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Abstract

This thesis proposes a new graph-based indexing technique to improve the search

latency for textual documents by using a Graph-Based Index (GBI) structure. GBI

uses a directed graph built using a hash table to effectively capture the simulta-

neous occurrence of multiple keywords in a document. The objective is to use the

relationship between the search keywords captured in the graph structure and a fast

hash table lookup to effectively retrieve all the results of a query at once. A proof-

of-concept prototype has been built for both GBI and Inverted Index. A thorough

performance analysis is carried out for comparing GBI with Inverted Index using a

synthetic workload. GBI is also compared with an enterprise-level search engine called

Elasticsearch. The results show that the graph-based indexing technique can reduce

the search latency for executing queries notably in comparison to Inverted Index and

Elasticsearch.
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Chapter 1

Introduction

There is a continuous growth in the number of users for social networking websites

such as Facebook, YouTube, Quora, and Twitter. It has been estimated that on

average, 500 million tweets are being generated per day by the users on Twitter

itself [1]. Different types of content such as texts, images, and audio are generated

by billions of people each day leading to a massive data management requirement.

Thus, new unique search and retrieval strategies depending on the type of data must

be developed to serve the increasing user workload on the internet. Many techniques

have been proposed to optimize data retrieval speed. Some of the techniques are data

indexing, data sharding, Increasing CPU/Memory capabilities, and optimizing query

construction [2] [3].

Data indexing techniques are employed to reduce the query processing time by

limiting the number of times disk access is performed. The index is usually made up

of multiple data structures depending on the type of data indexed or type of query

being executed. Data sharding is a technique where a big database is broken into
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smaller ones called shards. Related shards are kept together in a separate system

distinct from unrelated shards. This kind of setup allows redirecting the query to

the relevant database subsystem which results in easy data management and faster

data retrieval. High-performance CPU and high-speed memory modules can help in

faster query execution. However, due to the hardware upgrade limitation and pricing

factor, an upgrade may not justify the benefits of faster content delivery. Inefficient

framing of a query (i.e. improper usage of joins and condition clauses) can cause data

search performance degradation. Optimizing the construction of queries can mitigate

the search latency problem to some extent.

In information retrieval, search queries, in general, can be classified as simple,

Boolean, phrasal, and wild card queries [4]. A simple query contains only a single

search keyword and results in a set of documents containing that search keyword. For

example, searching for “Ottawa” will return all the documents that contain the word

“Ottawa”. These queries are becoming uncommon as they may return large sets of

uninteresting documents which are difficult to narrow down as per user need. Phrase

queries return documents in which the search keywords appear in a specific order.

Phrasal queries are most useful for finding popular documents with famous phrases.

For example, searching for “You too, Brutus” in Shakespeare collections. Wildcard

queries return documents that contain the search keyword matching a wildcard pat-

tern. For example, searching for “Ottawa is * ” will fetch all the documents that

contain a phrase starting with “Ottawa is”. In this thesis, the primary focus is on

the Boolean queries. Apart from Boolean queries, two other types of queries called

neighbours of a keyword and exclusive keyword queries are also discussed. These
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queries are discussed next.

A Boolean query is constructed using one of the Boolean operators (AND, OR,

NOT) between search keywords. For example, searching for “Anthony AND Brutus”

will return only the documents that contains both Anthony and Brutus. Boolean

queries find their application in many areas such as Google searches, social media,

and database systems. In a Google search, Boolean queries are used to narrow down

the search results to relevant links [5]. Boolean queries help the user to effectively

monitor social media to get the latest updates about trending social events [6]. In

databases, Boolean queries simplify writing a complex condition in a query clause, but

improper construction of Boolean queries can generate different results than expected

[7]. With the importance of the Boolean queries being said, it is essential to make

the execution of Boolean queries fast and reliable.

Neighbours of a keyword queries are a type of queries where the result is the list of

keywords that appear together with the search keyword. This type of query is useful

to quickly find all the keywords that are associated with a given search keyword.

For example, consider indexing product catalogs, by searching for a single product

type like a wristwatch, all the brand names used in the catalogs that are associated

with the keyword wristwatch can be retrieved. Another example is its application in

Enterprise Resource Planning (ERP) tools. Consider a company manufacturing tens

and thousands of products. Specific spare parts such as a half-inch bolt could be used

in many products. Thus, searching for a half-inch bolt will result in all the products

that use the half-inch bolt.
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The exclusive keyword queries are a type of queries where the results are the doc-

uments that contain only the search keyword, no other keyword will be co-existing

with that keyword in the resultant documents. This type of query is useful to quickly

check if there is any exclusive content available for a search keyword. For example,

consider indexing movies and TV show titles hosted by different online video stream-

ing services such as Netflix, Amazon, and Hulu. An exclusive keyword query using

the keyword “Netflix” retrieves exclusive content that is only available on the Netflix

platform. This query can also be used in ERP tools for finding whether a product

uses any exclusive items.

1.1 Motivation

Data indexing is one of the many fields in which active research has been done to build

faster data access systems. Many data structures for text document indexing have

been proposed. One of the most common indexing data structures for text documents

is Inverted Index [8].

Inverted Index consists of a list of all the unique words that appear in any doc-

ument, and for each word, a list of the documents in which it appears. Thus, by

searching for a word in Inverted Index, we will get the list of documents on which

they appear. Search engines like Google use Inverted Index to index web pages to

fasten the web search time [9]. Lucene-based NoSQL databases like Elasticsearch use

Inverted Index as the primary index structure for full-text searching [10]. One other
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application of Inverted Index is in the field of the microblog. A microblog is like a

normal blog except for the fact that the content size is limited. For example, the

famous microblog website Twitter has a restriction of 280 characters.

When a large number of textual documents are indexed, the execution of a Boolean

query becomes computationally expensive in Inverted Index. All the necessary key-

words have to be accessed and the ids of the documents in which they appear have to

be retrieved. Then, depending on the type of query (AND, OR, or NOT), different

operations such as intersection, union, or difference have to be carried out. It becomes

increasingly complex when there are more search keywords involved in a query and

millions of documents to search for. In applications like web search engines, where

there is no need for all the resultant document ids at once, techniques like page rank-

ing have been used [11]. The documents or web pages to be indexed have been given

a ranking based on various factors like popularity or number of hits and only the top

K results are retrieved where K represents the number of resultant document ids.

The same ranking concept has been used with micro-blog indexing [12] as well. How-

ever, for applications requiring all the results of a Boolean query at once, scoring the

documents becomes irrelevant. All the documents are considered equally important.

Thus, adopting ranking optimization and returning only the top K results will not

work. The resultant set containing all the matching documents should be retrieved

at once.

Executing the neighbours of a keyword query also needs a lot of computation in

Inverted Index. The result of this query is the set of keywords that have occurred
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together with the search keyword. To execute this query, we need to access all the

keywords and their list of documents to check whether there is any common document

or not. This will be cumbersome if the document list for the search keywords is very

large and has very little common documents with other keywords indexed.

Executing the exclusive keyword query with Inverted Index involves removing

common documents between search keywords and other keywords indexed. The re-

maining documents found in the search keyword’s document list is the resultant set.

Thus, this type of query also depends on the search keyword’s document list size and

how often the search keyword appears with the other keywords indexed.

As mentioned earlier, Inverted Index is inefficient in dealing with different types

of queries. In fact, depending on the queries, several comparisons have to be made to

get the result. This thesis researches techniques for alleviating the problems described

in the previous paragraphs. By devising an effective technique to index the data, a

better search time could be achieved especially for search operations performed by

web search engines such as Google Web Search or micro-blog search engines such as

Twitter Search.

