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Abstract

This thesis investigates whether the radiometric identification of Long Term Evo-
lution (LTE) transmitters is possible using commercial off-the-shelf hardware and
support vector machine (SVM) classifiers. The identification is based on unique
modulation characteristics exhibited by the transmitters, originating from minute im-
perfections introduced during radio hardware manufacturing. In these experiments,
the Agilent vector signal analysis (VSA) software and the Agilent PXA spectrum
analyzer are used to extract radiometric properties from several LTE base stations,
known as evolved Node B (eNB). The open source SVM library libsvm performs the
classification using 13 emitter-specific coefficients extracted by the VSA software.

It is shown that when SVM parameters are optimized using grid search, and the
training bin contains no less than 45 vectors, re-identification success exceeds 98% for
two Ottawa-based providers. Furthermore, the use of feature scoring and weighting
is investigated and shown to result in faster convergence for small training bins and
slightly better re-identification accuracy.
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Chapter 1

Introduction

1.1 Motivation and Applications

The ability to uniquely identify communication emitters is essential to many defence
and security applications. Wireless service providers have a keen interest in ensuring
that only legitimate users are granted network access. This is accomplished in a
variety of ways, some as simple as user authentication, or hard-coded identification
strings provided by the user equipment (UE), which are queried against an equipment
database. Since users are granted services and privileges from untethered locations,
authentication is more difficult [1]. Network operators have little control over the UE
when verifying its authenticity. The device’s hardware identification string is often
not sufficiently reliable because it can easily be spoofed or cloned [2–4].

Conversely, users may wish to verify the access point or base station to which they
connect legitimately belongs to the service provider, rather than a rogue device im-
personating the providers’ cellular equipment. The risks of impersonation in wireless
network was discussed by Barbeau et al. in [5]. A typical attack involving a rogue
access point is further described by Hall et al. in [6], and can result in the users’ traffic
being intercepted by the attacker.

Many modern cellular standards have struggled with cloned devices and faked
equipment identities — e.g. international mobile equipment identity (IMEI) spoof-
ing, in Global System for Mobile communication (GSM). However, due to imperfect
manufacturing processes of radio frequency (RF) components, minute differences are
introduced by emitters during modulation, even for emitters of the same make and
model. It is therefore possible to uniquely distinguish emitters by characterizing

1



CHAPTER 1. INTRODUCTION 2

aspects of the transmitted signal, a technique fittingly named radiometric identifica-
tion. Radiometric identification has been demonstrated as an effective way to defeat
media access control (MAC) address cloning in 802.11 networks, or subscriber identity
module (SIM) card cloning in second generation (2G) cellular networks [7].

Subscriber identity in third generation (3G) or fourth generation (4G) networks is
cryptographically protected and much harder to clone. In fact, the user-to-universal
subscriber identity module (USIM) link is protected by a shared secret stored securely
in the USIM or provided interactively by the user. The USIM-to-terminal link is also
protected by a shared secret [8]. Network operators can also detect when two users
with the same USIM parameters access the network simultaneously, ensuring this type
of attack is largely avoided. In 3G and 4G systems, the network provider equipment
mutually authenticates with the user prior to the communication taking place [9].
In spite of these improvements, there are a number of practical applications which
warrant the study of radiometric identification for the newer cellular protocols.

First, radiometric identification, also termed radio fingerprinting or specific emit-
ter identification (SEI), can be used to conduct device and user tracking without the
necessity to decrypt user identification strings. The need to discover a user’s resource
block allocation (logical-physical channel and time assignments) is also removed. As
such, emitter tracking becomes possible for by-standers not privy to the communica-
tion messaging nor encrypted identifying strings, solely recognizing the unique mod-
ulation characteristics of the user’s equipment. Conversely, radiometric identification
of infrastructure emitters could help users make the determination if the base sta-
tion is legitimate or is being impersonated by an attacker who may have succeeded
in defeating the mutual authentication. Another attack, described by Meyer and
Wetzel in [9], facilitates a man-in-the-middle attack to 3G handset by purposefully
downgrading the network equipment to GSM in order to bypass mutual authentica-
tion. This type of attack could be prevented using properly implemented radiometric
identification. Chapter 2 presents other applications for radiometric identification in
radar systems and communication systems other than Long Term Evolution (LTE).

1.2 Research Objectives

In [2], Brik et al. demonstrated a very low error rate classifying IEEE 802.11/WiFi
network interface cards, using characteristics of the modulated signal and a support
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vector machine (SVM) classifier. Classification was conducted with five parameters
collected by the Agilent vector signal analysis (VSA) software during a learning pe-
riod: centre frequency offset, modulation constellation centre offset, average symbol
error vector magnitude (EVM) and phase error, and SYNC correlation. Once the
learning period was completed, the classifier algorithm attempted to match the pa-
rameters collected from an unknown emitter against the classes of emitters studied
during the learning period. Brik et al. were able to uniquely identify transmitters
out of 130 WiFi cards from the same manufacturer and using the same chip set, in
excess of 99% accuracy. In this work, we wish to determine whether the modulation
characteristics of LTE transmitters can be characterized with sufficient uniqueness as
to re-establish their identity once a set of signature vectors has been gathered. The
term radiometric identification is used henceforth to describe this activity.

1.2.1 Primary Research Objectives

The main objective of this research is to examine the suitability of the method pro-
posed by Brik et al. against newer cellular communication systems and assess whether
the re-identification success rates can be improved using a weighted classifier algo-
rithm favouring the parameters with the most variance and least redundancy. More
precisely, we will show that unique identification of LTE emitters is possible using
the following steps:

• Record RF signals from different LTE transmitters with an Agilent PXA spec-
trum analyzer.

• Extract modulation characteristics from the recordings, for each transmitter,
using the Agilent VSA software.

• Train the machine learning classifier with a subset of the parameter vectors to
produce a class model.

• Predict the identity of emitters when presented an unknown parameter vector,
using the class model.

1.2.2 Secondary Research Objectives

• Determine which parameters are most effective for accurate re-identification,
using two feature scoring algorithms.
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• Examine the effect of parameter weighting during emitter classification and
re-identification.

• Study the impact of adverse signal quality on emitter identification.

• Compare the parameters chosen by Brik et al. against those most highly ranked
by the feature scoring algorithms, as a special case of feature weighting.

1.3 Hypotheses

The hypothesis is made that it is possible to collect a set of modulation characteristics
from an LTE base station’s downlink signal, using advanced test instrumentation
such as a spectrum analyser with VSA capability. Once the characteristics have been
harvested, it is further hypothesized that a classifier algorithm, such as SVM, can
accurately predict the identity of an LTE emitter when presented with an unknown
feature vector. We further hypothesise that efforts towards assigning a heavier weight
to the most important features will improve re-identification accuracy.

1.4 Contributions

This research activity aims to present novel contributions in the following areas:

• First successful radiometric identification of LTE transmitters using modulation
characteristics collected by the VSA software. Many North American network
operators have first launched LTE service during the Summer and Fall of 2011.
As such, it has been challenging until now to conduct empirical research using
emitters from active 4G networks. To the best of our knowledge, this is the first
attempt at verifying this hypothesis. It is also hoped that the work completed
here will be of use for many years to come.

• First successful use of a weighted classifier algorithm such as weighted-SVM
to conduct the identification. Previous radiometric identification algorithms
considered each feature evenly. While the success rates for IEEE 802.11/WiFi
as reported by Brik et al. were remarkable, it is suspected that the use of
a classifier algorithm that favours certain parameters will further enhance re-
identification success rates.
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• First thorough examination of the impact of adaptive modulation on re-
identification. Unlike the work presented by Brik et al. in [2], LTE transmitters
have the ability to adapt their modulation between quadrature phase shift key-
ing (QPSK), 16 quadrature amplitude modulation (QAM) and 64 QAM in line
with the quality of the radio channel between the UE and the base station,
called evolved Node B (eNB) in LTE. It may be necessary to gather radiomet-
ric characteristics for each modulation schemes for re-identification to succeed.

1.5 Outline

The rest of this thesis is organized as follows. Chapter 2 provides background informa-
tion useful to the reader concerning cellular standard evolution, LTE and SVMs. The
last part of Chapter 2 provides a review of the research literature related radiometric
identification and formal feature selection. Chapter 3 provides the theoretical notions
applied in this research effort, presents the 13 coefficients extracted from the VSA,
and details the steps of the analysis process applied to the data collected. Chapter 3
also presents the five weighting algorithms evaluated in this study. The empirical
results and their significance are presented next, in Chapter 4. Finally, conclusions
and recommendations for future work are offered in Chapter 5.



Chapter 2

Background and Literature Review

This chapter presents useful background information followed by an overview of recent
findings published in research literature. Aspects of LTE protocol required to under-
stand this thesis are discussed next. The necessity to conduct emitter discrimination
and its most common approaches follow, along with amplifying details concerning
the source of the uniqueness present in radio signals. A discussion on the reliabil-
ity of radiometric identification in real-world applications appears next. Finally, an
introduction to SVMs and a brief overview of formal feature selection concludes the
chapter.

2.1 Long Term Evolution (LTE)

In this section, we provide background information that is useful for the reader
throughout this thesis. We first start by looking at the cellular network evolution
from first generation to today’s fourth generation. Then, we provide the reader with
an introduction to LTE specifications, modulation and multiplexing schemes relevant
to this study.

2.1.1 Evolution towards Long Term Evolution

Research work for the 2nd generation of mobile communication systems started in
Europe in the early 1980s, and the complete system was ready for market in 1990.
The most successful 2G system, called GSM is based upon time division multiple
access (TDMA) in which eight users share a single narrowband radio channel. In
North-America, service providers chose for the most part the competing code division

6



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 7

multiple access (CDMA) standard. These 2G systems replaced the 1st generation
analogue cellular systems.

Due to the limited throughput offered by 2G systems, several research efforts were
made in order to develop a third generation of cellular networks. Universal Mobile
Telecommunications System (UMTS) was the predominant 3G standard globally and
started commercial implementation around 2002 [10]. North-American network op-
erators mostly opted for CDMA-2000 services but many converted at some point to
the UMTS or its high speed packet access (HSPA)-based extensions.

Compared with earlier GSM networks, these UMTS systems provide much higher
data throughput, typically in the range of 64 to 384 kbit/s, while the peak data rate
for low mobility or indoor applications approaches 2Mbit/s. With the improvements
offered by HSPA, data rates of up to 7.2Mbit/s are available in the downlink [10].

When UMTS was designed, the air interface was specified with a carrier band-
width of 5MHz. Wideband CDMA (WCDMA), the air interface chosen at that time,
performed very well within this limit. Unfortunately, WCDMA does not scale well.
If the bandwidth of the carrier is increased to sustain higher transmission speeds, the
time between two transmission steps, or symbols, has to decrease. This results in
transmissions being more vulnerable to multipath effects.

Instead of spreading one signal over the complete carrier bandwidth (e.g. 5MHz),
LTE transmits the data over many narrowband orthogonal carriers of 15 kHz each.
Instead of a single fast transmission, a data stream is split into many slower data
streams that are transmitted simultaneously. As a consequence, the attainable data
rate compared to UMTS is similar in the same bandwidth but the multipath effect is
greatly reduced because of the longer symbol duration [11].

If less than 5MHz bandwidth is available, LTE can easily adapt and the number
of narrowband carriers is simply reduced. Several bandwidths have been specified for
LTE: from 1.25MHz up to 20MHz. The channel bandwidth used in practice depends
on the amount of spectrum available to the network operator. In a 20MHz band,
data rates beyond 100Mbit/s can be achieved under optimal signal conditions [11].

2.1.2 LTE Downlink Characteristics

This section lists a few of the LTE characteristics that are useful for the reader to
understand the remaining of this work, or necessary to configure the VSA software
settings:
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• The standard LTE symbol duration is 66.7 µs. The corresponding orthogonal
subcarriers spacing is 15 kHz.

• LTE supports several channel bandwidths. Furthermore, both frequency divi-
sion duplexing (FDD) or time division duplexing (TDD) are supported. The
experiments conducted in this research activity dealt exclusively with 10MHz
channels in FDD mode. However, the conclusions drawn in Chapter 5 are be-
lieved to be applicable to the other variants.

• Modulation types supported in the downlink are: binary phase shift keying
(BPSK), QPSK, 16 QAM and 64 QAM. Zadoff-Chu sequences are also used
for the primary synchronization signal (PSS) [12].

• The resource element is the smallest unit in the physical layer and occupies one
15 kHz subcarrier for one symbol duration. The smallest unit in resource alloca-
tion is however the resource block (RB), which occupies 12 adjacent subcarriers
(180 kHz) of bandwidth during 7 symbols, or one slot [11].

• The frame structure is the same for the uplink and downlink transmission in
LTE. However, the frame structure varies between FDD and TDD. The FDD
frame structure is 10ms-long and contains 20 slots of 7 symbols. An LTE
subframe comprises two contiguous slots; there are therefore 10 subframes in
an FDD frame, each 1ms-long [11].

• LTE supports only packet-switched communication carried by shared channels.
There are therefore no dedicated channels. LTE is the first cellular standard to
rely exclusively on an packet-switched Internet protocol (IP)-based core network
for both voice and data, with the exception of short messaging service (SMS),
which is transported over signalling messages.

2.1.3 LTE Downlink Channels

LTE channels are defined logically. Logical channels do not occupy a specific sub-
carrier frequency. Instead, certain key channels are periodically transmitted in pre-
defined RBs. The others are defined in a channel map that is transmitted and an-
nounces where specific logical channels are located in upcoming frames [13]. It is
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Figure 2.1: LTE downlink channel map, from [14].

important to note that logical channels are mapped to transport channels, which are
in turn mapped to physical channels, as shown in Figure 2.1.

Downlink Physical Channels and Signals

This section summarizes important downlink channels and reference signals. The
UE needs to synchronize to the downlink signal before attempting to transmit and
request to join the network [13].

PSS and SSS: The primary synchronization signal (PSS) and secondary synchro-
nization signal (SSS) are two types of synchronization signals that are designed
to be detected by all types of UEs. They are transmitted twice per 10ms radio
frame. They occupy the central 62 subcarriers of the channel, which ensures
cell search is standardized regardless of the channel bandwidth. The PSS and
SSS help the UE derive the physical cell identity (PCI), a variant of which was
used as class label in the SVM classifier.

PBCH: The physical broadcast channel (PBCH) carries the broadcast channel
(BCH) transport channel, which contains cell-specific content and is used for
all types of UEs. It is transmitted in the centre of the channel and occupies 6
RBs (72 subcarriers). It is transmitted using QPSK.

