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Abstract

Fog networks are a proposed solution to allow the generalization of endpoint de-

vices. Previous efforts have been dedicated to the optimization of fog resource initial

installations, but no solution has been proposed to optimize the real-time resource

allocation of a fog network in operation. An exact model was developed to compute

the upper bound for profit generation with a processing time exponentially related to

the network size. A real-time heuristic was also developed to allow for the network to

perform operations. Its performance remained constant through a variety of tested

networks at a profit result between 78 to 88% of the exact model and a far reduced

processing time. The heuristic model uses a statistical approach to predict the re-

quirements of future tasks. The results of this thesis demonstrate that the use of the

heuristic model is essential to the efficient operation of a long term fog computing

network.
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Nomenclature

Throughout this thesis, a mathematical nomenclature is used to refer to specific

parameters used in the models. This page serves as a reference in alphabetical order

to the reader.
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nected to a fog node j at time window t
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xiii
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Chapter 1

Introduction

Information technology data volumes are increasing at an exponential rate. Cisco

reports in a 2021 forecast that Internet Protocol traffic in Canada will grow two fold

between 2016 and 2021 to 178 petabytes per day [3]. Notably, 20% of Internet traffic

in Canada will be generated on mobile networks further increasing network load in

these environments.

According to Cisco, the number of user devices per capita is also forecasted to con-

tinue its adoption increase. Interestingly, the number of desktop and laptop devices

are expected to decrease with lower processing capacity Internet of Things devices

replacing them. This emergence will rely on remote processing capabilities to enable

low capacity devices to meet user requirements. Interactive environments such as

virtual machines operating in cloud and fog networks will increase reliance on main-

taining a low latency service to users [4]. Fog computing networks are predicted to

be a technical solution to service latency sensitive user requests such as the remote

operation of virtual machines. However, several considerations arise in the long term

operation of a fog computing network with fixed location fog nodes.

• Service Coverage: The level of service of a fog network is heavily dependent

on its configuration. Mobile network technologies such as the emergence of 5G

will continue to improve network availability and stability in populated areas.

• Network Efficiency: As networks grow to accommodate the growing demand,

network providers will look to green computing solutions to reduce their oper-

ating costs and increase their profit. Notably, correctly predicting network load

and areas of over subscription will greatly benefit network efficiency in these

applications.

1



CHAPTER 1. INTRODUCTION 2

• Network Saturation: Service providers will look to advanced network plan-

ning solutions to avoid saturation while maintaining an efficient network. Net-

works will be required to be dynamic to accommodate burst customer demands.

• Network Backbone: The core network capacity required to support these

networks would continue to increase exponentially. To reduce the reliance and

load on back-end networks, fog computing networks are the proposed technol-

ogy to reduce the reliance on the core network and allow networks to support

demand primarily at the edge. This provides service providers with a lower cost

and simpler architecture to lower latency.

1.1 Problem Statement

In 2020, documented fog computing networks are being designed initially to be effi-

cient in their environments. This provides short term benefits to service providers,

but fails to scale as demand increases or shifts within their coverage area [5]. This

static development of fog networks is inefficient and lacks the ability to adapt to in-

herently dynamic activities such as allocating tasks to fog node resources. As the

demand frequency and patterns shift over time, the fog computing network becomes

less efficient at supporting these requests and will relegate additional tasks to the

cloud when it can’t support the low latency resources demanded by the applications.

To address this problem, network operators must use resource assignment models to

assign fog network assets to task requests while maximizing profit. The problem is

further complicated when combining the objectives of service coverage (assigning as

many incoming tasks to a fog node) and increasing network efficiency (green comput-

ing) by shutting down unused fog nodes and only starting them up when required.

An exact model can be used to optimally solve this problem. This thesis stipulates

that optimally assigning a set of tasks to a fog computing network is a NP-hard

problem. It predicts that the size and complexity of the optimization problems will

grow exponentially with the size of the network and the number of task requests in

the evaluation time period. Service providers would receive a stream of task requests

rather than a complete set of tasks demanded of the network. Any exact model

must rely on complete knowledge of network requests to make its decisions on task

allocation and fog node status changes. These restrictions prevent an exact model
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from being used for real-time resource allocation applications. However, it can be

used to determine the upper bound values for a network assignment and should be

used as a benchmark for the evaluation of real-time resource allocation models.

A real-time allocation model must make allocation decisions without exact knowledge

on the frequency, location and type of requests that will be demanded of the network in

the future. The development of such a model would rely on assignment heuristics and

a probabilistic approach using historic data to fog node status changes. Furthermore,

the assignment operations for a given time window must be less than the time window

itself to ensure that the buffer of incoming tasks remains empty and that operations

can continue in real-time. This thesis will propose ideas to assist in prioritizing tasks

and manipulating the state of fog nodes to approach the upper bound.

1.2 Research Objectives and Contributions

The main objective of this thesis is to develop models and algorithms to maximize the

profitability of a 2-tier fog-cloud network environment. Specifically, it can be divided

into the following sub-objectives:

• Propose a mathematical model to calculate the optimal task allocation of a

given fog computing network using complete knowledge of all tasks demanded.

This model is used to determine the theoretical maximum profit for past task

assignments.

• Develop a heuristic model that can perform real-time task assignment and scale

to large and complex networks. The model must account for the incomplete

knowledge of future demanded tasks and the duration of active tasks at a given

time. Furthermore, the model needs to operate efficiently to ensure that the

buffer of tasks to assign does not overflow.

• Implement the mathematical model in a linear programming software solver

and validate its design.

• Implement the heuristic model in a computing software and validate its design.

While implementing the heuristic, this thesis aims to use a modular approach

so that adjustments could be made to a single module without affecting the rest

of the model.
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• Evaluate the performance of multiple configurations of the real-time heuristic

model by comparing its profit generation to the mathematical model upper

bound.

By reaching the above objectives, the following contributions can be made to this

research area:

• The development of a mathematical model to solve an input set of tasks with

a fog computing network resource fog nodes into an optimal profit result. It is

not designed to solve the real-time resource allocation problem, but can be used

as a benchmark to compare various approximate algorithms. For this reason,

it is an essential contribution to real-time resource allocation in fog computing

networks.

• The development of a heuristic model to provide a real-time solution to optimize

profit. This model can be used by network operators to improve profit gener-

ation and user experience when compared with the current state of resource

allocation in fog computing networks.

1.3 Methodology

This section addresses the methodology that will be used to meet the research ob-

jectives enumerated in Section 1.2. The first 3 steps are linked to the development

of the mathematical model, the following 2 steps to the development of the heuristic

model and the final 2 steps to the performance evaluation objective.

• Develop the theoretical model: Initially, this thesis will study the compo-

nents of fog and cloud computing networks in general such as ones presented

in the OpenFog consortium reference architecture [6] to develop a mathemat-

ical formulation that simulates the operation of a fog computing network. Its

design aims to include flexibility in its parameters to allow it to adapt to nu-

merous fog computing applications. Afterwards, we will define and detail the

complete input data sets that are required to allocate tasks in a fog computing

network. Finally, the mathematical model can be finalized to perform the linear

programming calculations.
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• Implement the theoretical model: Any non-trivial test network will require

a software solver (CPLEX) for the mathematical model. It is expected that the

complexity of the linear programming model is correlated to the number of

tasks, fog nodes and their parameters.

• Validate the model: The mathematical model must be validated for accuracy

since it will be used as a primary performance evaluation tool. This is achieved

by individually testing each constraint in trivial networks and ensuring that

the behaviour matches what is expected. Then, the model will solve simple

networks to compare with a manually calculated upper bound. Finally, the

model will scale in size and complexity to ensure that the solutions proposed

are feasible and that no better solution exists (at least intuitively for more

complex simulations). This thesis will assume that the mathematical model

will remain accurate as it scales to larger networks that can not be trivially

solved without the mathematical model solver.

• Develop the heuristic model: This thesis will transition to the development

of a real-time heuristic model by truncating the information available to the

model and preventing changes to task allocation outside of the current time.

Methods will be developed to allocate tasks, de-allocate tasks and modify the

state of fog nodes to best simulate a realistic application of the technology. The

model will initially develop its framework using a modular approach and simple

algorithms. Then, it will attempt to improve its performance by developing

tailored algorithms for each of the main modules that provide results more

closely resembling the theoretical model.

• Implement the heuristic model: Once again, the heuristic model will require

the assistance of a software (MatLab) to make a determination on a chosen

task to resource mapping that most closely approaches the theoretic maximum

determined in the mathematical model.

• Generate test networks: We will develop and follow a test plan to generate

networks for performance evaluation of the heuristic model. Specifically, the

test plan must represent the different types of task demand (frequency), the

duration of tasks (level of variance) and their resources demanded (quantity).

The plan must also vary in terms of network coverage and resources per node.
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• Evaluate the performance: This thesis will configure the heuristic model

parameters for different types of test environments and evaluate the impact of

task predictability to that configuration. It will also compare its performance

in profit generation and computing complexity with the mathematical model

using various test networks.

1.4 Thesis Outline

This thesis will be divided as follows:

• Chapter 2: Background and Related Work will introduce the concept of fog

computing, its applications and current research ideas in resource allocation in

fog and cloud computing applications.

• Chapter 3: Formulation of the Task Allocation Problem will outline the as-

sumptions, formulate the problem and its mathematical representation. It will

also provide a framework for the heuristic algorithm.

• Chapter 4: Results and Analysis will provide details to the validation of the

algorithm development, the test plan and its performance.

• Chapter 5: Conclusion and Future Work will summarize the thesis results and

propose directions for possible future research.



Chapter 2

Background and Related Work

In this chapter, we will provide an overview of the research landscape related to fog

computing. It will encompass preceding research and current efforts in the field.

Specifically, Section 2.1 will provide background information on the topic, Section 2.2

will introduce complementary research in this field and Section 2.3 will summarize

the chapter.

2.1 Background

In this section, we will introduce the concept of fog computing and its evolution in

Section 2.1.1. Section 2.1.2 will introduce various applications that benefit from fog

computing.

2.1.1 Fog Computing

Fog computing was introduced in 2012 by Cisco Systems Inc. It was designed as

an evolution from cloud computing concepts to better support ubiquitous networks

by positioning computing resources at the edge of the network. This enables remote

computing solutions to perform at lower latency than an equivalently designed cloud.

Several latency sensitive applications, categorized as infrastructure as a service, plat-

form as a service and software as a service, are well suited for fog computing in the

current market [7] as a preferred method to reduce data round trip time.

Fog computing is composed of n tiers allowing for proper prioritization of tasks within

a population base. It is designed to operate in a heterogeneous environment and sup-

ports a cooperation between similar devices on the network. It is viewed as a cloud

7
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computing solution that is closer to the end user in order to improve performance. It

is poorly tailored to operate in a standalone mode due to its requirement to position

its processing resources close to its users. Legacy standalone networks are, by defini-

tion, antonymous to this concept, but are plentiful in the current network landscape.

Software defined networking is a proposed solution that virtually combines standalone

network architectures within a common heterogeneous fog computing network archi-

tecture [8]. Figure 2.1 shows the hierarchical architecture of a fog computing network

as illustrated by Hu et al. [1].

Figure 2.1: Fog Computing Network Hierachical Architecture [1]

Fog architectures are “either application agnostic or application specific” [9]. Re-

gardless, fog computing network architectures are planned with possible applications

in mind to evaluate the possible customer requirements and generate the test data.

Applications will diverge in processing, network bandwidth and latency requirements.

Following are a few examples of common applications that highly benefit from fog

computing networks.
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2.1.1.1 Cyber Foraging

The founding concepts behind edge computing were introduced in a 2001 paper by

Satyanarayanan et al. [10]. It discusses pervasive computing as an evolution of dis-

tributed systems and mobile computing and introduces cyber foraging as a method

to offload computing intensive tasks from mobile devices to remote computing re-

sources [11]. According to Balan et al. [12], computing surrogates are used to improve

performance in data staging by caching and pre-fetching useful content closer to the

edge device. It can also be beneficial for remote code execution, as long as application

developers consider the cost versus benefits of doing so.

2.1.1.2 Cloudlet

In 2009, Cloudlets were introduced as a virtual cloud infrastructure evolution to

Cyber Foraging. Similarly, it uses virtual machines to offload intensive computing

resources from Internet of Things devices to the cloud [13]. It is similar to traditional

cloud computing, but with cloudlet resources strategically positioned near edge re-

sources to improve latency for beneficial applications. Cloudlet computing resources

scale dynamically to the processing requirements of devices either taking or providing

resources to the larger cloud.

2.1.1.3 Multi-access Edge Computing

Multi-access edge computing was introduced in 2014 by the European Telecommu-

nications Standards Institute as a purely standalone single purpose cloud architec-

ture [9]. It is often configured to be optimized for that single purpose with its standard

operating procedures well defined.

2.1.1.4 Other Fog Computing Concepts

Other similar concepts were designed specifically for a given application. They are

viewed as part of the evolution of fog computing, but lacks support for heterogeneous

clients [14]. Mobile cloud computing and mobile edge computing are examples of such

concepts.

Mobile cloud computing is a cloud computing infrastructure specific for mobile appli-

cations. This enables applications to standardize computing power and data storage
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for their requirements in the cloud while running across a heterogeneous set of end

user devices in a mobile network (along with varying computing specifications) [15].

Mobile edge computing is a remote processing capability at the edge of the mobile

network to complete tasks that could not be completed in the core (ex: user device

cell allocation). [16]. Fog computing applied to mobile networks is a blend of mobile

edge and cloud computing concepts.

2.1.1.5 Task Allocation in Fog Computing

Allocating tasks to a fog computing network is an essential element to its ongoing

operation. In a centralized computing network architecture such as the cloud, service

providers ensure that the processing capacity of the network can support the resource

demand [17]. In fog computing, resource allocation is used to support the remote

processing of latency sensitive tasks. It must allocate tasks to nearby fog resources.

Some task allocation models propose that users make a determination of whether

to process tasks locally, at the network edge (fog) or in the cloud [18]. This model

assumes that service providers have planned their networks appropriately to support

the majority of their user base in each category. Other research proposes a decision

making process made by the network provider. It uses a load balanced approach to

task allocation the appropriate supporting resources for each task [19] [20] to benefit

the overall operation of the fog network.

2.1.2 Applications of Fog Computing

2.1.2.1 Fog Computing in Radio Access Networks

Wireless technologies and specifically Radio Access Network (RAN) is a research area

that is improved using pooled computing resources. Many complex problems in the

network planning of RAN is trivialized based on the application of these concepts.

The evolution of cellular technology from 3G to 4G and even going forward to 5G

introduced the concept of a logical processing node at the RAN layer used to handle

all radio related processing [16]. In a hardware deployment of RAN equipment, the

processing is done at each cell node (eNode B). Network planners must predict net-

work usage across their area of coverage to allocate sufficient processing at each edge
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node (eNode B) while limiting over-allocation to manage operational costs. As wire-

less networks increase in size, these costs are quickly overtaking revenues in many

deployments [2]. Figure 2.2 illustrates the functions of a 4G mobile edge node as

illustrated by Checko et al. [2].

Figure 2.2: Cloud RAN Mobile Deployment [2]

The introduction of cloud RAN (cRAN) was designed to reduce the load at the mo-

bile core network by processing data at the RAN core (distinct from the LTE core

network). The eNode B is divided in three parts: the remote radio unit (RRU), base-

band unit (BBU) and a high bandwidth, low latency fronthaul connection between

the RRU and BBU. The mobile core is then connected to the BBU using a backhaul

connection.

cRAN centralizes BBU resources into a single pool. This provides network plan-

ners with the ability to dynamically allocate and manage processing resources [21]

rather than dedicate their allocation to a single eNode B. This simplifies the prob-

lem of predicting and adjusting processing resources for the edge network. However,

radio resource management is infeasible due to its high computational complexity

and latency requirements. As networks evolve to heterogeneous device support, the

scalability issues of the fronthaul connection is a notable issue with the cRAN archi-

tecture [22]. Figure 2.3 illustrates the functions of a 4G cloud mobile edge node as

illustrated by Checko et al. [2].
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Figure 2.3: Cloud RAN Mobile Deployment [2]

Fog RAN (fRAN) divides the cloud into processing components to better distribute

load based on the dominant performance criterion. The cRAN cloud is divided into

4 function groups. The distributed storage cloud, distributed communication clouds

and control cloud are moved from the RAN core layer to the fog layer while the

centralized communication and storage cloud remains at the RAN core. This allows

for network planners to distribute the processes between the four clouds to meet

latency and resource requirements for each task, thus improving efficiency in the

network [23].

Similarly to cRAN, resource allocation is pooled and can easily scale. However,

the dependency on the performance of the fronthaul connection is reduced from the

cRAN model further improving computing performance of wireless RAN. In this

model, resource allocation to a fog node is based on service requests rather than

client allocation. To further improve performance, network planners use predictable

content relevant to user geographic location [24]. In a wireless network application,

this prediction is relatively simple since cells are inherently geographically bounded.

When considering a static model, the allocation of requests to an optimal fog node

or cloud is relatively simple. However, the simplistic model described previously

is inherently sub-optimal and dependent on the users on the network. Once a fog

node (distributed cloud) is at capacity, the users are relegated to the centralized

cloud rather than being serviced by another fog node. Contrarily, latency sensitive

applications can be forced from a cloud server to a fog node given that sufficient

processing on the fog is available [25]. Considering this complete mobile network for

fog node and cloud server allocation is a hard problem to optimize.
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2.1.2.2 Vehicular Ad-Hoc Networks

Vehicular ad hoc networks (VANET) were introduced as a solution to reduce road

congestion and accidents by using computing to synchronize traffic lights, optimize

path selection, manage emergencies and regulate vehicle speed. Cloud computing

was initially introduced, however the static deployment of clouds made it difficult to

achieve latency, performance, scalability and reliability thresholds.

Fog computing is a paradigm that is applicable as an extension of cloud-based

VANETs [26] to improve performance. This enables networks to expand its cloud

infrastructure to include a localized computing concentration with its users. How-

ever, many VANET applications leverage fog computing nodes that are either static

or dynamic. Static fog computing solutions include using stationary public and /

or private road side units as fog nodes [27] [28]. Dynamic fog computing solutions

include using underutilized vehicle resources as ad-hoc fog nodes [29] enabling vehicle

to vehicle communication as a low latency solution to many vehicular applications.

However, a true fog computing solution combines both static and dynamic computing

solutions as cloud and fog nodes respectively. All these resources are available to

any end user in a cross-layer model [30]. This VANET architecture leverages the

advantages of a fog computing network and allows for fog node mobility within the

architecture. However, the problem of resource allocation is left unresolved in this

field.

2.2 Related work

Fog computing research is being described as a significant improvement to cloud

computing in mobile and heterogeneous environments [26]. Applications such as

connected vehicles [31], content delivery [32], wireless edge computing [14], smart

grid design [14] and health care connectivity [33] are some applications that generally

benefit from low latency fog computing architectures. However, research related to

the optimal planning and design of fog networks is starting to emerge, notably with

contributions related to exact and approximate algorithms for the planning and design

of fog nodes [34] [35].

Once a network is in place, the optimal allocation of resources is a difficult problem to
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solve. This section will review notable contributions related to resource allocation in

both fog and cloud computing applications. Subsection 2.2.1 will explore the general

concept of task uncertainty and its application in cloud computing. Subsection 2.2.2

and 2.2.3 will explore resource allocation using predictive factors. Subsection 2.2.4

introduces a game theoretic approach to resource allocation. Finally, Subsection 2.2.5

introduces fog computing allocation using quality of service (QoS) as a main param-

eter.

2.2.1 Understanding Uncertainty in Cloud Computing

Tchernykh et al. [36] discuss the concept of uncertainty programming in cloud com-

puting. It is based on the consideration of incomplete knowledge within its decision

parameters. Specifically in cloud computing, this can be summarized as users (or

tasks) predicting their resource requirements while accounting for the dynamic per-

formance of the communications link to the cloud. For example, the network routing

latency between a user and the cloud changes based on many unpredictable factors

such as network load and QoS configurations.

In cloud computing, uncertainty can be handled either by the client or by the cloud

itself. Although some client programs can optimize their decisions based on un-

certainty, the cloud ensures that this parameter is considered in permanence. This

allows network planners to ensure that uncertainty is considered in every client (task)

requesting resources from the cloud.

Kliazovich et al. [37] propose a model by introducing communication awareness within

its procedure. Specifically, it separates communication requirements (uncertainty)

with the other certain decision parameters (latency requirements, computing re-

sources requested, memory requested, etc.) and is optimized for scheduling separately

based on both sets of parameters. The approach allocates resources using certain pa-

rameters dependent on the results of the communications (uncertain) parameters.

This artificially changes the priority of a given task based on the present communica-

tion performance. This introduces the concept of dynamic resource allocation which

is a founding idea for many subsequent efforts.
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2.2.1.1 Resource Provisioning

When scheduling tasks between clients and the cloud, there are 2 methods: static

and dynamic scheduling. Static scheduling is set for a given period and is effective

in applications where network planners have complete knowledge of resource require-

ments and client to cloud resource under allocation. Dynamic scheduling is a much

more common solution since resource demands are difficult to predict and resource

usage will naturally fluctuate over time.

Service Level Agreements (SLA) between a client and a cloud provider to better

document the minimum QoS and task delivery time for a cloud to shift the cloud

computing design approach from a static model to allow for dynamic resource alloca-

tion. Schwiegelshohn et al. [38] designed a resource scheduling model where customers

(serviced in an SLA) are chosen based on a cost and a slack per requested task. The

slack is the allowable delay that a task can undertake to maintain the SLA and the

smallest slack (earliest due date) were prioritized in their algorithm. The authors per-

formed an analysis of task allocation over single and parallel cloud machines against

the income generated from their scheduling algorithm against the optimal income.

2.2.1.2 Load Balancing

Load balancing is a method to optimize resource allocation when considering comput-

ing and communication imbalance created by uncertainty. Elasticity is a solution to

handle this unpredictability. Herbst et al. [39] define elasticity as a systems ability to

adapt itself by provisioning and de-provisioning its resources autonomously. Its con-

cepts are naturally useful in fog computing notably when including green computing

considerations in many research publications [40] [41].

2.2.1.3 Adaptive Scheduling

Adaptive scheduling of tasks to multiprocessing units is a hard problem and has not

been resolved in large scale installations to date. Some methods include adaptive

scheduling in their algorithms, but with an overflow of processing related to demand.

[42]. A common problem with adaptive scheduling to cloud processing units is that

cloud computing nodes resources are reserved, but not utilized by a given task. This

creates an unnecessary queue in task scheduling leading to many inefficiencies.
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Tchernykh et al. [43] introduce a two stage heuristic to improve adaptive scheduling.

Firstly, tasks are assigned to the cloud computing node with the smallest resources

to complete the task. Then, a local scheduling heuristic is applied on each node

to maximize resource utilization and minimize overall run time. This approach is

interesting, but may need to be adapted in cases where the set of tasks all require

similar resources. Perhaps a weight parameter could be added to distribute tasks

across cloud computing nodes.

2.2.1.4 Knowledge-free Approach

Tchernykh et al., [44] discuss resource allocation to computing nodes without consid-

ering task specific parameters. This is relevant in applications with dynamic client

and server resources. They suggest over-allocating tasks to computing resources along

a dynamic replication threshold to account for uncertainty in a given application. The

replication threshold is adapted over time based on historic performance to improve

energy efficiency. Some tasks are historically static, thus requiring less replication

while others require more replication to ensure processing. The performance of mul-

tiple algorithms is evaluated using a Pareto optimal set.

2.2.1.5 Scheduling with Uncertainty

Probability theory and stochastic processes are discussed methods to consider uncer-

tainties in an optimization problem. In cloud computing, two main frameworks are

used: stochastic scheduling and online scheduling.

Stochastic scheduling is used to consider the characteristics of tasks while online

scheduling is used to consider the unknown requirements related to future task re-

quests. A decision must be made every time a task is requested to the cloud. Both of

these concepts are always relevant in cloud computing resource allocation problems.

Megow [45], Megow et al. [46], and Vredeveld [47], present task scheduling models that

are based on stochastic properties and a knowledge of the probabilistic distribution

of task processing time. “They minimize expected value of the weighted completion

times of jobs” to achieve a favorable performance ratio (2 in this case). Cai et al.

[48] expanded the work to include due dates, machine breakdowns in addition to

the processing time probability distribution while maintaining the same performance

ratio.
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In both models described above, the model performance is dependent on an accurate

representation of processing time. Various research efforts have been made to improve

this dependency. Kianpisheh et al. [49] apply various machine learning algorithms to

attempt to better predict this parameter. Smith et al. [50] and Ramirez et al. [51] use

historical processing statistics to generate the estimate. They “apply self-similarity

and heavy tails characteristics to create scalability models”. They follow a two step

process to the model. The first step models the queueing process using historical sim-

ilarities in each parameter considered. The second step predicts remaining execution

time using conditional probabilities.

2.2.2 Resource Allocation in the Fog Using Mobility as the

Decision Factor

Aazam et al. [52] propose a resource allocation model based on the probability of

mobility of users. Resource requests made to the fog network are evaluated based on

the historical user mobility. The model states that the more mobility observed within

a group of users, the lower the amount of resources the network is willing to allocate

to them.

This concept aims to reduce fluctuation in the amount of resources being allocated

on a fog computing network by normalizing the quantity of resources to allocate over

time. Dynamic fog nodes will use smaller resource allocation blocks per client while

more static nodes will allocate larger blocks of resources to a given user. This ensures

that the resources are used on a fog most efficiently.

Do et al. [53] propose a proximal algorithm to optimize resource allocation in a fog

computing network. Geo-distributed cloud networks are often energy inefficient and

have a large carbon footprint. As such, network planners not only wish to optimize

processing resource allocation in a fog network, but also consider the start up costs of

a fog node. The paper proposes that the optimal dynamic resource allocation of tasks

across a fog computing network is often inaccurate due to the optimization function

being sometimes convex, especially in large fog networks where the optimal client to

fog node mapping changes constantly. In these cases, traditional optimization reso-

lution methods such as the steepest gradient [54] do not always provide an optimal

solution to the problem. The paper proposes using proximal functions to transform
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the optimization algorithms to eliminate the possibility of dealing with convex func-

tions, thus improving resource allocation in fog computing networks overall.

2.2.3 Resource Allocation in the Cloud Using a Predictive

Model

Xiao et al. [55] suggest a model to address the problem of over-provisioning of physical

servers in cloud computing applications. The model is based on two goals: avoiding

server overload and green computing. Both goals are somewhat contradictory, but

they claim to develop an automated system for a balanced resource provisioning.

Firstly, a predictive model for resource requirements is developed. It is based on an

exponentially weighted moving average (EWMA) to achieve a short term prediction

of load. The algorithm is designed to reflect resource acceleration and develop a fast

up slow down (FUSD) model. The authors use this approach to more often predict

higher values than measured in testing. The impact of this design decision is that

server overload is further minimized at the expense of green computing.