1.2 Research Objectives

The objectives of this thesis are summarized as follows:

1. The foremost objective of this thesis is to create a new indexing technique to
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provide faster search capabilities for a larger number of textual documents.

2. Create a new algorithm for executing Boolean queries. The proposed approach

should handle all the operators of Boolean queries: AND, NOT, and OR. The

new algorithm should also get all the matching document ids of a Boolean query

at once.

3. Devise an efficient algorithm for executing neighbours of a keyword queries.

The proposed approach should get all the neighbours associated with the search

keyword.

4. Create an algorithm for executing exclusive keyword queries. The proposed

approach should quickly check for any exclusive documents that exist for the

given keyword and retrieve it.

5. Compare the performance of the proposed graph-based indexing technique with

Inverted Index and an enterprise-level search engine.

1.3 Overview of the Proposed Approach

The proposed approach uses a directed graph data structure. The graph data struc-

ture is used to establish a link between the keywords that appear together in a doc-

ument. This results in a keyword-keyword-document relationship as opposed to the

keyword-document relationship found in Inverted Index. This triangular relationship
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of keyword-keyword-document is used for executing Boolean queries, neighbours of a

keyword, and exclusive keyword queries effectively.

1.4 Contributions

Based on the objectives listed in the previous section, the main contributions of this

thesis include:

1. A novel graph-based text document indexing technique using Graph-Based In-

dex (GBI) structure. GBI provides an efficient way to store data and relation-

ships between keywords that are extracted from a set of documents.

2. New algorithms for executing the various type of queries which demonstrate the

advantage of establishing a relationship between keywords and their impact on

query processing for getting all the matching results at once.

3. A proof of concept prototype for demonstrating the effectiveness of the proposed

graph-based indexing technique.

4. A detailed set of insights into system behaviour and performance resulting from

extensive measurements made on the prototype subjected to a synthetic work-

load.

• Performance analysis to validate the proposed approach. The results

demonstrate that the proposed approach can improve the performance
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of the Boolean queries, neighbours of a keyword queries, and exclusive

keyword queries.

• A performance comparison between GBI and Elasticsearch, a popular

enterprise-level search engine that uses Inverted Index.

1.5 Publication

The publication resulted from this research (so far) is presented.

• A. K. Mohideen, S. Majumdar, M. St-Hilaire and A. El-Haraki, ”A Graph-Based

Indexing Technique to Enhance the Performance of Boolean AND Queries in Big

Data Systems,” 2020 20th IEEE/ACM International Symposium on Cluster,

Cloud and Internet Computing (CCGRID), Melbourne, Australia, 2020, pp.

677-680, doi: 10.1109/CCGrid49817.2020.00-24. [13]

1.6 Thesis Outline

The rest of the thesis is structured into four chapters. Chapter 2 – Background and

Related Work, outlines the related work and different approaches to solve the prob-

lem of textual data indexing using Inverted Index. Then, various optimizations for

executing Boolean queries more efficiently are discussed. Finally, an overview of rel-

evant concepts in graph theory and hash table data structure is provided with their
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applications in textual data indexing. Chapter 3 – Graph-Based Indexing Technique,

outlines the proposed Graph-Based Index structure and describes the algorithms used

to execute queries when textual documents are indexed using GBI. Chapter 4 – Ex-

periments and Performance Analysis describes the synthetic workload used for per-

formance analysis and discusses the performance results obtained from comparing

GBI with Inverted Index prototype and Elasticsearch. Chapter 5 – Conclusions and

Future Work presents the conclusions derived from the experiments conducted and

directions for future work.
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Chapter 2

Background and Related Work

This chapter explores important concepts such as Inverted Index, hash table, keyword

extraction techniques, and graph theory which have shaped the proposed solution.

It also covers a representative set of related research works on data indexing using

graphs and Inverted Index.

2.1 Inverted Index

2.1.1 General Concepts

The authors of [8] explained the basic concepts and terminology of Inverted Index in

the context of information retrieval. Inverted Index is a mapping of unique meaningful

words extracted from the documents set to be indexed to their corresponding postings

list. The extracted words are also referred to as terms or keywords. The process of

extracting meaningful words from a document is explained in Section 2.3. Inverted
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Index is also referred to as an inverted file. A document can be defined as a source of

textual data from which meaningful unique keywords can be extracted. A document

is sometimes called the corpus (a body of text). Examples of such documents include

tweets and web pages. Each document is tagged with a document id (a serial number)

so that it can be uniquely identified. These document ids identify a set of documents

that contains the keyword under consideration. A postings list for a keyword is defined

as a collection of document ids. The postings list of a keyword can also contain other

measurements such as frequency and position of the keyword in all the documents it

appears in. The collection of all postings lists is called as postings.

Consider the keyword Anthony appearing in documents D1, D2 and D5, the

keyword Caesar appearing in documents D1, D2, D3 and D4 and the keyword Brutus

appearing in documents D1 and D4. Inverted Index structure for this example is

shown in Figure 2.1.

Anthony

Brutus

Caesar D4D3D2D1

D1 D5D2

D4D1

Keywords indexed Postings lists

Figure 2.1: Example of Inverted Index.

The authors of [4] talked about three different implementations of Inverted Index

based on what supporting information is stored in the postings list of the keyword
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indexed. The first implementation contains only the keywords with document ids.

The second one is keywords with document ids and their occurrence frequency in the

documents they appear. Finally, the third implementation contains keywords with

document ids and their position in the documents they appear in. For executing

various queries discussed in Chapter 3, storing information about the document ids

of the keywords indexed is alone sufficient. Thus, in all the experiments presented in

this thesis, the first implementation of Inverted Index is used.

2.1.2 Representative Set of Works on Inverted Index

The representative set of works listed next covers the optimizations performed on

Inverted Index and notable applications of Inverted Index.

2.1.2.1 Optimizations Performed on Inverted Index

Some research has been done in the area of increasing the search efficiency of Inverted

Index. The concept of using a Bloom filter with Inverted Index was proposed in [14].

A Bloom filter is a memory-efficient data structure that can tell us with certainty

that the element we are trying to find is not present, if it is really not present in

the set. If the element we are trying to find is present in the set, then the Bloom

filter will tell us that it might be present without any certainty. This means that

a Bloom filter will never return a false negative response in well-defined operational

circumstances. The advantage of avoiding false negative cases using a Bloom filter
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is combined with Inverted Index to reduce the search time when the keyword that

is being searched does not exist in Inverted Index in the first place. This research

paper partially inspired the work presented in this thesis to build an index structure

that inherently handles the case where keywords in the Boolean queries do not occur

together in any document at all. The authors of [15] proposed a modified Inverted

Index structure called Generalized Inverted Index (Ginix). It is similar to a regular

Inverted Index except for the postings list of the keywords indexed. In Ginix, the con-

secutive document ids of a postings list are grouped to form concrete intervals to save

memory space. Thus, the postings list of keyword Caesar appearing in documents

D1, D2, D3 and D4 is stored as [D1, D4 ]. The union and intersection operations are

performed on the intervals directly without expanding. Though this method shows

a better memory-efficient search performance for the use case of keywords appearing

in consecutive document ids, the performance will suffer if the keywords are sparsely

distributed in the documents to be indexed.