PDSCH: The physical downlink shared channel (PDSCH) carries the traffic data
and is shared in time between multiple users. QPSK, 16 QAM, and 64 QAM
modulations are supported on the PDSCH.
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PDCCH: The physical downlink control channel (PDCCH) carries the channel al-
location and control information. It is transmitted using QPSK.

2.1.4 Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal frequency division multiplexing is the multiplexing scheme chosen for the
LTE downlink [13]. The general idea of the OFDM transmission technique is to split
the total available bandwidth B into many narrowband sub-channels at equidistant
frequencies. The sub-channel spectra overlap each other but the subcarrier signals are
still orthogonal. The single high-rate data stream is subdivided into many low-rate
data streams for the sub-channels. Each sub-channel is modulated individually using
a conventional modulation format such as QAM and is transmitted simultaneously
in a superimposed and parallel form [10,13].

OFDM has the ability to perform well through a low quality channel, is immune
to frequency-selective fading and provides resistance to inter-symbol interference in a
multipath environment by reducing the symbol rate transmitted on each subcarrier
[13].

Since the system bandwidth B is subdivided into N narrowband sub-channels,
the OFDM symbol duration TS is N times larger than in the case of an alternative
single carrier transmission system covering the same bandwidth B. Typically, for a
given system bandwidth, the number of subcarriers is chosen in such a way that the
symbol duration TS is sufficiently large compared to the maximum multi-path delay
τmax of the radio channel [10].

Figure 2.2 shows the power spectral density of a single OFDM subcarrier, whereas
Figure 2.3 shows the power spectral density of multiple OFDM subcarriers of constant
amplitude. LTE supports several constant amplitude modulation schemes that would
result in a power spectral density display as shown in Figure 2.3 but also supports
variable amplitude modulation schemes such as 16 and 64 QAM [13].

Today, OFDM is widely used in applications ranging from digital television and
audio broadcasting to wireless networking such as IEEE 802.11 and wired broadband
Internet access [13, 15]. Although OFDM was considered as a candidate for GSM
in the 1980s, and seriously considered again as a candidate for the UMTS standard,
other multiplexing schemes were favoured due to the high cost of computing power.
However, with today’s availability of small, low-cost, low-power chipsets, OFDM has
become the technology of choice for the next generation of cellular wireless networks.
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Figure 2.2: Spectrum of a single modulated OFDM subcarrier (truncated), from [13].

The first cellular system to adopt OFDM was IEEE 802.16e (mobile WiMAX). It
was followed soon after by IEEE 802.20, the basis for Third Generation Partnership
Project 2 (3GPP2)’s Ultra-Mobile Broadband (UMB), now abandoned, and most
recently by the Third Generation Partnership Project (3GPP) for LTE [13].

Contrary to CDMA schemes widely used in 3G cellular systems, OFDM is able to
perform frequency selective scheduling using real-time feedback of channel conditions.
It is also completely free of multipath distortions up to the cyclic prefix, which is pos-
sible because of the long period of each OFDM symbol. These attributes of OFDM,
in addition to the simpler equalization for large bandwidths and the better suitability
to multiple inputs multiple outputs (MIMO) operations were key considerations for
both working groups (3GPP and 3GPP2), as well as the IEEE 820.16 working group
to use subcarrier-based transmission and multiplexing schemes such as OFDM and
single-carrier frequency division multiplexing (SC-FDM) [13].
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Figure 2.3: Spectrum of multiple OFDM subcarriers of constant amplitude, from [13].

2.1.5 Orthogonal Frequency Division Multiple Access

LTE uses a variant of OFDM in the downlink called orthogonal frequency division
multiple access (OFDMA) [13]. In OFDM, a single user is allocated a number of
subcarrier channels for the duration of the transmission, up to the entire set of sub-
carrier frequencies. In OFDMA however, users are allocated to a set of subcarrier
channels for a single symbol duration. Other users are subsequently allocated the
same subcarrier channels during the next symbol in time. From the perspective of a
single user, his subcarrier channel allocation appears to be frequency hopping. The
difference between OFDM and OFDMA is depicted in Figure 2.4.

2.2 Emitter Discrimination

The ability to uniquely identify communication and radar emitters is a concern for
many defence, law enforcement and security applications. In communication systems,
this requirement stems from the fact that wireless communication systems allow users
access from untethered location, making authentication more difficult. Most commu-
nication systems rely on cryptographic security as well as a unique device identifier
which is submitted to gain service access. However, the device identifier is often
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Figure 2.4: OFDM and OFDMA subcarrier allocation, from [13].

unreliable as they can be altered or copied [1].
In defence applications, the ability to uniquely identify a communication or radar

emitter enables precise geolocation amongst many similar emitters sharing the same
frequency channel, as well as tracking such emitter when it is in motion [16, 17].
Similarly, user identification based on imperfections in the transmitter RF chain can
be used to recognize and identify criminals masking their digital identity by chang-
ing their device identifier [1]. Criminal activities who may gain from masking their
wireless identities include sexual exploitation of children, production and illegal dis-
semination of copyright-protected media, intellectual property theft, identity theft,
financial fraud and espionage [18].

Two main approaches to conduct radiometric identification emerged in the open
literature. The first one consists in exploiting channel information to distinguish user
location and detect when the same device identifier appears to be transmitting from
different locations to detect forging. In a rich multipath environment, because of
rapid path decorrelation, users can almost be uniquely characterized by their chan-
nel conditions [19]. Li et al. argue in [20] that in this situation, the response of
the medium along any transmit-receive path is frequency-selective (or in the time
domain, dispersive) in a way that is location-specific. Another channel-based fin-
gerprinting technique observes received signal strength (RSS) values associated with
packets measured at one or more receiver antennas. The RSS values are correlated
with transmission power, the separation between the transmitter and the receiver,
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and the complexity of the radio environment in which communication takes place [21].
However, these techniques are typically effective only in static settings, as it is well-
known that RSS values can oscillate even in non-adversarial settings with legitimate
users who are mobile. In such scenarios, identification of emitters using RSS and
other physical layer parameter-based solutions relying on channel information result
in a large number of false positives [21]. For these reasons, emitter discrimination
based on channel information will not be discussed further.

The second approach focuses on hardware imperfections present in each trans-
mitter rather than characteristics of the radio channel. These imperfections can be
studied in the waveform domain or in the modulation domain [2]. In the waveform
domain, most research focuses on the transient portion of a signal, whether it consti-
tutes a symbol in a communication system or a pulse in a radar system. A transient
is a brief radio emission produced while the power of the output of an RF trans-
mitter goes from zero to the level required for the application to be effective, be it
communications, or radar detection [1]. In transient-based communication systems,
efforts are made towards characterizing the transient waveform at the beginning of
each frame. In radar systems, the physical characterization of the unintended mod-
ulation of each pulse is sufficient to distinguish between radar emitters of the same
class [22]. However, transient-based identification is more challenging for commu-
nication emitters: the low transmit power and short duration of the transient is
difficult to detect, and describing the resulting waveform in a succinct way is chal-
lenging [1]. Waveform-domain steady-state signal characterization was also conducted
by Kennedy et al. in [23], as well as Zamora et al. [24].

On the other hand, studies of hardware imperfections in the modulation domain
generally consists of cataloguing selected features of a communication transmitter.
These features can be extracted using commercial VSA software. This technique
represents signals at the most basic level in terms of in-phase and quadrature (I&Q)
samples, whose interpretation depends on the underlying modulation scheme. Sig-
nals in the modulation domain are more structured and better behaved, but require
knowledge of the modulation scheme being used [2].
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2.3 Hardware Imperfections

Due to imperfect manufacturing processes of RF components, minute differences are
introduced by emitters during modulation, even for emitters of the same make and
model. It is therefore possible to distinguish emitters by characterizing aspects of
the transmitted signal. Since most of this work attributes the ability to conduct
radiometric identification and radio-fingerprinting on hardware imperfections in the
transmitters’ RF chain, a discussion regarding the source of these imperfections is
warranted.

Each component of the transmitter chain demonstrates imperfections caused by
non-idealities of production processes. Metal-oxyde semiconductors, from which the
components’ circuits are made of, exhibit broad variations in major device parameters
(e.g. channel length, channel doping concentration, oxide thickness) among produc-
tion lots. These variations may occur for many reasons, such as minor changes in the
humidity or temperature in the clean-room, or due to the position of the die relative to
the centre of the wafer. Changes in device parameters influence transistors switching
speed and thereby components’ characteristics. Similarly, parameters of passive elec-
tronic devices follow random distributions caused by production inaccuracies, rather
than taking a constant and uniform specified value. Despite technological advance-
ments, constant market push for low-price, high-volume products results in variations
among individual devices caused by the production imperfections. These variations,
while being small enough to fulfil the requirements specified in the communication
standards, are significant enough to allow for unique characterization of these devices
via RF transceiverprints [1].

2.4 Radiometric Identification Process

Radiometric identification follows a similar process in the majority of open litera-
ture. A training period consists of capturing the transceiverprint of the emitter.
Transceiverprint gathering requires signal acquisition with sufficient precision, and is
followed by a feature extraction. It may be necessary to extract features from several
frames or pulses during the training period in order to build a device model that
will suitably represent typical emissions rather than a specific ones. Varying channel
conditions could, for example, introduce some variance between each frame or pulse
which may render re-identification difficult.
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During the re-identification process, the signal acquisition and feature extraction
is repeated for unknown devices, and the set of features is compared with known
features using various decision algorithms, leading to a determination whether the
device is recognized and provision of a confidence level [25]. Again during the re-
identification, it may be necessary to extract features from several frames or pulses
in order to enhance detection reliability [2].

2.4.1 Signal Acquisition

Signal acquisition challenges vary significantly in transient-based and modulation-
based approaches. In both cases, it is necessary to capture the radio signals of wire-
less devices with sufficient precision. This is an important requirement given that
devices’ fingerprints at the physical layer are due to small impairments/variations in
the devices’ radio circuitry that could be easily lost if captured with inappropriate
hardware [26]. Captures in the waveform domain generally require more sensitive
equipment and are more subject to multipath and fading. Researchers operating in
the modulation domain can often use the same receiver hardware that is originally
engineered for the communication system, and demonstrate higher success rates [2].

2.4.2 Feature Extraction

The feature extraction process consists of extracting/selecting features from the radio
signal that have sufficient discriminative capabilities to distinguish a given device
and/or a class of devices [25].

Feature extraction is more complex in transient-based systems in which a wave-
form needs to be characterized. The technique employed by Shaw and Kinsner in [27]
calculates the variance of the amplitude for each consecutive portion/window of the
signal and compares each of these values, in sequence, to a predetermined threshold.
The start of the transient is detected when the variance exceeds the threshold by a
given margin. The end of the transient is determined in an experimental manner.
The drawback of this approach is that the estimation of the threshold is difficult,
given that the amplitude of the signal is susceptible to noise and interference. An-
other approach, which is also based on the variance of the amplitude, is the Bayesian
step change detector (BSCD). The underlying technique, proposed by Ureten and
Serinken in [28], transforms a change in the variance into a change in the mean value
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that is subsequently used by the BSCD to detect the start of the transient. Un-
like the previous approach, the detection of the transient is based exclusively on the
characteristics of the amplitude data. Consequently, this approach can be used with
various types of signals. However, the performance is less than optimal for signals
that exhibit a gradual change in power at the start of the transient, such as IEEE
802.11 and Bluetooth. The same authors have recently proposed in [29] an enhanced
detection method, referred to as the Bayesian ramp change detector to accommodate
these signals [6].

In [4], Hall et al. chose to extract features from all three main components of the
transient: amplitude, phase and frequency. The feature vectors include the standard
deviation of normalized amplitude, the standard deviation of normalized phase, the
standard deviation of normalized frequency, the variance of change in amplitude, the
standard deviation of normalized in-phase data, the standard deviation of normalized
quadrature data, the standard deviation of normalized amplitude (mean-centered),
the power per section, the standard deviation of phase (normalized using mean) and
the average change in discrete wavelet transforms coefficients using the Daubechies
filter.

In modulation-based identification, features are usually extracted using test equip-
ment. In [2], Brik et al. chose five features output by the VSA software which gave
best re-identification results. Brik et al. extracted five features from each transmit-
ted frame, namely frequency error, SYNC correlation, I&Q origin offset, error vector
magnitude and error vector phase [25].

2.4.3 Decision-Making Algorithms

Several algorithms can be used to find the best match between databased features,
gathered during the training period, and those of an unknown emitter gathered during
the identification period. In [2], Brik et al. demonstrated the k-nearest neighbours
(kNN) as well as the SVM algorithms, with increased accuracy using the SVM.

Liu et al. compare two new online clustering algorithms that are developed for
radar emitter classification in [16]: one based on the minimum description length
(MDL) criterion and the other on competitive learning. The model-based algorithm
is shown to surpass the competitive learning algorithm in terms of classification ac-
curacy, flexibility, and stability [16].

Probabilistic neural networks (PNN) have also been used by many research teams,
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however the issue of scalability (memory requirement per profile) prohibits its use in
real time systems [4]. Instead, Hall et al. favoured a statistical classifier which uses
a set of features to represent a vector that is to be classified. The probability of a
match is calculated using a modified Kalman filter from Bar-Shalom.

In [18], Dolatshahi et al. consider the performance of the generalized likelihood
ratio test (GLRT) and a classical likelihood ratio test to match emitters based on
power amplifiers characteristics, which features are extracted using Volterra series,
with good results. GLRT outperformed the classical likelihood ratio test in most
cases.

2.5 Transient and Steady-State Signals

Radiometric identification of emitters using waveform characterization, particularly
during the transient period, has the longest history and is still the only method by
which radars can be discriminated.

2.5.1 Radar Emitters

In radar applications, for example, it is not difficult to distinguish radar systems
which transmit pulses of different radio frequencies or pulse repetition interval (PRI).
However, in modern radar systems, more sophisticated signal waveforms are used and
inter-pulse information may not be enough to separate those received pulses according
to their originations. To classify radar emitters in such an environment, the detailed
structure inside each pulse, called intra-pulse information, needs to be examined and
characterized. This is because emitters exhibit their own electrical signal structure
inside each transmitted pulse, due to both intentional and unintentional modulations.
The SEI is a composite task that involves pulse measurements, features extraction,
normalization, selection, classification (recognition) and verification [30].

2.5.2 Communication Emitters

Hall et al. published a landmark paper concerning the radiometric identification of
IEEE 802.11b communication emitters in [4]. The feature extraction and decision
algorithms employed by Hall et al. are presented in Section 2.4.2 and Section 2.4.3.
The use of a Bayesian filter, to probabilistically estimate the state of a system from
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noisy observations, mitigated the increased variability between signals from a given
transceiver due to interference. The experiment consisted of collecting 100 signals
from each of the fourteen 802.11b transceivers. Results achieved using transient-
based radio frequency fingerprinting and a Bayesian filter neared 100%.