Secondly, a skewness algorithm is developed to measure the distance of resource

allocation on physical servers from a desired state. Cloud computing physical servers

are categorized as hot, cold or warm. In all states, temperature is measured based on

the square sum distance from its threshold.

Hot servers are simply servers that have resources allocated over a desired threshold.

These servers are candidates for having virtual machines migrated to another physical

server. Cold servers are mostly idle servers and are candidates to decommission or to

assign additional virtual machines. Warm servers are servers that are operating in a

desired window. An ideal network would only contain warm servers.

In the model, the authors introduce a consolidation limit which is designed to limit the

amount of changes in one optimization iteration to limit the probability of oscillation

within resource allocation.

The model combines both the predictive and skewness algorithms to optimize resource

allocation in cloud computing applications. The model that uses load prediction in

its skewness algorithm has shown better performance, notably to prevent some hot

and cold zones from appearing in the cloud computing architecture.
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2.2.4 Game Theoretic Method for Resource Allocation in

Cloud Computing

Wei et al. in [56] propose a cost-time optimized algorithm for client to cloud resource

allocation. Firstly, it considers dependencies, a NP-hard problem at large scale be-

tween certain tasks and accounts for it within the heuristic. They solve this issue by

adding constraints in a binary integer programming model where each variable is a

resource requested to the cloud (where a true value is the resource assigned to the

cloud).

Secondly, the model considers computing resources (cost) requested by a user to the

cloud for a given task (users can have multiple tasks). Tasks can also benefit multiple

users which is handled in the model by dividing the cost between users. However, the

model adds a constraint to ensure that the optimization assigns all the users or none

of them.

The goal of the optimization problem is to assign the tasks to the cloud while mini-

mizing cost. However, the model can only be applied to a single cloud instance with

immobile users. It would need to be adapted to consider a joining cost to each cloud

in order to be adapted to a geographically distributed cloud or fog computing model.

It also assigns resources based on a assumed perfect budget and does not adapt its

mapping when tasks are either completed or are added to the request queue.

2.2.5 Fog Computing Allocation Using Dynamic Quality of

Service

Lai et al. [57] propose a model that allocates users to a fog node using a dynamic

set of resource demands. Specifically, they propose that the application scenario,

such as a remotely hosted video game application, can be used to tailor which de-

manded parameters can be reduced without significantly impacting user experience.

An example proposed is that the difference between streaming the graphics at 360p

to 1080p is of much larger than the user impact of streaming graphics from 1080p to

1440p. The authors propose that maximizing allocated users while diminishing QoS

can significantly improve user experience across the network. The objective function

aims to maximize the QoS value (user factored to the allocation value of the QoS

parameters) allocated to a fog node.
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The model compares three allocation schemes: theoretic, random and variable sized

vector bin packing (VSVBP). The VSVBP ”proposes an approach that maximizes the

number of allocated users”. [57] The theoretic allocation uses a linear programming

function and simulates the perfect allocation, but poorly scales to large networks.

As expected, the random allocation performs significantly lower than the VSVBP

allocation. In tested experiments, the VSVBP allocation performed close to the

theoretical bound for small or large networks (depending on the tuning) while the

random allocation was consistently significantly lower than the upper bound.

2.3 Chapter Summary

This chapter provided an overview of existing background and related literature per-

tinent to the research of this thesis. It presented past and current concepts related

to cloud, fog computing and their evolution towards additional devices. Supporting

literature presented the concepts of cloud, fog and task allocation. Many efforts are

centered around predicting and modeling demanded resources to a cloud or fog net-

work. Some propose using historic task request parameters as factors to influence

network allocation. Others modify the demanded resources to reduce the impact of

network service bottlenecks to improve network allocation.

No related work was found that proposes a real-time resource allocation model while

considering the green computing requirements of a fog computing network. Fur-

thermore, no related work was found that proposes an exact solution to determine

the resource allocation upper bound to evaluate the performance of an established

fog computing network. At the best of this thesis’ research, there is no work that

effectively proposes a solution to these problems.



Chapter 3

Formulation of the Task Allocation

Problem

In this chapter, the dynamic task allocation theoretic and heuristic models are for-

mulated. Section 3.1 describes the basic concepts used in this thesis. Section 3.2

describes the theoretic model, notation and mathematical formulation. Section 3.3

describes the heuristic model and its architecture. Finally, Section 3.4 summarizes

the chapter.

3.1 Basic Concepts

The task scheduling problem is presented when resources are requested from a fog

computing network by a series of tasks. Each task can be assigned to a fog node or

the cloud. The model calculates the increase in profit that a service provider would

make from operating a fog computing network with a cloud assignment backup rather

than a cloud only architecture. The inherent value of operating a fog computing net-

work can also include additional capabilities that a network provider can offer its

clients over a simple cloud assignment. This thesis does not provide a decision point

to network providers on whether they should operate a fog computing network. It

instead assumes that a 2-tier fog-cloud infrastructure is already deployed and pro-

vides optimal operating configuration for fog computing networks in regards to task

allocation.

Firstly, in most practical scenarios, fog networks are statically allocating their nodes

across a geographical area. As discussed in Chapter 2, previous work was made to

optimize the initial location of fog nodes [58] [59]. They largely rely on predictions

21



CHAPTER 3. FORMULATION OF THE TASK ALLOCATION PROBLEM 22

and historical data related to tasks requested [60] or use a population density coverage

model [61]. Regardless of the performance of a fog network at a given start point,

its performance in time varies since the static allocation of the network must serve a

dynamic set of tasks in real-time. The task scheduling problem assumes that the fog

network is established and functional and can not directly impact the location of the

fog network hardware. It must optimally assign tasks to the network as it stands.

The task scheduling problem aims to optimally allocate tasks over time in order to

optimize its objective function parameter. In this case, profit is optimized as it can

both evaluate performance in task allocation while considering green computing re-

quirements. In this application, the over allocation of resources could lead to a poor

performance even in cases where all tasks are assigned to the fog due to the consid-

eration of operating costs. Tasks that are not assigned to a fog node are relegated

to the cloud so the profit variable in this case indicates the improvement in profit

between both methods of allocation.

3.1.1 Overview

Figure 3.1 shows an overview of the problem being solved in this thesis. Tasks request

resources to the fog computing network and the network controller determines how

they are assigned: either by assigning it to a fog node or the cloud. Assignment to

a fog node leads to an improved experience to the user (i.e. significant improvement

in latency). Tasks can also be relegated to the cloud for processing, taking no fog

computing resources, but eliminating any performance benefits of operating in the fog.

Each fog assignment is also not equivalent. Notably, an allocation to a distant fog may

not provide any performance benefits to the end user while still taking away resources

in the fog for other tasks that could benefit from a fog assignment. Moreover, the

operational status of the fog nodes must also be considered before assigning tasks. As

can be seen, an optimal management of available resources is paramount to operating

a fog computing network efficiently.
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Figure 3.1: Fog Computing Network Overview.

In this thesis, we assume that a network controller, located in the cloud, is the decision

making authority for task assignment and fog node status change decisions. It is not a

latency sensitive function since it relies on internal processing for its decision making

and sends short messages to the various network elements (clients and fog nodes) to

communicate its decisions. For that reason, it can be located in the service provider’s

core cloud network to leverage its significant processing capability and support large

scale task allocation applications.

The network controller is the only element in the fog computing network with com-

plete state information of all active tasks and fog nodes. Therefore, the constant

availability of the network controller is critical to the operation of a fog computing

network. As with other service provider core network functions, the stability, scale

and quantity of computing resources must be carefully designed to avoid an outage.

The following considerations should be made by a service provider when provisioning

a network controller within their core network.

Communication setup delay: The location and range of the network controller can



CHAPTER 3. FORMULATION OF THE TASK ALLOCATION PROBLEM 24

introduce extra delays in the setup of latency sensitive communications, such as cases

where the network controller is far away from some fog nodes or tasks. The impact

of such delays shouldn’t impact the overall operation of the latency sensitive com-

munications since the controller is not required past the communication setup stage.

However, some applications of fog computing network rely on a rapid setup time and

have stricter performance requirements.

Network controller service overload: The processing requirements of the network con-

troller are relative to the size of the network it supports. Service providers should

consider the expected traffic volumes in their environment when provisioning com-

puting resources to a network controller. The impact of an overloaded controller

will affect service availability and overall operation of the fog computing network. A

cluster of network controllers can also be considered to improve service resilience and

limit the impact of a hardware outage by only affecting a subset of the computing

resources allocated to the controller function.

The client, generating one or more tasks, has no control over its assignment in the

fog computing network, similarly to the association of an endpoint device to a cell in

a mobile network. It is the network’s role to optimize the assignment of demanded

tasks to benefit the operation of the network as a complete entity. The details of

the communications protocol between the network controller and network elements

deemed outside of the scope of this thesis. They are assumed to already be in place.

Resource demand: Three fog node computing resources are considered at each fog

node: vCPU cores, memory and parallel tasks. Other resources can be considered

such as Graphics Processing Unit (GPU) resources, availability of requested content

and storage, but for simplicity and without loss of generality will be excluded from

this thesis. They could be included by increasing the demanded task parameters, but

are of little consequence to the problem described in this thesis. Any task allocated

or scheduled to a fog node must supply sufficient resources. Otherwise, the demand

will be sent to the cloud.

Network demand: A single network computing resource is considered: network la-

tency. The network latency of a task is related to the distance between its user and

the allocated fog node. In some cases, a given fog node may not be able to ser-

vice tasks within the maximum allowable latency. Figure 3.1 presents the maximum

latency value in milliseconds (ms) that must be supplied by a fog node.
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Edge-cluster: In this thesis, the notion of users, task edge-clusters and single request

will be considered equally. The decision factors will be purely based on network and

resource requirements. In Figure 3.1, an edge-cluster is represented by a task element

(which can represent 1 or more independent tasks).

3.1.2 Assumptions

This section describes the assumptions used in this thesis.

• The locations of fog nodes are static and predetermined. In other words, this

is an input to the model. Typical planning model/algorithms like the ones

proposed in [58] and [59] could be used to determine the initial location of fog

nodes.

• The communication protocol between the network controller and elements is

assumed to be efficient and already in place.

• Each task can be assigned to a fog node or the cloud.

• The task processing handover transition time between network supply elements

(i.e. fog nodes and the cloud) is significantly smaller than the time window size.

Therefore, it is treated as negligible.

• Tasks and fog nodes locations are assumed to be static.

• All fog nodes and tasks use a common metric for computing power per core.

• All types of tasks can be supported by any fog node if demanded resource

requirements can be supplied.

• All exact computing and network requirements are known for every task. In

the theoretical model, the task start time and duration are also known.

• The variance interval of the actual latency between a task and a fog node over

the duration of a task is negligible.

• In a practical network, the measured latency values would be supplied to the

network controller using exact latency measurement between a given task and

every fog node in the network within its communication protocol. These values
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are based on the quality of a wired or wireless signal, number of network hops

between the task and each fog node, types of network appliances and endpoint

user-agent performance. These are all challenging to simulate without real

network appliances. For this reason, this thesis uses the Cartesian distance

between the task and fog nodes to simulate a latency value obtained by the

network controller.

• For simplicity, all tasks use only memory for storage. The models can be easily

extended to consider other storage mechanisms.

• The bandwidth between a user and its edge fog node is stable and amply suffi-

cient to accomplish the requested tasks.

• Fog nodes have finite and known capacity and are never subject to an unplanned

outage. However, they can only be allocated tasks when they are powered.

• The startup and shutdown processing time of fog nodes is equal to one time win-

dow. Of note, increasing the startup and shutdown time would not increase the

complexity of the algorithm, but would make results more difficult to visualize.

This was the reason for making this design choice.

• The cloud has unlimited capacity. If a task cannot be processed by the fog, it

will be serviced by the cloud.

• In comparison to the fog nodes, the cloud is located far away from the users.

• For simplicity in performance comparison, profit is generated only when tasks

are assigned to a fog resource. Assignment of tasks to the cloud provides no

profit in this thesis. Assigning a null profit value to cloud assignment is not a

practically realistic decision since assigning tasks to cloud should also generate

revenue. However, it provides a clear indicator to cloud service providers on the

potential value of migrating to a fog network. The performance metric used in

this thesis is the relative difference in profit.

• The relationship between the controller, tasks and fog nodes are not considered

latency sensitive communications. These controller messages are out of band

from the latency sensitive communications of the fog computing network. The

messages to assign tasks to a fog node or cloud and fog node state change

messages are considered small and of no significant impact to network resources.
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3.2 Theoretical Model Description

The following notation used to model the problem formulation described in this sec-

tion. The notation is divided into 3 sections: input data sets, mathematical model

and output data sets. They are linked together as demonstrated in Figure 3.2.

Figure 3.2: Notation Flow.

3.2.1 Input Data

3.2.1.1 Sets

I = (i0(η0, ζ0, γ0, α0, ψ0, χ0), . . . , in(ηn, ζn, γn, αn, ψn, χn)) is the set of tasks requesting

service from the fog computing network. Each task requests vCPU, memory and link

bandwidth resources from the fog network and sets an upper bound limit on latency.

Each task i ∈ I is defined with the following parameters.

• ηi is the minimum number of vCPU cores requested by task i.

• ζi is the minimum memory, in Gigabytes (GB), demanded by task i.

• γi is a two-tuple value corresponding to the latitude and longitude coordinates

of the task request i.

• αi is the maximum distance, in meters to its fog node (server), demanded by i.

• ψi is the duration in number of time windows required to complete task i.

• χi is the start time of task i.

J = (j0(υ0, ε0, ν0, δ0), ..., jm(υm, εm, νm, δm)) is the set of fog nodes located in the fog

network. Each fog node can supply vCPU and memory to accomplish demanded

tasks. Each fog node j ∈ J is defined with the following parameters.
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• υj is the maximum number of vCPU cores that can be allocated to tasks by fog

node j.

• εj is the maximum memory (in GB) that can be allocated to tasks by fog node

j..

• νj is the maximum number of parallel tasks that fog node j can handle (in

units).

• δj is a two-tuple value corresponding to the latitude and longitude coordinates

of fog node j.

T ∈ (t0, t1, t2, ..tk) is the set of time windows. It contains a set of iterative values

between 0 and k where k is the number of time windows required to complete all the

processing in a simulation. It is used to simulate billing from a network provider.

Tasks that are started and stopped within a time window are being billed for the

complete time unit.

3.2.1.2 Constants

The following values are constants set by the fog computing network owner to high-

light their costs and relative revenue in the model.

• cu, constant value indicating a baseline for up-front costs (in currency units) of

changing the state of a fog node from down to up.

• cd, constant value indicating a baseline for up-front costs (in currency units) of

changing the state of a fog node from up to down.

• mn, maintenance cost (in currency units) of a fog node to remain active in

dollars per time window.

• r, relative revenue (in currency units) per time window of assigning a task to a

fog node rather than the cloud.

3.2.1.3 Decision variables

The following variable values are determined in the solution for the linear program-

ming model defined in Section 3.2.2 for a given the sets of tasks I and fog nodes

J .
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• xijt, a binary variable indicating if task i is connected to a fog node j at time

window t.

• θjt, a binary variable used to capture the state of fog node j at time window t

(1 is on and 0 is off).

• µjt, a binary variable used to capture a fog node startup at time window t (1

is starting up and 0 is not).

• φjt, a binary variable used to capture the fog node shutdown at time window t

(1 is shutting down and 0 is not).

The fog node state variables (θjt, µjt and φjt) were divided into 3 variables to allow for

the objective function to apply maintenance costs to each state change operation in

the network. These costs can be individually configured to mimic the infrastructure

costs of a service provider. It also allows the model to easily increase or decrease the

number of time windows required for powering up or down fog nodes. They also serve

to simplify the formulation of the constraints, reduces the complexity in computation

by only manipulating binary variables and facilitates result visualization.

3.2.2 Mathematical Model

As a general statement, iterations within the mathematical model will use the I

variable for the set of tasks, J for the set of fog nodes and T for the set of time

windows. The set of tasks, fog nodes and time window sizes are pre-processed during

the input data sets generation module of the model (see Figure 3.2).

Time windows are used to simulate billing from a network provider. Tasks that are

started and stopped within a time window are being billed for the complete time unit.

This is used to simplify calculations and will later allow the heuristic model to group

the allocation and de-allocation of tasks without impact to the profit bottom line.

This approximation should be negligible in cases that the time window intervals are

short relative to the average duration of tasks. The time window size values in this

thesis are set to 2 seconds, but they can be configured to an advantageous value for

a given application.
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3.2.2.1 Objective function

The objective function, shown in Equation 3.1, tries to maximize the operating profit

of the fog network relative to a cloud only architecture. It must operate on historical

data sets (i.e. all requests are known in advance) requested for assignment to the fog

computing network. Therefore, the resolution of the mathematical objective function

serves to determine the profit upper bound to evaluate the performance of heuristic

models that executes its network operations in real-time (i.e. some information of the

task set I is hidden from the heuristic model).

Equation 3.1 provides the maximization of profit by calculating the quantity of time

windows where tasks are assigned to a fog and minimizing operating costs. In the

equation below, the first term
(
r
∑

j∈J
∑

i∈I
∑

t∈T xijt

)
represents the relative rev-

enue of assigning each task to a fog node for a time window. The second term(
mn

∑
j∈J
∑

t∈T θjt

)
represents the costs of operating all active fog nodes. The third

term
(
cu
∑

j∈J
∑

t∈T µjt

)
represents the startup costs of starting up fog nodes at

each time window. Finally, the fourth term
(
cd
∑

j∈J
∑

t∈T φjt

)
represents the costs

of shutting down fog nodes.

max

(
r
∑
j∈J

∑
i∈I

∑
t∈T

xijt −mn
∑
j∈J

∑
t∈T

θjt − cu
∑
j∈J

∑
t∈T

µjt − cd
∑
j∈J

∑
t∈T

φjt

)
(3.1)

Tasks that are not assigned to a fog (i.e.
(∑

j∈J xijt = 0
)

) are sent to the cloud. In

cases where a task is sent to the cloud, the improvement in profit is 0 for task i at

time window t. This allows for any comparison tests to use 0 as the threshold to

determine whether it is profitable to operate a fog network rather than a cloud only

network.

3.2.2.2 Constraints

Following are the 12 categories of constraints used in the optimization problem. The

specific number of constraints depends on the sizes for the set of tasks I, fog nodes J

and time windows T .

Fog node status loop prevention constraints: Equation 3.2 ensures that each fog node

can only be in one of 4 valid states:
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• Powered off: θjt = 0, µjt = 0, φjt = 0

• Powered on: θjt = 1, µjt = 0, φjt = 0

• Starting up: θjt = 0, µjt = 1, φjt = 0

• Shutting down: θjt = 0, µjt = 0, φjt = 1

µjt + φjt + θjt ≤ 1 (j ∈ J , t ∈ T ) (3.2)

Fog node status verification constraints: Equation 3.3 ensures that tasks can not be

assigned to a fog node that is powered off.

∑
i∈I

xijt ≤
∑
i∈I

xijtθjt (j ∈ J , t ∈ T ) (3.3)

vCPU capacity constraints: Equation 3.4 ensures that each fog node has sufficient

vCPU capacity for its assigned tasks.

∑
i∈I

xijtηi ≤ υj (j ∈ J , t ∈ T ) (3.4)

Memory capacity constraints: Equation 3.5 ensures that each fog node has sufficient

memory capacity for its assigned tasks.

∑
i∈I

xijtζi ≤ εj (j ∈ J , t ∈ T ) (3.5)

Parallel tasks capacity constraints: Equation 3.6 ensures that each fog node has suf-

ficient parallel task capacity for its assigned tasks.

∑
i∈I

xijt ≤ φj (j ∈ J , t ∈ T ) (3.6)

Task single assignment constraints: Equation 3.7 ensures that a task can be assigned

to a maximum of 1 fog node.
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∑
j∈J

xijt ≤ 1 (i ∈ I, t ∈ T ) (3.7)

Latency verification constraints: Equation 3.8 ensures that the distance between task

and fog node does not exceed its maximum allowable distance.

xijt[(γi(x)− δj(x))2 + (γi(y)− δj(y))2] ≤ α2 (i ∈ I, j ∈ J , t ∈ T ) (3.8)

Task start time check constraints: Equation 3.9 ensures that no task is mapped to a

fog node before its start time.

∑
j∈J

xijt ≤ 0 (i ∈ I, t ≤ χi ∈ T ) (3.9)

Task stop time constraints: Equation 3.10 ensures that no task is mapped to a fog

node after it is finished.

∑
j∈J

xijt ≤ 0 (i ∈ I, t ≥ (χi + ψi) ∈ T ) (3.10)

Starting up transition constraints: Equation 3.11 calculates the required values for

all startup variables µjt.

µjt + θjt ≥ θj(t+1) (j ∈ J , t ∈ T ) (3.11)

Powered on transition constraints: Equation 3.12 calculates the required values for

all the shutdown variables value φjt.

φjt + θjt ≥ θj(t−1) (j ∈ J , t ∈ T ) (3.12)

Variable bound constraints: Equations 3.13, 3.14, 3.15 and 3.16 determine the variable

bounds for all xijt, θjt, µjt, and φjt.

xijt ∈ {0, 1} (i ∈ I, j ∈ J , t ∈ T ) (3.13)
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θjt ∈ {0, 1} (j ∈ J , t ∈ T ) (3.14)

µjt ∈ {0, 1} (j ∈ J , t ∈ T ) (3.15)

φjt ∈ {0, 1} (j ∈ J , t ∈ T ) (3.16)

3.2.3 Output Data

The output data is the calculated optimal values for the decision variable and objec-

tive function (profit) which represent the various decisions made by the theoretical

model in its optimization.

3.3 Heuristic Model Description

The theoretical model presented in Section 3.2 can only be applied in historical task

allocation applications where all values of the task set I are known. The development

of a heuristic model is a necessary step in any real-time application of the concepts

explored previously if only for the lack of knowledge of future input set parameter

values. There are also many applications that are too complex for the theoretic

model to reach a solution in polynomial time due to the number of decision variables

and constraints. This further justifies the requirement for a heuristic model to solve

problems with a large number of tasks and / or fog nodes.

Section 3.3.1 will detail the heuristic model differences from the theoretic model.

Section 3.3.2 will provide the general heuristic framework of the model.

3.3.1 Changes from Theoretical Model

3.3.1.1 Changes to Input Data

The input parameter values described in Section 3.2.1 can remain unchanged for a

real-time heuristic model. However, two input handling limitations must be added to

ensure that the set of tasks I is modified for real-time assignment.



CHAPTER 3. FORMULATION OF THE TASK ALLOCATION PROBLEM 34

Task Start Time Limitation: It ensures that each new task i is revealed to the model

as a new request based on its start time.

Task Duration Time Limitation: It ensures that the duration parameter of each task

i is revealed once a task makes a stop request to the model.

3.3.1.2 Task Start and End Time

The theoretical model constraints 3.10 and 3.11 for task start and stop time are no

longer required in the heuristic model. Tasks that have ended can safely be removed

from the input data set. The task input data set I will behave as a rolling window

containing the number of active tasks at time window t. This should assist the model

in maintaining a similar processing complexity independently of the total run time of

the model. This is considered a requirement of the heuristic model since it is designed

to provide real-time task assignment.

3.3.1.3 Fog Node State Changes

Unlike the theoretical model, the heuristic model must make a determination on

active task assignment at every t ∈ T . When the theoretical model makes an assign-

ment decision, it can not be modified at a later time window. The heuristic model

only impacts the current time window in its operations. This is of significant impor-

tance to achieving good results since the fog node start-up and shut-down decisions

are only made from the state of the fog computing network at time window t and

its past trends. This creates a larger duality between the green computing and ser-

vice provision requirements. A significant consideration must be made to determine

task request trends within the heuristic to account to configure the decision point

parameters for fog node state changes to optimize profit values.

3.3.2 Implementation Framework

A general overview of the heuristic model framework is shown in Figure 3.3. It is

designed to perform task allocation and de-allocation determinations at every time

window as required in a real-time allocation application. During operation, the frame-

work accounts for it by looping the allocation group and de-allocation group processes

over the total number of time windows in its operating environment. These groups
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include all tasks that must be processed within a time window t. All processes within

the loop must be completed under the time window size to ensure proper operation.

Figure 3.3: Heuristic Model General Framework Flow

The heuristic algorithm life-cycle must be finite (either actual or artificial) to enable

a comparison with the theoretic model to evaluate performance. In a real world

application of this model, the run time of the algorithm would be very long. In

those cases, the benefits of having a larger historical knowledge of the operating

environment should provide a performance improvement to the heuristic model. The

heuristic model will use various parameter configuration values to improve its decision

making.

The following paragraphs will detail the process groups shown in the heuristic frame-

work. The figures in this section (3.3, 3.4, 3.5 and 3.6) are categorized in 2 groups:

the fixed functions (coloured in green) do not contain configurable values while the

tailored functions (coloured in orange) contain values that can be customized to im-

prove performance. All algorithms implemented for tailored functions will be detailed

in their respective sections. They use the same mathematical notation as described in
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Section 3.2 including the modifications explained in Section 3.3.1. Any local variables

used in the algorithm will be defined in their respective sections.

3.3.2.1 De-allocation Group Process

The de-allocation of tasks is the simplest process in the heuristic model. As shown

in Figure 3.4, there are 2 primary functions in the process: the creation of the de-

allocation group and its removal from its assigned allocation.

Figure 3.4: Heuristic De-allocation Group Process Framework

De-allocation Group Creation

The de-allocation group creation process lists the tasks that are tagged for de-

allocation in the current time window. Algorithm 1 adds any completed tasks to

the de-allocation data set D. The heuristic model will only populate the duration

parameter ψi if a completed request is made to the fog computing network.

Algorithm 1: Add Completed Tasks to the De-Allocation Group

1 for i ∈ I do

2 if ψi ∃ /* When task i is completed */

3 then

4 D ← i /* Add task i to the de-allocation set */

5 end

6 end

Tasks that have completed previously are obviously included in the de-allocation

group since they offer no benefit to being assigned to the fog computing network.

However, task completion can be predicted and used for advance de-allocation. This

can be notably beneficial in scenarios where operating costs could be reduced to out-

weigh the revenue generation of having it mapped to the fog node. The performance

of advance de-allocation is dependent on the predictability of task duration and its

benefits are also based on available resources in the fog computing network.
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Algorithm 2 will add a negative weight to its assignment prioritization for tasks that

are predicted to complete. The following local variables are used:

• PredDeallocWeight is the weight that the de-allocation algorithm will have on

the allocation prioritization as configured. It is likely a high value since it is

almost always valuable to assign nearly completed tasks to the cloud if there is

a shortage of fog resources.

• PredDur is the duration threshold of tasks to trigger the preemptive de-

prioritization of tasks as configured. This thesis configured the PredDur vari-

able to be equal to the average of all completed tasks in a simulation. This

decision is based on the network generation methodology used in Chapter 4

where tasks are divided into n categories all averaging the same duration. How-

ever, there are many other methods to determine the value for this variable

and all depend on the statistical patterns of the task allocation used in network

simulations.