For solving any Boolean queries, the postings lists of the keywords found in In-

verted Index need to be traversed to compare document ids. The authors of [16]

used the concept of skip list to speed up the postings list traversal. In a traditional

traversal of the postings list, each document id is visited to compare against other

postings lists. In the skip list method, a certain number of elements in the postings

list are skipped from visiting. To achieve this, skip pointers are placed on certain el-

ements of the postings list. This way, when the list is iterated, the elements selected

as skip pointers are bypassed if they are unessential for computation, thus avoiding

the traversal of the entire postings list. The position of skip pointers in the postings
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list plays a vital role in the search process. Too many pointers result in more skip

comparison and too few pointers result in fewer opportunities to skip. The general

heuristic is to use
√
L equally placed skip pointers for a postings list of length L. The

result shows that the usage of the skip list is irrelevant for search performance as the

proposed method targets to reduce the total number of postings list used.

The authors of [17] proposed an optimized scoring mechanism for extended

Boolean retrieval to get more relevant documents. In an extended Boolean retrieval

queries, in addition to having normal Boolean operators (AND, OR, NOT), it also

has a proximity operator. A proximity operator tells how close two keywords should

appear together in the document to be eligible for the resultant set. The closeness is

defined in terms of how many words, sentences, or paragraphs should appear between

two keywords. The authors of [18] pruned the search keywords in a query instead of

search results to lower the query execution time. The existence of common keywords

in the queries has the least impact on the result. Thus, by pruning those search key-

words before the execution of the ranked queries, the authors claim that they were

able to attain reasonable precision in the results. The authors of [19] proposed a

controlled ranking and pruning strategy where the quality of the result of the queries

depends on the time and the system resource that has been allocated to the search

queries. The authors used early search termination heuristics to get results with a

reasonable quality during heavy system load and strategies for getting more refined

results under less system load. The scoring or ranking mechanism will work when

obtaining the most relevant document is enough. In applications, wherein all the doc-

uments are considered equally important, the scoring becomes irrelevant. The work
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in this thesis addresses this issue of retrieving all the documents effectively when all

of them are considered equally important.

The authors of [20] used a bitmap-based technique to optimize the Boolean AND

queries execution. A bitmap is used to represent keyword co-occurrence. A bitmap is

an array containing a sequence of 1’s and 0’s. A bitmap of size X is attached to each

document id in the postings list of keyword Y to store the co-occurrences of Y with

X other frequently co-occurring keywords. Thus, each bit in a bitmap represents one

of X keywords that co-occur with keyword Y. The advantage of this method is that

Y ’s postings list alone will be enough to handle any Boolean AND queries involving

Y and any of the X keywords. The result will be document ids for which all the

search keyword’s bit is set to one in each of the document id’s bitmap array found

in Y ’s postings list. The disadvantage of this method is that it can perform Boolean

AND execution only for the already selected list of keywords from the index. Also,

this research paper does not discuss the usage of a bitmap in solving Boolean OR and

NOT queries. The work proposed in this thesis addresses the shortcomings of this

research paper by enabling all the Boolean operations over all the indexed keyword

combinations.

2.1.2.2 Applications of Inverted Index

One of the popular applications of Inverted Index is its usage in Apache Lucene.

Apache Lucene is an open-source search engine library written in Java supported

by the Apache Software Foundation. Apache Solr and Elasticsearch are some of the
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popular enterprise search engine projects built out of Lucene [21] [22]. A review of

Lucene’s capabilities is conducted by the authors of [23]. They explained the Lucene

architecture offering full-text indexing and searching capabilities. The researchers

provided a comparative analysis of Lucene with other search tools such as Hoot and

Suffix tree. They concluded that Lucene is a better option for quick indexing and

searching for textual documents. The performance evaluation of Lucene concerning

massive indexing and searching for short text messages is conducted by the authors

in [24]. The authors compared Lucene with Oracle Text and concluded that Lucene

is better than Oracle for short textual documents. The authors also made some

key remarks on Lucene: its memory, not the CPU, plays a vital role in searching

but in terms of indexing, both powerful CPU and larger memory are needed. The

authors of [17] [22] report that Lucene uses skip pointers to traverse the postings list

for conjunctive operations (Boolean AND operations) with guaranteed logarithmic

access times to any postings.

Inverted Index is used as a key data structure for indexing in the field of micro-

blogs. Several research works used Inverted Index to address the indexing of micro-

blog have been proposed. One such work [25] studies the evolution of tweets using a

Multi-Layer Inverted Index structure (MIL) to monitor the evolution of social events.

Each entry in every layer of the MIL contains a set of keywords pointing to a set of

events that contains those keywords. Each layer in the MIL is organized in such a way

that it contains as many keywords related to an event as possible. Thus, the topmost

layer of the MIL contains more keywords that represent an event. This multi-layered

approach provides better abstraction in terms of search. Therefore, queries involving
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several keywords related to an event can use the upper layer of the MIL to optimize

search time.

The authors of the Tweet Index (TI) [26] proposed an index structure for the real-

time search of tweets based on Inverted Index. The idea is to index only important

tweets immediately and defer the indexing process for less important ones. This

strategy helps in saving indexing costs providing relevant search results. To achieve

this strategy, TI ranks the incoming tweets based on the popularity of the topic

and the tweeting person. The high-ranked tweets are indexed immediately while the

low-ranked tweets are written in a log file and indexed in bulk later.

The authors of the Log-Structured Inverted Index (LSII) [27] propose a log-

structured Inverted Index which is a sequence of Inverted indices with an exponen-

tially increasing size. The new incoming micro-blogs are first indexed in Inverted In-

dex of smaller size and are later merged to larger-sized Inverted indices as time passes.

Thus, most recent micro-blogs can be obtained from the smaller-sized index promptly.

This idea of using multiple Inverted indices of increasing size originally came from

the log-structured merge tree (LSM-tree) [28]. LSM-tree is one of the classic indexing

techniques for files on a disk that faces a high insertion rate over a long period. The

LSM-tree structure is used to reduce the disk arm movement as the disk had a low

rotational speed a couple of decades back. The basic idea of LSM-tree is to differ and

batch the changes to the index. The batched changes are migrated efficiently much

like the working of merge sort. LSM-tree uses two or more tree data structures in

increasing size instead of Inverted Index. Log-Structured Adaptive Merge Strategy
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index structure (LS-AMS) [29] is Inverted Index based indexing scheme that uses the

LSM-tree concept. The authors of LS-AMS claims that they provide better indexing

and query execution time than LSII by adopting an efficient merge strategy. LSII

uses a direct merge strategy meaning that all the smaller-sized indices are directly

merged with its next larger-sized indices. In LS-AMS, the merge strategy is deter-

mined adaptively between direct and batch merging. For merging smaller indices,

batch merging is adopted where the merging task is batched and done altogether.

When merging fairly larger Inverted indices, a direct merging approach is used.

Though Inverted Index is mainly applied to index textual data in general, it is

not uncommon to find indexing on other data types such as audio and video. The

authors of [30] did a content-based semantic search on large video data by using a

text-based Inverted Index. In this case, Inverted Index is used to store important and

consistent features of a video. This helped them to search and select a video among

100 million videos rapidly. Audio streaming services such as podcasts are getting

increasingly famous. The authors of [31] proposed an index structure called RTSI

for audio stream data. RTSI is a collection of three Inverted indices. These three

Inverted indices are used to store the popularity, the freshness, and the relevance

score of an audio stream indexed, respectively. It helped the authors to solve the top

K query results in a faster manner.

From the literature review related to optimization and applications of Inverted

Index, it can be inferred that Inverted Index has a wide range of applications from

powering Google web search engine to enterprise text search to short text indexing.
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However, Inverted Index does not consider relationships between keywords. There-

fore, we believe that by using a different form of indexing where a relationship is

established between keywords extracted from different documents, we could deliver

better performance in applications requiring all results at once.

2.2 Hash Table

In this section, we review the notion of hash table since it is an important data struc-

ture used for indexing and more precisely in Inverted Index. In the work described

in Chapter 3, we use a hash table to construct our proposed index structure. The

hash table is a data structure that is stored in memory. Both the CPU and memory

overheads associated with a hash table are discussed in the following subsections.