2.5.3 Volterra Series Coefficients

In [1], Polak et al. examine the non-linearities of two components of the transmitter
RF chain, namely the digital-to-analog converter (DAC) and the power amplifier, with
a view to unmask the identity of criminal users. The DAC’s integral non-linearity
specifies the actual output level for a given input word, from the ideal output level, and
is caused by production inaccuracies that cause output levels of individual analogue
sources from the DAC to vary around their nominal values. Secondly, power amplifiers
are attractive for digital forensics purposes in that they are the last elements of the
transmitter chain and are therefore the most difficult for a user to modify via software
or even baseband control. In [1], the non-linear characteristics of power amplifiers
were modelled using Volterra series representations.

In contrast with the work of Hall et al. in [4], and the work of Brik et al. in [2],
the work of Polak et al. provides a complete statistics-based model which considers
the effect of signal-to-noise ratio on the probability of successful emitter recognition.

2.5.4 Universal Mobile Telecommunications System

Kennedy and Kuzminskiy present in [31] a reliable way to uniquely distinguish be-
tween UMTS transmitters using steady-state characterization in the waveform do-
main. The proposed algorithm differs from previous work by performing joint channel
estimation and classification on a steady state signal. The technique may be applied
to any radio system with a repeated symbol sequence - such as a preamble. The
laboratory demonstrator presented is capable of distinguishing between the preamble
signal transmitted by UMTS UEs. Excellent results - in excess of 99% for 20 dif-
ferent UMTS models in an indoor wireless environment are reported. Kennedy and
Kuzminskiy also comment on the work of Brik et al. in [2] as the frequency offset
error between transmitter and receiver dominates the discriminatory performance of
their solution. Whilst frequency offset applies to 802.11, it is not easily applicable to
UMTS and other systems where the handset constantly disciplines its local timing
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source to the base station broadcast channels. The much tighter front-end specifica-
tions for frequency offset and error vector magnitude of UMTS handsets also make
their discrimination a more difficult problem than the 802.11 case. The raw mea-
surement data was first collected using a Rohde and Schwarz FSQ26 signal analyser,
then processed in Matlab. The processing stage involved locating and extracting the
preamble bursts and filtering out any preambles of lower power that may have been
captured, from multipath. The coherency algorithm takes the training file, compiled
in an anechoic chamber, and the wireless test bursts to produce the confusion matrix.

2.6 Modulation Domain

Based on the higher identification accuracy of modulation-based transceiverprints,
greater attention was devoted in reviewing publications that selected this approach.
The first two papers reviewed below both performed transceiver fingerprinting of
IEEE 802.11b transmitters, a wireless data standard that uses OFDM at the phys-
ical layer. Research in modulation-based radiometric identification of 4G cellular
technologies, such as LTE, were not found. The most relevant OFDM work is thus
reviewed next.

2.6.1 PARADIS

In [2], Brik et al. proposed the Passive RAdiometric Device Identification Sys-
tem (PARADIS). The team conducted a modulation-based radiometric identification
using five features provided by the VSA software, namely frequency error, SYNC
correlation, in-phase and quadrature (IQ) origin offset, symbol magnitude error and
symbol phase error. Brik et al. achieved remarkably low radiometric identification
error rates: using 138 unique network cards, from the same vendor and of the same
model, they achieved an error rate of 0.34% using PARADIS with SVM classifica-
tion. Invalid frames were discarded prior to the evaluation, that is frames with an
invalid checksum or those that did not comply with the 802.11b standard tolerance
for frequency and modulation error. Invalid frames accounted for 4% of the collected
data.
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2.6.2 Multiple Inputs Multiple Outputs Transmitters

Shi and Jensen present interesting results in conducting radiometric identification of
MIMO transmitters in [32]. The feature selection aspect of this research is unique
and discussed fully in Section 2.9. Shi and Jensen were able to obtain excellent results
with both the bagging with the decision tree (DT) kernel and SVM (in excess of 99%).
They also showed that MIMO classification provides increased robustness in face of
high feature variance, due to the enriched feature set.

2.7 Reliability of Radiometric Identification

RF chain imperfections cannot be altered by the user without significant effort [1].
However, it may be possible to reproduce another user’s identity by mimicking its RF
imperfections using high-end signal generators. Danev et al. attempted, and mostly
succeeded in defeating radiometric-based identification systems in [25]. In spite of the
accepted belief that hardware imperfections are hard to reproduce, different imper-
sonation attacks are proposed and demonstrated. It is shown that modulation-based
identification can be impersonated with accuracy close to 100%. However, successful
attacks require specialized hardware and often also require a knowledge of the fea-
tures that are examined and the classification algorithm. Indeed, the success rate
of the impersonation highly depends on the discriminant capabilities of the classifier
used [25]. The SYNC correlation, in particular, could not be accurately reproduced
with the software defined radio platform, and is also listed as one of the most reliable
criteria by Birk et al. in [2], thus a classifier which would rely heavily on this feature
would be harder to fool. In related work by Edman and Yener in [33], notable suc-
cess (75%) was achieved in fooling an 802.11 radiometric identification system using
the universal software radio peripheral (USRP), a commodity software-defined radio
system. However, success rates only slightly above 50% were achieved when injecting
simulated packets rather than replaying sampled recordings. These attacks were also
performed with a-priori knowledge of the recognition features.

Transient-based features could also be reproduced with a high-end arbitrary wave-
form generator over a wire, but the attacks were largely unsuccessful over the wireless
medium. This is due to channel multipath effects on the transient part of the sig-
nal. Feature extraction at the receiver will differ from those of the attacker trying
to clone because the channel effects will vary between the pairs attacker-receiver and
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transmitter-receiver [25].
The complexity involved in conducting a successful impersonation attack against

a system which discriminates based on physical-layer behaviour is two-fold. 1) The
attacker requires specialized hardware to capture the target device’s signal, not unlike
the one of the system under attack. 2) The attacker also requires the specialized
hardware needed to reproduce features of this signal with sufficient fidelity to fool
the security system. Danev et al. conclude in [25] that physical-layer identification is,
alone, not a suitable technique to enforce access policy and that other authentication
techniques should be used in parallel. This echoes the assessment of Brik et al. in [2].

Polak and Goeckel investigated in [19] the radiometric identification of users ac-
tively trying to falsify their RF signatures by injecting slight distortion to the data
symbols. In simulations based on parameters of commercially-used power amplifiers,
it is shown that the transmitter identification performance of modifying data symbols
is similar to users who are not.

2.8 Support Vector Machines

The work of Brik et al. in [2] indicate that SVMs are well suited for radiometric
identification problems, and that SVMs outperform other classifiers. Other classifiers,
such as the PNN discussed by Hall et al. in [4], presented some scalability problems
rendering it difficult to use in real-time systems. As a result, the decision was made
to use the SVM classifier to validate the hypotheses. Comparing re-identification
accuracy with other classifiers was not a research objective for this thesis, and as
such is left to Section 5.3 (Future Work). An SVM is an abstract learning machine
which will learn from a training dataset and attempt to generalize and make correct
predictions on novel data. For the training data, we have a set of input vectors,
denoted xi, with each input vector having a number m of component features. These
input vectors are paired with corresponding labels, which we denote yi, and there
are n such pairs (i = 1, . . . , n) [34]. The model built during training will be used to
predict the correct label y for a given test vector x.

For two classes of well separated data, the learning task amounts to finding a
directed hyperplane, that is, an oriented hyperplane such that data points on one
side are labelled yi = +1 and those on the other side as yi = −1. The directed
hyperplane found by a SVM is intuitive: it is that hyperplane which is maximally
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distant from the two classes of labelled points located on each side. The closest such
points on both sides have most influence on the position of this separating hyperplane
and are therefore called support vectors [34].

The separating hyperplane is given as w ·x+b = 0, in which · denotes the inner or
scalar product, b is the bias or offset of the hyperplane from the origin in input space,
and x are points located within the hyperplane. The normal to the hyperplane, the
weight vector w, determine its orientation [34].

The SVM optimization expression is presented in Equation (2.1)

min
w,b,ξ

1
2wTw + C

l∑
i=1

ξi (2.1)

subject to: yi
(
wTφ (xi) + b

)
≥ 1− ξi,

ξi ≥ 0

given a training set of n instance-label pairs (xi, yi), in which the feature vector
xi ∈ Rm, yi represents the class label, and where ξi is a small number, and T is the
transpose operator. Φ (·) is a mapping function allowing data points to be mapped
into a space with a different dimensionality, called feature space, with the replacement
xi ·xj → Φ (xi) ·Φ (xj). C > 0 is the penalty parameter of the error term, also termed
regularization parameter [34–36].

As an example Figure 2.5 shows two labelled clusters which are readily separable
by a linear hyperplane. In reality, the two clusters could be highly intermeshed with
overlapping data points: the dataset is then not linearly separable, as shown in Fig-
ure 2.6. Using the mapping function Φ (·), which maps the input space into a feature
space of higher dimensionality, it becomes possible to find separating hyperplanes.
In Figure 2.6, which does not appear to have a linear hyperplane, if one pushes the
points associated with one class down into a third dimension, a hyperplane could
be readily constructed parallel to the page in order to separate the two classes [34].
The hyperplanes generated by a given kernel function K (xi,xj) result in non-linear
hyperplanes of various shapes once represented in the input space. Many kernel func-
tions are possible, each offering different tuning parameters: polynomial, Gaussian,
sigmoid, feedforward neural network or radial basis function (RBF). In fact, kernel
substitution can be applied to a wide range of data analysis methods so that SVMs
should really be viewed as a sub-instance of a much broader class of kernel-based
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Figure 2.5: Linear hyperplane in SVM, from [34].

methods [34].
In general, the RBF kernel is a reasonable first choice. This kernel nonlinearly

maps data points into a higher dimensional space so that cases when the relation be-
tween class labels and attributes is nonlinear can be handled. Furthermore, the linear
kernel is a special case of RBF since the linear kernel with a penalty parameter C has
the same performance as the RBF kernel with some parameters (C,γ). In addition,
the sigmoid kernel behaves like RBF for certain parameters. The second reason why
RBF kernel is a reasonable first choice revolves around the number of hyperparame-
ters, which in turn influences the complexity of the model selection. The polynomial
kernel has more hyperparameters than the RBF kernel. Lastly, the RBF kernel has
fewer numerical difficulties than kernels such as sigmoid or polynomial [35], simplify-
ing its use. Equation (2.2) shows the definition of the kernel functionK (xi,xj) as well
as the mathematical expression for the RBF kernel. γ is the only kernel parameter
for the RBF kernel function.

K (xi,xj) ≡ φ(xi)Tφ (xj)
K (xi,xj) = exp

(
−γ‖xi − xj‖2

)
, γ > 0 (2.2)
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Figure 2.6: SVM hyperplane in a higher order dimension, from [34].

Parameters C and γ are further discussed in Chapter 3.

Multi-class SVM

The problem in this thesis involves multi-class classification: each LTE transmitter’s
identity is used as a class label, and the SVM attempts to correctly assign unknown
feature vectors to the best matching class. A number of schemes have been devised
to extend binary SVM into multi-class classifiers:

• directed acyclic graph (DAG). If the number of classes is small then we can
use a DAG with the learning task reduced to binary classification at each node.
Suppose we consider a 3-class classification problem. The first node is a classifier
making the binary decision, class 1 versus class 3. Depending on the outcome
of this decision, the next steps are the decisions class 1 versus class 2 or class 2
versus class 3 [34].

• A series of one-against-all classifiers. We construct N separate SVMs with the
nth SVM trained using data from class n as the positively labelled samples and
the remaining classes as the negatively labelled samples. Associated with the
nth SVM we have fn (z) = ∑

i y
n
i α

n
iK (z,xi)+bn and the novel input z is assigned
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to the class n such that fn (z) is largest. Though a popular approach to multi-
class SVM training, this method has some drawbacks. For example, suppose
there are 100 classes with the same number of samples within each class. The
N separate classifiers would each be trained with 99% of the examples in the
negatively labelled class and 1% in the positively labelled class: these are very
imbalanced datasets, and the multi-class classifier would not work well unless
this imbalance is addressed [34].

• One-class classification. The idea is to construct a boundary around the normal
data such that a novel point falls outside the boundary and is thus classified as
abnormal. The normal data is used to derive an expression φ which is positive
inside the boundary and negative outside. One-class classification is frequently
used for novelty detection. One-class classifiers can be readily adapted to multi-
class classification. Thus we can train one-class classifiers for each class n, and
the relative ratio of φn gives the relative confidence that a novel input belongs
to a particular class [34].

• One-against-one. If N is the number of classes, then N (N − 1) /2 classifiers
are constructed and each one trains data from two classes. The classification
uses a voting strategy: each binary classification is considered to be a voting,
where votes can be cast for all data points x - in the end a point is desig-
nated to be in a class with the maximum number of votes. Hsu and Lin give
in [37] a detailed comparison and conclude that one-against-one is a competi-
tive approach. libsvm implements the one-against-one approach for multi-class
classification [38].

2.9 Formal Feature Selection

Whereas Birk et al. empirically determined which of the five features leads to im-
proved detection accuracy in [2], Shi and Jensen provide a formal method to choosing
the VSA features based on maximum relevance and minimum redundancy. The lat-
ter team determine the best classifying features for a variable number of transmitters
using the minimum-redundancy-maximum-relevance (mRMR) algorithm on the train-
ing dataset, where relevance is measured by the mutual information of that feature
and the device identifier h:
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I (gi, h) =
∫ ∑

h∈h
p (gi, h) log p (gi, h)

p (gi) p (h)dgi (2.3)

where h represents the set ofNd possible values of h, and p (·) denotes the probabil-
ity density function. The relevance of a set of selected features S =

{
g1, g2, · · · , gNf

}
is defined as the average of the relevance of features in the set, or

VS = 1
Nf

∑
gi∈S

I (gi, h) (2.4)

Similarly, redundancy is measured by the mutual information of two different
features. The redundancy of the feature set is defined as the average of the mutual
information of each pair of features in the set, or

WS = 1
N2
f

∑
gi,gj∈S

I (gi, gj) (2.5)

Prior work on this topic has shown that finding the feature set that maximizes
the difference VS −WS is one simple approach that achieves the objective [32].

The result of their analysis is shown at Table 2.1. Interestingly, frequency offset is
selected at most once even in cases with multiple transmitters. This is explained by
Shi and Jensen because of the likelihood that all transmitter chains use the same local
oscillator and as such the frequency offset for other transmitters is highly redundant
[32].