• wi is the prioritization weight vector with its indices corresponding to each task

i ∈ I. Once the prioritization processes complete, the vector will be ordered in

descending order (i.e. higher weight tasks will be processed first).

Algorithm 2: Preemptive De-Prioritization of Tasks

1 for i ∈ I do

2 wi ← 0

/* Comparison of the current duration of task i with its

expected duration */

3 if PredDur − (t− χi) ≥ 0 then

/* Adjust the prioritization weight value */

4 wi ← wi − PredDeallocWeight

5 end

6 end

Remove De-Allocated Tasks

The removal from its assigned fog node is a process that simply removes tasks from

the active task set to the completed task set.
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3.3.2.2 Allocation Group Process

The allocation of tasks is a complex process in the heuristic model. As shown in

Figure 3.5, there are 4 sequential functions in the process: allocation group creation,

allocation group prioritization, allocation heuristics and their assignment to the net-

work.

Figure 3.5: Heuristic Allocation Group Process Framework

Allocation Group Creation

Contrary to the de-allocation group process, the creation of the allocation group is a

trivial process. Any task in the input data set I with a χi ≤ t is added to the allocation

group. Fortunately, the de-allocation group process removes any completed task from

the input data set I removing any requirement for the allocation group process to

track task completion.

The heuristic model generates a new allocation group at each time window t. The

heuristic model will reassign all tasks at every time window and uses its prioritization

mechanic to influence the network to reassign tasks where appropriate.

Allocation Group Prioritization

The allocation group prioritization function is used to establish the processing order

within the allocation group. This is an important preliminary step to the heuristic

since task processing order can impact allocation performance. The allocation group

tasks include any tasks that have a χi ≤ t and is built by including any task i ∈ I
that satisfy the constraint. A complementary weight data set W is added with values

for every wi for all i ∈ I.

The allocation group is ordered based on a weight parameter included in each of its

member. Algorithm 2 already adds a negative weight value to tasks that are nearly

completed and should first be relegated to the cloud in cases of insufficient resources

within the fog computing network. Algorithm 3 adds additional verification mechanics

to better prioritize the allocation group.
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Firstly, lines 2 to 11 are used as a latency verification to determine how many active

fog nodes can service each task. They are ordered and weighted in ascending order

with the tasks with fewer options prioritized higher. The number of available fog

nodes weight parameter is a configurable value for the heuristic model.

Secondly, line 12 weighs the tasks based on their age, prioritizing tasks that are newer

for assignment to the network. The age weight parameter is a configurable value for

the heuristic model.

Algorithm 3: Allocation Group Prioritization

1 for i ∈ I /* Loop for the whole active task set */

2 do

3 NbFnAvail ← 0

4 for j ∈ J /* Loop for all powered on fog nodes */

5 do

6 if θj ≥ 1 then

/* Latency calculation between task i and fog node j

*/

7 Latency =
√

(γi(x)− δj(x))2 + (γi(y)− δj(y))2

/* Increment the candidate fog node counter if latency

is below the task demand */

8 if Latency ≤ αi then

9 NbFnAvail + +

10 end

11 end

12 end

/* Adjust the weight based on number of candidate fog nodes

*/

13 wi ← wi −NbFnAvail.NbFnWeight

/* Adjust the weight based on the age of task i */

14 wi ← wi − TaskAgeWeight(t− χi)

15 end

The weight factors used in Algorithms 2 and 3 are configured to optimize performance

based on how close the heuristic model performs compared to the upper bound for

various values. This is done by measuring past time window assignments to the
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theoretical model (exact upper bound) or by using a heuristic algorithm to determine

optimal weight factor values of past task assignments (estimated upper bound). The

heuristic algorithms tested are identical to the task assignment heuristics that will be

described in the following paragraphs.

Allocation Heuristic

The allocation heuristic algorithm is used to assign tasks to the fog computing net-

work. Each task in the allocation group is selected in its prioritized order and allocated

to the fog computing network using a best fit heuristic where the fog node in range

with the least available resources is selected. This algorithm was chosen because it

required little processing time and provided identical results to the theoretic model in

nearly all tests. The best fit heuristic matched the theoretical upper bound in most

tests when removing other factors from the model such as fog node status changes.

Chapter 4 will provide details of those results.

Numerous other methods such as: Tabu Search [62], Swarm Intelligence [63], Sim-

ulated Annealing [64], Genetic Algorithms [65], Artificial Neural Networks [66] and

Support Vector Machines [67] were considered. However, the design decision of having

a task prioritization operation simplified the type of operations needed and had no

impact to the resulting profit. Essentially, the task prioritization algorithm ensures

that tasks are ordered optimally trivializing the actual allocation heuristic. For the

above reasons, these methods were not chosen.

Allocation Group Assignment

Finally, the allocation group assignment will use the allocation heuristic output and

perform the task assignment on the fog computing network and update its remaining

resources.

3.3.2.3 Fog Node State Change Process

The fog node state change process is the set of functions used to modify the state of fog

nodes in the heuristic model. It is executed as the final process in each time window to

allow the model to include the current time window in its decision process. Fog nodes

that are starting up in time window t will only be available to the fog network in time

window t + 1. Any status changes that could benefit the current time window are

unfortunately not possible based on that constraint. Figure 3.6 shows its 2 functions:

the fog node state change identification heuristic and applying fog node state changes.
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Figure 3.6: Heuristic Fog Node State Change Process Framework

Fog Node State Change Heuristic

The fog node state change heuristic is a complex process and relies to varying levels

on the correlation of historic to future tasks based on its configuration. The net-

work status change frequency is determined by the level of fog node coverage in a

geographical area coupled with predicted network demand.

Every status change algorithm relies on the heuristic models ability to predict task

demand and detecting where network coverage is not optimal. To simulate future

tasks, the status change heuristics generate a set of simulated tasks to artificially

assign to the fog network using the heuristic assignment group process. The number

of tasks in this set is configured in the model. The higher the number of simulated

tasks, the higher the processing time, but the closer its statistical distribution will

match tasks seen by the heuristic model. Simulated tasks are generated based on

a bootstrap of historic tasks observed by the network. The selected task is slightly

modified using a normally distributed random variable to skew the parameter values.

The random variable uses µ as the bootstrap parameter value and σ as the standard

deviation of each parameter based on all historic tasks.

Algorithm 4 provides an overview of the operations needed to initiate the shutdown

of a fog node. In summary, it aims to determine situations where the operating cost

is higher than the revenue of its critical tasks and predicted demand for future tasks

that could only be serviced by the candidate fog node. Tasks are generated from the

active and completed task sets to simulate future tasks.

The ShutThreshold is a configured value to determine the minimum probability of

a task being assigned to the fog node j before it is believed to be valuable to power

it off. It also requires the following local variables that are calculated based on past

task demand on the fog computing network.

• α: Average minimum latency demand of historic tasks.
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• η: Average vCPU demand of historic tasks.

• ζ: Average memory demand of historic tasks.

• i: Average tasks per time window based demand of historic tasks.
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Algorithm 4: Fog Node Shutdown Algorithm

/* Calculate the quantity of time windows to simulate */

1 N ≥ cu+ cd

mn
2 for j ∈ J where θj ≥ 1 do

3 Perform the artificial reassignment of any task assigned to j to another

fog node using the temporary variable x∗ijt.

/* Verify if the artificial reassignment is profitable */

4 if (Profit− Profit∗) ≤ mn then

5 for j∗ ∈ J where (j∗ 6= j) do

6 if θj∗ ≥ 1 then

/* Check the fog node j* available resource capacity

*/

7 AvailableCPU = υjt −
∑I

i=0 xijt.ηi

8 AvailableMem = εjt −
∑I

i=0 xijt.ζi

9 AvailableTasks = νjt −
∑I

i=0 xijt

/* Determine the bottleneck resource for each fog

node j* expressed as the capacity in number of

supported simulated tasks */

10 AvailableResj =

min(
AvailableCPU

η
,
AvailableMem

ζ
,AvailableTasks)

11 end

12 Assign all simulated tasks for N future time windows to xijt

13 Calculate the probability (Pshut) where keeping fog node j powered

on will generate more profit than with it shutdown for N time

windows using simulated tasks and the AvailableRes values.

14 end

15 end

// Verify the shutdown probability against the threshold

16 if Pshut ≥ ShutThreshold then

17 φjt = 1

18 end

19 end
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The algorithm begins by attempting to temporarily reassign any real and simulated

tasks assigned to each fog node by running the allocation algorithm to determine its

critical tasks. Situations where the revenue generated by a fog node critical tasks

is smaller than the maintenance cost is the trigger used to determine candidate fog

nodes for shutdown. The quantity of future time windows to consider is determined

by making a calculation point of equality between the number of time windows and

its operating cost mn and the shutdown cd and start-up costs cu.

For every candidate fog node, the algorithm iterates over neighboring fog nodes with

an overlap in geographic coverage area based on α. It determines their limiting

resource and translates it into a number of tasks that could be serviced by the other

fog nodes. The algorithm also calculates the probability of those neighboring fog

nodes to become above capacity in future time windows using simulated tasks. This

design is made to ensure that a minimum level of available resources are kept in the

fog network before shutting down a candidate.

The final probability value is compared with the ShutThreshold to determine whether

it should be powered off.

Algorithm 5 shows the opposing process to determine if powered off fog nodes should

be started to enhance the network. Similarly to the previous algorithm, it seeks

to determine the probability that a task is requested in future time window that

could not be serviced by the current fog node coverage. The resulting probability

is compared with a configured threshold to determine whether a fog node should be

started.
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Algorithm 5: Fog Node Startup Algorithm

/* Calculate the quantity of time windows to simulate */

1 N ≥ cu− r
mn

2 for j ∈ J where θjt ≤ 0 do

3 Perform the artificial reassignment of any task assigned to j to another

fog node using the temporary variable x∗ijt.

4 for j∗ ∈ J where θ∗jt ≥ 1 do

/* Check the fog node j* available resource capacity */

5 AvailableCPU = υjt −
∑I

i=0 xijt.ηi

6 AvailableMem = εjt −
∑I

i=0 xijt.ζi

7 AvailableTasks = νjt −
∑I

i=0 xijt

/* Determine the bottleneck resource for each fog node j*

expressed as the capacity in number of supported

simulated tasks */

8 AvailableResj =

min(
AvailableCPU

η
,
AvailableMem

ζ
,AvailableTasks)

9 end

10 Assign all simulated tasks for N future time windows to xijt

11 Calculate the probability (Pstart) where keeping fog node j powered off

will generate more profit than with it powered on for N time windows

using simulated tasks and the AvailableRes values.

/* Verify the shutdown probability against the threshold */

12 if Pstart ≥ StartThreshold then

13 µjt = 1

14 end

15 end

Fog Node State Change

The application of the status change uses the results φjt and µjt of the previous

functions to determine the status change operations to complete.
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3.3.2.4 Calculate Profit Process

The calculate profit process implements the same objective function as the theoretic

model. The heuristic model simply tracks its task assignment and fog node status

operations during each time window and uses this information to calculate the profit

using Equation 3.1.

3.4 Chapter Summary

In this chapter, we first presented a mathematical formulation of the task allocation

problem in Section 3.2. As discussed, the mathematical model can only be applied

to task allocation problems with complete information (i.e. historic problems) and

uses static input sets to ensure the maximization of the objective function. Then, a

heuristic model was presented in Section 3.3 for the more realistic use case of real-time

task allocation using dynamic input sets notably for the task demand and duration

evolving over time windows. In future experiments, the theoretical model will serve

as a benchmark to determine the upper bound of a task allocation problem. It will be

used to evaluate the performance of the heuristic model and its tuning parameters.



Chapter 4

Results and Analysis

This chapter contains the results and analysis of each task assignment model described

in Chapter 3. Notably, this chapter will present the results obtained in the testing of

each model using various sets of tasks and fog nodes.

Firstly, Section 4.1 will present the simulated environment used to generate the var-

ious results of this chapter. Secondly, Section 4.2 validates each constraint of the

theoretical model implementation described in Section 3.2.2.2 and characterizes the

computing time required to solve networks of various sizes. Thirdly, Section 4.3 pro-

vides the results and testing used to determine the optimal values for the heuristic

model parameters described in Chapter 3. Fourthly, Section 4.4 provides results and

analysis of the performance of the heuristic model. Finally, Section 4.5 summarizes

the chapter.

4.1 Simulation Environment

The simulation environment used in all generation of the results in this chapter use

a Unix Operating System with the following processing specifications:

• Processor: 2.66 GHz Intel Core i7

• Memory: 8 GB 1067 MHz DDR3

• Storage: 256 GB SSD

The theoretical model was implemented in CPLEX and run using the IBM iLog

CPLEX Optimization Studio version 12.10 (OPL) command line interface (CLI).

47
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The CLI performed notably better than the graphical user interface (GUI) in terms

of processing speed and ability to automate the execution of the theoretical model.

The heuristic model was developed using Matlab 2019b. The results from the al-

gorithm populate text files that are written to disk as they are generated in the

algorithm. Using this environment, service providers could use the text file outputs

of the heuristic model as inputs to a fog computing network controller server.

Figure 4.1 shows an overview of the main modules implemented that can directly

impact the results presented in this chapter.

• The network generation module is used to create the sets of tasks and fog nodes

to process the theoretic and heuristic models to achieve results. The methods

used to create the various networks are detailed in their respective subsections.

• The implementation of the theoretic model presented in Section 3.2 solved with

CPLEX. It provides the theoretical upper bound profit to any generated net-

work. Larger networks will require additional processing time since the resulting

optimization problem size grows exponentially with the network size.

• The heuristic model has 2 main modules that can impact results. The complete

design details of the heuristic model are presented in Section 3.3.

– The task order manipulation module is composed of the allocation and de-

allocation group processes. It determines the priority of each active task

to submit them in sequence to a best fit assignment heuristic.

– The fog node status manipulation module uses various techniques to mod-

ify the states of each fog node in the network to best service the current

task load.
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Figure 4.1: Overview of the Theoretic and Heuristic Modules

4.2 Validation of the Theoretical Model

The validation of the theoretic model presented in Section 3.2 was accomplished by

creating a test environment that trivialized all constraints except for one. This allows

for the theoretical model to artificially remove all but one type of constraints in the

problem, making it trivial to determine if the model operates as expected.

Table 4.1 below provides initial values for the revenue and maintenance costs of

the optimization function. These will be used for each validation described below

unless explicitly specified otherwise. They are used to calculate the solution to the

optimization function as described in Section 3.2. All other values needed to build

the network are described in their respective subsection. The time window size is not

a necessary parameter to generate a result in this model because only task density per

time window will impact task assignment. The size of a time window is useful in a

practical scenario since it determines the maximum processing time of the algorithm

for each time window. However, this will only be a factor in Sections 4.3 and 4.4

when the heuristic model is considered. Therefore, for simplicity, time windows were

normalized to be incremental in this section.
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Table 4.1: Fixed Cost and Revenue Values (in currency units)

Parameter Value

Maintenance costs (mn) 0.1

Startup costs (cu) 0.5

Shutdown costs (cd) 0.2

Revenue (r) 1

The theoretical model runs until all elements of the task set I have completed. As

illustrated in Table 4.1, the cost of shutting down a fog node is double its maintenance

cost. Therefore, a fog node should only be shutdown in cases where it is not in use

for at least 2 time windows. Many validations presented in the following sections will

present that fog nodes remain powered on during the last time window even when no

tasks are assigned to it. This behaviour is consistent with the theoretically optimal

solution to the optimization problem.

The following subsections detail the series of tests completed to validate each of

the theoretical model constraint groups. The tests were designed to trivialize many

constraints within the model to simplify the visualization of its behaviour across

different input types. The combination of these tests are designed to ensure that the

model reliably operates to provide an optimal solution to the problem described in

Chapter 3. The final subsection offers an overview of the theoretical model complexity,

notably in terms of its processing time. For this section, all detailed results are

included in Appendix A.

4.2.1 Fog Nodes Status Change Validation

Equation 3.2 from Section 3.2 ensures that fog nodes can only be in a valid state as

described in that section. The objective of this validation is to ensure that fog nodes

can be set in each of the fog node states and that there are no scenarios where a fog

node is in an invalid state.

For this validation, elements in the set of tasks I are co-located and the start time

and duration parameters ensure that the tasks do not overlap. It would be possible

to have some tasks overlap, but it would complicate the test case without providing
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any advantages to better validate the constraints. Table 4.2 presents the set of tasks

used in this validation. Of note, a task duration of 1 as shown in Table 4.2 indicates

that the task starts and ends in the same time window.

Table 4.2: Constraint 1 Validation Task Table

i Start time χi Location γi Max latency αi vCPU ηi Memory ζi Duration ψi

(windows) (meters) (cores) (GB) (windows)

1 0 (0, 0) 40 1 1 1

2 1 (0, 0) 15 1 1 1

3 2 (0, 0) 15 1 1 1

4 3 (0, 0) 40 1 1 1

5 4 (0, 0) 30 1 1 1

The fog node set J for this validation is a single element that is geographically within

range of all tasks and with sufficient resource supply to support any of the tasks.

The starting state of the fog node is set to 0 (powered off) in order to validate the

transition from a powered off fog node to a powered on fog node. Table 4.3 shows

the fog node set J used in this validation.

Table 4.3: Constraint 1 Validation Fog Node Table

j Location δj vCPU νj Memory υj Parallel tasks εj State

(cores) (GB) (units)

1 (0, 0) 3 2 4 0

The result of the testing show that time window 0 is used to set the startup variable

µ10 to 1 for the only fog node in the network. Since the fog node is in a startup state,

no tasks can be assigned to it. Task 1 variable values (x1jt) are never assigned to a

fog node. Therefore, it is assigned to the cloud by having a value of 0 for all j ∈ x1jt.
All other tasks are assigned to fog node 1 since it is in a powered on state for all other

time windows.

If task 1 was requested at another time window, it would have been assigned to a

fog node rather than the cloud. In fact, the theoretical model can perfectly predict

whether a fog node is required at a later time window and run its startup state in

anticipation. The only exception is for tasks that are requested at time window 0
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where the model uses 0 as an absolute starting point (i.e. there are no time windows

considered before 0).

4.2.2 Tasks are Only Assigned to Powered On Fog Nodes

Equation 3.3 ensures that tasks can only be assigned to a fog node that is powered

on. The objective of this validation is to ensure that a fog node is first powered on

before being assigned one or more tasks.

For this validation, elements in the set of tasks I are all located at a large distance

from on another with an identical start time and duration. The duration of 2 time

windows for each task should allow for tasks to be assigned to a fog node (if possible)

in time window 1, but not 0. Table 4.4 shows the set of tasks I used for the validation.

Table 4.4: Constraint 2 Validation Task Table

i Start time χi Location γi Max latency αi vCPU ηi Memory ζi Duration ψi

(windows) (meters) (cores) (GB) (windows)

1 0 (1000, 0) 20 1 1 2

2 0 (2000, 0) 20 1 1 2

3 0 (3000, 0) 15 1 1 2

4 0 (4000, 0) 20 1 1 2

5 0 (5000, 0) 30 1 1 2

The fog node set J for this validation contains the same number of elements as the

task set I. Each fog node has exactly 1 element that is located within range of all

tasks and with sufficient resource supply to support any of the tasks. The starting

state of the fog node is set to 0 (powered off) in order to validate the transition from

a powered off fog node to a powered on fog node. Table 4.5 shows the fog node set J

used in this validation.
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Table 4.5: Constraint 2 Validation Fog Node Table

j Location δj vCPU νj Memory υj Parallel tasks εj State

(cores) (GB) (units)

1 (1000, 0) 3 2 4 0

2 (2000, 0) 3 2 4 0

3 (3000, 0) 3 2 4 0

4 (4000, 0) 3 2 4 0

5 (5000, 0) 3 2 4 0

As designed, time window 0 is used to set each startup variable µj0 to 1 for every

fog node element in the set J . Although each fog node has sufficient resources to

support up to 2 tasks, the task maximum latency parameter ensures that each task

is paired with a different fog node. For this reason, the theoretic model powers up all

fog nodes to support the demand. Since the fog node is in a startup state, no tasks

can be assigned to it and they are sent serviced by the cloud. However, every task

element from the set I is assigned to a fog nodes for time window 1 since every fog

node is in a powered on state.

4.2.3 Fog Nodes Capacity Validation

This section will cover the testing used to validate the fog node resource capacity

constraints: vCPU, memory and parallel tasks. The validation of these constraints

behave along the same logic and don’t require individual validations in this thesis.

Each resource capacity constraint was validated in the testing to ensure that the

implementation functioned as intended.

Equations 3.4, 3.5 and 3.6 ensure that tasks can only be assigned to a fog node

with sufficient supply of each resource supplied by a fog node. The objective of this

validation is to ensure that fog node resource capacity is sufficient to provide service

to a maximum number of tasks.

For this validation, elements in the set of tasks I are all co-located to simulate multiple

parallel task requests. Similarly to previous tests, the duration is set to 2 time

windows where we expect the first time slot to be used to power on the fog node(s)
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and the second time slot to assign the tasks where optimal. Table 4.6 shows the set

of tasks used for this validation.

Table 4.6: Constraints 3, 4 and 5 Validation Task Table

i Start time χi Location γi Max latency αi vCPU ηi Memory ζi Duration ψi

(windows) (meters) (cores) (GB) (windows)

1 0 (0, 0) 30 1 1 2

2 0 (0, 0) 40 1 1 2

3 0 (0, 0) 30 1 1 2

4 0 (0, 0) 30 1 1 2

5 0 (0, 0) 30 1 1 2

The fog node set J for this validation contains only one fog node that is co-located

with all the tasks shown in Table 4.6. The supply resources for the validated resources

to a bottleneck value while setting large relative values (99,999) to the other resources.

The quantity of the limited resource is less than would be required to supply all the

elements in set of tasks shown in Table 4.6. Table 4.7 shows the set of fog nodes used

for this validation the vCPU resource. A simple permutation of values can be used

to validate the memory and parallel task resources.

Table 4.7: Constraint 3 Validation Fog Node Table

j Location δj vCPU νj Memory υj Parallel tasks εj State

(cores) (GB) (units)

1 (0, 0) 99,999 2 99,999 0

The results show that time window 0 is used to set the startup variable µ10 to 1 for

the only fog node in the set J . No tasks can be assigned to it since it is in the startup

state and is serviced by the cloud. In time window 1, only 2 tasks are assigned to

the fog node since its vCPU supply can not support additional tasks. The algorithm

arbitrarily chooses tasks 1 and 2 because all tasks have the same resource demand and

profit. However, any task combination could be chosen in this example to generate

the same solution to the optimization function.
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4.2.4 Tasks Assigned to a Single Fog Node or Cloud

Equation 3.7 ensures that tasks can only be assigned to a single fog node or the cloud.

The objective of the test is to ensure that there are multiple candidate fog nodes for

each task and ensures that the algorithm only chooses a single fog node.

For this validation, the set of tasks I contains only a single element. Table 4.8 shows

the set of tasks used for this validation.

Table 4.8: Constraint 6 Validation Task Table

i Start time χi Location γi Max latency αi vCPU ηi Memory ζi Duration ψi

(windows) (meters) (cores) (GB) (windows)

1 0 (0, 0) 20 1 1 2

The fog node set J for this validation contains multiple identical fog nodes that can

support the single task contained in the set I. Table 4.9 shows the fog node set J

used in this validation.

Table 4.9: Constraint 6 Validation Fog Node Table

j Location δj vCPU νj Memory υj Parallel tasks εj State

(cores) (GB) (units)

1 (0, 0) 3 2 4 0

2 (0, 0) 3 2 4 0

3 (0, 0) 3 2 4 0

4 (0, 0) 3 2 4 0

5 (0, 0) 3 2 4 0

The results show that time window 0 is used to set the startup variable µj0 to 1

for only a single fog node element in the set J since only one will be used to assign

the task. The task is then assigned to that fog node at time window 1. All other

fog nodes can remain powered off since moving them to another state would not be

optimal. The theoretic model chose fog node 1 from the set J , but any other element

would provide the same result to the optimization function.
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4.2.5 Task Maximum Latency Validation

Equation 3.8 ensures that tasks can only be assigned to a fog node that can provide

a latency (distance) under the maximum demanded value. The objective of this test

is to set a fog node just outside of the maximum latency requirement of a task and

ensure that the algorithm assigns it to the cloud.

For this validation, the set of tasks I contains only a single element. Table 4.10 shows

the task set used for the validation. The location of the task is set to values than can

be trivially derived when calculating distance from elements in the fog node set J .

Table 4.10: Constraint 7 Validation Task Table

i Start time χi Location γi Max latency αi vCPU ηi Memory ζi Duration ψi

(windows) (meters) (cores) (GB) (windows)

1 0 (1.1, 0) 1 1 1 2

The fog node set J for this validation contains a single element located at the origin.

As expected, the distance between it and the task shown in Table 4.10 will be larger

than the maximum latency value of the task in Table 4.10. Table 4.11 shows the fog

node set J used in this validation.

Table 4.11: Constraint 7 Validation Fog Node Table

j Location δj vCPU νj Memory υj Parallel tasks εj State

(cores) (GB) (units)

1 (0, 0) 3 2 4 0

The results show that all variables remain set to 0 since assigning the task to the

cloud is the only valid option.

4.2.6 Task Start and Stop Time Constraints Validation

Equation 3.9 ensures that tasks can’t be assigned to a fog node before its start time

window. The objective of this test is to start a task at a specific time window and

ensure that all values of the variable xijt where t is smaller than the start time window

of each task.
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For this validation, the set of tasks I contains only a single element. Table 4.12 shows

the task set used for the validation. The start time window of the task is a value of

3 to ensure that the algorithm doesn’t begin operations prematurely.

Table 4.12: Constraint 8 Validation Task Table

i Start time χi Location γi Max latency αi vCPU ηi Memory ζi Duration ψi

(windows) (meters) (cores) (GB) (windows)

1 3 (0, 0) 1 1 1 2

The fog node set J is identical to Section 4.2.5. Its only requirement is that at least

one element of the fog node set J must be able to serve the task element shown in

Table 4.12.

The results show that time windows 0 and 1 have no operations on the fog node.

Time window 2 starts the fog node and is assigned for time windows 3 and 4. The

values of x11t are only set to 1 for t = 3, 4 and are 0 for all other values.

Equation 3.10 ensures that tasks can’t be assigned to a fog node after its start time

window plus its duration. This use case was proven in every previous validation since

the final time window in every case does not have a task assigned because it has

ended. Notably, Section 4.2.1 shows a clear example with 10 tasks.

4.2.7 Start-up Cost Constraint Validation

Equation 3.11 ensures that start-up costs are considered before powering on a fog

node. The objective of the validation is to increase the startup cost value cu to make

it not optimal to use a fog node over the cloud for specific tasks.

For this validation, the set of tasks I only have a single element with no notable

special parameters. Table 4.8 shows the task set used in this validation. However,

the startup cost value cu was increased to 2 from 0.5.

