majorly dependent upon only the income generated. 

Moving further, in scenarios 3 and 4, two different resource assignment models are 

evaluated. From Figure 4.7 and Figure 4.9, it is observed that scenario 3 is assigning the 

least amount of resources as shown by the lower utilization percentage for each arrival rate. 

The net profit vs utilization trend of these two scenarios is similar to scenario 2 with a 

different set of values of utilizations and net profits for each arrival rate respectively. As 

depicted in Figure 4.8 (b), the average overall utilization of scenario 3 reaches a maximum 

 

(a)       (b) 

Figure 4.7: (a) Utilization vs (b) Net profit for scenario 3 at different arrival rates 
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of 40% when λ=0.064 req/sec whereas it is only 5% when the arrival rate of users is 

λ=0.008 req/sec. This shows that the assignment model in scenario 3 allocates the least 

amount of resources to prevent the relinquishment loss but made the least net profit. 

Scenario 4 on the other end earns more as compared to scenario 3 (Figure 4.8 (b)) as RP 

model improves its AOU at each arrival rate respectively. 

 

(a) (b) 

Figure 4.8: Relationship between (a) Average overall utilization and electricity expenses (b) Average 

overall utilization and overall net profit for scenario 3 
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(a)       (b) 

Figure 4.9: Utilization vs (b) Net profit for scenario 4 at different arrival rates 
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Overall, the results of the cost-benefit analysis using the proposed RACE model 

show that assigning whatever the user demands do increase the profit due to increasing 

income. However, with finite capacity and increasing arrival rate (λ ≥ 0.064 req/sec), the 

system will potentially remain highly utilized for scenario 2 but the net profit will be 

primarily affected by users who relinquish their services. Moreover, the latter two scenarios 

allocated resources based upon the prediction of the behaviour of the user in their own 

respective approaches but were not able to generate the income for the provider. Hence, 

they ended up having lower net profits for all the arrival rates. Therefore, to increase the 

profit in an environment where user can relinquish, better resource allocation schemes and 

better prediction techniques are required to optimally allocate the resources. The next 

section of this chapter puts light on which prediction model is better amongst the ones 

described in Chapter 3. 

 

 

(a)                               (b) 

Figure 4.10 : Relationship between (a) Average overall utilization and electricity expenses (b) Average 

overall utilization and overall net profit for scenario 4 
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4.3 Comparison results of various methods to predict relinquish probability 

   This section presents the comparison results of the various prediction techniques 

used to predict the user behavior given his history. The outcomes of this section will notify 

us which method can make better predictions about the user behavior. The prediction will 

let the provider know how long the user is going to use the allocated resources based upon 

his history. The list of future work suggested by Hu in [14] highlights that instead of using 

average approximation algorithms, the quality of prediction could be improved by the 

means of machine learning algorithms. Therefore, in this thesis, we decided to look at the 

concept of linear regression to make predictions.  

   To evaluate the performance of the different methods, we used three user 

categories: loyal, disloyal and average. The users’ history was generated the same way as 

explained Section 4.1.2. To perform the evaluation, Java and Octave platforms were used 

to generate the scripts, data sets and carry out the calculations respectively.    

Table 4.3: An example of a user’s data whose relinquishing 

probability is predicted using linear regression 

History Length (m=5) Relinquish Probability 

1 0.35 

2 0.56 

3 0.28 

4 0.67 

5 0.45 

6 (m+1)th To be predicted by LR 
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   Equations 3.8 and 3.9 state the different methods to carry out the predictions as 

proposed in [13] and [14] respectively. In this section, we use linear regression and 

compare the results with the two methods mentioned above. Table 4.3 provides an example 

of a single user whose history length is five. The data in Table 4.3 also shows the usage 

history of the user for the last five times. Similar kind of data was used to carry out a 

separate univariate regression analysis for a single user returning with various history 

lengths. 

To simulate loyal, disloyal, and an average user, different ARPs (0.3, 0.7 and 0.5 

respectively) were used and the history was populated randomly using the gaussian 

distribution using these ARPs as mean with standard deviation 0.2 (as mentioned in Section 

4.1.2). To get reliable results and avoid randomness, the process of generating history and 

making prediction for the single user was repeated 50 times. Then, the mean of the 

predicted values is taken and plotted along with the 95% confidence interval in the figures 

below. The history length is denoted as m and the (m+1th) value is plotted for each 

 

Figure 4.11: Prediction results for a loyal user 
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prediction approach. For instance, if history length is h=5, it states that the user is returning 

for the m+1th (i.e. 6th) time. The relinquish probability for the (m+1th) time is plotted. This 

notation is used throughout this section to explain the results.  