Chen and Lin examine in [39] several feature selection algorithms combined with
SVMs, namely F-score, random forests and radius margin (RM)-bound SVM, and
compared against results obtained by SVM without feature selection. In the applica-
tions studied, the datasets contain a very larger number of features (500 to 100 000)
and feature selection reduced the number of features entering the SVM model. They
conclude that for some problems, such as optical character recognition, the use of the
SVM classifier without feature selection performs well. In other problems, greater
prediction accuracy is achieved with feature selection.

In extracting features of radar pulses, Kawalek and Owczarek discuss in [40] the
set of intrapulse parameters: the rise, slope and fall time, rise angle, fall angle, angle
of pulse, pulse point, frequency waveform, angle of frequency modulation, and the
regression’s line. Out of these parameters, a subset is selected to reduce computational
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Table 2.1: Ordered significance of the features as a function of the number of trans-
mitters NTX (subscripts indicate transmitter number), from [32].

Rank Number of Transmitters (NTX)
1 2 3

1 Freq Offset Freq Offset1 Freq Offset1

2 SYNC Corr SYNC Corr1 SYNC Corr1

3 I/Q Offset I/Q Offset1 I/Q Offset1

4 EVM I/Q Offset2 I/Q Offset2

5 Symbol Clock Error EVM1 I/Q Offset3

6 I/Q Gain Imbalance SYNC Corr2 EVM1

7 I/Q Rotation EVM2 EVM3

complexity as well as minimize redundancy. Two techniques: the linear discriminant
analysis (LDA) and the Karhunen-Loève transformation (KLT) were compared in
order to determine this minimal set of parameters and provided near identical results.

In this work, the F-score and mRMR scoring algorithms are selected. F-score
is simple and effective, and an implementation provided by Chen [41] is directly
compatible with libsvm libraries and data formats. mRMR was also selected due
its properties of reducing redundancy between features, and in order to compare its
ranking with F-score.

2.10 Concluding Remarks

We presented an overview of several publications related to the radiometric identifi-
cation of emitters, using a variety of feature extraction approaches, feature selection
techniques and a multitude of classification algorithms. The work by Kennedy and
Kuzminskiy, presented in [31], is closely related to this research effort and highlights
some of the problems that can be forecast with 4G cellular technologies. The formal
feature selection methodology of Shi and Jensen in [32] will be considered for the
selection of LTE features. Note that at the time of writing, there are no academic
publications discussing LTE transmitter identification using radiometric properties.



Chapter 3

Models and Theory

This chapter first outlines the LTE radiometric properties considered for this study.
Then, details concerning the feature extraction and analysis process are presented.
Mathematical models for the two feature ranking and five weighting algorithms are
presented next. A discussion concerning signal quality filtering, aiming to improve re-
identification accuracy, follows. Finally, an overview of the selection of a performance
criteria concludes the chapter.

3.1 Radiometric Identification Features

The VSA software provides several signal traces for study; however, the experiments
conducted in this thesis are centered on the Error Summary table. This decision
was based on earlier published research by Brik et al. in [2] and the work of Shi and
Jensen in [32], who also used a subset of the features available on the trace of the Er-
ror Summary table in their respective publications. It is also understood that traces
which quantify RF and modulation errors are more likely to provide recognizable fea-
tures originating from hardware imperfections in the RF circuitry of the transmitter.
Chapter 5 presents other traces which could be studied in future research, which may
also lead to transmitter-specific information useful for re-identification. Figure 3.1
provides a graphical representation of modulation errors and the calculation of the
EVM, which are important notions for the remainder of this work. The Error Sum-
mary table provides the following values computed by the VSA software during the
analysis and demodulation of LTE signals.

29
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(a) Modulation errors (b) error vector magnitude

Figure 3.1: Graphical representation of modulation errors and error vector magnitude,
from [2].

3.1.1 Error Vector Magnitude (EVM)

The EVM feature represents the root mean square (RMS) average of the error vector
magnitudes for all channels and signals selected in the composite include list of chan-
nels, except non-allocated, over all symbol-times in the measurement interval. EVM
can also be shown in units of decibel (dB) [42].

3.1.2 EVM Peak

EVM peak represents the signal’s peak EVM value and location (symbol and subcar-
rier) within the frame. Only channels and signals that are selected for analysis in the
composite include list of channels, except non-allocated, are included in the EVM.
EVM peak value can also be shown in units of dB [42]. Although EVM peak value
was considered for re-identification, the symbol and subcarrier indices were not.

3.1.3 Reference Signal EVM (RSEVM)

The RSEVM represents the RMS average of the reference signal (RS) error vector
magnitudes for all symbol-times in the measurement interval. The value is displayed
in units of % rms. RSEVM is calculated from the reference input channel for downlink
signals [42].

3.1.4 Reference Signal Transmit Power (RSTP)

The RS transmit power (Avg) is the average reference signal power on the reference
input channel for the data in the measurement interval. This data result can be used
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to calculate RSTP as defined in 3GPP TS 36.141 Section F.3.3 [43]. This data result
is only applicable to downlink signals [42].

3.1.5 OFDM Symbol Transmit Power (OSTP)

The OFDM symbol transmit power is calculated by averaging the power of all resource
elements in the fourth symbol in every subframe. This is done for all subframes in
the measurement interval and over all antenna ports, as defined in 3GPP Technical
Specification 36.141, Section F.3.3 [43]. This data result is only applicable to downlink
signals. The fourth symbol in every subframe contains only PDSCH, so this data
result can be interpreted as the average power of the data subcarriers. OSTP is
calculated and expressed as an absolute power in units of dB [42].

3.1.6 Reference Signal Received Power (RSRP)

The RS receive power (Avg) is a linear average of the power of all cell-specific RS
resource elements from Tx antenna port 0 (and Tx port 1, when present) over the
data in the measurement interval. RSRP (Avg) can be used to calculate RSRP as
defined in Section 5.1.1 of 3GPP TS 36.214 [42,43].

When there are multiple Rx input channels present that contain transmissions
from Tx antenna port 0 or 1, the average RS power is calculated for each Rx input
channel and added together to compute RS Rx Power (Avg) [42].

3.1.7 Reference Signal Receive Quality (RSRQ)

The RSRQ is a measure of the quality of the received signal as defined in Section
5.1.3 of 3GPP TS 36.214 and is given by the following equation:

RSRQ = N * RSRP / (E-UTRA RSSI)
where:
N is the number of resource blocks over which RSRP and evolved UMTS terrestrial

radio access (E-UTRA) received signal strength indication (RSSI) are calculated (the
LTE demodulator includes all resource blocks in the frame bandwidth). RSRQ is
calculated over all data in the measurement interval [42,43].
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3.1.8 Frequency Error

The frequency error value represents the carrier frequency error relative to the VSA’s
centre frequency. This parameter is displayed in Hz and is the amount of frequency
shift, from the VSA’s centre frequency, that the VSA must perform to achieve carrier
lock. In the downlink, for the fast Fourier transform (FFT) demodulation, the carrier
frequency is initially determined from the preamble. The frequency error reported
in the summary table is the value from the final frequency estimation based on the
channel estimation sequence, with a fine adjustment made for any frequency error
detected in the pilot tracking. The pilot tracking does not correct the signal for
frequency errors, it only corrects the post-FFT symbols for phase (and amplitude, if
selected) [42].

3.1.9 SYNC Correlation

SYNC correlation is the correlation coefficient between the measured preamble and
an ideal preamble. This can be used as an indication of the quality of the preamble.
A value of 1 indicates perfect correlation and a value of 0 indicates no correlation.

Large frequency errors may cause the VSA software to show incorrect low SYNC
correlation values. These values are a result of frequency error and do not necessarily
indicate poor signal quality. Therefore, for low SYNC correlation values you always
need to validate the cause of the low SYNC correlation data result [42].

3.1.10 Common Tracking Error (CTE)

The CTE is the RMS average of the symbol-by-symbol deviation from the channel-
compensated (equalized) signal expressed in % rms. An ideal signal would not have to
be tracked (no magnitude scaling or phase adjustment) and the tracking adjustment
value would be (magnitude 1, phase 0) for every symbol-time.

For each symbol-time in the CTE trace, the ideal signal’s CTE magnitude is sub-
tracted from the measured signal’s CTE magnitude and the differences are averaged
by RMS. Since the ideal signal’s CTE magnitude is 1, the calculation can be simplified
to the equation shown below.

CTE%rms =

√√√√N−1∑
t=0

(|CTEm (t)| − 1)2 × 100% (3.1)
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where CTEm (t) is the measured common tracking error at symbol-time t, and N is
the number of symbols in the measurement interval [42].

3.1.11 Symbol Clock Error

The symbol clock error shows the frequency error between the measured signal’s
symbol clock and the reference symbol clock in parts-per-million (ppm). The error
is calculated by averaging the symbol timing corrections during the measurement
interval. The symbol clock error is calculated from the reference input channel for
downlink signals.

A value of 0.010 ppm indicates that the measured signal’s symbol clock frequency
is slower than the reference symbol clock frequency by 0.00000001×RefSymClk [42].

3.1.12 Time Offset

Shows the time offset from the beginning of the time capture to the beginning of the
measurement interval.

For example, when time offset = 5ms and the search time trace starts at −8.3ms,
the beginning of the measurement interval is located at −3.3ms within the search
time trace.

The time offset can be used to measure the accuracy of an external frame trigger
signal when such signal is connected to the external trigger, the analysis start bound-
ary is set to frame, and the measurement offset is set to 0. In this case, time offset
will show the offset between the frame trigger and the actual start of the frame [42].

3.1.13 I&Q Offset

The I&Q offset indicates the magnitude of carrier feedthrough (power at 0Hz). When
there is no carrier feedthrough, I&Q offset is zero (-infinity dB). I&Q offset is calcu-
lated by computing the RMS average of the measured I&Q offset for each symbol in
the measurement interval, and is expressed relative to the average signal power.

For a downlink signal, I&Q offset is calculated from the reference input channel.
For an ideal downlink signal, any I&Q offset present would not affect the quality of the
signal since the direct current (DC) subcarrier is orthogonal to the other subcarriers.
However, when the signal is impaired so that the subcarriers are not orthogonal to



CHAPTER 3. MODELS AND THEORY 34

DC (when Doppler shifted, for instance), any I&Q offset on the DC subcarrier will
affect the EVMs of other subcarriers [42].

3.2 Feature Extraction and Analysis Process

A lengthy feature extraction process was performed by the VSA software once the
RF signals were recorded to disk during the field trial. The feature extraction relies
on the VSA software’s LTE demodulation analysis capability. The VSA software can
display a number of analytical traces for either live signals or recorded ones. Using the
VSA application programming interface (API), it is possible to automate much of this
process. Specifically, with a program written in Visual Basic for Applications (VBA)
(VSA_Interface.xlsm), it was possible to configure the settings of the VSA software to
ensure repeatability, load signal recordings, and step through extracting trace values
from loaded signal recordings to generate feature vectors. The feature extraction first
populated a Microsoft Excel spreadsheet and was subsequently written to disk in
the comma-separated values (CSV) format. The Error Summary table was selected
for most of the experimentation and provides several measurements taken from the
signal recording, such as EVM, SYNC correlation, symbol clock error, time offset, I&Q
offset, I&Q gain imbalance, group and cell identification strings. From observations,
it became also interesting to capture other VSA status indicators such as application
synchronization status and raw synchronization status for every sample extracted.
Another trace, the DL Decode Info, presented the decoded frame number, and this
value was also used to enrich the feature extraction as one additional attribute of
signal reception quality. Lastly, the trace extraction was enhanced with the sample
time stamp. The file naming convention shown in Table 3.1 was used for all trace
extracts.

A set of Linux shell scripts and simple programs were written to process the trace
extracts and interface with external libraries for feature scoring and weighting, and
in order to perform SVM analysis. The process flow is captured in Figure 3.2.

In all, near 10 000 SVM classification experiments were conducted. Cloud-based
computing resources were used to conduct the analysis, using as many as three hosted
Linux virtual private server (VPS) concurrently, in order to accelerate the process.
The purpose and language of each software component is summarized in Table 3.2
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Table 3.1: Trace extracts file naming convention.

e.g. DL-10MHz-2150MHz-10s-13Feb12-c87-p001-n1000-o200-d0.5-t1.csv
Example Template Description

DL UL/DL uplink or downlink
10MHz xxMHz signal bandwidth
2150MHz xxxxMHz signal centre frequency

10s xxxs recording duration
13Feb12 ddmmmyy recording date

c87 cxxx forced cell ID (LTE Demod properties)
(optional)

p001 pxxx recording position number (from map) (optional)
n1000 nxxxxx number of feature vectors extracted
o200 oxxx offset start of extraction (ms)
d0.5 dxx.x time span of each feature vector (ms)
t1 tx trace number (1:Error Summary Table)

and detailed in the following subsections.

3.2.1 VSA_Interface.xlsm

The VSA_Interface.xlsm routines were used to automate the trace extraction from
the Agilent VSA software. The tool written in VBA called upon the documented VSA
API to first setup the VSA and the LTE demodulation settings from a pre-configured
file, in addition to user-configurable parameters such as the trace of interest, the
number of vectors to extract, the duration of each data point in ms (which needed
to match the LTE demodulation parameters), as well as an offset from the beginning
of the recording, also in ms. The user then selects the signal recording of choice and
launches the trace extraction. The application provides a status indicator and steps
through each feature extraction by moving the playback position and fetching the
values of interest from the VSA trace. As an example, a 2000-point extraction, which
was the usual case following the field trial in the City of Ottawa, lasted slightly over
20 minutes. Once the extraction finished, the feature vectors could be saved to file
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Table 3.2: Analysis programs.

Name Programming
language

Description

VSA_Interface.xlsm VBA Microsoft Excel spreadsheet responsi-
ble for the interaction with the Agilent
VSA software. The spreadsheet VBA
code automatically loads signal record-
ings and configuration settings in the
VSA software, and steps through the
RF recording, saving feature vectors for
every frame.

RecordingsIndex.accdb Microsoft Access
SQL and VBA

Database containing all feature vectors
and empirical observations taken dur-
ing the field trial. The database VBA
code was also used to compute basic
statistics and generate a dynamic map
of recording positions, as shown in Fig-
ure 3.6.

analyze.sh Linux Bash Core analysis program, used to process
feature vector sets, and invoke external
libraries.

looper.sh Linux Bash Simple script used to perform multi-
ple experiments in an iterative fashion,
without user intervention.

fscore.py Python Feature scoring using the F-score algo-
rithm, from Chen [41].

mrmr C/C++ Feature scoring using the mRMR algo-
rithm, from Peng et al. [44].

grid.py Python Utility provided with libsvm which per-
forms a grid search to optimize SVM
parameters C and γ.

weight.awk awk Script used to apply feature weights
using one of five weighting algorithms.
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Figure 3.3: Screen capture of VSA_Interface.xlsm.

containing CSV. A screen capture of the VSA_Interface.xlsm is shown in Figure 3.3.
A sample dataset output from VSA_Interface.xlsm is shown in Figure 3.4.