The fog node set J for this validation contains a single element with no notable special

parameters. Table 4.11 shows the fog node set J used in this validation.
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The results show that the algorithm detects that the startup costs are higher than

the generated revenue and does not startup the fog node and assigns the task to the

cloud.

4.2.8 Shutdown Cost Constraint Validation

Similarly to Section 4.2.7, this validation uses the same values for the task set I

(Table 4.8) and the fog node set J (Table 4.11). However, the startup cost value is

set to the default value (0.5), but the maintenance cost is increased to 0.3 from 0.1.

This change ensures that a fog node will be turned off once the task is completed

since the shutdown cost cd is smaller than the maintenance cost.

The results show that time window 0 is used to set the startup variable µ10 to 1 for

the only fog node element in the set J . Since the fog node is in a startup state, no

tasks can be assigned to it. However, the only task element from the task set I is

assigned to a fog node in time window 1 since every fog node is in a powered on state.

Finally, in time window 2, the fog node is shutdown due to the cost value changes

proving that the constraint works as intended in the algorithm.

4.2.9 Theoretical Model Complexity

Table 4.13 shows the profit and processing time statistics in seconds of 5 different

tests for each network size. Two types of theoretical models were tested: a full model

with a 5,000 second time limit and a time limited (TL) theoretical model with a 180

second time cap. Some theoretical model testing initially ran for over 50,000 seconds

for some tests. These tests all iterated through branches of the optimization tree with

identical profit values after approximately 1 hour of computation. Every test with

a processing time over 5,000 seconds showed identical behaviour and is believed to

present the upper bound profit with a high degree of confidence.

The full model’s primary objective is to try and obtain an optimal solution by letting

the solver process for a significant time period if needed. The TL model is used to

illustrate that most of the processing time is used to prove that the solution is optimal

well before CPLEX completes its process. If the time limit is reached, CPLEX will

simply return the best solution found so far. The profit values for the TL model are

relative to the full theoretical model for simplicity (Profit(TL)/Profit(Full)). As



CHAPTER 4. RESULTS AND ANALYSIS 59

a result, a relative profit of 1 means that the optimal solution was also found by the

TL model. A relative profit of 0 indicates that a null solution was found by the solver

when processing the TL model. This is typically indicative that the solver reached

the time limit before an initial solution was found.

The minimum, typical (median) and maximum values are provided for each network

size. The typical statistic uses the median rather than the average because the span

of values is large and the median more clearly represents that behaviour. The full

and TL models were processed in series for all tests using identical input data. Some

simulations (e.g. |I| = 46 and |J | = 5) show slight fluctuations between the pro-

cessing times in both models. These are tied to the rounding errors and processing

performance incertitude of the simulation computer. An overview of the results are

shown in Table 4.13. The full results are presented in Table A.1 from Appendix A.
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Table 4.13: Theoretic Model Average Processing Time Results (in seconds)

|I| |J |
Theoretical Model TL Theoretical Model (180s)

Profit (units) Time (s) Relative Profit Time (s)

Min Typ Max Min Typ Max Min Typ Max Min Typ Max

6 1 3.0 7.2 9.0 0.1 0.1 0.1 1.0 1.0 1.0 0.1 0.1 0.1

5 10.2 12.1 14.0 0.4 1.2 3.8 1.0 1.0 1.0 0.4 1.2 3.8

9 10.5 12.2 14.1 0.7 1.5 2.7 1.0 1.0 1.0 0.6 1.5 2.7

13 12.1 13.4 14.0 2.4 2.7 3.4 1.0 1.0 1.0 1.9 2.5 3.2

17 12.1 13.3 14.0 2.7 5.1 7.9 1.0 1.0 1.0 2.7 5.0 7.8

21 12.1 13.4 15.9 4.4 6.6 11.1 1.0 1.0 1.0 4.5 6.5 10.4

16 1 7.5 12.7 22.6 0.1 0.1 0.2 1.0 1.0 1.0 0.1 0.1 0.2

5 34.4 38.0 42.0 2.0 4.0 7.1 1.0 1.0 1.0 2.0 4.0 7.1

9 39.1 40.9 42.2 7.9 12.5 20.6 1.0 1.0 1.0 8.0 12.5 20.4

13 39.8 41.5 44.1 14.6 39.0 79.1 1.0 1.0 1.0 16.3 40.2 83.3

17 39.0 41.2 43.1 21.1 59.0 185.6 1.0 1.0 1.0 21.2 58.5 180.0

21 38.0 41.5 44.1 27.8 1486.4 5000.1 1.0 1.0 1.0 27.8 107.5 180.0

26 1 12.0 20.7 39.0 0.2 0.2 0.3 1.0 1.0 1.0 0.2 0.2 0.3

5 59.6 65.2 71.0 5.6 8.2 10.1 1.0 1.0 1.0 5.7 8.3 10.3

9 66.4 69.1 70.5 10.3 19.8 26.3 1.0 1.0 1.0 10.4 19.8 26.0

13 66.2 70.1 74.7 42.7 1360.8 5000.1 1.0 1.0 1.0 45.5 116.9 180.0

17 67.9 69.7 71.9 101.7 3071.5 5005.1 1.0 1.0 1.0 102.3 164.5 180.1

21 66.9 70.3 73.9 415.0 3286.5 5000.1 0.0 0.8 1.0 180.0 180.1 180.2

36 1 15.6 28.4 52.5 0.3 0.4 0.4 1.0 1.0 1.0 0.3 0.3 0.4

5 95.4 96.6 98.1 5.0 7.8 11.1 1.0 1.0 1.0 5.0 7.8 11.1

9 96.1 97.5 99.8 69.6 1104.8 5000.1 1.0 1.0 1.0 63.4 121.7 180.1

13 92.4 98.2 102.7 99.3 886.5 2183.5 1.0 1.0 1.0 99.0 145.6 180.0

17 95.0 96.7 98.3 163.8 2161.4 5009.3 0.0 0.8 1.0 165.9 177.2 180.1

21 94.1 99.1 104.1 334.6 4067.0 5000.2 0.0 0.0 0.0 180.0 180.0 180.0

46 1 21.0 32.1 73.8 0.3 0.3 0.5 1.0 1.0 1.0 0.3 0.4 0.5

5 109.7 121.3 124.7 7.0 11.7 18.7 1.0 1.0 1.0 7.1 11.3 16.8

9 117.9 125.6 129.7 18.4 1444.4 5000.0 1.0 1.0 1.0 20.1 129.4 180.1

13 121.2 126.7 132.1 101.8 2098.4 5002.3 1.0 1.0 1.0 101.5 149.3 180.1

17 122.9 128.3 131.0 198.8 2495.4 5000.1 0.0 0.4 1.0 180.0 180.0 180.0

21 126.9 128.7 131.4 3519.3 4704.7 5003.7 0.0 0.0 0.0 180.0 180.0 180.1
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Processing Time Simulation Analysis

The profit results found in Table 4.13 show that the TL model performs with near

perfection when compared with the full model. Once the networks grow to where

the TL model can not obtain a solution (such as |I| = 26 and |J | = 21), the TL

model is consistently unable to find results for larger network simulations. This break

point is predictable since this behaviour is consistently repeated for optimization

problems of identical and larger sizes. In every simulation, the full model found an

optimal solution to the problem at approximately 15% of the total processing time

and used the rest of its processing to iterate through the rest of the optimization tree

as a thorough verification mechanism. Therefore, it may be possible to predict the

minimum time limit needed to obtain the optimal profit value with a high degree of

confidence.

The processing time values shown in Table 4.13 demonstrate that the values are

exponentially related to the sizes of its input sets with a plateau towards 5,000 seconds

(which was the maximum allowed) for larger network sizes. If the simulations were

not automatically stopped after 5,000 seconds, it is expected that the values would

continue to grow exponentially. Of note, some processing time slightly exceeds the

maximum value due to the solver completing its current branch processing after the

time limit is reached.

Simulated networks are expected to have a large number of tasks to simulate an envi-

ronment running over weeks with several hundred tasks. As expected, the theoretical

model can only be used to solve smaller simulations and is not suited to assign tasks

in scenarios of practical scale. However, a time limited execution of the model also

provides the profit upper bound with a high degree of confidence as long as the time

limit is scaled to the size of the simulation.

Computational Complexity Analysis

The computational complexity is correlated to the size of the optimization problem.

This is largely composed of decision variables and constraints in terms of the number

of lines in the problem to solve.

The number of decision variables increases the number of computations needed in

each constraint, but is a relatively minor contributor to the overall computational

complexity of the theoretical model. It can be calculated using Equation 4.1. It



CHAPTER 4. RESULTS AND ANALYSIS 62

simply computes the size of each decision variable described in Section 3.2.1.3 which

is determined from the size of the sets of tasks I, fog nodes J and time windows T .

|DecisionV ariables| = |I||J ||T |+ 3(|J ||T |) (4.1)

The number of fog nodes, tasks and total time windows also increases the number

of constraints in the problem which is the major contributor to the computational

complexity of the model. Equation 4.2 approximately calculates the number of con-

straints to solve by adding size of the groups described in Section 3.2.2.2. It is an

approximation because the task start time check and task stop time check constraints

do not generate values for all t ∈ T , but only for values of t that are relevant to each

task. This design decision was made to improve computational performance.

|Constraints| ≤ 7(|J ||T |) + 4(|I||T |) (4.2)

The above equations clearly indicate that the size of the time window set T contributes

the most to the computational complexity of the optimization problem. The size of

T is correlated to the number of tasks in the problem. Also, the network generation

algorithm adds variance in the size of T . It uses a normally generated normal variable

to determine the duration of a task around an average µ = 4 and standard deviation

σ = µ/6 = 2/3. It also ensures that it has an average of 2 tasks per time window.

These variables can sometimes cause simulations with a higher number of tasks and

fog nodes to have less constraints to compute. This occurred in some results in

Table 4.13 notably for |I| = 36, |J | = 13 where the processing time was higher than

expected. The location of tasks and fog nodes also impact the complexity of the

problem to solve. In cases where there are many possible solution, the optimization

tree is larger and increases the computation required to obtain a solution.

The theoretical model relies on complete knowledge of the task set which is not a

realistic scenario when conducting task assignment and fog node changes in real-time.

However, it allows us to evaluate the performance of the heuristic models applied. The

extensive validation completed in this section is aimed at ensuring that the theoretic

model is functioning as designed since it will be used as the main validation method

for the following sections of this chapter.
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4.3 Heuristic Model Parameters

This section provides an overview of each configuration variable described in Sec-

tion 3.3 for the heuristic model. Each variable has an effect on others, but the test

plan isolated their effects by using specific test networks to determine optimal values

for each of these parameters. As described in Section 3.3, configurable parameters

are divided in two categories: task order manipulation parameters and fog node sta-

tus change parameters. The heuristic model also has processing time requirements

to ensure that the processing time for every time window is under the time window

size. For this reason, the task allocation tables will provide values in seconds and be

converted to time windows within the heuristic model. The time window size for all

tests in this section is 2 seconds.

4.3.1 Task Order Manipulation Parameters

Section 3.3 describes the allocation and de-allocation group processes of the heuristic

model which work together to manipulate the active task prioritization. Therefore,

they are grouped in this chapter as task order manipulation parameters. The value

of these parameters are used to optimize current and new tasks to determine the

optimal order to assign them to the fog network. Once tasks are prioritized, they are

assigned to a fog node or cloud in that order using a heuristic algorithm. The task

assignment heuristic used to assign tasks from the allocation group to a fog or cloud

is to select a powered on fog node with the fewest available resources (best fit). This

favours a green computing approach to fog computing by reducing the number of fog

nodes required and reducing network maintenance costs. The following paragraphs

detail the parameters used to weight active tasks at each time window to determine

their assignment priority.

Task predicted de-allocation: This parameter is described in Algorithm 2 in which

it uses the duration of all past tasks to predict probability of a task ending in the

current time window. Tasks that are predicted to end are de-prioritized based on the

predicted de-allocation weight.

Number of powered on fog nodes in range: Tasks with fewer available fog

nodes are prioritized higher than ones with more options. This is used to assign

tasks that have more restrictive assignment requirements first to reduce the number
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of assignment decisions that could reduce the total number of tasks being assigned

to a fog node.

Task Age: A weight is applied to tasks to prioritize newer tasks over older ones.

Simply put, assigning newer tasks first will favour them being sent to a fog node

with more traffic, thus require it to be powered on for longer. Furthermore, assigning

older tasks to lesser used fog nodes will favour those resources being used for less

time windows on average and assisting in the fog node status change processes of the

heuristic model.

4.3.1.1 Task Order Manipulation Weight Optimization

The task order manipulation weight parameters usually only optimize the solution in

scenarios where at least one fog node has insufficient resources to support its possible

set of tasks. Scenarios where a fog node can support all possible tasks in parallel

won’t benefit from modifying the task order since all of these tasks can be optimally

assigned to a fog network in any order. However, most scenarios will have some

bottlenecks that will benefit from assigning tasks in a correct order.

In order to determine the correct parameter values in testing, all fog node status

changes are removed from the problem by turning all fog nodes on at the start and

having 0 maintenance costs to remove any fog node status change operations from

the test.

Table 4.14 enumerates the global parameters used in testing for this model.

Table 4.14: Task Order Manipulation Testing Global Parameters (in currency units)

Parameter Value

maintenance costs (mn) 0

startup costs (cu) 0

shutdown costs (cd) 1000

revenue (r) 1

Detailed Example
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The following example will be presented and analyzed to demonstrate the importance

of manipulating the order of allocating tasks. The scenario is simply to present a

trivial model where the order in which we allocate tasks makes the difference between

replicating the optimal result and not.

Firstly, the Table 4.15 shows the task set I used to execute the heuristic and theoretic

models. The duration of the tasks is shown in the table, but is obviously not used in

the heuristic model. It generates a subset of active tasks from I at each time window

to assign to the fog or cloud without knowledge of when it would be completed.

Table 4.15: Task Manipulation Weight Testing Detailed Example Tasks

i Start time χi Location γi Max latency αi vCPU ηi Memory ζi Duration ψi

(windows) (meters) (cores) (GB) (windows)

1 0.1 (0, 0) 1 1 1 4.8

2 0.1 (2, 0) 1 1 1 3.9

3 2.1 (1, 0) 1.1 1 1 4.6

Secondly, Table 4.16 shows the set of fog nodes used in the example.

Table 4.16: Task Manipulation Weight Testing Detailed Example Fog Nodes

j Location δj vCPU νj Memory υj Parallel tasks εj State

(cores) (GB) (units)

1 (0.5, 0) 1 2 4 0

2 (2, 0) 3 2 4 0

This simple example is illustrated in Figure 4.2 and was specifically engineered to

demonstrate the importance of assigning tasks in the correct order to simplify the ac-

tual task assignment heuristic. One of the tasks (task 3) was designed to be assignable

to either fog node 1, 2 or the cloud. However, tasks 1 and 2 only have the option of

fog nodes 1 and 2 respectively in addition to the cloud. If task 3 is assigned before the

others, the best fit algorithm will allocate it to fog node 1, utilizing all its resources

and provide a sub-optimal heuristic solution to the problem. However, if task 1 is

prioritized ahead of 3, it will provide the optimal solution at every simulation. Ta-

ble 4.17 shows the results based on each of the task order manipulation parameters.

The theoretic model calculates the optimal profit at 5.
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Figure 4.2: Possible Impact of Number of Powered Fog Nodes in Range

As designed, the heuristic model assigns profit to tasks assigned to a fog node at

each time window regardless of how those tasks were assigned in the past or in the

future. Table 4.17 demonstrates it is less important to order tasks based on their

age or provide a predictive de-allocation of tasks in this example. The predictive

de-allocation and age parameters have little impact on profit improvement. This is

largely based on how task profits were allocated at each time window rather than

with another method such as using service level agreements. Chapter 5 provides

additional discussion on modifying the model design to increase the impact of the

predictive de-allocation script.
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Table 4.17: Task Manipulation Weight Testing Detailed Example Results

Test Case
Input Output

Dealloc FN Opt Age Profit (units)

1 0 0 0 4

2 0 0 5 4

3 0 0 10 4

4 0 5 0 5

5 0 5 5 5

6 0 5 10 5

7 0 10 0 5

8 0 10 5 5

9 0 10 10 5

10 5 0 0 4

11 5 0 5 4

12 5 0 10 4

13 5 5 0 5

14 5 5 5 5

15 5 5 10 5

16 5 10 0 5

17 5 10 5 5

18 5 10 10 5

19 10 0 0 5

20 10 0 5 5

21 10 0 10 4

22 10 5 0 4

23 10 5 5 4

24 10 5 10 5

25 10 10 0 5

26 10 10 5 5

27 10 10 10 5
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Results show that predicted de-allocation and age have no deterministic impact when

uniquely considering task assignment and removing fog node state changes. There

are also some examples that can be generated where age and predictive de-allocation

can be used to facilitate modifying the state of a fog node. Notably, models where

there are high maintenance costs would rely on those parameters more heavily to

assign the correct tasks to the cloud in order to shutdown the correct fog nodes.

Table 4.17 shows that the number of fog nodes available to a task is the most impor-

tant parameter to impact the heuristic model as it was designed. In this example,

ordering in ascending order based on the number of fog nodes available ensures that

they will be assigned in either the order 1, 2 and 3 or 2, 1 and 3 (no impact to

optimization). The result of an optimal assignment is shown in Result 1.
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Result 1: Heuristic Model Task Order Prioritization Detailed Example Re-

sults

1 Time Window 0 Running fog node: None

2 Start of tasks 1, 2 and 3

3 µ10 ← 1, µ20 ← 1 /* Startup fog nodes 1 and 2 */

4 Tasks 1, 2 and 3 assigned to the cloud

5

6 Time Window 1 Running fog nodes: 1 and 2

7 x111 ← 1 /* Task 1 assigned to fog node 1 */

8 x221 ← 1, x321 ← 1 /* Tasks 2 and 3 assigned to fog node 2 */

9 θ11 ← 1, θ21 ← 1

10

11 Time Window 2 Running fog nodes: 1 and 2

12 End of tasks 1 and 2

13 x312 ← 1 /* Task 3 assigned to fog node 1 */

14 θ12 ← 1, θ22 ← 1

15

16 Time Window 3 Running fog nodes: 1 and 2

17 x313 ← 1 /* Task 3 assigned to fog node 1 */

18 θ13 ← 1, θ23 ← 1

19

20 Time Window 3 Running fog nodes: 1 and 2

21 End of task 3

22 θ13 ← 1, θ23 ← 1

23

24 Profit = r(x111 + x221 + x321 + x312 + x313)− cu(µ10 + µ20)−
mn(θ11 + θ12 + θ12 + θ22 + θ13 + θ23 + θ14 + θ24) = 5

Bulk Testing

The bulk testing parameters are similar to the previous example where the mainte-

nance costs are as shown in Table 4.14 and the fog nodes have fixed parameters as

shown in Table 4.18.
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Table 4.18: Task Manipulation Weight Testing Detailed Example Fog Nodes

j Location δj vCPU νj Memory υj Parallel tasks εj State

(cores) (GB) (units)

1 (0, 0) 3 2 4 0

2 (1, 0) 3 2 4 0

3 (2, 0) 3 2 4 0

The task generation mechanism is shown in the bullet points below. It uses values

designed to engage each of the parameters used to manipulate the task order.

• i: Incremental value between 1 and n where n is the number of tasks.

• χi: Randomized value based on the previous task start time and task density.

• γi: Randomized value between 0 and 3 for the x coordinates and 0 for the y

coordinates.

• αi: Value equal to 1.

• ηi: Value equal to 1.

• ζi: Value equal to 1.

• ψi: Value equal to 4.8

The detailed example showed us that the fog node options weight is the most impor-

tant factor to consider when removing fog node changes. A total of 100 randomized

networks were generated: 10 networks with 15 and 20 total tasks with a task density

of 4, 6, 8, 10 and 12 tasks per time window. As such, Result 2 shows the hypothesized

optimal weight values used in testing. Although the predicted de-allocation and age

showed no impact to the test environment, the benefit to these factors may impact the

performance of the full heuristic model once fog node status changes are introduced.

At the very least, their inclusion does not negatively impact the performance of the

heuristic model.

Result 2: Task Order Manipulation Testing Global Parameters

1 preddeal ← 5

2 fnoptions← 10

3 age← 5
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The testing showed that those parameters provided the optimal solution for 93 out

of 100 networks. Three other networks yielded an optimal solution with other weight

parameter values. Each of those examples showed an optimal solution when age

was the dominant weight applied to the heuristic model. However, most of the other

networks would have provided a sub-optimal solution if the number of fog node options

was not used as a predominant weight. The other four instances showed no weight

parameters that would have provided an optimal solution. In each of these cases,

the heuristic was one (2 cases) or two (2 cases) assignment decisions away from the

optimal profit.

Approximately 70% of networks showed no difference when iterating weight values.

This is logical since many networks don’t necessarily have a resource bottleneck on

fog nodes that directly lead to a reduction in the overall number of tasks assigned to

fog nodes. It depends on the timing and placement of tasks which were randomized

in the bulk testing.

Overall, the task order manipulation provides a near optimal solution in the majority

of tested networks when using the task order manipulation weights shown in Result 2.

The complete results are included in Appendix B.

4.3.2 Fog Node Status Manipulation Parameters

Fog node status manipulation parameters rely on the heuristic model correctly pre-

dicting future task demands for the network. As such, the performance of the heuristic

model will differ greatly based on the predictability of a network, notably on the place-

ment of tasks. Since the heuristic model does not have knowledge of future events,

it must use statistics from previous events to evaluate an approximate probability of

requiring each fog node to determine in which state is should be at each time window.

In the absence of the heuristic model correctly predicting powering on a fog node, the

algorithm will always begin the startup process of a fog node when a task appears

that could have been assigned to a powered off fog node but was assigned to the cloud.

This ensures that a critical fog node is ready to be used for the next time window.

However, the utilization of this procedure will always yield a sub-optimal mapping

when compared to the theoretical model because there is at least one time window

where a task was sent to the cloud when it could have been assigned to a fog node.
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The only exception to this rule is at the very first time window where the theoretic

and heuristic models both can not proactively power on a fog node. Furthermore, the

heuristic model determines the average task duration of historically assigned tasks to

ensure that the task is likely to be required at the next fog node. A situation where

this routine is not advantageous is for tasks with a duration of a single time window.

Thirdly, the powering off of a fog node uses a strictly probabilistic process in the

heuristic model since a fog node must only be shut down if the fog computing network

believes it will not be used for N time windows where N ≥ (cu + cd)/mn. In the

absence of knowledge of future events, the heuristic model must use a probabilistic

algorithm to predict the value of N in this example.

The following subsections will provide a detailed overview of the fog node status

change parameter values used to optimize networks using parameters generated along

the following set of guidelines.

Tasks (Quantity: 20)

• i: Iterating value between 1 and 20.

• χi: Ascending start time based on the previous task start time and a pseudo

random value generated from a normal distribution centered on the average

frequency of tasks.

• γi: Randomly generated value within the x and y grid boundaries (100 in this

case).

• αi: Value always equal to 1.

• ηi: Value always equal to 1.

• ζi: Normally distributed random value based on µ = 4 and σ =
2

3
.

• ψi: Average value of 8 seconds.

Fog Nodes (Quantity: 5)

• j: Iterating value between 1 and 5.
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• δj: Randomly generated value within the x and y grid boundaries (100 in this

case).

• νj: Value always equal to 1.

• υj: Value always equal to 2.

• εj: Value always equal to 4.

• State: Value always equal to 0 (powered off).

4.3.2.1 Fog Node Memory Threshold

In initial testing, the heuristic model fog node status changes were significantly more

frequent than the theoretic model. As such, the heuristic model suffered status change

iteration issues where a fog node would turn on at time window t, turn off at t+1 and

turn on again at t + 2, etc. To prevent this issue, a fog node memory threshold was

implemented where a fog node status would be reserved for a configurable number

of time windows to either remain powered on or off. The only exception built into

the heuristic model is the non-predictive powering on routine since the model knows

with certainty that the fog node will be required in the next time window given that

revenue is higher than the start-up cost of a fog node.

• The start memory is used to track when a fog node was turned on and prevents

a shutdown before the memory parameter is reached.

• The stop memory is used to track when a fog node was turned on and prevents

a predictive startup before the memory parameter is reached.

The optimal value of the parameters is dependent on the task demand patterns and

statistics. There are some edge cases that perform well in a low memory threshold

such as cases with negligible operating costs relative to the revenue. However, outside

of very specific cases, implementing a fog node status memory threshold consistently

produced higher relative profit when compared with the theoretic model.

Figure 4.3 shows an average relative profit for 10 tests and clearly demonstrates that

the benefit of a higher threshold plateaus at the following values:

• Start Memory: 7
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• Stop Memory: 5

Figure 4.3: Heuristic Model Start Stop Memory Results Summary (10 tests).

There are obviously other values that produce similar results on average and depend

on the statistical properties of the tasks. The testing showed that a good understand-

ing of historical tasks should be used when possible to determine the optimal values

for a given task layout. The complete results from each individual tests are included

in Appendix B.

4.3.2.2 Fog node Simulated Tasks

Simulated tasks are used to determine the probability that certain fog nodes should

be powered on or off based on historic task allocation during the fog node state change

heuristic. Each simulated task is artificially assigned to the current state of the fog

network and records which fog node it could be assigned to including powered off fog

nodes. This provides a measure of probability to change the fog node status in the

network’s current state. These values are used when calculating the probabilities to
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determine whether a fog node should be powered on or off. The higher the number

of simulated tasks produces more statistically consistent results (averaged over 10

tests) as demonstrated in Table 4.19, but the processing time per time window of

the heuristic model also increases. As such, a compromise must be made between

processing time (which must be under the time window size) and reliability of the

results.

This value depends on the size of time window. In this test, the maximum number of

simulated tasks is 21. However, to account for fluctuation, we will select a value of 13.

As demonstrated in the results, the impact of this parameter plateaus once the number

of simulated tasks reaches 13 since there is little statistical fluctuation in the relative

profit between the heuristic and theoretical models. This value is approximately 6

times the number of tasks per time window (2). The allowable tolerance a model can

have on the number of simulated tasks fluctuates based on the time window size. A

network with small time windows is required to reduce the number of simulated tasks

in order to process the data in time for the next time window.

Table 4.19: Fog Node State Manipulation Simulated Tasks Average Results (with
a 95% Confidence Interval)

Input Output

Number of Simulated Tasks Relative Profit Processing Time (s)

1 0.88± 0.02 0.24± 0.03

3 0.93± 0.02 0.44± 0.03

5 0.92± 0.02 0.51± 0.04

7 0.90± 0.02 0.56± 0.04

9 0.89± 0.02 0.65± 0.04

11 0.88± 0.02 0.74± 0.06

13 0.94± 0.02 0.98± 0.07

15 0.92± 0.02 1.06± 0.08

17 0.94± 0.01 1.23± 0.05

19 0.94± 0.02 1.34± 0.06

21 0.94± 0.01 1.48± 0.07

The detailed results for each test are documented in Appendix B.
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4.3.2.3 Fog node Status Change Sensitivity Threshold

The last remaining parameter is the probability threshold to start up and shut down

a fog node. This value compares the probability that a positive impact to the network

will occur if a status change to the network is made. In all the simulated tasks, the

number of tasks that will benefit from powering on fog node j out of the total number

of simulated tasks provide a probability ratio. If it is over the configured threshold,

then the status change operation occurs.