2.2.1 General Concepts

A hash table is an associative array type data structure that maps unique keys to

values for highly efficient lookup [32]. A hash table is a perfect data structure to

have a string data type as an array index. A hash table converts a string key into

an integer key using a hash function. The resulting hash can then be used as an

index for the array to store the desired value. In a textual indexing use case, the key

will be the keywords extracted from the documents and the values are its postings

lists. A good hash function should convert the string to integer rapidly with as little
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collision as possible. A collision is said to have occurred when two different keywords

get converted to the same integer key. Collision resolution leads to an overhead

associated with hash tables and is discussed in Section 2.2.3. Hash tables are better

than normal arrays and linked lists as a lookup in these data structures takes linear

time. In a sorted array, a lookup using binary search is fast, but insertions become

difficult. In general, for most use cases, a hash table provides a better algorithmic

complexity for lookup, insert and delete operations than a primitive data structure.

hash tables are used to build dictionaries and sets in programming languages like

PHP [33]. A sample hash table implementation of Inverted Index example presented

in Figure 2.1 is given in Figure 2.2.

Figure 2.2: Basic hash table representation.

2.2.2 Basic Hash Table Construction & Search Performance

A simple implementation of a hash table is described by the author in [34]. An array

of linked lists and a hash code function are used by the author to build the hash

table. To insert a string key-value pair, the hash code of the string key is computed

which returns the integer value. This integer value is mapped to an index in an array.

The mapping is done by the formula (hash code % size) where size is the number of
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entries to be inserted into the hash table. At the specified array index, a linked list

data structure is maintained where the desired string key and its value are stored.

A linked list data structure is used to avoid collisions. Since two string keys can

map to the same numerical array index, a linked list is used to store all the keys and

values that belong to the same array index. To retrieve the string key-value pair by

the array index, the hash code of string key is computed and then this hash code is

mapped to an array index. Then, the linked list in that array index is iterated to

find the string key-value pairs. If the hash table is implemented with the linked list

as described above and the number of collisions is very high, the worst-case lookup

time is O(N), where N is the number of string keys. Alternatively, if the hash table

is implemented with a balanced binary search tree instead of a linked list, the lookup

time will be O(log N) irrespective of the collision rate. However, in general, a good

implementation of the hash table keeps collisions to a minimum, in which case the

lookup time is O(1). Thus, the implementation of a hash table effectively lies in

the good design of the hash function. The authors of [35] reported two popular hash

functions: SDBM and DJB2. The authors concluded that SDBM provides a good key

distribution reducing the collision rate but takes a lot of computation time. DJB2

provides a perfect balance between collision reduction and execution speed. As a

result, DJB2 is one of the preferred hash functions for strings. A hash function is

highly dependant on the type of string keys being used so the type of hash function to

be used should be decided based on the dataset. PHP language uses DJB2 hashing

function [36] [37] for its string keys. In our case, since we are dealing with text

documents and keys are keywords and used PHP to conduct the experiments, the
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DJB2 hashing function is used to build the hash table.

2.2.3 Collision Resolution Strategies

Collision resolution is an important part of the hash table implementation. Collision

resolution techniques affect the hash table performance. A collision is said to have

occurred when two or more keywords map to the same index in the lookup table.

Two types of resolution techniques available are chaining and open addressing tech-

nique. In chaining, a separate linked list or binary tree is maintained to store all the

keywords-value pairs that map to the same location. Thus, a separate data struc-

ture needs to be maintained for every entry of the hash table. This is the technique

used in the basic hash table construction explained in Section 2.2.2. In the chaining

technique, there is an overhead of maintaining an additional data structure. In open

addressing, all keywords are stored in the hash table itself. When a new keyword has

to be inserted, the potential positions for inserting are examined, starting with the

initial hashed-to position and proceeding in some probe sequence, until an unoccupied

position is found in the hash table. When searching for an entry, the positions are

scanned in the same sequence, until the target keyword is found. In this method, no

additional data structures are used. In open addressing, the following types of probes

are found.

1. Linear probing: The free slot in the hash table is found by linearly searching.

Typically, for every probing, the next slot to the current slot is checked.
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2. Quadratic probing: The free slot in the hash table is found by adding a quadratic

polynomial unit for every probing. Typically, for every ith probing, i2 slot to

the current slot is checked.

3. Double hashing: The free slot in the hash table is found by using a second hash

function.

The open addressing scheme consumes more time during insertion and search than

a chaining scheme depending on the probe used. PHP uses a chaining method with

a linked list to handle collisions in its hash table implementation to support faster

search operation [37]. Hence, the hash table used to demonstrate the proposed method

uses a chaining strategy. This certainly comes with the cost of increased memory

consumption to store additional linked list data structure with the hash table.

2.2.4 Hash Table Load Factor

One of the important statistics for measuring a hash table performance is the load

factor. A load factor is defined as a ratio between the number of key-value entries and

the number of buckets in the hash table [38]. The load factor gives the average number

of entries found in a bucket. The increase in load factor denotes that there are more

entries found per bucket which in turn signifies that there may be a lot of collisions

happening when search operations are performed. A low load factor ensures a faster

search operation (as there are fewer collisions) at the expense of wasting memory

(several buckets will be left unoccupied). Thus, care should be taken to maintain
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the load factor below a given limit to get a constant search time without consuming

too much memory. When the hash table hits the load factor limit, the hash table is

resized to ensure that it stays within the fixed load factor limit. PHP’s hash table

uses a load factor limit of 1 to maintain a good trade-off between time and memory

costs [33]. Thus, when the total number of entries is equal to the number of buckets,

a resizing operation takes place.

2.2.5 Hash Table Re-Sizing

Hash table size is usually proportional to the number of entries to be inserted. If the

number of entries is not known in advance, the table must be resized when the lists

become too long to be accommodated. Once the hash table reaches its full capacity

or when it exceeds its load factor, it undergoes a process of resizing. There is an

overhead associated with resizing as this process includes creating a new larger table,

and each record in the older table getting mapped to a newer table. Since resizing

is an expensive operation, the size of a hash table is usually increased by a constant

factor for each resizing, i.e. by doubling its size or increasing size in the power of

two [33]. This constant factor of resizing avoids resizing often and gives an amortized

constant time for insertion. Thus, insertion and search performance of the hash table

won’t suffer much during the resizing operations [39].
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2.2.6 Application of Hash Table in Data Indexing

The authors of [40] used the hash table structure to build Inverted Index and gain

a significant search performance by exploiting its fast lookup characteristics. Early-

bird [41], the core search engine for Twitter, uses Inverted Index to serve real-time

search requests. Earlybird uses Inverted Index formulated using hash tables with

open addressing collision resolution policy. Two types of Inverted indices are used

in Earlybird. One for active indexing of tweets and the other for optimized query

execution. LiveIndex [42] is another micro-blog indexing system that uses distributed

time range partitions with each partition containing Inverted Index as the core data

structure to address temporal queries with a specific time range. LiveIndex also uses

Inverted Index formulated as a hash table for faster access. LiveIndex takes advantage

of a distributed computing paradigm to redirect the query to a particular Inverted

Index located in a particular node to execute the query. This setup helps in handling

concurrent query executions in a timely fashion providing real-time search service.