Figures 4.11 to 4.13 depict the prediction results of a loyal, average and disloyal 

users respectively with variable history lengths. As seen from the graphs, predicted values 

from linear regression (LR), BaaS [13] and RP [14] are compared with the observed 

relinquish probability for (m+1)th time. For each status, seven different users were 

simulated with different history lengths respectively. As illustrated in Figure 4.11, seven 

different loyal users request a given service. Each user is having ARP = 0.3 with different 

history lengths. The users are returning for the 6th, 11th, 21st, 41st, 61st, 81st and 101st time 

respectively. A similar trend is followed for the other two types of users (average and 

disloyal). To evaluate the prediction accuracy of the three methods, we compare the 

predicted value with the observed value from the user.  

 

Figure 4.12: Prediction results for an average user 
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   It can be seen that BaaS shows the biggest difference (around 20%, 25% and 20%) 

between the observed value and the predicted value for loyal, average and disloyal users 

respectively. This is because the authors use SOP and AOP for predicting the user behavior. 

Further, to cope up with changes in the behavior of users each time they return, the authors 

use the variance as an additional parameter but this does not help in making the results 

more accurate. On the other hand, RP (which is the improved version of BaaS) is able to 

make better prediction with a difference of approximately 5%, 4% and 4% between the 

observed value and the predicted value for loyal, average and disloyal users respectively. 

Moreover, for small training sets (i.e. history lengths ≤ 20), the prediction method used in 

[14] provides better results (approximately 5% better) compared to linear regression. 

However, as the history length grows, the accuracy of linear regression outperforms the 

predictions made by the RP method by approximately 2%, 1.7%, 1% for loyal, average and 

 

Figure 4.13: Prediction results for a disloyal user 
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disloyal users respectively.  The major reason for the improved accuracy of the linear 

regression algorithm can be regarded as the minimized squared error function which 

provides the minimum value of the squared difference between the errors (refer to Section 

3.2.3). In general, even with a single parameter (history length), linear regression proves 

to be the most effective tool amongst the three to make predictions about the user behavior. 

As a result, linear regression is used to make prediction as improving predictions can also 

improve the profit generated by the provider. 

 

4.4 Performance evaluation of relinquishment aware resource optimization model 

This section presents and discusses the experimental results of the relinquishment 

aware resource optimization model presented in Section 3.3. This model is solved with a 

commercial solver (IBM CPLEX [97]) on the same PC environment as described in Table 

4.1. For a given batch size and resource capacity, the performance of the model is tested in 

terms of two parameters. The resultant values of the parameters are used to decide which 

batch size gives the best results in terms processing maximum user requests under the finite 

capacity. The parameters are: 

• Processing time of a workload batch – The time required by the solver (CPLEX) 

to read the input data, generate the model, solve the model and produce the output 

in the form of decision variables. 

• Number of users processed in a batch – This parameter gives us the percentage of 

users processed for the batch size under evaluation with the given capacity of 

resources 
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The batch sizes used in this study are based upon the workload batch sizes used by 

the other researchers. For example, based on the work in [98], a batch size of more than 10 

user requests (or jobs) is regarded as a large workload. Similarly, the study that was done 

in [99] considers a batch of 5 requests to be of small size whereas a batch with 10 jobs is 

considered as medium. Therefore, to have a complete analysis, the set of batch sizes of {5, 

10, 20, 40, 80, 100} requests are tested under each of the remaining capacities of 2000, 

4000 and 8000 CPUs respectively. The input parameters of the model are predicted 

relinquish probability, requested duration, requested amount of resources, price of resource 

and electricity. These values are generated as described in Section 4.1.2. The experiment 

for each set of batch size with individual capacity value was run 20 times. The mean values 

of the percentage of users processed and the CPU processing times taken by solver are 

plotted along with the 95% confidence intervals. The built-in timer provided by CPLEX is 

used to measure the processing time.  