3.2.2 RecordingsIndex.accdb

All trace extracts were imported into a Microsoft Access database from which a
number of utilities were created. A Microsoft Access form is used to show and retrieve
the catalogue of recordings for any of the 36 recording positions, and provides useful
information concerning the quality of the signal observed, the number of feature
vectors, the number of feature vectors with synchronization (as reported by the VSA
API) as well as the number of feature vectors with both synchronization and a decoded
LTE frame number. Empirical observations taken during the recordings (such as
signal strength) were also entered in the database. Queries built with the structured
query language (SQL) into the Access form provide a list of most frequent cell IDs
observed within each RF recording. A separate query form was added which facilitates
the search for a specific cell ID, returning a list of recordings and positions where the
cell ID was observed and recorded. A screen capture of the Microsoft Access database
is shown in Figure 3.5.

In addition, a VBA module was created within the database in order to generate
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Figure 3.5: Screen capture of the RecordingsIndex.accdb database.

position markers in line with the Google Maps API. The output of this module was
inserted into the HyperText Markup Language (HTML) code from [45] to overlay
basic statistics of the recordings when the mouse hovers over a recording position.
An example of position 25 is shown in Figure 3.6. In the example, two recordings
were captured from position 25 (one per provider). Basic information about each
recording is listed, such as the number of vectors with radio synchronization, and
the number of vectors with both radio synchronization and a decoded frame number.
The most frequently cell identifiers captured in each recording are also listed in order
to view the reach of a particular cell across multiple recordings. The complete set of
positions is available online at http://fdemers.com/LTE [46].

3.2.3 analyze.sh

This utility was purpose-built to perform the SVM analysis using the trace extracts as
input, and constitutes the core of the analysis process depicted in Figure 3.2. It is used
in conjunction with a large number of options configurable from the command line,
as arguments. Notably, the utility was programmed to allow a large number of traces
to be processed in a combined fashion, such that all trace extracts from one provider
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Figure 3.6: Geographical overlay of recording statistics.
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could be considered as one. It further provides the ability to filter feature vectors
that exhibited radio synchronization and/or a decoded LTE frame number. The
command-line options programmed into analyse.sh are listed in Table 3.3. analyze.sh
first processes the extracted feature vectors by removing unwanted columns from the
trace, computing a new unique CellID as discussed in Section 4.1.3, and performs
the filtering of vectors with synchronization and vectors with decoded frame number,
as specified by the command line arguments. It then randomizes the vector set and
reformats the trace according to the libsvm input format. analyse.sh then prunes cells
with too few vectors (low density cells) and splits the population of vectors between a
training set and a testing set. Scaling is the process used to normalize the numerical
value range of each feature to ensure each feature variance is evenly considered in
the SVM model. The main advantage of scaling is to avoid attributes in greater
numeric ranges dominating those in smaller numeric ranges. Another advantage is
to avoid numerical difficulties during the calculation [35]. Both sets are scaled with
the scaling factors obtained from the training set. When feature scoring is used, the
features are weighted by the weight.awk script, based on either rank or score output
by the chosen scoring algorithm (F-score or mRMR). Optionally, a grid search is
performed to obtain optimal SVM parameters C and γ used with an RBF kernel
function. Lastly, the core svm-train and svm-predict programs from [45] are invoked
to obtain a re-identification success rate.

3.2.4 looper.sh

A simple Linux Bash script used to run a series of analysis tasks (by analyze.sh) based
on the variables under study. This program took many forms throughout this research
activity. The results were extracted from the looper.sh log file, a sample of which is
shown in Figure 3.7, using awk, and entered into a Microsoft Excel spreadsheet from
which tables and graphs were generated.

3.2.5 fscore.py

fscore.py is a Python implementation of the F-score feature scoring algorithm, written
by Chen [41]. The F-score feature scoring algorithm is discussed in Subsection 3.4.1.
The script outputs three files: .fscore shows importance of features, .select gives the
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Table 3.3: analyze.sh options.

Switch Option Description

usage: ./analyze.sh [-n #] [-t #] [-T #] [-s] [-f] [-i] [-r] [-o] [-S M/F] [-w 1-5] [-v] [-k] [-d] file1 file2 ...

-n number of train-
ing vectors

Sets the number of vectors needed for
the SVM training set. Cells with fewer
vectors are normally excluded from the
trial (default: 15).

-t trials Sets the number of trials to repeat the anal-
ysis several times (also sets -r) (default: 1).

-T Trace Sets the VSA trace number (default: 1 - Er-
ror Vector Summary trace) (other traces not
implemented yet).

-s sync Keeps only vectors with SYNC and RAW
SYNC flags set to TRUE (default: false).

-f frame number
decoded

Keeps only vectors with a decoded
frame number (default: false).

-i include Includes low density cells the training model
(default: false).

-r randomize Sorts the set of vectors in a random fashion
before SVM analysis (default: false).

-o optimize Searches the best C and γ coefficients for the
SVM analysis (default: false).

-S scoring Ranks and scores features using either
mRMR (-SM) or F-score (-SF) algorithms
(default: neither).

-w weighting Applies weights according to one of five algo-
rithm (imples -SF if not specified, except for
-w5).

-v verbose Outputs additional information concerning
the progress of the analysis (default: false).

-k keep Keeps all temporary files (default: false).
-d debug Outputs additional information con-

cerning the progress of the analysis
(also sets -vk) (default: false).
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running log, and .pred gives testing result [41].

3.2.6 mrmr

Compiled version of the minimum-redundancy-maximum-relevance (mRMR) feature
selection algorithm, provided by Peng et al. [44]. As the mrmr program requires a
different trace format, analyze.sh first proceeds by reformatting the data. A discussion
on mRMR is available in Subsection 3.4.2.

3.2.7 grid.py

The grid.py Python script is provided by the libsvm library as a tool to find the
optimal SVM parameters C and γ used with the RBF kernel function. It uses k-fold
cross-validation and performs a grid search to determine the values of C and γ which
result in the greatest prediction accuracy. Its usage is encouraged and explained
by Hsu et al. in [35]. A discussion on the requirement for this search appears in
Section 3.6.

3.2.8 weight.awk

weight.awk is a simple awk script used to multiply the values of each feature using one
of five weighting algorithms. It uses, as input, the score or rank from either feature
scoring algorithm. Weighting algorithms are discussed in detail in Section 3.5. The
output of the two scoring algorithms had to be standardized in order to be compatible
with the weighting algorithms.

3.2.9 Computing Cell IDs

The statistics regarding the data collected during the Ottawa city field trial are com-
piled in Table 4.1. The cell ID was computed using a concatenation of the CellId-
GroupSector and the CellId fields from the trace extracts. Both of these entities
are transmitted using a Zadoff-Chu sequence, in accordance with the LTE protocol.
It was discovered that some cell IDs are used by both providers (both the CellId-
GroupSector and CellId are identical). This explains why the number of cell IDs
when combining all recordings (3rd column) is less than the total number of cell IDs
if treating the two providers independently (last column) in Table 4.1.
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3.3 Signal Quality Filtering

A signal quality filter was programmed into the analysis tool in order to allow filter-
ing of the vector set based on two binary signal quality parameters, namely signal
synchronization and decoded LTE frame number. Signal quality filtering was found
to greatly improve emitter re-identification success rates, while at the same time sig-
nificantly reducing the pool of suitable parameter vectors for the SVM analysis (see
Table 4.1). Using command-line arguments during trace processing, it was possible
to exclude vectors that had one or two of the parameters unset.

3.3.1 Signal Synchronization

The program used to step through the RF recording and extract parameter vec-
tors (VSA_Interface.xlsm) also retrieved and tabled two distinct values labelled
as signal synchronization using the documented Agilent API. The AgtVsaVec-
tor.Application.Measurement.Status was first recovered using the vsaStatusBitSync-
NotFound bitmask (512) for every vector extracted, as well as the of the AgtVsaVec-
tor.Application.Display.Traces(4).RawDataStatus (where 4 corresponds to the trace
number for the D. Ch1 Error Summary Table) using the vsaTrcDatStaNoSync bit-
mask (128). In practice, the data extracted showed that both signal synchroniza-
tions were equal, and thus redundant, for all vectors extracted. Interestingly, Agilent
Technologies states in [42] that error measurements obtained in the absence of signal
synchronization are not considered for the averaging, when averaging is enabled in
the VSA software LTE demodulation properties. As such, it is recommended that at
the very least, only feature vectors extracted in the presence of signal synchroniza-
tion be considered for further study. Chapter 4 results confirm that re-identification
results are severely impacted when feature vectors extracted in the absence of signal
synchronization enter the SVM model, or are used as vectors under test.

3.3.2 Decoded Frame Number

In spite of the trace chosen for feature extraction, VSA_Interface.xlsm also captured
the decoded downlink LTE frame number from the Ch1 DL Decode Info trace. Em-
pirically, the decoded frame number was found to be a good indicator of received
signal quality, as recordings with marginal signal quality prevented the VSA software
from properly decoding the LTE downlink frame number.
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3.4 Feature Ranking and Scoring

When presented a large number of features, it is reasonable to assume not all features
are as useful in identifying unknown classes. Some features may present little variation
from class to class, whilst others may present little information that has not already
been characterized by another feature. A common strategy in classification problems
is to make a determination which of the feature set should be emphasized, or even
which feature set could be safely ignored. In order to do so, one must first determine
"which" features, and next determine how to conduct this emphasis. The approach
selected for this research activity consisted in trialing two feature scoring algorithms
often used in classification problems, which attempt to answer the first question:
F-score and mRMR. Secondly, feature weighting was chosen as a method by which
emphasis could be applied, meaning most important features would be given a greater
weight prior to being modelled by the SVM classifier, after normalization. Weighting
can be seen as a more general case of feature exclusion, in which a set of n top features
is kept whereas the others are discarded. In feature weighting, this is the equivalent
of setting unselected features to a constant, nullifying their contribution to the SVM
classification model.

3.4.1 F-score

F-score is a simple technique which measures the discrimination of two sets of real
numbers. Given training vectors xk, k = 1, ...,m, if the number of positive and
negative instances are n+ and n−, respectively, then the F-score of the ith feature is
defined as:

F (i) ≡

(
x̄
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i − x̄i

)2
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(
x̄
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)2

1
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)2
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(−)
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)2 (3.2)

where x̄i, x̄(+)
i , and x̄

(−)
i are the average of the feature of the whole, positive, and

negative data sets, respectively; x(+)
k,i is the ith feature of the kth positive instance,

and x(−)
k,i is the ith feature of the kth negative instance. The numerator indicates the

discrimination between the positive and negative sets, and the denominator indicates
the one within each of the two sets. The larger the F-score is, the more likely this
feature is more discriminative. A disadvantage of F-score is that is does not reveal
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mutual information among features [47].

3.4.2 mRMR

One of the most popular approaches to realize Max-Dependency is maximal relevance
(Max-Relevance) feature selection: selecting the features with the highest relevance
to the target class c. Relevance is usually characterized in terms of correlation or
mutual information, of which the latter is one of the widely used measures to define
dependency of variables [44]. In feature selection, it has been recognized that the com-
binations of individually good features do not necessarily lead to good classification
performance. In other words, "the m best features are not the best m features" [44].
Some researchers have studied indirect or direct means to reduce the redundancy
among features and select features with the minimal redundancy (Min-Redundancy).
The mRMR framework aims to minimize redundancy, used a series of intuitive mea-
sures of relevance and redundancy to select promising features for both continuous
and discrete data sets [44].

Max-Dependency has the following form:

maxD (S, c) , D = I ({xi, i = 1, · · · ,M} ; c) (3.3)

given the input data D tabled as N samples, andM features X = {xi, i = 1, · · · ,M},
and where I is the mutual information between variables, for a given class c. As Max-
Dependency criterion is hard to implement, an alternative is to select features based
on maximal relevance criterion (Max-Relevance). Max-Relevance is to search fea-
tures satisfying (3.4), which approximates D (S, c) with the mean value of all mutual
information values between individual feature xi and class c, for a feature set S [44].

maxD (S, c) , D = 1
|S|

∑
I (xi; c) (3.4)

3.5 Feature Weighting and Selection

Once the features are ranked and scored by the scoring algorithm (either F-score
or mRMR), it is possible to weight best features more heavily in an attempt to
improve SVM prediction accuracy. A number of algorithms are possible using either
the feature rank or feature score as input. The simplest approach is to multiply
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linearly each vector element by the corresponding feature score. It is also possible to
using the feature rank as a basis for the linear multiplication. Additionally, simple
exponential functions using the score or the rank, which further emphasizes highly-
ranked features, were also investigated.

A total of five weighting algorithms were implemented and used in this research
activity, and presented in Table 3.4. For a given feature vector a = (a1, a2, · · · , a13),
the weighted feature vector is denoted w = (w (a1) a1, w (a2) a2, · · · , w (a13) a13). In
the table below, the function f (ai) returns the score obtained by feature ai from the
scoring algorithm (F-score or mRMR) whereas the function F (ai) returns a value
proportional to R (ai), the rank of parameter ai (F (ai) = 13 if ai is ranked first,
F (ai) = 1 if ai is ranked last). Chapter 4 studied all possible combinations of feature
scoring and feature weighting algorithms to determine which one performs best.

Table 3.4: Weighting algorithms.