The authors of the Dynamic Ordered Multi-field Index (DOMI) [43] use a Radix tree

as an index structure for the key-value data. The authors used a hash table to opti-

mize search performance. The hash table stores the address of each node of the Radix

tree. This allows the search process to directly visit the node and avoid traversing

the tree from the beginning. The authors claim that this setup performs better than

a B+ tree Index structure for key-value data. The authors in [44] proposed an index-

ing scheme called hashed multiple lists (HMLists) for processing Continuous queries

for Geo-sensor data. This paper focuses on indexing a wide range of data intervals.
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A continuous query is defined as a query in which the system will be continuously

polling the incoming data to answer a particular query. The HMLists is a hash table

implemented as a Binary tree structure. Since the incoming data is continuously

monitored, faster insertion and access are required to meet the real-time constraints.

Since HMLists are a hash table, it provides a constant lookup time providing quick

access to a wider range of interval values returning a faster response to the query.

The search performance benefits reported by the research papers discussed above

inspired the work presented in this thesis to adopt a hash table as the core data

structure to build the proposed index structure.

2.3 Selecting Keywords from Documents for In-

dexing

In general, not all the words in a document are indexed. The document to be indexed

undergoes various keyword filtering and extraction process to get the potential key-

words for indexing. This sub-section briefly describes the document pre-processing

and keyword extraction procedures. An overview of the different steps involved in

the keyword selection process, as explained in [4] [45] [46], is shown in Figure 2.3. It

should be noted that not all the steps listed in Figure 2.3 are mandatory. For some

use cases, the pre-processing step alone might be enough. In other cases, keyword

assignment or keyword extraction steps are needed. In short, depending on the use
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case, the output of each step can itself be considered as the final list of keywords for

indexing. The next subsections describe each step of the keyword selection process.

Pre-Processing

Lexing
Stemming

Stop word Removal

Documents

Keyword Assignment

Applying predefined taxonomy
controlled vocabulary of terms

Tokens

Extraction based on a
term feature

 TF-IDF
First and Last N terms

Term Count
Document Frequency

Refined	tokens

Automatic Keyword
Extraction Methods

Supervised Approach
Unsupervised Approach
Graph-based Approach

Candidate
keywords

Final list of
keywords

Figure 2.3: Selecting keywords for indexing.

2.3.1 Documents Pre-Processing

The pre-processing involves one or all of the three steps: lexing, stemming, and stop

word removal [4]. Lexing is the process of converting a list of characters to a list

of tokens by parsing the document. Each such token is a single alphanumeric word.

The tokens are usually restricted to certain characters length (typically 32 characters)

and are converted to lowercase. Tokens having too many numerical characters are

pruned as they are not very useful in searching. After lexing, each token is then

transferred into its morphological root, a process called stemming. For example, the

words “calculate”, “calculation”, “calculators”, “calculated” and “calculating” will all

be indexed as “calculate”. One of the popular English language stemming algorithms

is Porter’s stemming algorithm. Due to all the exceptions in the various language

grammars, it is increasingly becoming tougher to do stemming. For this reason, most
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search engines, including Google, ignore the stemming process. Stop words removal

is the process of removing common words that almost occurs in any textual data like

articles and preposition to name a few. Sometimes a few stop words such as “How”

and “Who” are used in the query. For this purpose, not all stop words are removed

rather a stop word list file is constructed. A stop word list file contains the desired

stop words to be removed from the document.

2.3.2 Keyword Assignment

In the keyword assignment, a predefined list of words is made. Keywords are chosen

from the document only if they exist in the list. Keyword assignment bounds the set

of keywords to a confined vocabulary of words or taxonomy [45]. The aim is to find

a limited set of keywords that best describes an individual document. The keyword

assignment is used to categorize documents based on the subject. The advantage of

keyword assignment is that similar documents are represented by the same keywords

which result in a reduced Index size. The other use is that a controlled vocabulary

ensures that the documents covered do not go beyond the scope of the subject. This

restricted scope helps in filtering unwanted documents from getting indexed, saving

indexing time, and memory consumption. There are some weaknesses associated

with the keyword assignment procedure. A successful keyword assignment procedure

depends on the correctness and exhaustive list of desired words in the predefined list.

In most of the cases, it is difficult to create an accurate and complete list to cover

a subject entirely. This results in ignoring potential keywords from the documents

29



if they are not in the predefined list of vocabulary. The other weakness is that the

confined list of vocabulary may not be available for all subjects. It may also be very

expensive to create or update one making this process highly inefficient for some

use cases. The result of the keyword assignment will be refined tokens representing

documents of a particular subject.

2.3.3 Extraction Based on a Term Feature

Keyword extraction is defined as the process that automatically identifies a set of

terms or keywords that best describes the content of a document [46]. In keyword

extraction, the selection of keywords does not depend on any predefined vocabulary

list. The words are directly extracted from the document. This is the main difference

between keyword assignment and keyword extraction. Since the keyword extraction

process alone does not restrict the scope of the documents to a particular subject,

it is a good practice to use the keyword assignment step along with the keyword

extraction process.

The decision of extracting candidate keywords is governed by some features or

properties of a term (word) in the document. The features of a term decide whether

it is eligible to be in the final list of keywords from the refined tokens. The authors

of [45] listed some common features that are considered while extracting candidate

keywords. One of the features is based on term weights. Term weights determine the

importance of a particular keyword in a document. The term weighting measures are:
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• Term count - It is the number of occurrences of a particular term in a single

document.

• Term frequency - It is the total number of occurrences of a particular term in

all the documents that are to be indexed.

• Document frequency - It is the inverse of term frequency which measures the

total number of documents that have a particular term.

• Inverse document frequency - It is based on the principle that rarer a word

occurs in a document set, the more relevant and important to the documents

it appears in.

• Average frequency - It is the ratio between the total number of occurrences of

a term in the entire document set and the total number of documents.

• Relative frequency - It is the same as average frequency except for the total

number of documents. In relative frequency, only the documents that a word

appears in is taken into account.

• Term length - It determines the character restriction for a candidate keyword.

• TF-IDF is the product of Term frequency and Inverse document frequency. The

higher the score, the more relevant that term is in that particular document.

TF-IDF is one of the most common features employed in scoring the keyword

importance for indexing.
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The other features used to select candidate keywords are based on the location of a

term in the document. Features in this category include:

• first/last N terms - As the name indicates, first and last N terms select only

the first or last N number of terms from the documents respectively.

• at the beginning/at the end of a paragraph - A term’s relative position to the

beginning and end of the paragraph is determined and is selected respectively.

• resemblance to title - A term is rated to its similarity to the title of the document.

The higher the rating, the more the term is preferred.

• maximal section headline importance - It is similar to the resemblance to title

feature except for the tile, the headline is used as a comparison metric.

• accumulative section headline importance - It weights a term according to all

its presences in important sections of the article.

Depending upon the use case, one or multiple features are applied to select candidate

keywords from the documents.

2.3.4 Automatic Keyword Extraction Methods

In most of the cases, the candidate keywords provided by the keyword extraction

based on a term feature itself will be quite sufficient. To obtain a very fine set

of keywords destined for very exclusive applications, different automatic keyword
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extraction methods have been proposed. Automatic keywords extraction methods

can be broadly classified into supervised, unsupervised and graph-based [46]. Some

of the automatic keyword extraction methods also use term features (discussed in

Section 2.3.3) in addition to its process of extracting keywords. The graph-based

keyword extraction technique is described in Section 2.4.2.2. A representative set of

supervised methods are discussed next.

The main idea of the supervised approach is to transform keyword extraction into

a classification problem. A supervised approach system called GenEx [47] uses a de-

cision tree induction algorithm to classify a word as a potential keyword or not. The

authors of [48] combined machine learning scheme called Bayes technique with the

TF-IDF method to classify potential keywords from unwanted ones. The authors of

[49] used the Natural Language Processing (NLP) technique to improve the machine

learning approach like Support Vector Machines (SVM) to automatically extract key-

words from scientific journals ignoring irrelevant ones. The authors of [50] proposed

a keyword extraction method using conditional random fields (CRF). CRF is a se-

quence labeling model that treats keyword extraction as a string labeling task. It has

been claimed that CRF performs better than machine learning models.