Figure 4.14 (a) depicts the results when the model was tested for the remaining 

capacity of 8000. Based upon the predicted relinquish probability and the input parameters, 

the solver only allocates resources to users who would potentially generate more income 

for the provider and minimize the relinquish loss at the same time. Simultaneously, the 

solver also tends to maximize the number of users to be processed within that batch. As 

expected, the batch with the large workload of 80 user requests takes the longest time to 

process all the inputs and provides results in around 8 secs.  The small and the medium 

sized batches are processed in almost the same time. Moreover, for small and medium 

workloads, around 70% of the users were processed with the least processing times. In 

Figure 4.14 (b), the remaining capacity was reduced by half to 4000 resources. Small and  
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Figure 4.14: Effect of remaining capacity (a) 8000 (b) 4000 (c) 2000 on the performance of various 

batch sizes 
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medium workloads performed the best in terms of percentage of users processed and time 

taken to process the batch. Whereas, the least percentage of users was processed in the 

large workload with a batch size of 80. This is because the system gets out of capacity for 

larger batch sizes as the sum of the requested resources by the entire batch greatly exceeds 

the available capacity. Reason being the set limits of the requested amount of resources for 

the user in Table 4.2. Hence, the percentage of users processed keeps decreasing with 

increase in batch size for a given finite capacity. To understand this phenomenon, the batch 

was finally tested with a remaining capacity of 2000. As shown in Figure 4.14 (c), when 

the batch size is increased, the percentage of users processed keeps decreasing while the 

processing time keeps increasing accordingly. As usual, the small batch size shows the best 

performance in terms of processing time and percentage of users processed. 

To summarize, the experimental results demonstrate that a batch size with five user 

requests performs better than all the other batch sizes under various remaining capacities. 

The objective of using different batch sizes under varying capacity was to figure out the 

optimal batch size which could be used for the simulations where users enter the system in 

an open stream and the remaining capacity is constantly updated. Therefore, a batch size 

of five will be used in the next section to assess the performance of the proposed 

optimization model and carry out the comparison between state-of-art algorithms. 
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4.5 Comparison results of the proposed optimization model versus the state-of-art 

algorithms 

In this section, we present the outcomes of the proposed relinquishment-aware 

resource optimization model discussed in Chapter 3. To perform the simulation, the 

proposed optimization model was integrated into DatacenterBroker class of along with all 

the scenarios mentioned in Section 4.1.1. by importing the Java libraries provided with the 

CPLEX package. More specifically, the Java libraries include the following two APIs: 

ILOG Concert Technology, ILOG OPL. These APIs are used to generate and solve the OPL 

model (discussed in Section 3.3) and invoke the CPLEX’s optimizer to solve the linear 

programming model. In addition to that, the predictions were made by writing the linear 

regression algorithm in Java and integrating it into the DatacenterBroker class of 

CloudSim. Following that, the model collectively decides the amount of resources to be 

allocated to all the requests in the batch and simultaneously update the current capacity 

available for the next batch of requests. The outcomes are then compared with the related 

work. 

For making it easy to explain the results, we term our proposed optimization model as 

Scenario 5. To compare scenario 5 with the former four scenarios, all models were run for 

a specified duration of 25 hours. It can be noted that 25 hours is not the actual clock time 

but the preconfigured simulation time on CloudSim for which the models are compared at 

different arrival rates. The workload was generated using the similar input parameters 

mentioned in Section 4.1.2 and each simulation was repeated 20 times to get 20 different 

sets of data for all the scenarios. The average values were then used to present the results. 

The confidence intervals were also calculated but since they were very small, they are not 
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shown in the graphs. The overview of the simulation for a batch is shown in Figure 4.15. 

When the requests start arriving (unlike scenarios 3 and 4 where the users were processed one 

by one), we assume that: 1) All the users in the incoming batch do not have a job completion 

deadline. This assumption is necessary since when user requests arrive in the system, they 

are queued in the network until the required batch size is formed. 2) The cloudlet submits 

the request for a single service type (vCPU) to the broker. 3a) The broker asks for the history 

of each user and 3b) gets the history of each user from the host. 4a) The history is fed to the 

prediction module where the three different prediction algorithms (depicted in Figure 4.16) are 

 

Figure 4.15: Overview of the simulation performed in CloudSim 
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executed. Then, 4b) the prediction values are passed to the resource assignment module. The 

resource assignment schemes in this module (depicted in Figure 4.16) use the predicted value 

to estimate the amount of resources. 4c) This information is passed to the broker. 5) The host 

creates a virtual machine which further 6 a) processes the request from broker to 6 b) assign 

the resources to the users. It is important to note that before every batch is processed, the value 

of the current remaining capacity of the system is passed into the resource assignment module. 