Algorithm
number

Description Formula

1 Multiplying each feature by the
corresponding value obtained
from the scoring algorithm.

w (ai) = f(ai)

2 Multiplying each feature by the
corresponding rank obtained
from the scoring algorithm.

w (ai) = F (ai)

3 Multiplying each feature by 2 to
the power of the corresponding
value obtained from the scoring
algorithm.

w (ai) = 2f(ai)

4 Multiplying each feature by 2 to
the power of the corresponding
rank obtained from the scoring al-
gorithm.

w (ai) = 2F (ai)

5 Brik’s special case: all features ig-
nored except error vector magni-
tude (a1), I&Q origin offset (a13),
frequency error (a8), and SYNC
correlation (a9).

w (ai) =

 1,∀i ∈ {1, 8, 9, 13}
0, others

We treat feature selection as a special case of feature weighting in which selected
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features are weighted with unity (i.e. retained) and all others ignored (zeroed). The
most useful application of feature selection is to retain only n features that are the
most effective at re-identification, after scoring as in Equation (3.5). As an example,
and in order to compare our results with the results obtained by Brik et al. in [2],
we attempted to compute re-identification accuracy using the same five parameters,
namely (from the most effective to the least effective) (i) frequency error, (ii) SYNC
correlation, (iii) I&Q offset, (iv) magnitude error, and (v) phase error. However, the
phase error was not available in the VSA trace used. Thus the Brik comparison ex-
periments ignored all but four parameters, using the feature selection scheme outlined
in Table 3.4. Note that feature scoring was not required in the experiments using the
fifth weighting algorithm, as it does not depend on either the score or the rank.

w (ai) =


1, ∀i ∈ R (ai) ≤ n

0, others
(3.5)

3.6 SVM Parameters

Support vector machines attempt to find the solution to the optimization problem
shown below

min
w,b,ξ

1
2wTw + C

l∑
i=1

ξi

subject to: yi
(
wTφ (xi) + b

)
≥ 1− ξi, ξi ≥ 0 (3.6)

where C > 0 is the penalty parameter of the error term, also termed regularization
parameter. The kernel function K is defined in Equation (3.7), and is the function
used to express the hyperplane between classes. SVM, and libsvm in particular, offer
a number of choice of kernels functions: linear, polynomial of n degrees, RBF and
sigmoid. The RBF kernel function is shown in Equation (3.8), where γ is the kernel
parameter.
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K (xi,xj) ≡ φ(xi)Tφ (xj) (3.7)
K (xi,xj) = exp

(
−γ‖xi − xj‖2

)
, γ > 0 (3.8)

There are two adjustable parameters when using an RBF kernel: C and γ. It is
not known beforehand which C and γ are best for a given problem; consequently some
kind of model selection (parameter search) must be done. The goal is to identify good
parameters C and γ so that the classifier can accurately predict unknown data (i.e.
testing data) [35]. The grid search method is recommended by Hsu in [35]. Various
pairs of C and γ values are tried and the one with the best cross-validation accuracy
is picked. Hsu found that trying exponentially growing sequences of C and γ is a
practical method to identify good parameters. In order to reduce the computational
requirements, a coarse grid search first identifies a suitable regions, which is followed
by a finer grid search within the suitable regions. libsvm provides a grid search
implementation that can be used to find optimal C and γ for a given training set.

3.6.1 k-fold Cross-Validation

Prediction accuracy is often used as the optimization criteria for the C and γ kernel
parameters. At its basis, the training dataset is randomly separated into two parts,
of which one is considered unknown. The prediction accuracy obtained from the
"unknown" set against the second part reflects the likely performance on classifying
an independent dataset. An improved version of this procedure is known as k-fold
cross-validation. In k-fold cross-validation, the training dataset is first randomly
divided into k subsets of equal size. Sequentially, one subset is tested using the
classifier trained on the remaining k − 1 subsets. Thus, each instance of the whole
training set is predicted once so the cross-validation accuracy is the percentage of
data which is correctly classified. The cross-validation procedure can prevent the
overfitting problem [35].

3.7 Performance Evaluation

The SVM prediction accuracy, output by svm-predict was considered to be a relevant
measure of re-identification accuracy. svm-predict is able to compare the predicted



CHAPTER 3. MODELS AND THEORY 52

class name with the actual class name which is also present in the dataset. It is also
possible to conduct in-depth analysis looking into which cells are most often misiden-
tified by the SVM model, or conversely which cells are most often incorrectly selected
by the SVM model. This knowledge could highlight the need to further discriminate
between cells that have similar radiometric identities, using other methods. As this
in-depth analysis is only relevant to a specific data set and does not apply well to
other experiments investigating different transmitters, it was deemed out of scope.
Additional information concerning performance evaluation criteria is available in [2].



Chapter 4

Results and Analysis

This chapter details the data collection and analysis process, as well as the results
obtained during the course of this research activity. In the following section, details
of the data collection, both from the lab environment and during the field trials, are
presented. Results of the trace analysis are presented next. Attention was devoted
to examine the impact of filtering, feature scoring and weighting, as well as SVM
parameters optimization on prediction accuracy, in line with what was presented in
Chapter 3. An analysis of the significance of the results concludes this chapter.

4.1 Experimental Procedures

4.1.1 Vector Signal Analysis

The Agilent N9030A PXA Signal Analyzer is a modern local area network (LAN)-
enabled spectrum analyzer with capabilities in the 3Hz to 13.6GHz frequency range.
It is compatible with the Agilent (89600B) VSA software. The current version of the
Agilent VSA software package (89600B) includes both the VSA software (89601B) and
the wireless link analysis (WLA) software (89620B), the MAC-layer complement to
the 89601B. The WLA was not required for this research activity. The LTE frequency
division duplexing (FDD) modulation Analysis (89601B-BHD) option was required,
and fortunately was part of the software suite available at Defence Research and De-
velopment Canada (DRDC) Ottawa. This optional package provides the necessary
algorithms and protocol knowledge to analyze LTE FDD transmissions. Figure 4.1
shows a sample workspace of the Agilent VSA software during an experiment, pro-
cessing an LTE FDD downlink signal in the City of Ottawa in December, 2011. The

53



CHAPTER 4. RESULTS AND ANALYSIS 54

Figure 4.1: Screen capture of the Agilent VSA software processing an LTE signal in
the City of Ottawa.

figure also shows the Error Summary table (bottom right) which provided the values
extracted into feature vectors for the SVM classifier.

4.1.2 DRDC Ottawa Laboratory

Early into the research activity, the decision was made to make use of the test and
measurement instrumentation at the DRDC Ottawa campus at Shirley’s Bay. The
Modern Communications Electronic Warfare (MCEW) group agreed to make the
Agilent N9030A PXA Signal Analyzer as well as the VSA software package available
for this research activity. A number of antennas and ancillary equipment were also
made available as needed.

Initially, a set of recordings were performed from the Shirley’s Bay laboratory
between November 2011 and February 2012. The recordings features were extracted
and the hypotheses verified (it is possible to uniquely distinguish LTE emitters using
radiometric properties) with a limited population of cellular towers. The labora-
tory experiment consisted of the Agilent N9030A PXA Signal Analyzer connected
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Figure 4.2: Laboratory assembly.

to Kathrein 741790 omni-directional antenna installed on the roof of the building,
through 22.9m of Times Microwave LMR-400 coaxial transmission line. The exter-
nal 10MHz reference was provided by a Trimble Mini-T GPS Receiver board fed from
a roof-mounted Trimble Bullet III GPS antenna (P/N 57860-00) through 22.9m of
Belden 1189A Dual Bond (R) IV 75 Ω. An HP Z400 workstation with Windows 7
Professional (32 bits) ran the 32 bit version of the Agilent (89600B) VSA software
(version 14.23). Figure 4.2 depicts the laboratory installation.

A total of 17 cells were observed from recordings at the Shirley’s Bay, between the
two service providers who had active FDD LTE signals (Bell Canada and Rogers). Re-
identification success rate peaked, after feature scoring and SVM kernel optimization,
at 91%. However, the data collected during this phase did not include information
whether the LTE downlink frame number was properly decoded or the VSA’s SYNC
status. As discovered in subsequent experiments, having the ability to filter feature
vectors based on signal quality improves the re-identification success rate.



CHAPTER 4. RESULTS AND ANALYSIS 56

Figure 4.3: Cellular tower locations in Ottawa, with data from [48].

4.1.3 Recordings from the City of Ottawa

Given the small population of cells within radio range to the Shirley’s Bay campus,
the decision was made to perform recordings from various positions in the Ottawa
area. A route was planned around the City of Ottawa in order to increase the number
of candidate cells and determine if a larger population would harm re-identification.
Route planning was conducted using cell tower positions available from [48]. Note
that [48] listed specific Rogers LTE tower positions but did not specify Bell LTE tower
positions. It was assumed, for the purpose of route planning, that Bell co-located LTE
towers with the HSPA towers. Tower positions around Ottawa for the two providers
are amalgamated in Figure 4.3. The visualization service GPSvisualizer.com [45] was
used to generate the map, which was then modified using a text editor.

Since measurements would be taken only when the vehicle was at rest, the follow-
ing factors were considered during route planning:

• Locations close to cell towers from two providers were favoured. This enabled
multiple recordings from a single position. The proximity to the towers also
increases the quality of the signal recording.
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• A high concentration of towers were available in the down-town core. Thus a
significant number of the stops were planned within the down-town area.

• In order to test the effect of signal-to-noise ratio (SNR) on re-identification
success rate, the route was planned to record signals from certain towers multiple
times, varying the distance to the towers.

Microsoft MapPoint with GPS dongle was used to confirm our position in relation
to reported cell towers from [48]. A Garmin eTrex Vista HCx was used to record the
geographical coordinates of each recording position. The Agilent N9030A PXA Signal
Analyzer as well as the workstation with the VSA software package was removed from
the laboratory and secured within a DRDC vehicle to perform the signal recordings.
The PCTEL BLMPVDB700/2500 antenna with the BGMML195MSMA magnetic
base was installed on top of the van and connected to the PXA using 3.6m of Pro-
Flex Plus 195 coaxial cable. Again, the external 10MHz reference was provided by a
Trimble Mini-T GPS Receiver board fed from a Trimble Bullet III GPS antenna P/N
57860-00 through 22.9m of Belden 1189A Dual Bond (R) IV 75 Ω. The GPS antenna
remained within the vehicle. A direct RJ-45 LAN connection was established between
the workstation and the PXA. Attempting to run the equipment using the on-board
alternator through an Absopulse sine-wave inverter resulted in abrupt power failures
at low engine revolutions per minute (RPM). This issue forced the research team
to stop and resume the experiment using a Honda 2 kW generator secured to a tray
attached to the trailer-hitch. Figure 4.4 shows the experimental assembly for this
portion.

The recordings were conducted on February 13th, 2012. Both LTE cellular
providers in the area were active by that date. A total of 36 recording positions
generated 54 recordings, as both providers did not broadcast LTE signals from every
position. The route followed, and each recording position, are overlaid on the tower
positions in Figure 4.5. A summary of the number of feature vectors extracted for
each provider is found in Table 4.1. For every recording, a set of 2000 feature vec-
tors was extracted from the VSA software using VSA_Interface.xlsm. From the 2000
vectors, a fraction had radio sync (94.6%) and a smaller fraction had both radio sync
and a properly decoded frame number (30.8%).
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Figure 4.4: Mobile laboratory assembly.

Figure 4.5: Cellular towers in Ottawa and data gathering route, with data from [48].
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Table 4.1: Statistics from the recordings in the City of Ottawa 2012.

Filter Elements Bell Rogers Combined Total

Recordings 22 32 54 54

no filtering
Vectors collected 44000 64000 108000 108000
Unique Cell IDs 173 346 396 519

with radio sync
Vectors collected 42214 59960 102174 102174
Unique Cell IDs 83 203 250 286

with frame # decoded
Vectors collected 18923 14302 33225 33225
Unique Cell IDs 18 39 55 57

4.2 Experimental Results

This section presents experimental results obtained and discusses their impact on
practical applications and future research. For every experiment, the dataset obtained
from the VSA software was divided into a small training set and a much larger testing
set. svm-train generates a model file from the training set. svm-predict attempts to
determine the class (or cell ID) of each vector in the testing set.

The dataset used as input consisted of the entire set of vectors for a given cellu-
lar provider. In general, traces from both providers were not combined because of
duplicate cell IDs (see Subsection 3.2.9), except for work in Subsection 4.2.11 which
specifically examines the impact of merging feature vector sets from both providers.
For experiments using a random sorting of feature vectors prior to splitting the train-
ing and testing sets, experimental results consist of the prediction accuracy averaged
over 5 experiments, with graphs showing error bars representing the 95% confidence
interval. For the experiments which did not first randomize the trace data, the results
consist of the prediction accuracy over a single experiment since repeat experiments
returned the same results.



CHAPTER 4. RESULTS AND ANALYSIS 60

Figure 4.6: Prediction accuracy as a function of the number of training vectors,
randomness and signal filtering.

4.2.1 Signal Quality Filtering

Filtering of the dataset based on signal quality parameters (radio synchronization
and decoded LTE frame number) were found to have a tremendous impact on predic-
tion accuracy, consistent with expectations. It is believed that higher signal quality
leads to improved accuracy of the SVM model and in turn improves re-identification
success rates. Previous research activities, notably Brik et al. in [2] operated from a
controlled classroom environment rather than outdoor field trials using operational
commercial infrastructure and as such may not have had to concern their experiment
with signal quality. Figure 4.6 shows the tremendous improvement in prediction ac-
curacy when signal quality filtering, against one or two criteria, is applied, for both
cellular providers. The re-identification accuracy peaks at 55% and 61% (with ran-
domness) without filtering, whereas success rates of 91% and 85% are obtained under
the strictest filtering.
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Figure 4.7: Cell population as a function of the training bin size.

4.2.2 Variation of the Training Bin Size

The number of vectors (per unique cell) used in the training set was found to have a
significant impact on re-identification accuracy, in line with expectations. The train-
ing bin size was varied from 5 vectors to 50 vectors (in increment of 5), per unique
cell. Figure 4.6 also shows the improvements in prediction accuracy for larger train-
ing sets. The re-identification accuracy peaks at 73% and 57% for a set of 5 training
vectors, whereas success rates of 91% and 85% are obtained when the set is 45 and
50 training vectors, respectively. The larger training bin size also impacted upon the
number of candidate cells retained, particularly if filtering on radio synchronization
and decoded frame number were enabled. This is because fewer cells had a sufficiently
high number of vectors to be retained in the experiment. Table 4.2 shows the number
of candidate cells retained as a function of the number of training vectors selected
and the trace filtering applied, based on signal quality. Figure 4.7 shows the same in-
formation graphically, which demonstrates that in spite of cell population stabilizing,
greater re-identification accuracy is still achieved when a greater number of training
vector is considered to build the SVM model.
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Table 4.2: Number of candidate cells as a function of filtering and number of training
vectors.

# cells retained

No filtering Radio sync Radio sync & frame
# decoded

# training vectors Bell Rogers Bell Rogers Bell Rogers

5 47/173 142/346 31/83 72/203 11/18 17/39
10 31/173 73/346 27/83 52/203 10/18 16/39
15 27/173 55/346 26/83 48/203 9/18 14/39
20 24/173 48/345 24/83 42/203 9/18 14/39
25 24/173 46/346 24/83 42/203 9/18 14/39
30 24/173 46/346 24/83 40/203 9/18 13/39
35 24/173 43/346 24/83 40/203 9/18 13/39
40 24/173 42/346 24/83 40/203 9/18 13/39
45 24/173 41/346 23/83 40/203 9/18 13/39
50 23/173 41/346 23/83 40/203 9/18 13/39

It is believed that a higher number of vectors in the training bin improves the
accuracy of the SVM model and in turn improves re-identification success rates. Brik
et al. had found in [2] that in practice, 20 frames were sufficient for optimized re-
identification. The data shown in Figure 4.6 shows that results continue to improve
up to 50 training vectors (per cell). In some cases, a larger training could lead to
model overfitting and decrease prediction accuracy, as appears to be the case for the
Rogers dataset, with randomness and strict signal filter, between 45 and 50 training
vectors. However, the error bars show that the decrease is not statistically significant.
Higher number of training vectors were not attempted in order to avoid reducing the
population of candidate cells to almost trivial levels.