Unsupervised methods, unlike supervised, are self-organized meaning that they can

perform without any pre-existing learning data or models. For example, the authors

presented an unsupervised model [51] that uses n-gram lists to extract keywords

from titles and abstracts of the documents. Some of the n-gram lists are uni-gram,

2-grams, 3-grams, etc. A uni-gram is one word. A 2-gram means a sequence of
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two words, and so on. In general, an n-gram means a sequence of n words. The

final keywords are obtained by merging the sorted n-gram lists eliminating the stop

words. The authors of [52] proposed a method that uses clustering. The idea is to

cluster a set of lines from the documents that are semantically related. The clusters

formed are individually analyzed to get the main gist of the text. The important

keywords from the main gist are chosen as keywords. The authors of [53] proposed a

subject domain-independent keyword extraction system. In this system, the authors

used the linguistic knowledge and features of a term (such as term frequency and

term position) to extract keywords. The authors of [54] proposed an unsupervised

extraction method based on Shannon’s entropy difference. It depends on the idea that

word occurrences in a document are controlled by the author’s motive. The potential

keywords will reflect the author’s writing intention whereas irrelevant keywords are

randomly distributed. These irrelevant keywords are neglected during the extraction

process.

One of the recent developments in the unsupervised approach concerning tex-

tual document analysis is the advancement in document embedding techniques. A

document embedding is a process by which the words found in the documents are

represented numerically. One of the recent methods for document embedding called

paragraph vector also referred to as doc2vec (document to vector) was proposed by

Google Engineers [55]. The doc2vec method produces a numerical representation of

a document of any length. The doc2vec is a mere extension of word2vec [56]. In

word2vec, different words are represented in numerical vector form. In one imple-

mentation of word2vec, the different words (in vector format) are given as input and
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a single context word that best describes the different input words is produced as

output. In one of the doc2vec method implementations called Distributed Memory

version of Paragraph Vector (DMPV), in addition to word vectors, a document vector

that represents an entire document is also used as input. In another doc2vec imple-

mentation called Distributed Bag Of Words version of Paragraph Vector (DBOW-

PV), only the document vector is used as input. The objective (or output) of both

implementation methods is to predict a context word that best describes a set of

documents from which the document and word vectors are generated.

The authors of [57] performed experiments to validate the doc2vec method with

other methods such as word2vec and n-gram model (discussed earlier) and observed

that the doc2vec is performing better than the two other methods. They also con-

cluded that the DBOW-PV implementation is performing better than the DMPV

implementation of doc2vec. The main applications of doc2vec are its usage in sen-

timent analysis and document clustering. The doc2vec method can also be used

for selecting the best keywords for textual data indexing purposes. The authors of

[58] used doc2vec for capturing the semantic relationship between different words in a

document to extract potential keywords from short textual documents such as tweets.

Since the focus of the thesis is on proposing a new indexing technique superior

to Inverted Index for performing an efficient Boolean search, a fixed list of keywords

is generated for experimental purposes adhering to the steps listed in the document

pre-processing procedure.
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2.4 Graph Theory

Graph theory is the study of graphs. Graphs are mathematical structures used to

represent a pairwise relation between two entities. This section discusses the basics

of graph theory and its application in the field of text processing and indexing.

2.4.1 General Concepts

The authors of [59] described the general concepts in graph theory. A graph represents

a network that consists of a set of mathematical objects called vertices or nodes. These

nodes are connected, with the help of arcs or edges, based upon some common relation

or traits existing between them. Based on the type of edges, a graph can be classified

as follows:

1. Directed graph or directed network: This category of graphs is characterized by

the association of direction with the edges. In a directed graph, the edges are

represented by an arrow. The direction signifies how a node can be accessed.

A directed graph contains an ordered pair of vertices.

2. Undirected graph or undirected network: In an undirected graph, the edges

between vertices do not have any particular direction. An edge in the undirected

graph is usually represented by a straight line. An undirected graph contains

an unordered pair of vertices. In the undirected graph, a node can be accessed

in any direction.
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An example of two types of graphs based on the type of edge is shown in Figure 2.4.

It can be seen that in the directed graph, as an example, one can navigate from vertex

3 to 2 but the reverse is not possible. In case of undirected graph, both vertex 3 and

2 are visible to each other.

1 2

3 4

1 2

3 4

Undirected Graph Directed Graph

Figure 2.4: Example of an undirected and directed graph.

A graph can be further classified based upon the existence of cycles in it as follows:

1. Cyclic Graph: A cycle is said to exist in a graph if some of the vertices form

a closed chain where the starting and ending vertices are the same. A graph

containing one or more cycles are called cyclic graphs.

2. Acyclic Graph: If the graph does not contain any cycle in it then it is called an

acyclic graph.

A graph can be represented using one of the two following ways:
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1. Adjacency Matrix: For a graph containing V vertices, an adjacency matrix is

a V x V square matrix containing either 0 or 1. The entry represented by row

i and column j is 1 in the adjacency matrix if and only if there exists an edge

between the two vertices i and j. The value 0 is used to represent the absence

of an edge between two vertices. Adjacency matrix though occupies more space

because of storing information about the absence of the edge between vertices,

it provides a constant access time O(1) to check whether there exists an edge

between two vertices.

2. Adjacency List: In the case of an adjacency list, entries that contain zeroes

in the adjacency matrix are eliminated and only the neighboring nodes of a

particular node are stored. For each vertex i, an array of the vertices connected

to it are stored. Typically, for V vertices in a graph, there are V adjacency lists,

one for each vertex. The adjacency list is used when storage space is of primary

concern. The algorithmic complexity for checking whether there exists an edge

between two vertices i and j in adjacency list is O(d) where d is the number

of edges, the node i or j has. The adjacency matrix and the list representation

for the directed graph example given in Figure 2.4 can be seen in Figure 2.5.
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1 2 3 4

1 0 1 1 0

2 0 0 0 1

3 0 1 0 1

4 1 0 0 0

1

2

3

2 3

4

4

2 4

1

Figure 2.5: Adjacency matrix and list representation for directed graph example given
in Figure 2.4.

The proposed indexing technique is built using a directed graph structure. For repre-

senting the graph structure, a modified form of the adjacency matrix is used in which

the nodes which do not have any edges between them are ignored from representing in

the matrix to save space. The proposed indexing technique is detailed in Chapter 3.

2.4.2 Applications of Graphs

Graph structures have many applications in various fields including but not limited

to data indexing and keyword extraction. This section covers a set of representative

research works on these areas.

2.4.2.1 Indexing

The authors of [60] proposed a graph-based indexing scheme for Arabic documents.

In this work, each document is modeled as a graph and a term weighing feature
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is applied to find the relevancy of a term to a document. The authors claim that

by using a graph, document modeling is more expressive than a standard bag of

words approach. A bag of words approach is the simplified way of representing a

document. The bag of words approach lists the words with their frequency ignoring

grammar and order in which they appear in the document. The research work also

claims that graph-based indexing is better for contextual indexing and outperforms

statistics-based methods like TF-IDF.