It is also assumed that there is no processing delay experienced once the batch enters the 

system. The remaining capacity is then updated and users are blocked if the system is running 

at maximum capacity. Finally, 7) the history of each user is updated with a new entry once the 

user leaves the system. This new entry will be used by the prediction algorithm when the same 

user submits a new request. Similar to the approach followed in Section 4.3, the inputs for all 

the scenarios are kept the same for each run. The simulations were run for the same set of 

arrival rates outlined in Table 4.2. The graphs for the utilization and the corresponding net 

 

Figure 4.16: Components of different predictions modules used in the comparison 
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profit for all the scenarios are presented for each arrival rate. The major outcomes for all the 

comparisons are outlined in Table 4.4.  

As demonstrated in Figure 4.17 (a and b), with a total of only around 750 users entering 

at λ=0.008 req/sec, the system is underutilized for all the scenarios. It can be seen that, from 

time 14:00 to 16:00 when utilization is dropping due to users relinquishing, the impact of 

relinquishment of users on net profit of scenario 5 is less as compared to other scenarios. This 

is because in scenario 5, if within a batch, users are predicted to relinquish, loyal users are 

given the greater share of the resources whereas disloyal users are given either 20% share or 

are declined depending upon how they are estimated to make profit. Therefore, at time 16:00, 

with the least utilization of scenario 5, the corresponding net profit is greater than scenario 4 

and almost comparable to scenario 2. 

 It can also be noticed that for each scenario, the net profit at each time is generally 

reflected by the utilization but at some points, say from time 20:00 to 23:00, the net profit for 

 

(a)            (b) 

Figure 4.17: (a) Utilization vs (b) Net Profit for all the scenarios at λ=0.008 req/sec 
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scenario 5 is not identical to the line of the corresponding utilization. This may likely be due 

to some instances where the linear regression estimates greater resources for some loyal users 

but they relinquish before their predicted duration of using the resources. This anomaly in 

prediction could be due to the fact that the history length of these users was too small for the 

linear regression algorithm to show its effectiveness. However, the improved performance of 

the prediction technique and scenario 5 was seen with the increase in arrival rates of the users. 

In addition to the case discussed above, the arrival rate was doubled to λ=0.016 

req/sec and 1450 users entered the system in this case. From Figure 4.18 (a and b), it is 

observed that, the net profit and the utilization curves for scenario 5 are higher than scenario 

4. This is unlike the previous case when the arrival rate of users was smaller. As discussed 

earlier, this improvement can be attributed to the approach of scenario 5 to assign more 

resources to loyal users and tightening up for predicted disloyal users. Therefore, according 

to Equation 3.15, the difference between the income and the overall expenses is minimized 

and the overall net profit for scenario 5 (outlined in Table 4.4) is increased significantly as 

compared to scenario 4. Further, as seen in Figure 4.19 (a and b) when the arrival rate was 

 

(a)       (b) 

Figure 4.18: (a) Utilization vs (b) Net Profit for all the scenarios at λ=0.016 req/sec 
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set to λ=0.032 req/sec, the performance of the proposed optimization model increases as 

the difference between the net profit of scenario 5 and scenario 2 decreases. The AOUs 

and ONPs in Table 4.4 of scenarios 2 and 5 show that with comparative profits for both 

scenarios, a provider using scenario 5 still can acquire more number of requests. Therefore, 

with scenario 1 running almost at full capacity and scenario 2 operating nearly full, it is 

most likely that scenario 5 can yield a substantial increase in profit 

To see that, the simulations were finally run for λ=0.064 req/sec. As it is clearly 

seen in Figure 4.20 (a and b), for most of the times, the utilization of scenarios 2 and 5 

remains stable as requests continuously keep on arriving but the corresponding net profit  

varies due to users relinquishing their service. Moreover, because of the high incoming 

stream of users (around 5500 in 25 hours), the available capacity remains contented most 

of the time as servers run at high utilization. Noticeably in Figure 4.20 (a and b), from time 

4:00 till the end, scenario 5 generates slightly greater profit than scenario 2 which leads to 

a greater ONP for scenario 5. As discussed earlier, this is because the optimization model 

 

(a)       (b)  

Figure 4.19: (a) Utilization vs (b) Net Profit for all the scenarios at λ=0.032 req/sec 
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used in scenario 5 uses linear regression to predict the behavior of users and intelligently 

assigns the resources so that the impact of relinquishment of users is minimized. 