In cases where there are multiple candidate status changes, the algorithm will proceed

one at a time in order of probability (largest first) and re-evaluate the probabilities

for the remaining fog nodes until the list is completed. This avoids a situation where

there are multiple fog nodes with overlapping coverage areas being powered on all at

once to have more fog node supply than required at that time. However, the heuristic

model runs the simulated assignment multiple times to account for scenarios where

multiple overlapping fog nodes should be powered on.

Tables 4.20 and 4.21 show an average of the relative profit for various probability

thresholds and task density in average tasks per time window (tpw) over 10 tests

with a 95% confidence interval. The results indicate that the value of the start

probability doesn’t greatly impact the relative profit. However, the stop probability

benefits from having a lower threshold of 0.2 or lower.

Table 4.20: Simulated Start Probability Threshold Average Relative Profit

P(Start) 6 tpw 8 tpw 10 tpw 12 tpw

0.0 0.751± 0.040 0.799± 0.042 0.791± 0.040 0.824± 0.046

0.2 0.748± 0.042 0.802± 0.041 0.793± 0.040 0.820± 0.047

0.4 0.749± 0.042 0.800± 0.039 0.794± 0.040 0.821± 0.046

0.6 0.750± 0.045 0.802± 0.039 0.791± 0.042 0.819± 0.047

0.8 0.747± 0.043 0.798± 0.040 0.796± 0.041 0.820± 0.048

1.0 0.751± 0.045 0.802± 0.038 0.793± 0.040 0.822± 0.047
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Table 4.21: Simulated Stop Probability Threshold Average Relative Profit

P(Stop) 6 tpw 8 tpw 10 tpw 12 tpw

0.0 0.953± 0.025 0.966± 0.034 0.935± 0.047 0.932± 0.041

0.2 0.861± 0.054 0.917± 0.041 0.955± 0.041 0.954± 0.048

0.4 0.812± 0.057 0.885± 0.053 0.768± 0.057 0.848± 0.058

0.6 0.646± 0.064 0.726± 0.058 0.748± 0.065 0.764± 0.078

0.8 0.621± 0.063 0.656± 0.071 0.670± 0.068 0.715± 0.076

1.0 0.604± 0.063 0.653± 0.069 0.681± 0.071 0.712± 0.073

The complete results are included in Appendix B.

4.3.3 Impact of Lower Entropy Task Location

The fog node status manipulation parameters are much less static in nature and

depend on a knowledge of the environment in order to perform well. When possible,

the ideal practical scenario would be to run the same iterative validation testing

demonstrated in Sections 4.3.1 and 4.3.2 to determine the best values for a given

network. However, this activity requires a significant amount of time to complete

and would not be adequate for a heavily dynamic environment. This idea assumes

that historical tasks (notably the location of tasks) are representative of future tasks.

In a practical scenario, many environments will note statistical patterns in long term

data to assist in this process. Scenarios where the task location is not fully random

may benefit from training the parameters described in Section 4.3.2.

Using that caveat, the fog node status change parameter values determined from the

testing of networks without a pattern in their location are as follows.

• Fog node start memory threshold: 7.

• Fog node stop memory threshold: 5.

• Fog node number of simulated tasks: 6 ∗ tpw

• Fog node start probability threshold: 0.4.

• Fog node stop probability threshold: 0.2.
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The parameters that will most fluctuate based on the network are the start and

stop probability thresholds. As the networks become more predictable, the threshold

values will increase since the simulated data will more closely represent future data.

The validations discussed in Section 4.3.2 were made for network with completely

random task demands.

To validate this hypothesis, 40 networks were generated where tasks were centralized

around 9 areas on a 20x20 grid (Coordinates (5, 5), (5, 10) (5, 15), (10, 5), (10,

10), (10, 15), (15, 5), (15, 10), (15, 15)). Tasks were generated using a normally

distributed random variable with µ as the coordinates and σ as one sixth of the grid

size (20/6). The hypothesis presumes that the heuristic algorithm will perform better

in this type of network and may modify the threshold parameters for the fog node

stop and start probability. Tables 4.22 and 4.23 show the average results for a 95%

confidence interval for 10 tests with a task density of 3, 4, 5 and 6 tasks per second.

Table 4.22: Simulated Start Probability Threshold Results Summary with Pre-
dictable Tasks

P(Start) 6 tpw 8 tpw 10 tpw 12 tpw

0.0 0.970± 0.019 0.935± 0.029 0.932± 0.021 0.961± 0.026

0.2 0.974± 0.021 0.934± 0.031 0.933± 0.020 0.963± 0.027

0.4 0.974± 0.021 0.934± 0.031 0.933± 0.020 0.963± 0.027

0.6 0.974± 0.021 0.934± 0.031 0.933± 0.020 0.963± 0.027

0.8 0.974± 0.021 0.934± 0.031 0.933± 0.020 0.963± 0.027

1.0 0.974± 0.021 0.934± 0.031 0.933± 0.020 0.963± 0.027



CHAPTER 4. RESULTS AND ANALYSIS 79

Table 4.23: Simulated Stop Probability Threshold Results Summary with Pre-
dictable Tasks

P(Stop) 6 tpw 8 tpw 10 tpw 12 tpw

0.0 0.957± 0.037 0.959± 0.038 0.911± 0.056 0.936± 0.056

0.2 0.987± 0.026 0.911± 0.059 0.954± 0.041 0.988± 0.018

0.4 0.961± 0.039 0.958± 0.038 0.912± 0.056 0.938± 0.057

0.6 0.987± 0.026 0.911± 0.059 0.954± 0.041 0.988± 0.018

0.8 0.961± 0.039 0.958± 0.038 0.912± 0.056 0.938± 0.057

1.0 0.987± 0.026 0.911± 0.059 0.954± 0.041 0.988± 0.018

The results observed in this testing are notably higher relative profit in both the start

and stop probability values than networks without any statistical predictability (from

Table 4.20). In fact, as the predictability of tasks increase, the predicted fog node

state change parameters have less impact on the overall performance of the heuristic

model and the overall profit is over 90% of the theoretical profit in all settings. As

such, the hypothesis that a more predictable set of tasks will perform better with

a higher probability threshold is partially correct. The true discovery is that the

value of the probability threshold has less impact on the relative profit. In fact, it is

not possible to predict the entropy of tasks in a practical environment so it is more

beneficial to maintain them at the values determined in Section 4.3.2.

4.4 Large Scale Testing

This section will provide a few detailed examples combining the parameters set in Sec-

tion 4.3 and provide an analysis of these results. The main objective is to ensure that

the heuristic model performs close to the theoretical upper bound. Any differences

between the theoretic and heuristic models should be due to decisions that could not

be better made without complete knowledge of the set of tasks. This section will

provide a performance analysis of the heuristic model in a large scale of testing and

provides a detailed analysis of deficiencies in the heuristic model. As with other tests

in this chapter, the time window size is set to 2 seconds.

Tasks (Quantity: n)
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• i: Iterating value between 1 and n.

• χi: Ascending start time based on the previous task start time and a pseudo

random value generated from a normal distribution centered on the average

frequency of tasks.

• γi: Randomly generated value within the x and y grid boundaries (100 in this

case).

• Task resources are randomly selected based on 5 sets of values

– Resources set 1: αi: 10, ηi:: 1, ζi: 1. ψi: 8 seconds.

– Resources set 2: αi: 15, ηi:: 2, ζi: 1. ψi: 6 seconds.

– Resources set 3: αi: 30, ηi:: 2, ζi: 2. ψi: 12 seconds.

– Resources set 4: αi: 20, ηi:: 1, ζi: 2. ψi: 10 seconds.

– Resources set 5: αi: 40, ηi:: 1, ζi: 1. ψi: 4 seconds.

The task duration value is generated for each task using a normally distributed ran-

dom variable with µ as the average task duration and the standard deviation σ as

one sixth of the average task duration.

Fog Nodes (Quantity: m)

• j: Iterating value between 1 and m.

• δj: Randomly generated value within the x and y grid boundaries (100 in this

case).

– Resources set 1: νj: 3, υj: 6, εj: 6.

– Resources set 2: νj: 2, υj: 2, εj: 2.

– Resources set 3: νj: 4, υj: 5, εj: 5.

– Resources set 4: νj: 1, υj: 2, εj: 2.

– Resources set 5: νj: 2, υj: 3, εj: 4.

• State: Initial value always equal to 0 (powered off).
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4.4.1 Comparison Between Theoretic and Heuristic Models

The following series of simulations focus on comparing the theoretic and heuristic

model performances, both in terms of profit and processing time. The simulations

are made for a variety of sizes for the tasks and fog node sets to evaluate the ability

for the models to scale as the simulation sizes increase. If this thesis can demonstrate

that the performance of the heuristic model is predictable, it can assume that it will

perform the same for larger networks that can’t be compared with the theoretical

model due to the large processing time.

The network generation parameters used are similar to other validations in this sec-

tion. For consistency, the number of concentration areas for tasks are equal to 5

for all simulations. The only important element to these values is that they remain

consistent for all the tests used to compare the models. The results provided in Ta-

ble 4.24 are an average value for 5 tests at each network size with at a 95% confidence

interval. However, as in the results presented in Section 4.2.9, the theoretic model run

time is presented as minimum (min), typical (typ) which represents the median and

maximum (values) across the tests to better illustrate the large variance in processing

time across those simulations. The processing time was capped at 8,000 seconds to

prevent some simulations to run over several days without improvement to the profit

value (as analyzed in Section 4.2.9). An 8,000 second time limit was selected to en-

sure that the values obtained in this section were optimal with a very high degree of

confidence. Although many simulations reached the processing time limit, the the-

oretic model tree results had not improved several thousand seconds before the cap

was reached. Furthermore, the relative profit was consistent with smaller networks.

For those reasons, this thesis has a high confidence that the results presented in the

table represent the theoretical upper bound. There are a few exceptional notations

in the table:

• No solution (NS) indicates that the theoretical model ran to its capped duration

without finding a solution to the optimization problem.

• Out of memory (OoM) indicates that the theoretical model was unable to com-

plete due to a lack of memory in the simulation environment.
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Table 4.24: Performance Comparison Between Theoretic and Heuristic Models (time
in seconds)

Theoretic Model Heuristic Model

Average
Relative Profit

Processing Time (s) Average
Processing
Time (s)

Average
Processing Time
per Window (s)|I| |J | Min Typ Max

5 5 0.807± 0.005 0.8 3.7 6.1 2.0± 0.1 0.2± 0.0

10 0.799± 0.007 2.8 2.8 18.6 2.7± 0.5 0.3± 0.0

15 0.800± 0.012 2.3 14.1 22.9 3.5± 0.5 0.4± 0.0

20 0.809± 0.012 12.7 19.9 32.3 4.2± 0.7 0.5± 0.0

25 0.673± 0.012 14.3 32.8 55.6 5.5± 0.5 0.6± 0.0

30 0.696± 0.014 5.3 154.1 412.4 6.6± 1.1 0.7± 0.0

15 5 0.866± 0.016 2.3 7.2 19.7 4.7± 0.7 0.3± 0.0

10 0.843± 0.030 32.5 50.1 102.7 6.7± 0.8 0.6± 0.0

15 0.803± 0.030 70.2 988.6 8000.2 8.9± 0.6 0.7± 0.0

20 0.761± 0.045 229.8 8000.2 8012.9 11.6± 1.2 0.8± 0.1

25 0.815± 0.048 1736.6 8000.1 8008.9 13.1± 1.9 0.9± 0.1

30 0.679± 0.045 8000.1 8000.1 8012.1 15.3± 1.6 1.1± 0.1

25 5 0.806± 0.032 8.1 25.6 45.2 7.5± 0.3 0.42± 0.0

10 0.834± 0.067 115.5 196.6 2249.8 11.4± 0.5 0.7± 0.1

15 0.848± 0.090 545.3 8000.1 8006.1 15.3± 1.9 0.8± 0.1

20 0.809± 0.087 8000.1 8000.1 8008.6 19.5± 0.6 1.1± 0.1

25 0.789± 0.111 8000.1 8000.2 8010.0 21.3± 2.1 1.3± 0.1

30 0.784± 0.106 8000.1 8000.2 8009.6 22.7± 3.4 1.4± 0.1

35 5 0.849± 0.031 8.1 15.1 64.6 9.2± 0.9 0.4± 0.0

10 0.832± 0.049 290.6 564.0 8000.3 17.2± 2.2 0.6± 0.1

15 0.816± 0.076 8000.1 8000.5 8004.8 21.1± 2.4 0.9± 0.1

20 0.807± 0.115 8000.2 8000.2 8000.2 24.9± 1.8 1.1± 0.1

25 0.772± 0.142 8000.1 8000.2 8000.2 33.6± 3.3 1.4± 0.1

30 0.795± 0.131 8000.1 8000.3 8000.4 38.4± 4.2 1.5± 0.1

45 5 0.828± 0.031 20.7 62.1 543.7 10.8± 0.2 0.4± 0.0

10 0.820± 0.062 689.6 8000.1 8000.6 21.1± 2.3 0.8± 0.1

15 0.815± 0.080 6630.1 8000.1 8000.2 29.2± 2.2 0.9± 0.1

20 0.795± 0.100 8000.1 8000.2 8000.3 36.3± 4.1 1.1± 0.1

25 0.787± 0.123 8000.3 8000.4 8010.3 43.7± 2.8 1.4± 0.1

30 0.811± 0.162 8000.2 8000.4 8000.4 47.2± 4.0 1.7± 0.2

55 5 0.864± 0.038 66.1 111.6 262.4 15.0± 2.1 0.5± 0.0



CHAPTER 4. RESULTS AND ANALYSIS 83

10 0.840± 0.064 38.0 8000.1 8000.2 27.3± 2.6 0.8± 0.1

15 0.807± 0.088 8000.1 8009.2 8013.6 33.5± 2.7 1.0± 0.1

20 0.808± 0.096 8000.3 8000.3 8010.1 42.3± 3.3 1.2± 0.1

25 0.789± 0.0001 8000.3 8000.4 NS 49.57± 4.04 1.6± 0.1

30 NS OoM OoM OoM 60.4± 4.0 1.7± 0.2

65 5 0.899± 0.062 23.6 65.3 8000.3 31.5± 5.0 0.8± 0.1

10 0.896± 0.124 1477.3 8000.2 8010.4 57.0± 8.2 1.5± 0.1

15 0.882± 0.174 8000.2 8000.2 8000.3 72.8± 5.6 1.9± 0.2

20 NS OoM OoM OoM 98.6± 7.3 2.6± 0.2

25 NS OoM OoM OoM 108.8± 9.7 2.8± 0.2

30 NS OoM OoM OoM 132.1± 17.8 3.5± 0.3

Processing Time

The table clearly shows that the theoretic model processing time reaches the pro-

cessing time limit sooner as the number of tasks increase. This would represent an

exponential curve if there were no time limit. The quantity of variables and con-

straints to solve are directly related to the number of tasks and fog nodes which

increases the complexity of the optimization problem. CPLEX was consistently un-

able to find a solution in larger simulations. In fact, several dozen tests were made

for larger networks, each resulting in a lack of memory error.

The heuristic model processing time was divided in the full processing time and the

processing time per time window. The most important value to consider for the

heuristic model is the processing time per time window since it must remain under

the time window size (2 seconds in this case) for the model to complete its decisions

before the next time window begins. The processing time increases primarily based on

the number of fog nodes for the network to manage and does not increase significantly

based on the task set size. The task set size is never used by the heuristic model since

it only considers active tasks in its assignment. The set of active task size is dependent

on the task arrival frequency and duration. In all these simulations, both factors were

constant across the test series. However, the simulated task generation routine used

in the fog node status change algorithm requires slightly more processing time since it

considers all completed tasks during the simulation. A design change to the heuristic

model could be made to only consider the completed tasks in the past n time windows

to reduce the processing time increase rate.

1Only 1 out of 5 simulations was able to find an optimal solution
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The processing time values are highly dependent on the test environment. A practical

utilization of these models would likely have access to significantly higher processing

capacity for both models.

Relative Profit

The values for relative profit fluctuations were inversely correlated to the number

of fog nodes in a simulation. Notably, networks with small number of tasks and

large number of fog nodes (ex: 5 tasks, 30 fog nodes) showed the most significant

impact. The reasons for this behaviour is based on the difficulty of the heuristic

model to predict the correct fog node state and will be analyzed in Section 4.4.3.

Figure 4.4 shows the distribution of the relative profit values from Table 4.24. The

relative profit value interval are mostly contained within the 0.78 to 0.88 range when

removing simulations where the number of fog nodes far exceeds the number of tasks

(0.67 to 0.68 range). The relative profit values showed no correlation with the size of

the network other than the specific case described in this paragraph.

Figure 4.4: Normal Relative Profit Distribution of 40 Tasks and 20 Fog Nodes

4.4.2 Performance Analysis

This thesis presented a heuristic model that performed well in validation and pa-

rameter configurations. This section will provide large networks to test and evaluate

their performance relative to the theoretical model upper bound when possible. This
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section will generate different types of networks where the location of the tasks are

concentrated in z areas and can be more easily predicted. The heuristic model should

perform better as the value of z decreases. Tasks are simulated around infinity (ran-

dom), 10, 5 and 3 concentration areas within the network service area. This was

used to simulate concentration areas in a typical urban scenario. For example, each

centralized area represents densely populated areas with a majority of tasks, while

other areas represent rural or sparsely populated areas. These tests were run for 30

simulations in each category.

The location of tasks for the scenarios were calculated using a normal random variable

with the central area of the concentration area as µ and one sixth of the size of

the grid area along each axis as σ. The algorithm then iterates the value of the

random variable until it generates a valid location coordinate (i.e. positive number

and under the maximum grid size). Figure 4.5 shows an example of the calculation

for a µ = 50 and a grid size of 100. The concentration areas still allow for a large

span of randomness in the model. This was designed to represent population drops

within a city as described in [68]. As such, although we predict an improvement in

performance with fewer concentration areas, this activity aims to not trivialize the

heuristic model by setting grid values that are evident as it wouldn’t be representative

of a practical scenario.

.

Figure 4.5: Centralized Grid Value Probability Density Function

The first set of tests was run with n = 40 tasks and m = 20 fog nodes. This was a

sufficiently small network to run the theoretic model with a relatively small computing
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time as a comparison point to the results obtained in the heuristic model.

The distribution of the relative profit between the heuristic and theoretic model clearly

shows an improvement in performance as the number of concentration areas diminish.

The notion of relative profit is calculated by dividing the heuristic profit with the

upper bound calculated with the theoretic model. The improvement is not significant

since the task locations were distributed somewhat widely, but it clearly shows that

correlating past and future events benefit the heuristic model. Figure 4.6 shows the

histogram distribution of tested events and Figure 4.7 shows the normal distribution

generation of tested events.

Figure 4.6: Histogram Relative Profit Distribution of 40 Tasks and 20 Fog Nodes
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Figure 4.7: Normal Relative Profit Distribution of 40 Tasks and 20 Fog Nodes

The second set of tests was run with n = 200 tasks and m = 20 fog nodes. These

tests were too large to compute results using the theoretical model, but the profit

trends to a slight increase as the overall randomness of the task locations diminishes.

Figures 4.8 and 4.9 show the histogram and normal distribution of tested events and

clearly show an improvement in performance as the number of concentration areas

diminish.
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Figure 4.8: Histogram Profit Distribution of 200 Tasks and 20 Fog Nodes

Figure 4.9: Normal Profit Distribution of 200 Tasks and 20 Fog Nodes

These tests justify that a slight correlation between past and future events increase

the performance of the heuristic model. Detailed results from this section are included

in Appendix C.
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4.4.3 Analysis of Differences between the Heuristic and The-

oretic Models

The heuristic model inherently behaves differently than the theoretic model in some

aspects. This divergence is caused by the lack of information in the heuristic model

due to its intent on running in real-time rather than on historical data as with the the-

oretical model. This change is the largest contributor in the heuristic model making

sub-optimal decisions once the task set I is known. Chapter 3 proposes algorithms to

circumvent this issue, but it would be unrealistic to expect that both models could

achieve the same results in all but trivial networks. In testing, many common sub-

optimal decisions were made based on a few categories when compared to the theoretic

model. These scenarios will be discussed below using samples of detailed mapping

from a fog computing network with 40 tasks and 20 fog nodes. The complete detailed

mapping, fog node and task details for this simulation are included in Appendix C.

The objective in this section is to show that although these decisions are not optimal,

they are actually the best that could be made using the information available to the

model.

4.4.3.1 Incorrect Fog Node Status Changes in Early Time Windows

The early time windows inherently have less historical knowledge of tasks than later

time windows. As such, the list of simulated tasks will be less representative than later

time windows when the model has been exposed to more task elements. Therefore,

there are often unnecessary fog nodes that are turned on due to this issue. The

heuristic model detects that the fog computing network contains some areas without

fog node coverage and attempts to start as few fog nodes as possible to improve the

coverage area. The issue during the early time windows is that there isn’t a set of

simulated tasks that can be used for the model to understand where tasks are likely

to appear next and can unnecessarily turn on fog nodes in a location that is unlikely

to produce a task.

Most networks should use all fog nodes if designed properly and not have fog nodes

positioned in areas without a task demand. It is therefore likely that the fog node

will be used in a future time window. However, in cases that another task is not

immediately demanded of the network in the next time window, this becomes a sub-

optimal decision. Result 3 shows an example of this.
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Result 3: Incorrect Fog Node Status Changes in Early Time Windows

1 Time Window 0 Running fog node: None

2 Start of tasks 1, 2 and 3

3 Tasks 1, 2 and 3 assigned to the cloud

4

5 µ4−0 ← 1, µ5−0 ← 1, µ11−0 ← 1, µ12−0 ← 1 /* Startup fog nodes 4,

5, 11 and 12 */

6

7 Time Window 1 Running fog nodes: 4, 5, 11 and 12

8 Start of tasks 4 and 5

9 x2−4−1 ← 1 /* Task 2 assigned to fog node 4 */

10 x3−11−1 ← 1 /* Task 3 assigned to fog node 11 */

11 x5−12−1 ← 1 /* Task 5 assigned to fog node 12 */

12 Tasks 1 and 4 assigned to the cloud

13

14 µ7−1 ← 1 /* Startup fog node 5 */

15 θ4−1 ← 1, θ5−1 ← 1, θ11−1 ← 1, θ12−1 ← 1

l

In the example shown in Result 3, the heuristic model makes 2 decisions that are not

prompted from the initial 3 tasks in time window 0: turning on fog nodes 5 and 12

(µ5−0 = 1 and µ12−0 = 1). These decisions are made by using Algorithm 5, notably

the section that calculates the unique coverage surface of a fog node.

In the case of fog node 12, it is used in time window 1 by task 5, but fog node 4 is not

needed. Therefore, fog node 4 was not required to be turned on at time window 0 and

produced a sub-optimal solution when compared to the theoretic model. However,

there isn’t a deterministic method to make that decision without knowledge of future

events.

In this situation, the heuristic model has no way to make a better decision and should

the predictive fog node startup algorithm not run, it would produce a lesser solution

in this case since task 5 would not have a fog node match at time window 1. In a

realistic scenario, the heuristic algorithm would stream constantly. Therefore, the

initial startup inaccuracies wouldn’t have a significant impact to a practical scenario

where the model would run over long periods of time.
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4.4.3.2 Differences for Fog Node Status Change Decisions at the End of

a Simulation

The heuristic model does not consider the number of remaining tasks within a simu-

lation. The primary reason is that a practical utilization of this application wouldn’t

technically have an end. Tasks are expected to be constantly requested from the

network although their frequency are likely to change in time. For this reason, the

heuristic model was not designed to consider the end of a simulation and makes de-

cisions accordingly although the theoretic model does so. Result 4 shows an example

network for 40 tasks and 20 fog nodes at a late time window (no new tasks will start).

Powered on fog nodes with a task assigned are in bold. In this scenario, the theoretic

model should shut down all fog nodes without an associated task (1, 5 and 15 in this

case), but does not do so. The primary reason is that those fog nodes offer a beneficial

coverage area of the network and were recently needed in previous time windows. If

the simulation was to continue, it is likely that they would be needed and should not

be turned off. However, when doing a direct comparison to the theoretic model, it is

not an optimal solution.
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Result 4: Incorrect Fog Node Status Change Decisions at the End of a

Simulation

1 Time Window 20 Running fog nodes: 1, 2, 3, 4, 5, 6, 9, 10, 11, 14 and 15

2 x31−11−20 ← 1 /* Task 31 assigned to fog node 11 */

3 x32−10−20 ← 1 /* Task 32 assigned to fog node 10 */

4 x34−14−20 ← 1 /* Task 34 assigned to fog node 14 */

5 x35−2−20 ← 1 /* Task 35 assigned to fog node 2 */

6 x36−9−20 ← 1 /* Task 36 assigned to fog node 9 */

7 x37−6−20 ← 1 /* Task 37 assigned to fog node 6 */

8 x38−4−20 ← 1 /* Task 38 assigned to fog node 4 */

9 x39−3−20 ← 1 /* Task 39 assigned to fog node 3 */

10 Task 40 assigned to the cloud

11

/* Operating fog nodes not required */

12 θ1−20 ← 1 θ5−20 ← 1 θ15−20 ← 1

13

/* Operating fog nodes required */

14 θ2−20 ← 1 θ3−20 ← 1 θ4−20 ← 1 θ6−20 ← 1

θ9−20 ← 1 θ10−20 ← 1 θ11−20 ← 1 θ14−20 ← 1

Similarly, the heuristic model will start fog nodes at the last time window based on

the results of Algorithm 5. Again, a similar reasoning can be applied where it would

be beneficial to the optimization function should the simulation continue.

4.4.3.3 Challenges to shut down fog nodes

Shutting down fog nodes are more challenging to replicate between the theoretic and

heuristic models since they heavily rely on knowledge of future events to configure

optimally. The heuristic model relies on a given fog node to not have tasks assigned

to it (or tasks that can be transferred to another fog node) in order to turn it off. It

also uses a series of simulated tasks to predict future tasks and proceed to a quicker

shutdown. However, there are differences between both of these routines and the

theoretic solution.

Firstly, turning off a fog node after inactivity is inherently not an optimal decision.

The fog node should have been turned off previously, but the model was not able to
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detect it in time. However, depending on how the maintenance costs are distributed,

there is a high probability that a fog node should not be turned off in order to be

available for a future task. For example, in the simulated models, the network revenue

and costs are the same as most simulations from this chapter (ex: Table 4.1).