4.2.3 Randomness

Randomness of the dataset was found to have a tremendous impact on re-identification
accuracy. Randomizing the dataset is the recommended approach prior to any libsvm
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analysis in the practical guide by Hsu et al. [35], as well as in the Waikato Environment
for Knowledge Analysis (WEKA) tutorial [49]. Figure 4.6 shows the considerable
improvements in prediction accuracy when the input dataset is first randomized.
Without randomizing, the re-identification accuracy peaks at 70% and 69%, whereas
success rates of 91% and 85% are obtained when the vector set is first randomized.
Furthermore, a number of anomalies were observed in experiments where randomness
was not used (see Figures 4.7, 4.9, 4.13 and 4.15). Without randomness, the model
is constructed using the first n feature vectors where the cell ID is observed (trace
extracts are fed to the model in order of recording positions), which may not be
sufficiently representative of the radiometric properties of the cell. It is suspected
that the SVM model suffers from inaccuracies introduced by the recording position
where cells are first observed, which makes the model less universal than when it is
constructed using feature vectors that originate from a broader set of cells, randomly
selected from all recordings of a given provider.

4.2.4 Optimization of SVM Parameters

Optimization of the SVM parameters C and γ by grid search, using k-fold valida-
tion as discussed in Section 3.6.1, was found to have a significant positive impact on
re-identification accuracy, in line with expectations and recommended libsvm usage
promulgated by Hsu et al. in [35]. When SVM parameter optimization is enabled, lib-
svm produces a grid search graph using gnuplot such as the one shown in Figure 4.8.
The optimal values of C and γ are then used when building the SVM training model.
Figure 4.9 shows the improvements in prediction accuracy when SVM parameters are
optimized using grid search, peaking at 98.9% and 98.0% under strictest signal filter-
ing conditions and randomness. The anomaly observed in Figure 4.9 can perhaps be
explained by the lack of randomness, suspected to cause the SVM model to optimize
for a specific set of feature vectors which ill-represent the radiometric identity of cells
when all trace extracts are considered at random.

Figure 4.10 compares the optimal curves with and without SVM parameter opti-
mization and is perhaps more indicative. The graph shows the increased prediction
accuracy as well as the smaller confidence interval, when searching for and applying
the optimal SVM parameters C and γ.
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Figure 4.8: Optimization of SVM parameters C and γ by grid search.

Figure 4.9: Prediction accuracy as a function of the number of training vectors,
randomness and signal filtering, under SVM parameter optimization.
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Figure 4.10: Prediction with and without SVM parameter optimization, under
strictest signal filtering and randomness.

4.2.5 Inclusion of Low Density Cells

Under normal conditions, cells with fewer than the required minimum number of
feature vectors are discarded. For example, when the training bin size is set to 45
vectors, all cells with fewer than 45 vectors are normally discarded from both the
training and testing set. As an experiment, an option was added to analyse.sh to
retain vectors belonging to low-density cells in the training set. Low density cells
are defined as cells for which there are insufficient feature vectors to be included in
the training model (the number of feature vectors for a given cell ID is less than n).
In these experiments, feature vectors for low density cells are also included in the
SVM model. The testing set never contained feature vectors for low density cells (all
were used for the training set). Inclusion of low density cells in the SVM model were
found to degrade the prediction accuracy, in line with expectations. It is suspected
that the inclusion of these low-density cells increases the cell population and reduces
the hyperspace between classes, rendering re-identification more difficult. Figure 4.11
shows the decrease in prediction accuracy when low density cells are retained for the
model generation by the svm-train program. The results are sufficiently poor in some
cases, to render impractical any re-identification applications, particularly if the low
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Figure 4.11: Prediction accuracy as a function of the number of training vectors,
randomness and signal filtering, when including cells not characterized by the SVM
model.
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Figure 4.12: Prediction accuracy compared with and without low density cells, using
SVM parameter optimization, randomness, presence of radio sync and a decoded
frame number.

density cell population is large (as in the case of Rogers).
To facilitate the comparison with earlier results, Figure 4.12 shows re-identification

results obtained with and without the inclusion of low density cells in the SVM model
generation, with SVM parameter optimization for both providers. Error bars are not
shown for clarity. The figure shows that SVM parameter optimization can effectively
compensate some of the poor results obtained in the previous figure. It can be seen
that the inclusion of low density cells reduce the re-identification accuracy unevenly
for both providers. The variation for Bell is not statistically significant.

4.2.6 F-score Feature Scoring and Weighting

Results in this section are obtained using the feature scoring tool provided with libsvm
by Chen and Lin in [41]. Feature scoring using the F-score algorithm resulted in the
ranking found in Table 4.3. The ranking favoured features akin to the empirical results
of Brik et al. in [2]. In this section, feature weighting was accomplished by multiplying
each vector element by the corresponding feature score (weighting algorithm #1),
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although weight.awk supported other weighting algorithms. The investigation of re-
identification accuracy as a function of the n best features, varying n from 1 to 13,
and excluding other features, has not been conducted and is recommended for future
work.

Table 4.3: Sample feature scoring results using the F-score algorithm. See Section 3.1
for details.

Feature number Score Feature description

8 173.732404 Frequency Error
13 7.935522 I &Q Offset
4 5.775424 RSTP
6 4.974973 RSRP
3 1.733571 RSEVM
1 1.719871 EVM
2 1.361014 EVM Peak
5 0.884275 OFDM symbol transmit power (OSTP)
9 0.859362 SYNC Correlation
7 0.345288 RSRQ
12 0.107173 Time Offset
10 0.089607 CTE
11 0.020336 Symbol Clock Error

Figure 4.13 shows prediction accuracy when the F-score feature selection algorithm
is used, and vector parameters are weighted linearly with the feature score output from
the F-score algorithm, in line with expectations. In Figure 4.13, SVM parameters C
and γ were optimized by grid search. The anomaly can perhaps be explained by
the lack of randomness, suspected to cause the SVM model to optimize for a specific
set of feature vectors which ill-represent the radiometric identity of cells when all
trace extracts are considered at random. Again, it is shown that prediction accuracy
improves under the most stringent signal quality filtering, using radio synchronization
and decoded frame number, and using a large number of feature vectors during the
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Figure 4.13: Prediction accuracy as a function of the number of training vectors,
randomness and signal filtering, with F-score feature scoring and weighting.
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Figure 4.14: Comparing prediction accuracy with and without F-score feature scoring
and weighting.

training phase.
Figure 4.14 compares the best combinations of optimization, signal quality filtering

and randomness with F-score scoring and weighting and without, and shows that re-
identification accuracy converges faster towards high values when using the F-score
algorithm, particularly for a small number of feature vectors n. Re-identification
accuracy is consistently slightly better than in the original case, always in excess of
90% and peaking at 98.5% and 99.0% for Rogers and Bell, respectively. Error bars
are not shown in this figure, for clarity.

4.2.7 mRMR Feature Scoring and Weighting

The minimum-redundancy-maximum-relevance (mRMR) program from [44] was used
against the dataset to determine which feature were the most relevant and the least re-
dundant to use for re-identification. In order to use the mRMR program, however, the
trace results had to be significantly altered: the fields need to be comma-separated,
contrary to libsvm which requires spaces. More importantly was the consideration
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that mRMR does not handle large integer as class labels. Since class labels were
otherwise constructed to be six-digit numerical values including the Group Cell ID
and the Cell ID, class names first had to be normalized from 1 to l by analyze.sh.

Feature scoring using the mRMR algorithm resulted in the ranking found in Ta-
ble 4.4. In this section, feature weighting was accomplished by multiplying each
vector element by the corresponding feature score (weighting algorithm #1), al-
though weight.awk supported other weighting algorithms. The investigation of re-
identification accuracy as a function of the n best features, varying n from 1 to 13,
and excluding other features, has not been conducted and is recommended for future
work.

Table 4.4: Sample feature scoring results using the mRMR algorithm. See Section 3.1
for details.

Feature number Score Feature description

4 1.244 RSTP
5 0.594 OSTP
13 0.571 I & Q Offset
9 0.529 SYNC Correlation
3 0.448 RSEVM
6 0.435 RSRP
1 0.392 EVM
8 0.241 Frequency Error
2 0.183 EVM Peak
7 0.089 RSRQ
12 0.074 Time Offset
11 0.026 Symbol Clock Error
10 0.014 CTE

Figure 4.15 shows prediction accuracy when the mRMR feature selection algo-
rithm is used, and vector parameters are weighted linearly with the feature score
output from the mRMR algorithm, in line with expectations. In Figure 4.15, SVM
parameters C and γ were optimized by grid search. The anomaly can perhaps be
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Figure 4.15: Prediction accuracy as a function of the number of training vectors,
randomness and signal filtering, with mRMR feature scoring and weighting.

explained by the lack of randomness, suspected to cause the SVM model to optimize
for a specific set of feature vectors which ill-represent the radiometric identity of cells
when all trace extracts are considered at random. Again, it is shown that prediction
accuracy improves under the most stringent signal quality filtering, using radio syn-
chronization and decoded frame number, and using a large number of feature vectors
during the training phase.

Figure 4.16 compares the best combinations of optimization, signal quality filtering
and randomness with mRMR scoring and weighting and without, and shows that re-
identification accuracy converges faster towards high values when using the mRMR
algorithm, particularly for a small number of feature vectors n. Re-identification
accuracy is consistently slightly better than in the original case, always in excess of
89% and peaking at 99.4% for both service providers, respectively. Error bars are not
shown in this figure, for clarity. Section 4.2.9 compares the accuracy of F-score and
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Figure 4.16: Comparing prediction accuracy with and without mRMR feature scoring
and weighting.

mRMR using multiple weighting algorithms.

4.2.8 Feature Weighting Algorithms

A total of five weighting algorithms were trialed and compared. Section 3.5 discusses
the weighting algorithms in detail. The weight.awk script was responsible to correctly
apply feature weight, based on the command-line selection of weighting algorithm
(between 1 and 5), and a standardized feature rank and score file produced by the
scoring algorithm (either F-score or mRMR).

Figure 4.17 shows the re-identification accuracy using SVM parameter optimiza-
tion by grid search, the strictest signal quality filtering and randomness, for five
weighting algorithms, using the F-score algorithm for feature scoring. As a reference,
the non-scored and non-weighted curves are also shown, in black. Note that the fifth
weighting algorithm is not using any feature scoring and is a special case closely re-
sembling the features chosen by Brik et al. in [2]. It can be seen that all weighting
algorithms result in some accuracy improvement, with the exception of w (ai) = 2F (ai)
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Figure 4.17: Prediction accuracy as a function of the number of training vectors
and weighting algorithm, with randomness, SVM parameter optimization and signal
filtering, using the F-score scoring algorithm.

with less than 25 feature vectors used during SVM training, for one of the service
provider. Error bars are not shown in this figure, for clarity.

Figure 4.18 shows the re-identification accuracy using SVM parameter optimiza-
tion by grid search, the strictest signal quality filtering and randomness, for five
weighting algorithms, using the mRMR algorithm for feature scoring. As a reference,
the non-scored and non-weighted curves are also shown, in black. Note that the fifth
weighting algorithm is not using any feature scoring and is a special case closely re-
sembling the features chosen by Brik et al. in [2], and is as such the same as in the
previous section. It can be seen that all weighting algorithms result in some accuracy
improvement. Error bars are not shown in this figure, for clarity.

4.2.9 Comparing F-score against mRMR

Both feature scoring algorithms provided marginal improvements in re-identification
success rates, but provided faster convergence to high accuracy under a small number
of training vectors. Figure 4.19 compares both feature scoring algorithms, whilst using
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Figure 4.18: Prediction accuracy as a function of the number of training vectors
and weighting algorithm, with randomness, SVM parameter optimization and signal
filtering, using the mRMR scoring algorithm.

SVM parameter optimization by grid search, the strictest signal quality filtering and
randomness. Only two of five weighting algorithms are represented in this figure
(linear weight by score or by rank). As a reference, the non-scored and non-weighted
curves are also shown, in black, as well as the Brik’s special case with only four
features considered (w5 ). It can be seen that both feature scoring algorithm results
in marginal improvements in re-identification accuracy, particularly when a small
number of feature vectors are considered for the SVM model during the training
phase, and that the differences between scoring algorithms and weighting algorithms
#1 and #2 are not significant. Interestingly, results obtain under feature selection
akin Brik et al. were notably below scored and weighted combinations, but still above
the original case that considers all feature parameters. This highlights an important
conclusion which indicates it is best not to use all 13 features when not using feature
scoring and weighting, as it appears some features negatively impact re-identification.
Error bars are not shown in this figure, for clarity.
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Figure 4.19: Prediction accuracy, F-score vs mRMR, as a function of the number of
training vectors, scoring and weighting algorithms, with randomness, SVM parameter
optimization, signal filtering.

4.2.10 Analysis of the Impact of Adverse SNR on Re-
identification

Although Section 4.2.1 discusses how low signal reception quality negatively impacts
re-identification, comparing the results when filtering for synchronization status and
decoded frame number is enabled or disabled, it is also interesting to investigate if
re-identification is possible for the case where the SVM training model is conducted
with feature vectors extracted under high SNR, whereas prediction is attempted using
feature vectors extracted under low SNR. For this experiment, only feature vectors ex-
tracted under the best signal conditions were used to build a set of n training vectors.
Subsequently, all feature vectors matching one of the possible cell, but having a poor
signal quality (no frame number decoded) were subjected to SVM re-identification.

Figure 4.20 shows the re-identification success rates for feature vectors extracted
without LTE frame number decoded nor synchronization. As a reference, the non-
scored and non-weighted curves are also shown, in black. It shows that results are
generally significantly lower than the general case, and hover between 50% and 60%.
This is an indication that RF channel conditions adversely impact re-identification,
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Figure 4.20: Prediction accuracy in low SNR conditions, as a function of the number of
training vectors, scoring and weighting algorithms, with randomness, SVM parameter
optimization, signal filtering.

in line with expectations. However, the Agilent VSA documentation warned against
considering any measurements captured without synchronization. As such, any prac-
tical application should at the very least attempt to reject feature vectors extracted
without synchronization. A more thorough study of the effects of the RF channel was
not possible with the dataset collected, because there was not a sufficient number of
cells that were observed with high SNR from multiple recording positions to create
an interesting re-identification problem (7 and 8 cells were observed from multiple
recording positions, with the strictest signal quality filtering, however only 3 and 4
cells had a sufficient number of feature vectors for analysis).