The authors of [61] investigates graph databases and indexing schemes for un-

structured big data systems. A graph database represents a graph structures with

a set of nodes and edges. The properties of a graph structure are used to store the

relationship between different data points. Petabytes of data are converted into graph

structure in batch and are stored in a specialized graph database. The commonalities

existing between different graphs are extracted from the database to form a graph-

based index. The authors concluded that the graph-based approach provides a better

understanding of big data and provides less overhead of querying it by identifying

the common traits between data points. Microsoft engineers proposed a distributed

in-memory graph database called A1 to power their Bing search engine [62]. A1 is

used to handle complex queries over structured data by using high-speed Remote

Direct Memory Access (RDMA). The authors of A1 concluded that a graph model is

easy to use and forms a robust tool for building search applications like Bing.

The authors of [63] proposed a Graph-based Similarity Search (GSS) method for

a large speech data set. In this method, the graph structure for each complete speech
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data from a large pile of speech data is pre-constructed. This graph index structure

is used by the authors to find relevant complete speech data by only specifying the

little number of phrases from the speech (called as query-by-example). The authors

claim that GSS helps speed up the spoken term detection compared to the traditional

method. The authors of [64] proposed a graph-based indexing scheme for Resource

Description Framework (RDF) data. RDF is the standard for describing computing

resources in a network. In the proposed method, initially, RDF data is converted into

a data graph. Then, sub-graphs are extracted from this data graph and are indexed.

The search query is converted into a graph and is compared with the sub-graph to

retrieve the data. This setup reduces the query execution time on complete RDF

data.

The authors of [65] proposed an indexing scheme for web documents. The indexing

scheme is graph-based and is called as Document Index Graph (DIG). Unique phrases

occurring in a document are identified. These phrases are used as a node in the graph

structure. A graph structure for each such documents is generated. These generated

graph structures are compared to identify the significant matching phrases between

the documents. Similar to DIG, the authors of [66] used a graph data structure

to classify web documents based on content. The paper proposed an enhanced k-

Nearest Neighbor classification algorithm to work with a graph data structure. The

authors claim that classification accuracy increases when a graph structure is used

in comparison to a standard vector model approach. The authors of [67] used a

graph-based approach for pattern matching in crime data. Different entities found

in the crime documents are captured in a graph structure, and the relations between
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them are identified using a graph-based clustering technique. The authors concluded

that a graph-based clustering approach helps identify and analyze the crime patterns

efficiently.

A graph data structure called a Directed Acyclic Word Graph (DAWG) has found

its application in the field of string indexing. In this graph structure, closely related

strings are stored together. This leads to the effective performance of string pattern

matching and prefix search [68]. In this graph structure, the unique character in a

set of related strings forms a node of DAWG. DAWG is also referred to as suffix

automaton. DAWG is a data structure that permits extremely fast word searches.

The entry point into the graph represents the starting character of the word to be

searched. Then, successive characters in the word are used to navigate through the

graph to complete the search. If any of the characters in the word is not found as a

node while navigating through the graph, then the search is terminated as there is

no possibility of finding the word in the graph.

2.4.2.2 Keyword Extraction

The authors of [69] proposed a graph-based keyword extraction algorithm called Key-

Graph. A separate graph for each sentence in a document is made. The nodes repre-

sent terms and links represent the connection between terms that frequently occurs

in the sentence. Each such graph is divided into separate clusters. Each cluster cor-

responds to a concept on which the author’s main idea is reflected. The terms in each

cluster are ranked and the top ones are selected as keywords for indexing. KeyGraph
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is a content-sensitive, domain-independent algorithm. The authors of [70] proposed a

graph-based text processing method called TextRank. TextRank models the abstract

of a document as a graph after applying lexing and stop word removal process. The

similarities between words are then calculated and stored in a matrix. The similarity

matrix is then converted into a graph, with words as vertices and similarity scores as

edges, for term rank calculation. Finally, a certain number of top-ranked words are

made as keywords. TextRank is claimed to perform better than a supervised machine

language approach.

The authors of [71] proposed a keyword extraction based on graph structure for

micro-blogs. After micro-blogs are subjected to pre-processing, the remaining words

are made as nodes of a graph. The words are selected as keywords from the graph

based on the measures such as closeness and eccentricity of each node to its neigh-

bouring nodes. Another technique called Keyword Extraction from the collection of

Tweets using Node and Edge Weight (KETNEW) was proposed in [72]. Similar to

the previous method [71], KETNEW also uses the words found in a tweet as nodes

of the graph structure with edges connecting consecutive words. In this method, ini-

tially, node and edge weights are calculated based on factors such as term frequency,

co-occurrence frequency, and the position of the node. Then, a node importance score

is calculated based on the node and edge weights. All the nodes are ranked based on

node importance score, and the top K nodes are selected as the final list of keywords.

The authors of [73] proposed a graph-based keyword extraction technique for research

documents. In this technique, the Rapid Automatic Keyword Extraction (RAKE) al-

gorithm and a graph-based model called Keyword Extraction using Collective Node
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Weight (KECNW) are used together for extracting keywords. Initially, RAKE is used

to produce a candidate keyword set by eliminating all the stop words in the docu-

ments. Then, a graph structure is constructed using the candidate keywords as nodes

with edges between co-occurring keywords. Then, the node weights are calculated

based on factors such as term frequency. Finally, the candidate keyword nodes are

ranked based on their weight, and the top K nodes are selected as keywords.

From the literature review presented above, it is clear that graph structures present

several advantages when used to represent data that exhibit common traits (relation-

ship). Textual document indexing can be viewed as a relation between a set of

keywords and the documents they appear in. The research works inspired us to use a

graph structure to capture the relationship between different keywords that co-occur

in a document. The proposed method treats different keywords that appear in a

document as entities that are to be related by a common trait called document id.

This results in forming a graph structure where unique keywords form the nodes and

the document ids are used as a label in the edge connecting the nodes. The result

of the Boolean queries expresses how different keywords are connected to the set of

documents indexed. By successfully forming the graph structure, we were able to

model the results for the Boolean queries efficiently as illustrated in Chapter 3.
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2.5 Concluding Remarks

The literature works described in this chapter highlight the importance of using a

graph data structure for expressing data entities that have commonality between

them. The importance of hash tables in search performance enhancement is em-

phasized in a number of research works discussed. With the importance of graph

and hash table data structures being studied, the proposed method aims to combine

these two data structures to produce a novel text-based indexing scheme to execute

Boolean, neighbours of a keyword, and exclusive keyword queries efficiently.
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Chapter 3

Graph-Based Indexing Technique

This chapter explains the proposed Graph-Based Index structure and the algorithm

for indexing in a Graph-Based Index. It also covers the Boolean, neighbours of a

keyword and exclusive keyword queries execution using the Graph-Based Index.

3.1 Graph-Based Index Structure

A Graph-Based Index consists of a directed graph where each unique keyword ex-

tracted from the document to be indexed forms a node and an edge is added between

any two nodes if the two keywords exist in the same document. A directed graph

structure is used to build GBI because it uses a smaller number of entries to denote a

relationship. For example, let Anthony and Brutus be two keywords extracted from

a document. A single entry Anthony-Brutus in the adjacency matrix is enough to

denote this relationship (no need to store Brutus-Anthony in the adjacency matrix as
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this would be the case with an undirected graph). To facilitate this, extracted key-

words from a document are sorted in alphabetical order, and the relationship between

two keywords is represented in ascending order. Two nodes are said to be neighbours

if they have a direct edge between them. Throughout this thesis, the usage of con-

nected or related keywords refers to neighbours meaning the keywords in question

have occurred in a document together. The ids of the documents that contain both

keywords are used as labels of the edges. Loops are allowed in the graph where the

starting and ending nodes are the same. This happens when the keyword extraction

process on a document results in only one keyword. This means that there is only

one unique word from the document to index. A slightly modified version of the ad-

jacency matrix representation is used to represent GBI. In the proposed method, the

adjacency matrix will store only the keywords (nodes) that have occurrences together

in a document. This allows GBI to consume less memory. This is opposed to the

usual adjacency matrix representation of the graph depicted in Figure 2.5 where the

nodes which do not have an edge between them are also stored. A two-dimensional

hash table is used to store this modified version of the adjacency matrix. In a two-

dimensional hash table, two keys are used to uniquely identify a set of values. The

keywords that occur together in a document are grouped into a pair of keywords and

are used as the key for the hash table entry containing ids of the documents as value.
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3.2 Algorithm for Indexing Using GBI