A task requiring a inactive, but powered on fog node must be demanded of the network

within 7 time windows (r(cu+cd)/mn). The probability of occurrence of such an event

is likely in all scenarios except where there is a heavy overlap in coverage between fog

nodes. Therefore, it is rarely correct in the theoretical model to shut down a fog node

immediately when it serves no task. This makes the decision process in the heuristic

model very challenging to achieve optimally.

Secondly, the simulation routines are used to predict the next 7 time windows and

make a probabilistic decision on turning off a given fog node. The effectiveness of

this routing relies on the relevance between past events and future ones which is not

always the case. The simulated networks were specifically designed to keep some

randomness in the location of tasks to simulate an organic environment. Testing has

shown that setting the probability threshold too high leads to fog nodes being turned

off too aggressively and requires being turned on preemptively. This is one of the

main reasons that the probability threshold for this routine was set to 0.2.

When comparing to the theoretic model, the decisions made in these routines are

always less optimal, but there is no deterministic method to reliably make these

decisions mode quickly.

4.5 Chapter Summary

This chapter provided a detailed analysis of the theoretic and heuristic models and

evaluated the performance of various example networks.

Each constraint of the theoretical model was validated in turn by using specific test

networks that trivialized all but one set of constraints to ensure the implementation

of the theoretical model performed as expected. The theoretical model processing

time was also measured to provide some boundaries on which test networks could be

compared with a theoretical model in a reasonable time frame.
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The heuristic model parameters were tested and selected over a large number of test

networks. The task order manipulation parameters showed a perfect representation

of the theoretical model in 93% of tests with the optimal parameters when removing

the fog node status change operations. The remaining 7% of networks were close to

the theoretical solution with only 1 or 2 operations within the network that differed

from the theoretical model. As expected, the fog node status change operations were

more difficult to adjust and performance depended on the type of network. The

heuristic model depends on a correlation between past and future tasks to perform

well. Networks without correlation between these tasks performed more poorly than

ones with a strong correlation. Regardless, there were clear parameter values that

showed optimal performance in all network types and can be fixed in the heuristic

model.

Large scale testing showed that the performance of the heuristic model is inversely

proportional to the entropy of tasks, even in networks where a large element of ran-

domness remains. Much of the divergence between the heuristic and theoretical mod-

els are contained within specific events that are challenging to predict in an algorithm

such as anomalous tasks appearing without a past indicator. In a practical scenario,

a service provider would run the heuristic model over a long period and it is ex-

pected that the frequency of these anomalies would decrease as the model builds its

knowledge and improves its decision making.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

There are many parallels that could be made between fog and cloud computing net-

works such as their ability to offload processing from the device to a remote processing

entity. However, the advantage of fog computing networks lies in the low latency pro-

cessing that can enable devices to be reduced to simple peripherals (audio, video and

Input/Output) and offload all essential and application processing to the fog. These

concepts introduce the virtualization of these functions as an essential element to

their functionality. To achieve success, the allocation of all functions within a service

network must largely be sent to the fog and rarely to the cloud. Advantageous net-

work planning of fog nodes and a smart dynamic allocation of tasks are essential to

an evolution to this idea. Concepts such as green computing also play a large role to

reduce operating costs to service providers.

In this thesis, a theoretical model was developed and implemented which provided

an upper bound limit for a simulated period of the life of a fog computing network.

It used a mathematical approach to assigning resources and ensured that profit was

maximized while considering individual task revenue and operating costs. Unlike a

practical fog computing network, the theoretical model relies on knowledge of the

complete task set to make optimal decisions and finally provide a perfect mapping of

the input tasks to fog nodes. The computing time of this model was also significant

since the size of the optimization problem is directly related to the number of tasks

and fog nodes. For example, the model typically took more than 1,000 seconds to

solve a network with 35 to 40 network elements (sum of the number of tasks and fog

95
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nodes). Therefore, simulated networks over a few dozen tasks and fog nodes require

significant processing time. A time limited model can be used to generate a solution

believed to be the optimal profit with a high degree of confidence with only 15% of

the processing time. This thesis demonstrated that a 180 second time limited model

can be used to reliably generate the optimal profit in networks with under 43 network

elements. The full processing model ran for the maximum allowed 5,000 seconds

for many of those simulations. For those reasons, the theoretical model is useful for

identifying the upper bound of many simulations used in this thesis, but would not

provide a value to a service provider seeking a real-time mapping of their network

demand.

The heuristic model shifts the role to directly support service providers by enabling

them to run in real-time. The processing time of the model was consistently under 2

seconds of processing per time window for a total run time of under 60 seconds for

the largest simulations. Comparatively, the theoretic model took over 8,000 seconds

for the same simulations. The main contributor of the heuristic model run time

is the number of tasks per time window which allows for the computing per time

window to remain fairly constant as the total number of tasks increase. For example,

a simulation with |I| = 5 and |J | = 15 completed in an average of 0.4 seconds per

time window. The simulations with |I| = 65 and |J | = 15 completed in an average of

1.9 seconds per time window with a relatively linear relation in processing time for

5 < |I| < 65.

This thesis used simulated demand, but the design can be easily adapted to a streamed

flow of input tasks. Manipulating the task order at each time window proved an

essential step to simplifying the best fit assignment heuristic and provided optimal

results 93% of simulated cases when removing other factors from the simulations. As

expected, modifying the status of fog nodes proved a more complex operation since

it can not rely on knowledge of the future to make perfect decisions. Instead, it

used a simple probabilistic approach using the current and historic demand on the

network to predict which fog nodes required a status change to improve the state of

the fog computing network. These operations weren’t able to replicate the theoretical

optimum, but were objectively correct based on the factors available to the network

at that time window.

The heuristic model parameters were tested and ideal values were found for the type
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of networks tested. However, a service provider utilizing this technique is recom-

mended to evaluate its historic data and determine the values that are ideal for a

given practical application. The peak performance of the heuristic model over all

tests was over 95%. However, in most tests, the heuristic model was able to achieve

results between 78 and 88% of the theoretical upper bound for various network sizes.

There was also a direct correlation between predictability of the input data set and

the relative proximity to the upper bound. This relationship is logical since the status

change operations of fog nodes rely on the relevance of historic to future input data

sets. Interestingly, the heuristic model performed better in larger networks where the

impact of a few unpredictable fog node state changes that were optimally best was

smaller overall than in networks with fewer assignment operations.

5.2 Overview of Thesis Contributions

There are three major contributions from this thesis:

• The development of a mathematical model to provide the optimal profit of an

input set of demanded tasks to a fog computing network. The data sets in this

problem have multiple parameters used to constrain the mathematical model

to realistic scenarios.

• The development of a heuristic model to provide a real-time solution to optimize

profit. The change between exposing elements of the task set in real-time greatly

increases the complexity of the decision making required.

• A thorough evaluation of the heuristic model against the mathematical model

to provide a performance analysis and determine areas of divergence between

both implementations.

5.3 Future Work

The contributions of this thesis have some limitations. The following sub-sections

outline items for future work that could possibly alleviate some of these restrictions

and extend the functionalities of the models presented in this research.
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5.3.1 Task Service Level Agreements

The current vision of the implementation of the dynamic task allocation of fog com-

puting nodes assigns revenue to a service provider at each time window. This simu-

lates a volume-based billing model that would be implemented for charging customers.

However, a task-based billing process provides an additional dimension of decisions

to the problem.

The implementation of service levels agreements where tasks only generate a profit to

the service provider when they are assigned to fog resources for a minimum quantity

of time (e.g. 90% of its total duration). This would increase the importance of the

predictive de-allocation of tasks implemented in this thesis. In addition, it favours

a network that can precisely predict the duration of tasks and meet, but not exceed

the quality of service threshold. The assignment decisions would also evolve in over

subscribed scenarios to consider predicted task length and profit levels in addition

with the green computing elements explored in this thesis.

For these reasons, the implementation of a task service level agreement is an inter-

esting future element of the dynamic task allocation to fog computing networks.

5.3.2 Include Internal Fog Computing Network Routing of

Tasks

A network is composed of several network elements that are interconnected. The

simulated networks designed in this thesis present fog nodes as purely network com-

ponents at the edge of the network with no interactions between themselves. A task

being presented to the network might be in range of n fog nodes based on the latency

requirements. Once a fog node is at capacity, it can’t service a new task. However,

an evolution of a fog computing network would include fog nodes that both provide

computing resources to directly service tasks, but also low latency links to neigh-

boring fog nodes using a high speed point to point technology such as a fibre optic

connection.

The addition of routing creates an additional dimension of complexity in both the

creation of a tailored routing protocol to accommodate the input data sets. It also

creates an additional consideration when positioning fog nodes in a network. Some
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fog nodes should be placed in high density areas, but others should be placed in areas

with easy access to a backbone network connection to facilitate task routing.

The addition of internal routing to the fog computing network resources would add a

significant complexity to task allocation, but allow service providers to increase flexi-

bility in their network planning to better accommodate an evolving network demand.

5.3.3 Improvements to the Input Data Set Resources

A number of assumptions were made in this thesis as an initial step to real-time

task assignments in fog network applications. These assumptions were necessary

to simplify the problem in order to evaluate the performance of the heuristic in a

simulated environment. The model can be adapted to better represent real world

applications using a number of changes to the input data set structure.

Firstly, the latency in this thesis was simplified to be the distance between a task

and each fog node. This can be improved to include measured values using bench-

marks from practical network appliances and communication links. These latency

values should include fluctuations based on various network states such as network

congestion to better simulate a public network connection. This information should

be communicated to the network controller by the fog computing network as part of

its input data.

Secondly, additional demanded and supplied resources would improve the model to

better approximate the real world. This work could introduce the concept of different

types of demand where some tasks do not require every type of resource to be serviced

by the fog network.

Finally, the concept of split processing could be introduced where some tasks could

be serviced by multiple fog nodes during the same time window to improve the task

allocation rate in the network. This would entail some resources (such as memory)

to be supplied in duplicate to a task over multiple fog nodes, increasing the demand

for those resources on the overall fog computing network. Other resources (such as

processing) could be split between fog nodes, reducing the demand for those resources

on the individual fog nodes. These considerations would require an adaptation of the

assignment algorithms.
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5.3.4 Improvement to the Fog Node Status Change Predic-

tion Modules

The fog node status change algorithms had some areas that performed less optimally

when compared to the theoretic model. Additional work can be made to improve

those predictive status change algorithms to better reproduce the theoretical model

allocation and fog node states. For example, the use of machine learning techniques

may provide an improved analysis of long term historical network behaviours as part

of its decision making.

The inclusion of these concepts could integrate historical data validation benchmarks

to the heuristic model during its processing so it can adapt its configuration to better

represent the current state of the network.

5.3.5 Decentralization of the Fog Computing Network Con-

troller

The communication protocol between a network controller and its managed elements

(i.e. tasks and fog nodes) was outside the scope of this thesis. However, an analysis

of the communication requirements (e.g. cost, overhead, position within the net-

work, etc) are important topics of research for the continuing development of the fog

computing network architecture.

The network controller is an essential service to the models proposed in this thesis.

Its architecture was introduced in Chapter 3 and some design considerations were

proposed for service carriers to adopt in order to maintain a robust controller to

support a fog computing network. This thesis proposed a network controller as a

centralized service. Any operation depends on the controller having access to complete

network state information.

The decentralization of the network controller, either partially or completely, is an

interesting consideration since it further delegates operations to the network edge.

However, this decentralization further complicates the network protocols required for

the fog computing network to effectively communicate the overall state of the network

between fog nodes. Additional efforts being dedicated to the decentralization of the

network controller are recommended.
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5.3.6 Network Element Mobility Considerations

Some fog computing network applications, notably Vehicular Ad-Hoc Networks

(VANET), inherently require mobility support in a resource allocation model. The

models proposed in this thesis could be adapted by changing the network element

locations at each time window to support mobility since it can handle task handover

in its design. However, their effectiveness under those parameters were not tested as

part of the scope of this thesis. It is expected that the performance of the heuristic

model will diminish in heavily dynamic environments. Undoubtedly, these types of

applications of fog computing networks would benefit from the development of ad-

ditional real-time allocation models with mobility performance considerations built

into their design.
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[18] S. Jošilo and G. Dán, “Decentralized Algorithm for Randomized Task Allocation
in Fog Computing Systems,” IEEE/ACM Transactions on Networking, vol. 27,
no. 1, pp. 85–97, 2018.

[19] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y.
Zomaya, “Secure and Sustainable Load Balancing of Edge Data Centers in Fog
Computing,” IEEE Communications Magazine, vol. 56, no. 5, pp. 60–65, 2018.

[20] C. Zhu, G. Pastor, Y. Xiao, Y. Li, and A. Ylae-Jaeaeski, “Fog Following Me:
Latency and Quality Balanced Task Allocation in Vehicular Fog Computing,” in
2018 15th Annual IEEE International Conference on Sensing, Communication,
and Networking (SECON), pp. 1–9, IEEE, 2018.

[21] M. Peng, C. Wang, V. Lau, and H. V. Poor, “Fronthaul-Constrained Cloud Radio
Access Networks: Insights and Challenges,” arXiv Preprint arXiv:1503.01187,
2015.

[22] M. Peng, Y. Li, J. Jiang, J. Li, and C. Wang, “Heterogeneous Cloud Radio Access
Networks: A New Perspective for Enhancing Spectral and Energy Efficiencies,”
arXiv Preprint arXiv:1410.3028, 2014.

[23] M. Peng, S. Yan, K. Zhang, and C. Wang, “Fog Computing Based Radio Access
Networks: Issues and Challenges,” arXiv Preprint arXiv:1506.04233, 2015.



104

[24] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, “Fog computing:
Focusing on Mobile Users at the Edge,” arXiv Preprint arXiv:1502.01815, 2015.

[25] J. Ni, K. Zhang, X. Lin, and X. S. Shen, “Securing Fog Computing for Internet of
Things Applications: Challenges and Solutions,” IEEE Communications Surveys
& Tutorials, vol. 20, no. 1, pp. 601–628, 2017.

[26] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and its Role in
the Internet of Things,” in Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, pp. 13–16, ACM, 2012.

[27] K. Mershad and H. Artail, “Finding a Star in a Vehicular Cloud,” IEEE Intel-
ligent Transportation Systems Magazine, vol. 5, no. 2, pp. 55–68, 2013.

[28] D. Baby, R. Sabareesh, R. Saravanaguru, and A. Thangavelu, “Vcr: Vehicular
Cloud for Road Side Scenarios,” in Advances in Computing and Information
Technology, pp. 541–552, Springer, 2013.

[29] S. Olariu, T. Hristov, and G. Yan, “The Next Paradigm Shift: From Vehicu-
lar Networks to Vehicular Clouds,” Mobile Ad Hoc Networking: Cutting Edge
Directions, vol. 56, no. 6, pp. 645–700, 2013.

[30] S. Bitam, A. Mellouk, and S. Zeadally, “VANET-Cloud: a Generic Cloud Com-
puting Model for Vehicular Ad Hoc Networks,” IEEE Wireless Communications,
vol. 22, no. 1, pp. 96–102, 2015.

[31] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected Vehicles: So-
lutions and Challenges,” IEEE Internet of Things Journal, vol. 1, no. 4, pp. 289–
299, 2014.

[32] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy, “An Anal-
ysis of Internet Content Delivery Systems,” ACM SIGOPS Operating Systems
Review, vol. 36, no. SI, pp. 315–327, 2002.

[33] T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and H. Ten-
hunen, “Fog Computing in Healthcare Internet of Things: A Case Study on ECG
Feature Extraction,” in 2015 IEEE International Conference on Computer and
Information Technology; Ubiquitous Computing and Communications; Depend-
able, Autonomic and Secure Computing; Pervasive Intelligence and Computing,
pp. 356–363, IEEE, 2015.

[34] F. Haider, D. Zhang, M. St-Hilaire, and C. Makaya, “On the Planning and Design
Problem of Fog Computing Networks,” IEEE Transactions on Cloud Computing,
2018.

[35] D. Zhang, F. Haider, M. St-Hilaire, and C. Makaya, “Model and Algorithms for
the Planning of Fog Computing Networks,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 3873–3884, 2019.

[36] A. Tchernykh, U. Schwiegelsohn, V. Alexandrov, and E.-g. Talbi, “Towards Un-
derstanding Uncertainty in Cloud Computing Resource Provisioning,” Procedia
Computer Science, vol. 51, pp. 1772–1781, 2015.



105

[37] D. Kliazovich, J. E. Pecero, A. Tchernykh, P. Bouvry, S. U. Khan, and A. Y.
Zomaya, “Ca-dag: Modeling Communication-Aware Applications for Scheduling
in Cloud Computing,” Journal of Grid Computing, vol. 14, no. 1, pp. 23–39,
2016.

[38] U. Schwiegelshohn and A. Tchernykh, “Online Scheduling for Cloud Computing
and Different Service Levels,” in 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum, pp. 1067–1074,
IEEE, 2012.

[39] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud Computing:
What it is, and What it is Not,” in Proceedings of the 10th International Con-
ference on Autonomic Computing ({ICAC} 13), pp. 23–27, 2013.

[40] S. Agarwal, S. Yadav, and A. K. Yadav, “An Efficient Architecture and Algo-
rithm for Resource Provisioning in Fog Computing,” International Journal of
Information Engineering and Electronic Business, vol. 8, no. 1, p. 48, 2016.

[41] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K.-K. R. Choo, and M. Dlodlo, “From
Cloud to Fog Computing: A Review and a Conceptual Live VM Migration
Framework,” IEEE Access, vol. 5, pp. 8284–8300, 2017.

[42] A. Tchernykh, D. Trystram, C. Brizuela, and I. Scherson, “Idle Regulation in
Non-Clairvoyant Scheduling of Parallel Jobs,” Discrete Applied Mathematics,
vol. 157, no. 2, pp. 364–376, 2009.

[43] A. Quezada-Pina, A. Tchernykh, J. L. González-Garćıa, A. Hirales-Carbajal,
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A. Quezada-Pina, J. L. González-Garćıa, and A. Hirales-Carbajal, “Job Allo-
cation Strategies with User Run Time Estimates for Online Scheduling in Hier-
archical Grids,” Journal of Grid Computing, vol. 9, no. 1, pp. 95–116, 2011.

[52] M. Aazam and E.-N. Huh, “Fog Computing Micro Datacenter Based Dynamic
Resource Estimation and Pricing Model for Internet of Things,” in 2015 IEEE
29th International Conference on Advanced Information Networking and Appli-
cations, pp. 687–694, IEEE, 2015.

[53] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, and C. S. Hong,
“A Proximal Algorithm for Joint Resource Allocation and Minimizing Carbon
Footprint in Geo-Distributed Fog Computing,” in 2015 International Conference
on Information Networking (ICOIN), pp. 324–329, IEEE, 2015.

[54] A. M. Bloch, “Steepest Descent, Linear Programming and Hamiltonian Flows,”
Contemp. Math. AMS, vol. 114, pp. 77–88, 1990.

[55] Z. Xiao, W. Song, and Q. Chen, “Dynamic Resource Allocation Using Virtual
Machines for Cloud Computing Environment,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 6, pp. 1107–1117, 2012.

[56] W. Wei, X. Fan, H. Song, X. Fan, and J. Yang, “Imperfect Information Dynamic
Stackelberg Game Based Resource Allocation Using Hidden Markov for Cloud
Computing,” IEEE Transactions on Services Computing, vol. 11, no. 1, pp. 78–
89, 2016.

[57] P. Lai, Q. He, G. Cui, X. Xia, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy,
and Y. Yang, “Edge User Allocation with Dynamic Quality of Service,” in In-
ternational Conference on Service-Oriented Computing, pp. 86–101, Springer,
2019.

[58] F. Haider, “On the Planning and Design Problem of Fog Networks,” Master’s
thesis, Carleton University, 2018.

[59] D. Zhang, “Exact and Approximation Algorithms for the Planning and Design
of Fog Networks,” Master’s thesis, Carleton University, 2018.

[60] J. Ejarque, A. Micsik, R. Sirvent, P. Pallinger, L. Kovacs, and R. M. Badia,
“Semantic Resource Allocation with Historical Data Based Predictions,” 2010.

[61] S. Schneider, F. Seifert, and A. Sunyaev, “Market Potential Analysis and Branch
Network Planning: Application in a German Retail Bank,” in 2014 47th Hawaii
International Conference on System Sciences, pp. 1122–1131, IEEE, 2014.



107

[62] F. Glover and M. Laguna, “Tabu Search,” in Handbook of Combinatorial Opti-
mization, pp. 2093–2229, Springer, 1998.

[63] J. Kennedy, “Swarm Intelligence,” in Handbook of Nature-Inspired and Innova-
tive Computing, pp. 187–219, Springer, 2006.

[64] P. J. Van Laarhoven and E. H. Aarts, “Simulated Annealing,” in Simulated
Annealing: Theory and Applications, pp. 7–15, Springer, 1987.

[65] D. Whitley, “A Genetic Algorithm Tutorial,” Statistics and Computing, vol. 4,
no. 2, pp. 65–85, 1994.

[66] N. Funabiki and Y. Takefuji, “A Neural Network Parallel Algorithm for Chan-
nel Assignment Problems in Cellular Radio Networks,” IEEE Transactions on
Vehicular Technology, vol. 41, no. 4, pp. 430–437, 1992.

[67] J. A. Suykens and J. Vandewalle, “Least Squares Support Vector Machine Clas-
sifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.

[68] M. J. Beckmann, “City Hierarchies and the Distribution of City Size,” Economic
Development and Cultural Change, vol. 6, no. 3, pp. 243–248, 1958.



Appendix A

Theoretical Model Results Additional

Data

This appendix presents additional results used in the testing of the theoretical model.

A.1 Theoretical Model Constraint Validation De-

tailed Results

The following 8 results (Results 5, 6, 7, 8, 9, 10, 11 and 12) present the detailed

outcome of the theoretical model for Section 4.2 validating each constraint set.
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Result 5: Theoretic model results for Constraint 1

1 Time Window 0 Running fog node: None

2 Start of task 1

3 µ10 ← 1

4 Task 1 assigned to the cloud

5

6 Time Window 1 Running fog node: 1

7 End of task 1

8 Start of task 2

9 x2−1−1 ← 1; θ1−1 ← 1

10 Task 2 assigned to fog node 1

11

12 Time Window 2 Running fog node: 1

13 End of task 2

14 Start of task 3

15 x3−1−2 ← 1; θ1−2 ← 1

16 Task 3 assigned to fog node 1

17

18 Time Window 3 Running fog node: 1

19 End of task 3

20 Start of task 4

21 x4−1−3 ← 1 θ1−3 ← 1

22 Task 4 assigned to fog node 1

23

24 Time Window 4 Running fog node: 1

25 End of task 4

26 Start of task 5

27 x5−1−4 ← 1 θ1−4 ← 1

28 Task 5 assigned to fog node 1

29

30 Time Window 5 Running fog node: 1

31 End of task 5

32 θ1−5 ← 1

33

34 Profit = r(x2−1−1 + x3−1−2 + x4−1−3 + x5−1−4)− cu(µ1−0)−
mn(θ1−1 + θ1−2 + θ1−3 + θ1−4 + θ1−5) = 3.0
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Result 6: Theoretic model results for Constraint 2

1 Time Window 0 Running fog node: None

2 Start of tasks 1, 2, 3, 4 and 5

3 µ1−0 ← 1; µ2−0 ← 1; µ3−0 ← 1; µ4−0 ← 1; µ5−0 ← 1

4 Tasks 1, 2, 3, 4 and 5 assigned to the cloud

5

6 Time Window 1 Running fog nodes: 1, 2, 3, 4, 5

7 x111 ← 1; x221 ← 1; x331 ← 1; x441 ← 1; x551 ← 1

8 θ11 ← 1; θ21 ← 1; θ31 ← 1; θ41 ← 1; θ51 ← 1

9 Tasks 1, 2, 3, 4 and 5 assigned to fog node 1, 2, 3, 4 and 5

10

11 Time Window 2 Running fog nodes: 1, 2, 3, 4, 5

12 End of tasks 1, 2, 3, 4, 5

13 θ12 ← 1; θ22 ← 1; θ32 ← 1; θ42 ← 1; θ52 ← 1

14

15 Profit = r(x111+x221+x331+x441+x551)−cu(µ10+µ20+µ30+µ40+

µ50)−mn(θ11 +θ12 +θ21 +θ22 +θ31 +θ32 +θ41 +θ42 +θ51 +θ52) = 1.5
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Result 7: Theoretic model results for Constraint 3

1 Time Window 0 Running fog node: None

2 Start of tasks 1, 2, 3, 4 and 5

3 µ10 ← 1

4 Tasks 1, 2, 3, 4 and 5 assigned to the cloud

5

6 Time Window 1 Running fog node: 1

7 x111 ← 1; x211 ← 1

8 θ11 ← 1

9 Tasks 1 and 2 assigned to fog node 1 and 2

10 Tasks 3, 4 and 5 assigned to the cloud

11

12 Time Window 2 Running fog node: 1

13 End of tasks 1, 2, 3, 4, 5

14 θ12 ← 1;

15

16 Profit = r(x111 + x211)− cu(µ10)−mn(θ11 + θ12) = 1.3

Result 8: Theoretic model results for Constraint 6

1 Time Window 0 Running fog node: None

2 Start of task 1

3 µ10 ← 1

4 Task 1 assigned to the cloud

5

6 Time Window 1 Running fog node: 1

7 x111 ← 1

8 θ11 ← 1

9 Task 1 assigned to fog node 1

10

11 Time Window 2 Running fog node: 1

12 End of task 1

13 θ12 ← 1;

14

15 Profit = r(x111)− cu(µ10)−mn(θ11 + θ12) = 0.3



APPENDIX A. THEORETICAL MODEL RESULTS ADDITIONAL DATA 112

Result 9: Theoretic model results for Constraint 7

1 Time Window 0 Running fog node: None

2 Start of task 1

3 Task 1 assigned to the cloud

4

5 Time Window 1 Running fog node: None

6 Task 1 assigned to the cloud

7

8 Time Window 2 Running fog node: None

9 End of task 1

10

11 Profit = 0
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Result 10: Theoretic model results for Constraint 8

1 Time Window 0 Running fog node: None

2

3 Time Window 1 Running fog node: None

4

5 Time Window 2 Running fog node: None

6 µ12 ← 1

7

8 Time Window 3 Running fog node: 1

9 Start of Task 1

10 x113 ← 1

11 θ13 ← 1

12 Task 1 assigned to fog node 1

13

14 Time Window 4 Running fog node: 1

15 x114 ← 1

16 θ14 ← 1

17 Task 1 assigned to fog node 1

18

19 Time Window 5 Running fog node: 1

20 End of task 1

21 θ15 ← 1

22

23 Profit = r(x113 + x114)− cu(µ12)−mn(θ13 + θ14 + θ15) = 1.2
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Result 11: Theoretic model results for Constraint 10

1 Time Window 0 Running fog node: None

2 Start of task 1

3 Task 1 assigned to the cloud

4

5 Time Window 1 Running fog node: None

6 Task 1 assigned to the cloud

7

8 Time Window 2 Running fog node: None

9 End of task 1

10

11 Profit = 0

Result 12: Theoretic model results for Constraint 11

1 Time Window 0 Running fog node: None

2 Start of task 1

3 µ10 ← 1

4 Task 1 assigned to the cloud

5

6 Time Window 1 Running fog node: 1

7 x111 ← 1

8 θ11 ← 1

9 Task 1 assigned to fog node 1

10

11 Time Window 2 Running fog node: None

12 End of task 1

13 φ12 ← 1

14

15 Profit = r(x111)− cu(µ11)− cs(φ12)−mn(θ11) = 0.4
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A.2 Theoretical Model Computational Complex-

ity Detailed Results

Table A.1 presents the complete computational complexity results abbreviated in

Section 4.2.9.