 Thus, as per the deductions of Section 4.2, the objective of maximizing profit is 

achieved when resources in a finite resource pool get contented with users relinquishing 

their services. In addition to that, though the proposed model tends to process the maximum 

number of users, the predicted loyal users within the batch are given more priority in terms 

of allocating the share of remaining capacity to maximize profit. Consequently, some 

disloyal or average users were denied the service. Interestingly, as compared to its 

counterparts, AOU has also improved in all the cases for scenario 5. 

On the other hand, when the resources are fully utilized at high arrival rates, many 

user requests were also blocked in some of the scenarios. Since the arrival of users does 

not depend upon the server capacity or total available resources, the blocking ratio varies 

and depends upon the arrival rates of the incoming requests. As this study concentrates on 

the economic aspects of cloud computing, therefore from a business point of view, it is 

important to know the blocking rate as denying the service leaves a negative impact on the 

users and deteriorates the market-value of the CSP. Therefore, the blocking probability 

 

(a)          (b) 

Figure 4.20: Utilization vs (b) Net profit for all the scenarios at λ=0.064 req/sec 
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gives another piece of information to the CSP on evaluating the performance of the 

resource allocation policy being used. The blocking probability (Pb) is calculated as: 

 

Pb= 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠 𝑏𝑙𝑜𝑐𝑘𝑒𝑑  𝑑𝑢𝑒 𝑡𝑜 𝑓𝑢𝑙𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠 𝑎𝑟𝑟𝑖𝑣𝑒𝑑
                                         (4.1) 

 

The blocking probabilities of all the scenarios are outlined in Table 4.4. It can be 

clearly seen that no users were blocked for lower arrival rates. Noticeably for λ=0.064, the 

blocking probability of scenario 5 is less than scenario 2 even with slightly higher AOU as 

scenario 5 makes better resource assignment decision during the contention of resources. 

Additionally, the proposed model also shows improved utilization at higher arrival rates as 

compared to the similar models proposed in the literature. In a nutshell, it can be said that 

rather than assigning whatever is requested or using approximate algorithms, the provider 

must assign the resources using the optimization techniques to maximize his net profit.  

 

Table 4.4: Major outcomes 

Arrival 

Rate 

λ=0.008 λ=0.016 λ=0.032 λ=0.064 

 

AOU 

(%) 

ONP 

(CAD) 

Pb 

AOU 

(%) 

ONP 

(CAD) 

Pb 

AOU 

(%) 

ONP 

(CAD) 

Pb 

AOU 

(%) 

ONP 

(CAD) 

Pb 

Scenario 1 28.7 189k 0 57.7 357k 0 84.7 537k 0.4 88.2 545k 0.54 

Scenario 2 17.4 108k 0 35.3 209k 0 68.7 418k 0 84.4 505k 0.4 

Scenario 3 7.8 47k 0 15.7 94k 0 30.8 189k 0 59.2 370k 0 

Scenario 4 14.7 91k 0 22.6 139k 0 41.2 251k 0 66.2 403k 0 

Scenario 5 14.4 93k 0 28.3 177k 0 55.8 349k 0 85.1 512k 0.32 
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Chapter 5: Conclusion and future work 

 

This chapter initially provides a summary of our economics-inspired research work 

which proposes a framework to calculate and maximize the net profit of the cloud service 

provider in an environment where users can leave the system at any point in time. Then, 

we outlined the three contributions from our work and conclude this chapter with a list of 

future directions.  

 

5.1  Summary of the thesis 

Since its emergence, cloud computing has been the topic of attraction for both 

researchers and the corporates. The reason being the business it has provided to the IT 

enterprises as most of the users are migrating their in-house computing facilities to the 

centrally hosted cloud-based servers. Fascinatingly, users use the resources of the cloud 

providers and pay according to their timely usage. While this relocation is beneficial for 

the users as they save the upfront investments and additional hardware costs, cloud service 

providers, on the other hand, face many challenges in terms of maximizing their net profit. 

This idea set out the basis of this thesis for which the general goal was to propose a 

mechanism to maximize the net profit of cloud providers.  