4.2.11 Combining Cellular Providers

Combining trace data from two cellular providers is interesting in that it increases
the cell population and should render the re-identification more difficult. However, in
the current implementation, cell IDs used as class labels are computed by combining
the Group Cell ID and the Cell ID from the VSA software into a 6 digit integer.
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Figure 4.21: Cell population as a function of the training bin size, when combining
network operators.

It was noted that a number of cell IDs are used by each provided to identify cells
on their respective networks. As such, collapsing the data from both providers has
the effect of confusing the model for a number of cells: vectors from two different
radio entities are labelled with the same class ID. The phenomenon is quantified
in Table 4.1, where at most 123 cell IDs (no filtering) or at least 2 cell IDs (radio
synchronization and decoded frame number) use conflicting cell IDs. Figure 4.21
shows the cell population of combined providers as a function of the minimum number
of feature vectors retained for the SVM training model, as well as the cell populations
of either provider when considered independently.

This experiment also has little practical application, since the two providers are
using different frequency bands, it will always be possible to discriminate between
them based on the allocated frequencies. It would be possible to eliminate the conflicts
by computing cell IDs differently e.g. inserting a 7th digit and use this 7th digit
to identify the provider. However this approach would have little benefit since it
effectively would not collapse the traces of both providers.

Nonetheless, the experiment showed that re-identification peaked at 98.4% and
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Figure 4.22: Prediction accuracy as a function of the number of training vectors,
scoring and weighting algorithms, with randomness, SVM parameter optimization,
signal filtering, with combined network operators.

97.8% using the best signal quality filtering and kernel parameter optimization, for
mRMR and F-score feature scoring algorithms, respectively. Figure 4.22 shows that
combining the traces for both providers has a negative impact on re-identification
accuracy, which can likely be explained that some radiometric properties assigned to
a single class actually originate from two distinct transmitters sharing the same cell
ID, or class label. Error bars are not shown in this figure, for clarity.

4.3 Analysis and Recommendations

The experimental results show that with some conditioning, near perfect re-
identification accuracy can be achieved for LTE transmitters belonging to either of
the two cellular providers. In order to maximize SVM prediction accuracy, it is recom-
mended that only vectors corresponding to high signal quality be considered during
both the training and testing phases. It is further recommended that the dataset be
first randomized and the optimal SVM parameters C and γ be discovered using grid
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search, both recommended by Hsu in [35]. The use of feature scoring and weight-
ing always resulted in faster convergence with a small number of training vectors
and results in non-negligible improvements in re-identification accuracy. The choice
of the weighting algorithm or the feature scoring algorithm did not however result
in significant variations, indicating that as long as key features are given more im-
portance, improvements are obtained, regardless of the relative importance between
features. Both feature scoring algorithms were found to score features in a compara-
ble order, even though they operated fundamentally differently, in that mRMR also
attempted to reduce redundancy between features; three out of the top five features
were common between the two scoring algorithms. Interestingly, a feature selection
of the four features closest to the Brik et al. experiments in [2] also resulted in im-
provements over the general non-optimized case, indicating that some of the features
are detrimental to re-identification when considered in the SVM training model, par-
ticularly when the SVM parameters are not optimized by grid search. Lastly, the
prediction accuracy was shown to improve when a larger set of feature vectors are
supplied to build the SVM training model (best results consistently obtained with 45
to 50 training vectors); however, when feature scoring and weighting is applied, and
optimal C and γ are discovered, results well above 90% are obtained with as few as
10 training vectors. Larger sets of training vector in those experiments only result in
marginal accuracy gains. It should be noted that in this thesis, the re-identification
of each unknown emitters was conducted using a single feature vector (i.e. a testing
bin size of 1), leading to great results. In practical applications, it may be possible
to gather several feature vectors from an unknown transmitter in order to determine
its identity, which is expected to result in even greater accuracy.



Chapter 5

Conclusions and Future Work

LTE is an emerging communication standard already available in many urban centres
worldwide. Competing 4G cellular technologies have been abandoned by standard
bodies (e.g. UMB) or by the majority of network operators (e.g. WiMAX), open-
ing the door for a first truly global cellular standard. This research demonstrated
that sufficient differences exist between LTE transmitters to enable near-perfect re-
identification, for both service providers, based on radiometric properties of the down-
link signal.

This chapter first reviews the results achieved, in line with the contributions listed
in Chapter 1. Potential applications of these excellent results in solving practical
problems are also proposed. Next, limitations observed during this research are high-
lighted, followed by several recommendations for further research, building upon the
results shown herein.

5.1 Contributions, Results and Applications

This section first reviews the research objectives considered at the onset of this study,
and presents a brief overview of the results achieved. Practical applications that could
use radiometric identifications are then presented.

5.1.1 Main Contributions and Results Overview

This research activity attempted to and succeeded in presenting novel contributions
in the following areas:

• First successful radiometric identification of LTE transmitters. Re-identification

81
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of LTE downlink transmitters was shown to be possible with an accuracy in
excess of 99%, using commercially-available hardware and software, combined
with an established classifier algorithm (SVM).

• First successful use of a weighted classifier algorithm (weighted-SVM) to con-
duct radiometric identification. This thesis showed that feature scoring and
weighting had a beneficial impact on re-identification due to faster conver-
gence towards accurate prediction with fewer training vectors. The F-score
and mRMR scoring algorithms scored features in a comparable fashion, as ex-
pected. Four weighting algorithms (linear by score or rank, exponential by score
or rank) were trialed for both F-score and mRMR scoring, as well as a special
case of feature selection using only four features. All weighting algorithms re-
sulted in similar improvements, whereas the feature selection trial exhibited
lower improvement but still outperformed the general non-optimized case.

• First examination of the impact of variable modulation schemes on radiometric
identification. This thesis demonstrated that radiometric identification was suc-
cessful in spite of the LTE downlink supporting multiple modulation schemes. It
is not certain, however, that all modulation schemes were present in the record-
ings analyzed by the VSA software, because the Error Summary table did not
specifically provide error summary values for each of the modulation observed
in the downlink, against expectations (see Figure 3.4). It is believed that the
various modulation schemes observed on the different downlink channels were
aggregated in a single set of error values and this was shown not impede accurate
re-identification.

5.1.2 Applications

Enhancement to Identity Verification and Authentication

The LTE standard has been designed from the ground up with security and privacy
in mind. As such, there are a number of measures and techniques already in place to
protect the identity of users, and ensure communication and location privacy.

Radiometric identification can be considered as a complement to existing crypto-
graphic techniques and should be fairly easy to implement. Radio receiving equipment
is already capable of performing some analysis of the modulation characteristics of
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nearby emitters, providing network operators the ability to black-list handsets which
fail to comply to communication standards. Based on the results of this research,
it should be possible to validate the identity of a base station using its radiometric
properties, in order to detect man-in-the-middle attacks or spoofing that might have
gone undetected otherwise. Expensive and highly sensitive spectrum analysis equip-
ment such as the one used for this thesis may not be required, as demonstrated by
work by Edman and Yener in [33] showing re-identification success rates of 87% using
inexpensive equipment such as the USRP. It is believe that radiometric identifica-
tion opportunities using band-optimized radio electronics present in modern phones
is conceivable in the near future.

In a conceptual system, network operators could be responsible to maintain a valid
classifier model which describes the equipment they legitimately field. This could be
done by the network operator or crowd-sourced by users running a trusted application
which would submit feature vectors over time. During testing, the UE could query
the provider with a test feature vector, or could run the classifier locally if a valid
model file had been downloaded ahead of time.

User Tracking

The application of this technique could be applied to UE, such that it may be pos-
sible to track LTE users using radiometric properties of their device without having
to decipher private user identification strings. The recognition of their radiometric
identity alone could allow an attacker to track a mobile user in spite of changing user
identifiers provided by the network for privacy protection.

5.2 Limitations and Recommendations

A number of recommendations flow from the observations of the results discussed in
Chapter 4.

• It is recommended that in future research or practical applications, only vec-
tors collected in the presence of radio synchronization and a decoded LTE frame
number be considered for the generation of the training model or during the
testing phase. It is further recommended that feature scoring and weighting be
consistently applied as it results in significant accuracy improvements, particu-
larly with fewer training vectors.
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• In this research, the population of candidate cells eligible for re-identification
shrunk with larger minimal numbers of training vectors. This effect can be over-
come by extracting significantly more feature vectors from the RF recordings.
Although the RF recordings captured during the experiment were sufficiently
long, the time taken to step through and extract feature vectors did not permit
the extraction of additional feature vectors. Experimental results have shown
that training bins in excess of 35 vectors result in marginal improvements.

• All results obtained without first randomizing the set of feature vectors resulted
in important anomalies and significantly lower re-identification accuracy. As
such, it is recommended that all experiments and practical applications apply
randomness to the set of feature vectors to maximize the accuracy of the SVM
training model. This may be difficult to achieve in a practical applications.

• All experiments conducted in this thesis consisted in RF recordings of static
emitters from fixed positions. Practical applications will most certainly involve
a mobile emitter or radiometric identification from a mobile platform, or both.
The effect of emitter or identifier motion should be further studied.

• All results were obtained using recordings made on a single day. It is not
clear that training models created from RF recordings on a given day would
result in effective radiometric identification on a later day, due to component
aging and environmental conditions affecting the elements of the transmitter
RF path. Furthermore, it is possible that some aspects of the environment and
radio channel be mitigated by building a training model which considers vectors
gathered during multiple recordings, separated by a few hours or a few days.

• The overhead of maintaining UE radiometric identities should be considered, in
particular when the study of feature aging has answered the question concerning
the longevity of feature vectors, and the performance of classifiers faced with a
very large population of emitters.

5.3 Future Work

As LTE is nearing global availability with unprecedented fielding rates, it is antic-
ipated that research opportunities will continue to be relevant for years to come.
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Promising subsequent research topics are presented, which build upon the results
achieved and limitations identified by this study.

5.3.1 Effects of the RF Channel on Re-identification

Radiometric identification in the modulation domain is said to be more resilient to
changing RF channel conditions. However, many of the features extracted by the
VSA reflect properties that can be affected by the received signal strength. This
correlation needs to be further studied to determine if re-identification can remain
effective in changing RF channels, particularly in light of the results obtained using
a subset of the 13 features present in the feature vectors, which outperformed the
general non-optimized case.

5.3.2 Radiometric Identification of User Equipment

This research activity focused on the radiometric identification of LTE base stations.
Successful radiometric identification of UEs could broaden the practical applications
of this research, as discussed above. In LTE, UE transmissions are multiplexed using
SC-FDMA, which has not yet been studied for the purpose of radiometric identifica-
tion. The accuracy of an SVM classifier against a very large set of emitters is also
an important consideration, as is the suitability of SVM classifiers against an ever-
changing population of candidates (e.g. as new UEs are sold to consumers, a new
classifier model would have to be generated and distributed).

5.3.3 Other Transmitter Error Information

The VSA software provides a number of traces which could lead to features enhancing
radiometric identification of emitters. The Error Summary table was exclusively
used in this research activity. Other traces may be worth investigating and may
lead to equal or better performance. Notably, the Error Vector Spectrum trace,
which provides error information per subcarrier, the Error Vector Time trace, which
provides error per symbol time, the CTE and MIMO CTE traces, and the Frequency
Error Per Slot trace are all likely capable of providing enriched feature vectors useful
in improving emitter identification.
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5.3.4 Emitters in Motion

Particularly useful for the study of UE radiometric identification is the notion of signa-
ture quality for emitters in motion. The research activity proposed in this document
focused on static LTE eNB and all recordings were conducted from a fixed position.
Similar experiments could be conducted against LTE eNBs from a mobile platform,
or conversely, RF recordings of mobile emitters such as LTE UEs could be captured.
In either case, the impact on re-identification accuracy should be considered when
the training set, the testing set, or both sets, are computed from RF recordings with
mobility.

5.3.5 Component Aging and Temperature

Due to the logistics involved in recordings live signals from the City of Ottawa, using
borrowed DRDC equipment, it was not possible to return and gather additional live
recordings to study the stability of emitter parameters over time. Of importance is
the determination whether electronic components in the RF path of the emitters are
subject to wear and tear due to usage and environmental factors. Once the feature
aging is quantified, studying its effect on re-identification accuracy is important for
most of the practical applications suggested. The recommended approach consists in
training the classifier using feature vectors extracted from RF recordings gathered at
time t1 and query the classifier model with unknown emitter feature vectors extracted
from RF recordings conducted at time t2, where t2 >> t1. Similarly, Polak et al. dis-
cuss in [1] that power amplifiers often do not respond linearly with temperature. This
may cause radiometric identification to under-perform if the feature vectors used in
the training phase were extracted at a temperature significantly different from the
temperature at which test feature vectors are extracted.

5.3.6 Alternate Classifier Algorithms

SVMs have been shown by Brik et al. to be particularly effective at classifying emit-
ters based on parameters obtained from the analysis in the modulation domain [2].
Other classifiers have been examined, namely k-nearest neighbours (kNN) in [2] and
probabilistic neural network (PNN) [27,50], however the issue of scalability (memory
requirement per profile) prohibited its use in real time systems [4].

Of particular interest is the random forests algorithm, presented by Breiman in
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[51]. Random forests change how the classification or regression trees are constructed.
In standard trees, each node is split using the best split among all variables. In
a random forests, each node is split using the best among a sub-set of predictors
randomly chosen at that node. This somewhat counter-intuitive strategy turns out to
perform very well compared to many other classifiers, including discriminant analysis,
SVMs and neural networks, and is robust against overfitting [52].

The WEKA machine learning environment proposed by Hall et al. in [49] seems
well suited for this study as it provides a single environment in which several machine
learning algorithms can be applied against the same dataset, including SVM and
random forests.

5.3.7 Principal Component Analysis (PCA)

As a substitute for feature scoring, it may be interesting to investigate the perfor-
mance of PCA coefficients through the classifier algorithm. PCA, also known as
Karhunen-Loève transformation (KLT), is a mathematical technique which converts
a set of observations of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. One distinction between a scor-
ing algorithm such as mRMR and PCA is that multiple features can be combined
into a single principal component. Both techniques should return comparable results
as they both attempt to identify highly-correlated features. It is conceivable that
principal components may not be equally relevant to accurate re-identification, and
a second stage of component scoring and weighting, instead of feature scoring and
weighting may yield the best results.

5.3.8 Feature Exclusion

The feature scoring algorithms presented herein ranked the 13 features in a compa-
rable fashion. It may be possible to exclude a subset of the low-ranking features
and still achieve acceptable re-identification accuracy whilst reducing the classifica-
tion problem’s complexity. Efforts in this direction may help develop practical and
cost-effective applications.
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