Table A.1: Theoretic Model Average Processing Time Results (in seconds)

|I| |J |
Theoretical Model TL Theoretical Model (180s)

Profit Time Profit Time

Min Typ Max Min Typ Max Min Typ Max Min Typ Max

1 1 0.3 0.7 1.2 0.0 0.1 0.2 1.0 1.0 1.0 0.0 0.0 0.1

3 0.3 0.8 1.2 0.0 0.1 0.1 1.0 1.0 1.0 0.0 0.1 0.1

5 0.3 0.7 1.2 0.1 0.1 0.1 1.0 1.0 1.0 0.1 0.1 0.1

7 0.3 1.0 1.2 0.1 0.1 0.1 1.0 1.0 1.0 0.1 0.1 0.1

9 0.3 0.8 1.2 0.1 0.1 0.2 1.0 1.0 1.0 0.1 0.1 0.2

11 0.3 0.7 1.2 0.1 0.1 0.2 1.0 1.0 1.0 0.1 0.1 0.2

13 1.2 1.2 1.2 0.2 0.2 0.2 1.0 1.0 1.0 0.2 0.2 0.2

15 0.3 0.8 1.2 0.1 0.2 0.2 1.0 1.0 1.0 0.1 0.2 0.2

17 0.3 0.8 1.2 0.1 0.2 0.3 1.0 1.0 1.0 0.1 0.2 0.3

19 0.3 1.0 1.2 0.2 0.3 0.3 1.0 1.0 1.0 0.2 0.3 0.3

21 0.3 1.0 1.2 0.2 0.3 0.4 1.0 1.0 1.0 0.2 0.3 0.4

6 1 3.0 7.2 9.0 0.1 0.1 0.1 1.0 1.0 1.0 0.1 0.1 0.1

3 7.0 9.9 13.1 0.1 0.2 0.2 1.0 1.0 1.0 0.1 0.2 0.3

5 10.2 12.1 14.0 0.4 1.2 3.8 1.0 1.0 1.0 0.4 1.2 3.8

7 12.1 13.1 14.0 0.8 1.1 1.5 1.0 1.0 1.0 0.8 1.1 1.6

9 10.5 12.2 14.1 0.7 1.5 2.7 1.0 1.0 1.0 0.6 1.5 2.7

11 13.0 13.3 14.0 1.5 2.7 3.7 1.0 1.0 1.0 1.5 2.7 3.5

13 12.1 13.4 14.0 2.4 2.7 3.4 1.0 1.0 1.0 1.9 2.5 3.2

15 13.1 13.8 14.0 2.5 3.6 6.1 1.0 1.0 1.0 2.4 3.6 6.1

17 12.1 13.3 14.0 2.7 5.1 7.9 1.0 1.0 1.0 2.7 5.0 7.8

19 11.1 13.3 14.9 1.9 4.2 6.5 1.0 1.0 1.0 1.9 4.1 6.2

21 12.1 13.4 15.9 4.4 6.6 11.1 1.0 1.0 1.0 4.5 6.5 10.4

11 1 4.8 10.5 17.7 0.1 0.1 0.1 1.0 1.0 1.0 0.1 0.1 0.1

3 15.1 18.9 25.6 0.4 0.6 0.8 1.0 1.0 1.0 0.4 0.6 0.8

5 19.2 24.5 28.5 1.0 2.1 3.7 1.0 1.0 1.0 1.0 2.1 3.7

7 23.6 25.7 27.8 1.3 2.5 3.6 1.0 1.0 1.0 1.2 2.5 3.6
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9 24.6 25.2 26.6 1.9 4.0 6.5 1.0 1.0 1.0 1.9 4.0 6.6

11 23.9 25.8 28.5 3.4 8.0 13.3 1.0 1.0 1.0 3.4 8.0 13.4

13 25.8 27.4 29.5 7.1 20.2 55.5 1.0 1.0 1.0 7.1 20.3 55.1

15 25.7 26.6 28.7 7.1 26.7 83.2 1.0 1.0 1.0 7.1 25.5 83.2

17 25.5 26.1 26.8 12.6 81.9 241.7 1.0 1.0 1.0 12.7 69.6 180.0

19 25.8 28.3 31.3 15.1 82.6 329.2 1.0 1.0 1.0 15.0 52.8 180.0

21 24.8 27.3 28.6 19.4 86.1 269.7 1.0 1.0 1.0 19.3 69.8 180.0

16 1 7.5 12.7 22.6 0.1 0.1 0.2 1.0 1.0 1.0 0.1 0.1 0.2

3 35.7 39.2 43.1 0.8 1.7 2.8 1.0 1.0 1.0 0.9 1.7 2.9

5 34.4 38.0 42.0 2.0 4.0 7.1 1.0 1.0 1.0 2.0 4.0 7.1

7 39.1 41.7 43.1 2.5 5.6 9.6 1.0 1.0 1.0 2.5 5.7 9.7

9 39.1 40.9 42.2 7.9 12.5 20.6 1.0 1.0 1.0 8.0 12.5 20.4

11 38.8 40.6 43.9 14.2 25.1 43.0 1.0 1.0 1.0 14.3 22.6 43.1

13 39.8 41.5 44.1 14.6 39.0 79.1 1.0 1.0 1.0 16.3 40.2 83.3

15 37.0 40.4 43.2 21.3 33.5 68.4 1.0 1.0 1.0 20.5 33.8 71.7

17 39.0 41.2 43.1 21.1 59.0 185.6 1.0 1.0 1.0 21.2 58.5 180.0

19 1.9 45.0 120.4 24.0 59.0 120.4 1.0 1.0 1.0 24.0 59.0 119.7

21 38.0 41.5 44.1 27.8 1486.4 5000.1 1.0 1.0 1.0 27.8 107.5 180.0

21 1 9.3 20.6 32.2 0.2 0.2 0.3 1.0 1.0 1.0 0.2 0.2 0.3

3 25.9 35.4 56.9 0.7 1.1 1.6 1.0 1.0 1.0 0.7 1.1 1.6

5 50.4 55.0 57.3 3.0 8.8 19.1 1.0 1.0 1.0 3.0 8.8 19.2

7 51.0 53.0 56.5 3.4 10.1 19.9 1.0 1.0 1.0 3.4 10.1 20.1

9 48.9 53.1 55.6 5.7 15.9 23.0 1.0 1.0 1.0 5.7 16.1 23.2

11 52.8 56.9 59.5 24.7 29.5 38.8 1.0 1.0 1.0 24.5 29.7 39.4

13 55.4 57.1 59.6 24.6 422.3 1399.7 1.0 1.0 1.0 24.5 90.6 180.0

15 51.6 55.2 60.1 42.7 2163.6 5000.1 1.0 1.0 1.0 43.0 138.2 180.1

17 53.1 55.5 57.6 46.9 2048.6 5009.8 1.0 1.0 1.0 46.9 118.6 180.1

19 52.5 56.1 61.4 31.4 172.3 555.2 1.0 1.0 1.0 31.3 97.4 180.0

21 52.8 55.2 57.6 57.2 2747.6 5005.8 1.0 1.0 1.0 57.1 136.5 180.1

26 1 12.0 20.7 39.0 0.2 0.2 0.3 1.0 1.0 1.0 0.2 0.2 0.3

3 35.0 52.4 70.1 1.5 2.3 3.3 1.0 1.0 1.0 1.5 2.3 3.3

5 59.6 65.2 71.0 5.6 8.2 10.1 1.0 1.0 1.0 5.7 8.3 10.3

7 62.8 67.2 70.3 9.2 16.0 23.3 1.0 1.0 1.0 9.1 16.0 23.2

9 66.4 69.1 70.5 10.3 19.8 26.3 1.0 1.0 1.0 10.4 19.8 26.0

11 64.7 68.9 72.7 16.1 28.7 46.8 1.0 1.0 1.0 17.6 37.5 59.3

13 66.2 70.1 74.7 42.7 1360.8 5000.1 1.0 1.0 1.0 45.5 116.9 180.0

15 64.4 67.2 70.9 33.4 698.8 3134.9 1.0 1.0 1.0 33.4 103.6 180.0
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17 67.9 69.7 71.9 101.7 3071.5 5005.1 1.0 1.0 1.0 102.3 164.5 180.1

19 67.8 70.0 71.7 48.8 2114.8 5000.1 1.0 1.0 1.0 48.7 134.9 180.1

21 66.9 70.3 73.9 415.0 3286.5 5000.1 0.0 0.8 1.0 180.0 180.1 180.2

31 1 13.8 31.9 49.6 0.2 0.3 0.3 1.0 1.0 1.0 0.3 0.3 0.3

3 42.1 65.9 74.2 1.8 2.4 3.0 1.0 1.0 1.0 1.8 2.4 3.0

5 70.6 77.6 86.8 5.2 7.6 10.1 1.0 1.0 1.0 5.1 7.6 10.1

7 77.7 80.8 83.2 9.6 13.4 22.7 1.0 1.0 1.0 9.8 13.2 22.1

9 76.8 82.6 85.8 20.6 39.9 76.8 1.0 1.0 1.0 20.3 39.2 76.1

11 80.2 83.1 87.1 22.1 627.0 2862.5 1.0 1.0 1.0 21.8 98.0 180.0

13 78.5 83.8 86.7 59.7 2088.3 5007.0 1.0 1.0 1.0 60.8 132.6 180.0

15 82.6 84.8 88.5 83.6 2348.1 5000.1 1.0 1.0 1.0 81.0 160.3 180.1

17 80.9 84.4 89.9 83.7 2495.0 5000.1 0.0 0.8 1.0 83.5 160.7 180.1

19 78.6 81.1 84.7 119.2 1572.7 5000.1 1.0 1.0 1.0 118.2 160.3 180.1

21 85.1 85.5 86.1 242.1 3194.5 5000.2 0.0 0.6 1.0 180.0 180.0 180.0

36 1 15.6 28.4 52.5 0.3 0.4 0.4 1.0 1.0 1.0 0.3 0.3 0.4

3 68.3 83.0 94.0 3.0 4.0 5.3 1.0 1.0 1.0 3.0 4.0 5.3

5 95.4 96.6 98.1 5.0 7.8 11.1 1.0 1.0 1.0 5.0 7.8 11.1

7 91.7 97.5 101.8 9.2 35.9 61.0 1.0 1.0 1.0 8.9 35.8 62.0

9 96.1 97.5 99.8 69.6 1104.8 5000.1 1.0 1.0 1.0 63.4 121.7 180.1

11 94.1 97.8 99.5 69.3 1085.9 5000.1 1.0 1.0 1.0 69.9 118.7 180.1

13 92.4 98.2 102.7 99.3 886.5 2183.5 1.0 1.0 1.0 99.0 145.6 180.0

15 95.3 99.3 103.1 303.1 3125.3 5007.0 1.0 1.0 1.0 180.0 180.0 180.1

17 95.0 96.7 98.3 163.8 2161.4 5009.3 0.0 0.8 1.0 165.9 177.2 180.1

19 96.1 100.3 102.5 294.5 4060.8 5009.2 0.0 0.8 1.0 180.0 180.1 180.1

21 94.1 99.1 104.1 334.6 4067.0 5000.2 0.0 0.0 0.0 180.0 180.0 180.0

41 1 19.2 32.6 60.3 0.3 0.4 0.5 1.0 1.0 1.0 0.3 0.4 0.5

3 58.3 72.9 95.8 2.1 3.0 4.4 1.0 1.0 1.0 2.1 3.0 4.4

5 84.7 104.2 113.6 4.1 18.4 53.7 1.0 1.0 1.0 4.0 18.4 54.0

7 107.8 110.0 113.4 15.0 39.2 67.2 1.0 1.0 1.0 15.3 38.4 63.4

9 109.4 113.2 119.0 34.0 739.8 2709.2 1.0 1.0 1.0 33.7 95.7 180.0

11 109.6 112.9 118.1 42.3 2076.8 5000.1 1.0 1.0 1.0 42.8 144.1 180.1

13 107.9 112.5 117.7 81.9 2118.6 5005.1 1.0 1.0 1.0 83.5 142.8 180.1

15 108.6 112.5 120.9 257.3 2480.6 5000.2 0.0 0.6 0.9 180.0 180.0 180.1

17 108.5 113.1 117.2 0.0 1473.1 5000.2 0.0 0.6 1.0 152.5 174.5 180.1

19 110.3 112.4 114.6 165.8 4035.4 5010.5 0.0 0.2 1.0 164.5 176.9 180.0

21 110.3 110.7 111.3 436.1 3182.6 5000.2 0.0 0.2 1.0 180.0 180.0 180.0

46 1 21.0 32.1 73.8 0.3 0.3 0.5 1.0 1.0 1.0 0.3 0.4 0.5
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3 61.9 87.0 122.1 2.3 4.6 10.4 1.0 1.0 1.0 2.3 4.6 10.4

5 109.7 121.3 124.7 7.0 11.7 18.7 1.0 1.0 1.0 7.1 11.3 16.8

7 123.2 125.0 126.7 14.0 229.0 958.8 1.0 1.0 1.0 13.9 73.9 180.0

9 117.9 125.6 129.7 18.4 1444.4 5000.0 1.0 1.0 1.0 20.1 129.4 180.1

11 125.1 127.3 128.7 129.2 2139.2 5007.1 1.0 1.0 1.0 129.1 169.9 180.1

13 121.2 126.7 132.1 101.8 2098.4 5002.3 1.0 1.0 1.0 101.5 149.3 180.1

15 125.8 127.6 129.8 292.9 2342.7 5000.2 0.0 0.8 1.0 180.0 180.0 180.1

17 122.9 128.3 131.0 198.8 2495.4 5000.1 0.0 0.4 1.0 180.0 180.0 180.0

19 116.3 123.9 127.7 327.3 4065.6 5000.2 0.0 0.0 0.0 180.0 180.0 180.1

21 126.9 128.7 131.4 3519.3 4704.7 5003.7 0.0 0.0 0.0 180.0 180.0 180.1

51 1 23.7 50.3 76.7 0.3 0.5 0.6 1.0 1.0 1.0 0.3 0.5 0.6

3 72.7 100.9 144.4 2.7 6.5 13.3 1.0 1.0 1.0 2.6 6.3 13.3

5 113.7 133.8 141.1 10.5 24.6 59.5 1.0 1.0 1.0 10.8 24.9 59.5

7 128.9 133.7 137.8 9.4 26.7 51.4 1.0 1.0 1.0 9.4 27.2 51.0

9 137.7 140.3 144.5 46.7 69.1 99.5 1.0 1.0 1.0 46.2 68.4 99.3

11 137.3 139.8 142.9 87.8 1163.3 5010.3 1.0 1.0 1.0 87.9 157.0 180.0

13 134.8 140.8 145.8 135.3 3079.9 5000.1 1.0 1.0 1.0 136.1 171.3 180.1

15 140.2 143.9 150.8 5000.1 5001.8 5008.6 0.0 0.2 0.9 180.0 180.0 180.0

17 137.3 140.9 144.5 589.1 4121.1 5011.1 0.0 0.0 0.0 180.0 180.0 180.1

19 137.8 143.3 147.1 1318.9 4263.9 5000.2 0.0 0.0 0.0 180.0 180.0 180.1

21 138.1 143.1 147.0 3869.8 4719.4 5007.3 0.0 0.0 0.0 180.0 180.0 180.1



Appendix B

Heuristic Model Results Additional Data

This appendix presents additional results used in the configuration testing of the

heuristic model.

B.1 Task Order Manipulation Additional Data

Tables B.1 and B.2 present the detailed results generated for Section 4.3.1 (task order

manipulation parameters).

119
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Table B.1: Task Manipulation Weight Testing Detailed Example Results

Test Task Heuristic Upper Comment

Number Density Density Bound

1 4 25 25

2 4 28 28

3 4 26 26

4 4 28* 29 Fog node options provided the wrong order, prioritizing age would have been better.

5 4 27 27

6 4 24 24

7 4 28 28

8 4 26 26

9 4 26 26

10 4 23 23

1 6 22 22

2 6 20 20

3 6 22 22

4 6 23 23

5 6 21 21

6 6 23 23

7 6 19 19

8 6 22 22

9 6 20 20

10 6 22 22

1 8 18 19 Required a seemingly random order for one time window.

2 8 17 17

3 8 16 17 Required a seemingly random order for one time window.

4 8 17 17

5 8 18 18

6 8 18 18

7 8 17 17

8 8 17 17

9 8 20 20

10 8 16 16

1 10 15 15

2 10 18 18

3 10 15 15

4 10 15 15

5 10 13 13

6 10 17 17

7 10 17 17

8 10 15 15

9 10 16 16

10 10 16 16

1 12 16 16

2 12 14 14

3 12 15 15

4 12 35 35

5 12 14 14

6 12 15 17 Required a seemingly random order for one time window.

7 12 14 14

8 12 15 15

9 12 15 15

10 12 16 16
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Table B.2: Task Manipulation Weight Testing Detailed Example Results

Test Task Heuristic Upper Comment

Number Density Density Bound

1 4 31 31

2 4 28 28

3 4 33* 34 Fog node options provided the wrong order, prioritizing age would have been better.

4 4 35 35

5 4 36 36

6 4 32 33 Required a seemingly random order for one time window.

7 4 36 36

8 4 35 35

9 4 32 32

10 4 29 29

1 6 27 27

2 6 26 26

3 6 22 22

4 6 24* 26 Fog node options provided the wrong order, prioritizing age would have been better.

5 6 28 28

6 6 25 26 Required a seemingly random order for one time window.

7 6 28 28

8 6 26 26

9 6 27 27

10 6 24 24

1 8 23 23

2 8 22 22

3 8 21 21

4 8 23 23

5 8 22 22

6 8 23 23

7 8 22 22

8 8 23 24

9 8 20 20

10 8 24 24

1 10 19 19

2 10 20 20

3 10 19 19

4 10 20 20

5 10 19 19

6 10 20 20

7 10 19 19

8 10 20 20

9 10 20 20

10 10 21 21

1 12 19 19

2 12 19 19

3 12 17 17

4 12 18 18

5 12 15 15

6 12 19 19

7 12 19 19

8 12 18 18

9 12 18 18

10 12 18 18



APPENDIX B. HEURISTIC MODEL RESULTS ADDITIONAL DATA 122

B.2 Fog Node Memory Threshold Additional Data

Figures B.3, B.4, B.5, B.6, B.7, B.8, B.9, B.10, B.11 and B.12 present the fog node

memory results for each of the 10 tests averaged for Section 4.3.2.1.

Figure B.1: Heuristic Model Start Stop Memory Results Test 1).

Figure B.2: Heuristic Model Start Stop Memory Results Test 2).
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Figure B.3: Heuristic Model Start Stop Memory Results Test 3).

Figure B.4: Heuristic Model Start Stop Memory Results Test 4).
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Figure B.5: Heuristic Model Start Stop Memory Results Test 5).

Figure B.6: Heuristic Model Start Stop Memory Results Test 6).
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Figure B.7: Heuristic Model Start Stop Memory Results Test 7).

Figure B.8: Heuristic Model Start Stop Memory Results Test 8).
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Figure B.9: Heuristic Model Start Stop Memory Results Test 9).

Figure B.10: Heuristic Model Start Stop Memory Results Test 10).

B.3 Fog node Simulated Tasks Additional Data

Tables B.3, B.3, B.4, B.5, B.6, B.7, B.8, B.9, B.10, B.11 and B.12 present the complete

results for simulated tasks used for Section 4.3.2.2.
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Table B.3: Fog Node State Manipulation Simulated Tasks Test1 Results

Nb Tasks Nb Fog Nodes Number of Simulated Tasks Heuristic Profit (normalized) Processing Time

20 5 1 0.83 0.20

20 5 3 0.90 0.41

20 5 5 0.90 0.45

20 5 7 0.86 0.52

20 5 9 0.86 0.62

20 5 11 0.89 0.63

20 5 13 0.92 0.92

20 5 15 0.92 1.02

20 5 17 0.92 1.12

20 5 19 0.92 1.22

20 5 21 0.92 1.31

Table B.4: Fog Node State Manipulation Simulated Tasks Test2 Results

Nb Tasks Nb Fog Nodes Number of Simulated Tasks Heuristic Profit (normalized) Processing Time

20 5 1 0.91 0.25

20 5 3 0.95 0.46

20 5 5 0.95 0.49

20 5 7 0.92 0.51

20 5 9 0.91 0.55

20 5 11 0.88 0.67

20 5 13 0.91 0.76

20 5 15 0.87 0.80

20 5 17 0.94 1.15

20 5 19 0.94 1.24

20 5 21 0.94 1.33
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Table B.5: Fog Node State Manipulation Simulated Tasks Test3 Results

Nb Tasks Nb Fog Nodes Number of Simulated Tasks Heuristic Profit (normalized) Processing Time

20 5 1 0.85 0.20

20 5 3 0.90 0.39

20 5 5 0.89 0.47

20 5 7 0.89 0.51

20 5 9 0.84 0.57

20 5 11 0.82 0.58

20 5 13 0.91 0.89

20 5 15 0.91 1.04

20 5 17 0.93 1.20

20 5 19 0.89 1.32

20 5 21 0.93 1.57

Table B.6: Fog Node State Manipulation Simulated Tasks Test4 Results

Nb Tasks Nb Fog Nodes Number of Simulated Tasks Heuristic Profit (normalized) Processing Time

20 5 1 0.89 0.31

20 5 3 0.89 0.45

20 5 5 0.89 0.50

20 5 7 0.89 0.60

20 5 9 0.92 0.66

20 5 11 0.95 0.83

20 5 13 0.96 1.06

20 5 15 0.95 1.11

20 5 17 0.95 1.15

20 5 19 0.95 1.28

20 5 21 0.96 1.40
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Table B.7: Fog Node State Manipulation Simulated Tasks Test5 Results

Nb Tasks Nb Fog Nodes Number of Simulated Tasks Heuristic Profit (normalized) Processing Time

20 5 1 0.86 0.25

20 5 3 0.92 0.38

20 5 5 0.89 0.42

20 5 7 0.89 0.51

20 5 9 0.92 0.68

20 5 11 0.86 0.74

20 5 13 0.93 0.95

20 5 15 0.92 1.05

20 5 17 0.92 1.15

20 5 19 0.91 1.21

20 5 21 0.93 1.41

Table B.8: Fog Node State Manipulation Simulated Tasks Test6 Results

Nb Tasks Nb Fog Nodes Number of Simulated Tasks Heuristic Profit (normalized) Processing Time

20 5 1 0.90 0.20

20 5 3 0.95 0.42

20 5 5 0.95 0.50

20 5 7 0.90 0.47

20 5 9 0.87 0.62

20 5 11 0.93 0.88

20 5 13 0.96 1.06

20 5 15 0.89 0.94

20 5 17 0.96 1.30

20 5 19 0.96 1.43

20 5 21 0.96 1.56
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Table B.9: Fog Node State Manipulation Simulated Tasks TEst7 Results

Nb Tasks Nb Fog Nodes Number of Simulated Tasks Heuristic Profit (normalized) Processing Time

20 5 1 0.91 0.29

20 5 3 0.97 0.49

20 5 5 0.96 0.58

20 5 7 0.93 0.63

20 5 9 0.91 0.61

20 5 11 0.87 0.72

20 5 13 0.98 1.11

20 5 15 0.98 1.24

20 5 17 0.98 1.36

20 5 19 0.98 1.49

20 5 21 0.98 1.60

Table B.10: Fog Node State Manipulation Simulated Tasks Test8 Results

Nb Tasks Nb Fog Nodes Number of Simulated Tasks Heuristic Profit (normalized) Processing Time

20 5 1 0.85 0.20

20 5 3 0.94 0.44

20 5 5 0.92 0.56

20 5 7 0.86 0.56

20 5 9 0.92 0.75

20 5 11 0.86 0.81

20 5 13 0.96 1.06

20 5 15 0.96 1.19

20 5 17 0.96 1.33

20 5 19 0.96 1.41

20 5 21 0.96 1.54
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Table B.11: Fog Node State Manipulation Simulated Tasks Test9 Results

Nb Tasks Nb Fog Nodes Number of Simulated Tasks Heuristic Profit (normalized) Processing Time

20 5 1 0.88 0.26

20 5 3 0.91 0.52

20 5 5 0.91 0.59

20 5 7 0.88 0.58

20 5 9 0.85 0.67

20 5 11 0.86 0.75

20 5 13 0.90 1.00

20 5 15 0.87 1.06

20 5 17 0.91 1.29

20 5 19 0.91 1.40

20 5 21 0.91 1.55

Table B.12: Fog Node State Manipulation Simulated Tasks Test10 Results

Nb Tasks Nb Fog Nodes Number of Simulated Tasks Heuristic Profit (normalized) Processing Time

20 5 1 0.91 0.26

20 5 3 0.94 0.48

20 5 5 0.94 0.55

20 5 7 0.94 0.67

20 5 9 0.93 0.72

20 5 11 0.88 0.80

20 5 13 0.94 1.02

20 5 15 0.94 1.13

20 5 17 0.94 1.26

20 5 19 0.94 1.38

20 5 21 0.94 1.49

B.4 Fog node Status Change Sensitivity Threshold

Tables B.13 and B.14 present the complete results for the status change sensitivity

threshold used for Section 4.3.2.3.