The goal was divided into three objectives as mentioned in Chapter 1. As users can 

relinquish according to their wish, providers lose money in the form of opportunity cost. 

Therefore, our first objective was to create a model which could provide a cost-benefit 

analysis based upon the relinquishment of users. The second objective of this work was to 

find a technique to improve the accuracy of the predictions based on the historical behavior 



 89 

of the users. The third and final objective was to propose a resource management 

framework to maximize the net profit of a CSP by optimally estimating the amount of 

resources to assign to each user requests.  

 

5.1.1 Summary of contributions 

This sub-section provides the summary of major findings of the thesis and their 

results. To fulfill the objectives presented in Chapter 1, the theory of the findings is 

presented in three phases in Chapter 3 whereas the results of the theory are outlined in 

Chapter 4. Collectively, the major contributions of this thesis are as follows:  

 

• In the first phase, we focused on the techno-economical aspects of cloud service 

providers in a cloud federation environment. A Relinquishment-Aware Cloud 

Economics (RACE) model was proposed to evaluate the net profit of cloud 

service providers. The main contribution of the model is the consideration of 

income, electricity expenses and the relinquishment loss which is modeled to 

evaluate net profit. Various resource assignment schemes from the literature 

were evaluated using this method. Various scenarios were used accordingly to 

calculate the utilization and the net profit for different arrival rates of users. 

Several simulations were carried out using CloudSim to obtain the stated results 

in Section 4.2. Results show that with users relinquishing and a finite resource 

pool, blindly increasing the utilization is not economically beneficial for CSP.  

Although the net profit increases, it majorly got impacted by the relinquishment 

of users in a finite resource pool environment. 
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• Since users can relinquish their service at any point in time, it is essential to 

have ways in which cloud providers can predict the behavior of users. Different 

ways were proposed in the literature but they were mainly using some sort of 

average based on the historical behavior of users. Seeing this, the idea was to 

figure out a better prediction technique such that the CSP could make accurate 

decisions while estimating the amount of resources to be allocated. As a result, 

we developed a prediction algorithm based on the concept of linear regression. 

Users with different usage behaviors (loyal, average and disloyal) were 

evaluated for different history lengths. The results showed that the technique 

based on linear regression outperformed all the user behavior prediction 

techniques proposed in the literature. 

• Lastly, a relinquishment aware resource optimization model was proposed to 

optimally estimate the amount of resources such that the net profit of the CSP 

can be maximized. The model uses the prediction results of the linear regression 

technique to make the optimal resource estimation based upon the user history. 

To carry out the experimental results, variable user batch sizes were tested for 

the processing times and the number of requests processed per batch. The 

performance analysis carried out in CPLEX depicts that a batch size of five user 

requests took the minimum processing time while processing the maximum 

percentage of requests per batch. Furthermore, the proposed optimization 

model is also compared against two algorithms from the literature. The 

simulations are implemented in CloudSim to carry out the comparison. The 

results of the simulations show that the optimization model generates the 
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maximum profit when resource contention occurs at high user arrival rate. In 

addition to that, the blocking probability of users is calculated as an additional 

parameter to check the performance of proposed model. Also, the percentage 

of users blocked by the proposed approach was comparatively less while it 

generated greater profit at almost comparable overall utilization of the server of 

other models. 

 

5.2 Future work 

To the best of our knowledge, since this study is unique and first of its own kind, 

there are many issues that can be addressed to extend this work. Here is a list of possible 

directions: 

• The RACE model can be broadened by including additional cost parameters 

related to the reliability, security, communication redundancy and all the other 

energy costs of the cloud systems. This can be helpful in making the model 

more complete and let the CSP be aware of its complete budget outline. 

• Linear regression was modeled using only a single feature: relinquish 

probability. We believe that including additional features such as profit 

generated from the user at each instance could potentially improve the 

performance of the linear regression algorithm.  

• In the thesis, the resource price of Amazon EC2 instance is used. In the future, 

the resource price can also be predicted based upon the user history. This can 

further help CSP to increase the net profit and compensate the relinquishment 
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loss. Further, based upon the new pricing strategy, a reimbursement strategy 

can be added to have a complete pricing model. 

• The simulations of the proposed optimization model were carried out for a 

single service type: CPU. As future work, all the service types could be included 

to make the model more realistic. 

• Finally, real-time data traces could also be used to get actual habits and behavior 

of real cloud customers. 
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