Table B.13: Fog Node Simulated Status Change Probability Threshold Bulk Results (15 Tasks, 5 Fog Nodes)

Start Prob 3;0 3;0.05 3;0.10 3;0.15 3;0.2 4;0 4;0.05 4;0.01 4;0.15 4;0.2 5;0 5;0.05 5;0.01 5;0.15 5;0.2 6;0 6;0.05 6;0.01 6;0.15 6;0.2

0.0 0.7959 0.7901 0.7892 0.8143 0.859 0.834 0.8561 0.8397 0.8286 0.8396 0.8374 0.8453 0.8632 0.851 0.8445 0.8937 0.8682 0.8857 0.8598 0.853

0.2 0.7998 0.7934 0.7955 0.8074 0.846 0.8312 0.8545 0.8524 0.8366 0.8282 0.8353 0.845 0.8638 0.8493 0.8366 0.8961 0.8626 0.8882 0.8614 0.8579

0.4 0.8017 0.7896 0.7927 0.8202 0.8455 0.8412 0.8483 0.8437 0.8362 0.8386 0.8385 0.852 0.8574 0.855 0.8337 0.8879 0.8624 0.8861 0.8667 0.8526

0.6 0.7873 0.7812 0.7894 0.8217 0.8494 0.8481 0.8471 0.8462 0.8407 0.8306 0.8398 0.8437 0.8574 0.8551 0.8446 0.8962 0.8545 0.889 0.8615 0.8592

0.8 0.787 0.7981 0.7951 0.8104 0.8506 0.8443 0.8493 0.8356 0.838 0.8369 0.836 0.8454 0.8669 0.8535 0.838 0.8897 0.8576 0.8854 0.8584 0.8545

1.0 0.7897 0.7919 0.7919 0.8076 0.8528 0.8453 0.8616 0.8445 0.8317 0.8348 0.8324 0.8483 0.8746 0.8615 0.8425 0.892 0.8564 0.8843 0.8629 0.8666

Stop Prob 3;0 3;0.05 3;0.10 3;0.15 3;0.2 4;0 4;0.05 4;0.01 4;0.15 4;0.2 5;0 5;0.05 5;0.01 5;0.15 5;0.2 6;0 6;0.05 6;0.01 6;0.15 6;0.2

0.0 0.949 0.958 0.9465 0.9635 0.9611 0.9392 0.9706 0.9244 0.9436 0.9185 0.9192 0.9366 0.9758 0.9423 0.9385 0.9685 0.9437 0.984 0.9837 0.9591

0.2 0.925 0.8862 0.9317 0.9325 0.8977 0.9709 0.9683 0.9767 0.9589 0.9693 0.9473 0.9409 0.9772 0.9558 0.9566 0.9779 0.9588 0.93 0.9546 0.9566

0.4 0.8646 0.8436 0.8798 0.886 0.9124 0.9066 0.9346 0.8967 0.9062 0.8748 0.8086 0.8398 0.8898 0.8654 0.847 0.9348 0.9099 0.8976 0.9224 0.9053

0.6 0.7006 0.7139 0.6883 0.7217 0.7914 0.8105 0.8276 0.8192 0.8294 0.8288 0.8574 0.8488 0.873 0.8653 0.8509 0.8297 0.7778 0.8392 0.7865 0.7981

0.8 0.671 0.6846 0.6495 0.6991 0.7725 0.6914 0.713 0.7305 0.6861 0.716 0.7223 0.7681 0.7246 0.7615 0.7246 0.8257 0.7788 0.8342 0.7573 0.7541

1.0 0.6516 0.6582 0.6573 0.6783 0.7676 0.7252 0.7032 0.7146 0.6875 0.701 0.7641 0.7459 0.7427 0.7352 0.7216 0.819 0.7923 0.8342 0.7666 0.7709



Table B.14: Fog Node Simulated Status Change Probability Threshold Bulk Results (15 Tasks, 5 Fog Nodes)

Start Prob 3;0 3;0.05 3;0.10 3;0.15 3;0.2 4;0 4;0.05 4;0.01 4;0.15 4;0.2 5;0 5;0.05 5;0.01 5;0.15 5;0.2 6;0 6;0.05 6;0.01 6;0.15 6;0.2

0.0 0.7621 0.7233 0.7596 0.7269 0.7809 0.7795 0.8 0.8024 0.7908 0.82 0.8048 0.7634 0.8083 0.7837 0.7967 0.8187 0.8303 0.8538 0.8307 0.788

0.2 0.7511 0.7397 0.7591 0.7243 0.7681 0.7782 0.8038 0.8041 0.7968 0.8292 0.8032 0.7692 0.8056 0.7869 0.7985 0.8132 0.8207 0.8519 0.8269 0.7867

0.4 0.7612 0.7246 0.7548 0.722 0.7836 0.782 0.7967 0.7994 0.7974 0.8245 0.799 0.7697 0.8046 0.7933 0.8021 0.8237 0.8238 0.8534 0.8254 0.7789

0.6 0.7606 0.7313 0.7536 0.721 0.7846 0.7784 0.8071 0.8076 0.7956 0.8194 0.8027 0.7628 0.8044 0.7801 0.8051 0.8155 0.823 0.8463 0.8279 0.784

0.8 0.742 0.7267 0.7548 0.7225 0.7876 0.7754 0.7919 0.8044 0.7923 0.8253 0.8041 0.7683 0.8078 0.7934 0.8058 0.8163 0.8235 0.8552 0.8247 0.7812

1.0 0.7476 0.7325 0.7606 0.7298 0.7856 0.778 0.798 0.8069 0.8035 0.825 0.8137 0.7646 0.7927 0.7928 0.7997 0.8187 0.8293 0.8506 0.8296 0.7796

Stop Prob 3;0 3;0.05 3;0.10 3;0.15 3;0.2 4;0 4;0.05 4;0.01 4;0.15 4;0.2 5;0 5;0.05 5;0.01 5;0.15 5;0.2 6;0 6;0.05 6;0.01 6;0.15 6;0.2

0.0 0.9473 0.9546 0.9428 0.95 0.969 0.9683 0.9657 0.9775 0.9571 0.9611 0.946 0.9266 0.9701 0.8729 0.9583 0.9134 0.929 0.9409 0.9365 0.9419

0.2 0.8824 0.8725 0.8414 0.8161 0.8931 0.8535 0.9274 0.9443 0.9018 0.9557 0.9338 0.9417 0.9744 0.9536 0.9704 0.9352 0.9436 0.979 0.9622 0.9478

0.4 0.8163 0.8278 0.8009 0.7668 0.8474 0.8418 0.8959 0.9126 0.8661 0.9097 0.7674 0.6868 0.8031 0.7566 0.8265 0.8383 0.8473 0.8493 0.8671 0.8389

0.6 0.658 0.5951 0.6721 0.6171 0.6894 0.699 0.7193 0.7007 0.7615 0.7491 0.7747 0.7012 0.7376 0.7879 0.7409 0.7837 0.7737 0.806 0.7482 0.7101

0.8 0.6255 0.5753 0.652 0.6052 0.6458 0.6638 0.6449 0.644 0.6442 0.6844 0.6919 0.6642 0.6678 0.6595 0.6669 0.7213 0.7454 0.7484 0.7251 0.6367

1.0 0.5953 0.5528 0.6341 0.5909 0.6457 0.6453 0.6437 0.6457 0.6464 0.6837 0.7139 0.6773 0.6709 0.6999 0.6449 0.7139 0.712 0.7878 0.726 0.6222



Appendix C

Large Scale Testing Additional Data

This appendix presents additional results used in the large scale testing of the heuristic

model.

C.1 Performance Analysis Additional Data

Tables C.1 and C.2 present the complete bulk results used in Section 4.4.2.
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Table C.1: 40 task 20 fog node bulk results for performance analysis

Rand H Rand T Rand R 3 H 3 T 3 R 5 H 5 T 5 R 10 H 10 T 10 R

120.6 165.8 0.7273823884 145.1 182.1 0.7968149368 128 172.6 0.741599073 145.1 192.1 0.7553357626

125.5 171.7 0.7309260338 149.6 185.8 0.8051668461 129.3 166 0.7789156627 137 167.4 0.8183990442

98.5 131.3 0.7501904037 140.7 178.1 0.7900056148 113.2 144.6 0.7828492393 119.9 155.1 0.7730496454

121.9 161.2 0.7562034739 152.4 188.1 0.8102073365 113.1 143.2 0.7898044693 139.7 174.8 0.7991990847

114.5 151.2 0.7572751323 153 183.8 0.8324265506 117.1 147.8 0.7922868742 141.1 173.9 0.8113858539

116.1 153.1 0.7583278903 143.4 181.2 0.7913907285 156.6 196.8 0.7957317073 114.7 146.6 0.7824010914

122.7 160.1 0.7663960025 155.3 182.5 0.8509589041 129.7 162.7 0.7971727105 150.4 186.3 0.8073000537

118.6 154.6 0.7671410091 152.2 181.9 0.8367234744 140.3 175.2 0.8007990868 119.4 147.9 0.8073022312

143.8 185.2 0.7764578834 132.9 165.2 0.8044794189 122.6 153 0.8013071895 115.3 149 0.7738255034

119.7 153.9 0.7777777778 135.1 162.8 0.8298525799 149.1 186 0.8016129032 121.5 151.9 0.7998683344

123.2 158.4 0.7777777778 149.2 180.5 0.8265927978 140.2 173.6 0.8076036866 141.7 171.9 0.8243164631

112.7 144.1 0.7820957668 159.9 185.9 0.8601398601 137.4 169.5 0.810619469 112.9 136.2 0.828928047

125.6 160.4 0.783042394 135.1 171 0.7900584795 126.2 155.2 0.8131443299 146.2 180.5 0.8099722992

123 156.6 0.785440613 137.7 167.2 0.8235645933 133.6 164.2 0.8136419001 124.6 157.8 0.7896070976

114.2 145.2 0.7865013774 134.3 153.1 0.8772044415 152.4 187 0.814973262 132.9 161.4 0.8234200743

109.6 139 0.7884892086 143.5 172.8 0.8304398148 136.5 167.3 0.8158995816 120 149.3 0.8037508372

117.2 147.8 0.7929634641 160.5 189.2 0.8483086681 136.5 167.1 0.8168761221 125 151.8 0.8234519104

101.8 128.1 0.7946916472 159.9 187.8 0.8514376997 143.9 174.9 0.8227558605 120.2 150.7 0.797611148

107.3 134.7 0.7965850037 129.9 164 0.7920731707 148.4 180.2 0.8235294118 126.5 156.8 0.8067602041

127.9 157.4 0.8125794155 169.4 195.3 0.8673835125 162.5 196.6 0.8265513733 116.9 146.4 0.7984972678

104.7 128.6 0.8141524106 117.8 146.1 0.8062970568 148.8 179.4 0.8294314381 145.1 172.9 0.8392134182

124.6 152.8 0.8154450262 138.8 173 0.8023121387 141.8 169.3 0.8375664501 135.8 169.2 0.8026004728

135.7 166 0.8174698795 167.9 195.4 0.8592630502 139.2 165.7 0.84007242 122.4 155.5 0.7871382637

128.5 157.1 0.8179503501 128.9 160.7 0.8021157436 163.6 194.4 0.841563786 134.8 163.9 0.8224527151

135.5 164.1 0.8257160268 140 171.6 0.8158508159 163.3 193.5 0.8439276486 113.1 145.3 0.7783895389

120.2 145.4 0.8266850069 144.5 180.7 0.7996679579 154.5 183 0.8442622951 144 175.6 0.8200455581

131.9 158.8 0.830604534 137.4 168.1 0.8173706127 152.4 179.2 0.8504464286 143.6 173.5 0.8276657061

136.5 163.6 0.8343520782 146.6 173.4 0.84544406 139.3 163.7 0.850946854 133.8 160.2 0.8352059925

125.8 147.9 0.8505747126 175.2 200.2 0.8751248751 149 169.8 0.8775029446 138.1 170.3 0.8109219025
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Table C.2: 200 task 20 fog node bulk results for performance analysis

Rand 3 5 10

592.4 833.1 569.2 689.8

637.2 770.4 641.9 694

648.8 738 702.8 558.8

650.3 756.9 645.1 621.8

655.1 819.7 798 660.6

607 732.1 704.1 666.1

610.7 770 728.2 677.5

599.8 809.3 694.9 726.9

680.8 798.8 697.6 666.8

642 729.4 746.6 688.1

584.7 794.4 725.5 757.2

608.1 758.7 813.2 664.8

595.1 668 731.7 617.8

559.1 896.6 770.3 664.5

590.1 793.9 754.4 731.7

635.3 668.5 745.7 653

642.5 739.9 769.6 738.3

644.6 682.8 595.4 636.4

606 761.7 700.8 724.9

615.8 737.9 772.4 640.7

591 719.2 693.3 681.6

574.7 758.1 737.7 695.1

634.1 729.1 681.6 707.5

629.5 764.6 690.5 652

652.8 745 734.5 700.4

566.8 763.1 681 640.8

577.2 786.4 707.3 712.9

584.2 737 738.3 676.9

637.5 676.3 749.3 638.1

575.7 756.6 700.3 698

C.2 Analysis of Differences Between the Heuristic

and Theoretic Models Additional Data

Table C.3 and Results 13, 14, 15, 16 and 17 present the complete set of results used

in Section 4.4.3.
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Table C.3: 20 Fog Node Set used in the analysis for Section 4.4.3

FnId FnGridX FnGridY FnMaxTasks FnVcpu FnMem FnState

1 54.549 48.254 4 5 5 0

2 8.5505 93.061 2 2 2 0

3 89.705 88.184 2 2 2 0

4 94.472 47.151 3 6 6 0

5 67.835 87.434 2 3 4 0

6 3.511 10.086 4 5 5 0

7 52.957 13.465 2 2 2 0

8 21.157 70.689 2 2 2 0

9 46.917 84.553 4 5 5 0

10 89.835 66.863 3 6 6 0

11 67.498 26.375 3 6 6 0

12 17.746 25.247 3 6 6 0

13 24.603 53.664 4 5 5 0

14 41.031 85.878 2 3 4 0

15 83.888 16.824 1 2 2 0

16 69.502 10.28 4 5 5 0

17 78.403 59.04 1 2 2 0

18 34.758 38.875 2 2 2 0

19 10.799 45.22 2 2 2 0

20 25.389 9.833 3 6 6 0
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Result 13: Detailed Results Used in the Analysis for Section 4.4.3 Part 1

1 Time Window 0

2 x3−0−0 ← 1 x2−0−0 ← 1 x1−0−0 ← 1

3 µ4−0 ← 1 µ5−0 ← 1 µ11−0 ← 1 µ12−0 ← 1 µ11−0 ← 1

4 Time Window 1

5 x4−0−1 ← 1 x1−0−1 ← 1 x3−11−1 ← 1 x5−12−1 ← 1

x2−4−1 ← 1

6 θ4−1 ← 1 θ5−1 ← 1 θ11−1 ← 1 θ12−1 ← 1

7 µ7−1 ← 1

8 Time Window 2

9 x6−5−2 ← 1 x4−7−2 ← 1 x1−0−2 ← 1 x3−11−2 ← 1

x5−12−2 ← 1 x2−4−2 ← 1

10 θ4−2 ← 1 θ5−2 ← 1 θ7−2 ← 1 θ11−2 ← 1 θ12−2 ← 1

11 Time Window 3

12 x8−0−3 ← 1 x6−5−3 ← 1 x9−7−3 ← 1 x4−7−3 ← 1

x3−11−3 ← 1 x5−12−3 ← 1 x7−11−3 ← 1

13 θ4−3 ← 1 θ5−3 ← 1 θ7−3 ← 1 θ11−3 ← 1 θ12−3 ← 1

14 Time Window 4

15 x8−0−4 ← 1 x6−5−4 ← 1 x11−4−4 ← 1 x9−7−4 ← 1

x10−12−4 ← 1 x4−7−4 ← 1 x3−11−4 ← 1 x5−0−4 ← 1

x7−11−4 ← 1

16 θ4−4 ← 1 θ5−4 ← 1 θ7−4 ← 1 θ11−4 ← 1 θ12−4 ← 1

17 µ6−4 ← 1

18 Time Window 5

19 x13−0−5 ← 1 x8−0−5 ← 1 x6−5−5 ← 1 x12−0−5 ← 1

x11−4−5 ← 1 x9−7−5 ← 1 x4−7−5 ← 1 x10−6−5 ← 1

x3−11−5 ← 1 x5−12−5 ← 1

20 θ4−5 ← 1 θ5−5 ← 1 θ6−5 ← 1 θ7−5 ← 1 θ11−5 ← 1

θ12−5 ← 1

21 µ10−5 ← 1 µ16−5 ← 1 µ18−5 ← 1

22 Time Window 6

23 x13−18−6 ← 1 x15−11−6 ← 1 x8−0−6 ← 1 x14−4−6 ← 1

x6−5−6 ← 1 x12−10−6 ← 1 x11−5−6 ← 1 x9−7−6 ← 1

x10−6−6 ← 1 x4−7−6 ← 1 x3−11−6 ← 1 x5−12−6 ← 1

24 θ4−6 ← 1 θ5−6 ← 1 θ6−6 ← 1 θ7−6 ← 1 θ10−6 ← 1

θ11−6 ← 1 θ12−6 ← 1 θ16−6 ← 1 θ18−6 ← 1
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Result 14: Detailed Results Used in the Analysis for Section 4.4.3 Part 2

1 Time Window 7

2 x16−4−7 ← 1 x13−18−7 ← 1 x15−11−7 ← 1 x8−0−7 ← 1

x14−5−7 ← 1 x6−5−7 ← 1 x12−10−7 ← 1 x11−5−7 ← 1

x9−7−7 ← 1 x10−6−7 ← 1

3 θ4−7 ← 1 θ5−7 ← 1 θ6−7 ← 1 θ7−7 ← 1 θ10−7 ← 1

θ11−7 ← 1 θ12−7 ← 1 θ16−7 ← 1 θ18−7 ← 1

4 Time Window 8

5 x18−0−8 ← 1 x16−4−8 ← 1 x13−18−8 ← 1 x15−11−8 ← 1

x17−11−8 ← 1 x14−5−8 ← 1 x12−10−8 ← 1 x11−5−8 ← 1

x9−7−8 ← 1 x10−6−8 ← 1

6 θ4−8 ← 1 θ5−8 ← 1 θ6−8 ← 1 θ7−8 ← 1 θ10−8 ← 1

θ11−8 ← 1 θ12−8 ← 1 θ16−8 ← 1 θ18−8 ← 1

7 Time Window 9

8 x18−0−9 ← 1 x20−0−9 ← 1 x16−4−9 ← 1 x13−18−9 ← 1

x15−11−9 ← 1 x19−5−9 ← 1 x17−11−9 ← 1 x14−5−9 ← 1

x12−10−9 ← 1 x11−5−9 ← 1 x10−6−9 ← 1

9 θ4−9 ← 1 θ5−9 ← 1 θ6−9 ← 1 θ7−9 ← 1 θ10−9 ← 1

θ11−9 ← 1 θ12−9 ← 1 θ16−9 ← 1 θ18−9 ← 1

10 µ13−9 ← 1

11 Time Window 10

12 x18−0−10 ← 1 x20−13−10 ← 1 x21−11−10 ← 1 x16−4−10 ← 1

x13−18−10 ← 1 x15−11−10 ← 1 x22−5−10 ← 1 x19−5−10 ← 1

x17−7−10 ← 1 x14−5−10 ← 1 x11−0−10 ← 1

13 φ4−10 ← 1 sim

14 θ4−10 ← 1 θ5−10 ← 1 θ6−10 ← 1 θ7−10 ← 1 θ10−10 ← 1

θ11−10 ← 1 θ12−10 ← 1 θ13−10 ← 1 θ16−10 ← 1 θ18−10 ← 1

15 µ9−10 ← 1 µ4−10 ← 1

16 Time Window 11

17 x24−0−11 ← 1 x18−0−11 ← 1 x20−13−11 ← 1 x21−11−11 ← 1

x15−11−11 ← 1 x22−4−11 ← 1 x17−7−11 ← 1 x14−5−11 ← 1

x23−7−11 ← 1 x11−9−11 ← 1

18 φ5−11 ← 1 sim

19 θ4−11 ← 1 θ5−11 ← 1 θ6−11 ← 1 θ7−11 ← 1 θ9−11 ← 1

θ10−11 ← 1 θ11−11 ← 1 θ12−11 ← 1 θ13−11 ← 1 θ16−11 ← 1

θ18−11 ← 1



APPENDIX C. LARGE SCALE TESTING ADDITIONAL DATA 141

Result 15: Detailed Results Used in the Analysis for Section 4.4.3 Part 3

1 Time Window 12

2 x24−0−12 ← 1 x26−0−12 ← 1 x18−0−12 ← 1 x20−13−12 ← 1

x25−10−12 ← 1 x21−11−12 ← 1 x15−11−12 ← 1 x22−4−12 ← 1

x17−7−12 ← 1 x14−0−12 ← 1 x23−7−12 ← 1

3 φ11−12 ← 1 sim φ12−12 ← 1 sim

4 θ4−12 ← 1 θ6−12 ← 1 θ7−12 ← 1 θ9−12 ← 1 θ10−12 ← 1

θ11−12 ← 1 θ12−12 ← 1 θ13−12 ← 1 θ16−12 ← 1 θ18−12 ← 1

5 µ3−12 ← 1 µ5−12 ← 1 µ11−12 ← 1 µ14−12 ← 1 µ11−12 ← 1

6 Time Window 13

7 x28−0−13 ← 1 x24−0−13 ← 1 x26−14−13 ← 1 x18−0−13 ← 1

x20−13−13 ← 1 x25−10−13 ← 1 x27−4−13 ← 1 x21−11−13 ← 1

x17−7−13 ← 1 x14−3−13 ← 1 x23−7−13 ← 1

8 φ7−13 ← 1 sim

9 θ3−13 ← 1 θ4−13 ← 1 θ5−13 ← 1 θ6−13 ← 1 θ7−13 ← 1

θ9−13 ← 1 θ10−13 ← 1 θ11−13 ← 1 θ13−13 ← 1 θ14−13 ← 1

θ16−13 ← 1 θ18−13 ← 1

10 µ15−13 ← 1

11 Time Window 14

12 x30−14−14 ← 1 x28−15−14 ← 1 x24−0−14 ← 1 x26−0−14 ← 1

x29−6−14 ← 1 x20−13−14 ← 1 x25−10−14 ← 1 x27−4−14 ← 1

x21−11−14 ← 1 x17−16−14 ← 1

13 θ3−14 ← 1 θ4−14 ← 1 θ5−14 ← 1 θ6−14 ← 1 θ9−14 ← 1

θ10−14 ← 1 θ11−14 ← 1 θ13−14 ← 1 θ14−14 ← 1 θ15−14 ← 1

θ16−14 ← 1 θ18−14 ← 1

14 Time Window 15

15 x32−10−15 ← 1 x30−14−15 ← 1 x28−15−15 ← 1 x24−0−15 ← 1

x26−0−15 ← 1 x31−11−15 ← 1 x29−6−15 ← 1 x25−18−15 ← 1

x21−15−15 ← 1

16 φ6−15 ← 1 sim φ16−15 ← 1 sim φ18−15 ← 1 sim

17 θ3−15 ← 1 θ4−15 ← 1 θ5−15 ← 1 θ6−15 ← 1 θ9−15 ← 1

θ10−15 ← 1 θ11−15 ← 1 θ13−15 ← 1 θ14−15 ← 1 θ15−15 ← 1

θ16−15 ← 1 θ18−15 ← 1
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Result 16: Detailed Results Used in the Analysis for Section 4.4.3 Part 4

1 Time Window 16

2 x34−14−16 ← 1 x32−10−16 ← 1 x30−0−16 ← 1 x28−15−16 ← 1

x31−11−16 ← 1 x29−0−16 ← 1 x25−13−16 ← 1 x33−11−16 ← 1

x21−15−16 ← 1

3 θ3−16 ← 1 θ4−16 ← 1 θ5−16 ← 1 θ9−16 ← 1 θ10−16 ← 1

θ11−16 ← 1 θ13−16 ← 1 θ14−16 ← 1 θ15−16 ← 1

4 µ1−16 ← 1 µ2−16 ← 1

5 Time Window 17

6 x34−14−17 ← 1 x35−2−17 ← 1 x32−10−17 ← 1 x30−1−17 ← 1

x31−11−17 ← 1 x33−11−17 ← 1 x21−15−17 ← 1

7 θ1−17 ← 1 θ2−17 ← 1 θ3−17 ← 1 θ4−17 ← 1 θ5−17 ← 1

θ9−17 ← 1 θ10−17 ← 1 θ11−17 ← 1 θ13−17 ← 1 θ14−17 ← 1

θ15−17 ← 1

8 Time Window 18

9 x36−9−18 ← 1 x37−0−18 ← 1 x34−14−18 ← 1 x35−2−18 ← 1

x32−10−18 ← 1 x30−1−18 ← 1 x31−11−18 ← 1 x33−11−18 ← 1

10 θ1−18 ← 1 θ2−18 ← 1 θ3−18 ← 1 θ4−18 ← 1 θ5−18 ← 1

θ9−18 ← 1 θ10−18 ← 1 θ11−18 ← 1 θ13−18 ← 1 θ14−18 ← 1

θ15−18 ← 1

11 µ6−18 ← 1

12 Time Window 19

13 x38−4−19 ← 1 x36−9−19 ← 1 x37−6−19 ← 1 x34−14−19 ← 1

x35−2−19 ← 1 x32−10−19 ← 1 x30−1−19 ← 1 x39−3−19 ← 1

x31−11−19 ← 1

14 φ13−19 ← 1 sim

15 θ1−19 ← 1 θ2−19 ← 1 θ3−19 ← 1 θ4−19 ← 1 θ5−19 ← 1

θ6−19 ← 1 θ9−19 ← 1 θ10−19 ← 1 θ11−19 ← 1 θ13−19 ← 1

θ14−19 ← 1 θ15−19 ← 1

16 Time Window 20

17 x40−0−20 ← 1 x38−4−20 ← 1 x36−9−20 ← 1 x37−6−20 ← 1

x34−14−20 ← 1 x35−2−20 ← 1 x32−10−20 ← 1 x39−3−20 ← 1

x31−11−20 ← 1

18 θ1−20 ← 1 θ2−20 ← 1 θ3−20 ← 1 θ4−20 ← 1 θ5−20 ← 1

θ6−20 ← 1 θ9−20 ← 1 θ10−20 ← 1 θ11−20 ← 1 θ14−20 ← 1

θ15−20 ← 1
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Result 17: Detailed Results Used in the Analysis for Section 4.4.3 Part 5

1 Time Window 21

2 x40−0−21 ← 1 x38−4−21 ← 1 x36−9−21 ← 1 x37−6−21 ← 1

x34−14−21 ← 1 x35−2−21 ← 1 x39−3−21 ← 1 x31−11−21 ← 1

3 θ1−21 ← 1 θ2−21 ← 1 θ3−21 ← 1 θ4−21 ← 1 θ5−21 ← 1

θ6−21 ← 1 θ9−21 ← 1 θ10−21 ← 1 θ11−21 ← 1 θ14−21 ← 1

θ15−21 ← 1

4 Time Window 22

5 x40−0−22 ← 1 x38−4−22 ← 1 x37−6−22 ← 1 x34−14−22 ← 1

x39−9−22 ← 1

6 φ4−22 ← 1 sim φ5−22 ← 1 φ9−22 ← 1 sim φ10−22 ← 1 sim

7 Time Window 23

8 x38−0−23 ← 1

9 φ14−23 ← 1 sim

10 µ4−23 ← 1 µ5−23 ← 1 µ4−23 ← 1

11 Profit← 1.248000e+ 02
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