Algorithm 1 exhibits the construction of the Graph-Based Index for indexing one

document. The algorithm gets a list of keywords for a particular document to index

and forms a link between those keywords resulting in a graph structure. The keyword

extraction process on a document should result in at least one keyword to index

making the document eligible for indexing. The inputs are the set of keywords (SI)

and the identifier for the document (Id) from which the keywords are extracted. The

output is the Graph-Based Index structure in the form of a hash table (G). A new GBI

is created when the first document is indexed and gets updated when more documents

are indexed. Indexing involves creating a series of entries in a two-dimensional hash

table G. The value of all the entries is always the id of the document that is currently

being indexed. Since it is a two-dimensional hash table, two keys are used to uniquely

identify an entry. The two keys are labelled as key1 and key2. Initially, the keywords

in SI are sorted in ascending order and the size of SI is determined [Line 1-2].

If SI has only one keyword to index (i.e. the size of SI is one), then that keyword

is considered as key1. The number zero is appended to that keyword to form key2.

An entry in G is created with these two keys [Line 3-7]. This entry signifies the

document ids in the self-loop of the keyword node. This is the only keyword extracted

to uniquely represent the document in GBI.

If SI has more than one keyword to index, then for each keyword in SI, an entry

is created in G with the keyword as both key1 and key2 [Line 8-11]. This entry
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Algorithm 1: Construction of Graph-Based Index

Inputs: Set of keywords (SI) and identifier of the document (Id)
Output: New or updated hash table representing Graph-Based Index (G)
Condition: At least one keyword exists in set SI

1 Sort set SI in ascending order
2 count← size of set SI
3 if count == 1 then

/* Occurs when the document has a single keyword to index. It results

in forming a loop on the keyword node */

4 key1← single keyword found in SI
5 key2← append zero (0) to key1
6 Key ← hash table key [key1][key2]
7 If an entry identified by Key exists in G, append Id to the list of values,

otherwise create an entry using Key with Id as value

8 else
/* Occurs when the document has more than one keyword to index */

9 foreach keyword key1 in set SI do
10 Key ← hash table key [key1][key1]
11 If an entry identified by Key exists in G, append Id to the list of

values, otherwise create an entry using Key with Id as value
12 foreach keyword key2 occurring after key1 in set SI do
13 Key ← hash table key [key1][key2]
14 If an entry identified by Key exists in G, append Id to the list of

values, otherwise create an entry using Key with Id as value

15 end

16 end

17 end
18 Sort all the entries of G by their key1 in ascending order
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signifies the collection of document ids in the keyword node of GBI. After this entry,

a series of entries are created in G. Each entry contains the current keyword as key1

and the keyword occurring next to the current keyword in SI as key2 [Line 12-17].

This procedure is repeated for all the keywords until it reaches the last keyword in SI.

Since all the necessary information about the last keyword can be found in preceding

keywords hash table entries, the indexing process is complete now. These series of

entries result in creating edges between the keyword nodes with document ids as

labels. This implies the relationship between different keywords extracted from the

same document.

Finally, the entries in G are sorted by their key1 in ascending order [Line 18].

This final sorting helps in executing the neighbours of a keyword queries efficiently.

3.3 GBI Example

In this section, we present a detailed example that we will use throughout the thesis

to explain the various queries that are being executed using GBI. Consider the same

example as mentioned in Section 2.1.1. The keyword Anthony appearing in documents

D1, D2 and D5, the keyword Caesar appearing in documents D1, D2, D3 and D4

and the keyword Brutus appearing in documents D1 and D4. The Venn diagram

representing this example is shown in Figure 3.1.
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Figure 3.1: Venn diagram representing the keywords and the documents that they
appear in.

Each document is processed one by one to build the GBI. For example, consider

processing document D1. The keywords that appears in document D1 are Anthony,

Caesar, and Brutus. First, the keywords are sorted in ascending order. Thus, the

sorted keywords set becomes {Anthony, Brutus, Caesar}. Each keyword in the set

represents a node in the GBI. Then, an edge containing the document id as a label

is added from each keyword to the remaining set of keywords that appear after it

in the sorted set. This process is repeated until the last keyword in the sorted set

is reached. The unique document ids found on the edges connecting the neighbour

nodes alone are collected and stored in the respective nodes. This additional storage

of document ids in the node is needed to effectively process the Boolean OR and

Boolean NOT queries as described later in sections 3.5.3.1 and 3.5.2.1 respectively.

This setup also helps in processing simple queries containing only a single keyword

effectively. In some cases, for example in document D5, only one keyword (Anthony)

is extracted. In order to index document D5, a loop with the document id D5 as label
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is constructed on the node Anthony. This procedure is repeated for all the documents

in the given example to produce the final graph structure shown in Figure 3.2.

Caesar

D1, D2, D4

D5 D3

D1, D2

D1, D4D1

Brutus

D1, D4

Anthony

D1, D2

Figure 3.2: GBI - graph representation.

Figure 3.3 shows the hash table structure capturing keyword relationships shown

in the graph representation. To describe the hash table structure, consider Anthony

keyword’s mappings. In the mapping, there are four key-value entries represented

by the keys Anthony, Anthony0, Brutus and Caesar respectively. The key Anthony

represents the node Anthony in the graph structure. The corresponding values are the

document ids stored in the node. This entry represents all the documents in which the

keyword Anthony co-occurs with other keywords. The second entry, pointed by the

key Anthony0, represents the loop of the node Anthony in the graph structure. The

value represents the document ids stored in the loop of the node Anthony. This entry
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represents all the documents in which the keyword Anthony alone appeared. The

third entry, pointed by the key Brutus, represents an edge between the node Anthony

and Brutus in the graph structure. The values are the labels (document ids) of the

edge. Thus, this entry represents all the documents in which Anthony and Brutus

have appeared together. The fourth and the final entry, pointed by the key Caesar,

represents an edge between the node Anthony and Caesar in the graph structure.

Similarly, the values are the labels (document ids) of the edge. Thus, it represents

all the documents in which Anthony and Caesar have appeared together. A search

for the document ids that are common to “Anthony and Caesar” will be executed as

follows. First, the key Anthony is hashed to locate Anthony ’s mapping and then, the

key Caesar is hashed to find the entry pointed by Caesar within Anthony ’s mapping

to find the values (document ids) represented by this keyword pair.

It should be noted that the document ids found in the node and self-loop of

Anthony (when merged together) form the postings list of Anthony in the classical

Inverted Index. This infers that GBI models Inverted Index within itself. This setup

helps to apply various optimizations and algorithms used in Inverted Index on GBI

as well.
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Figure 3.3: GBI - hash table representation.
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3.4 Pruned Graph-Based Index to Process Only

Boolean AND Queries

If we know that only Boolean AND queries will be processed, then some improve-

ments can be made to the Graph-Based Index. In fact, certain information stored

in the Graph-Based Index can be removed to improve the indexing time and mem-

ory consumption. For example, document ids stored in the keyword nodes can be

removed. Since Boolean AND queries always examine the labels on the edges con-

necting the keyword nodes in the graph structure, the ids of the documents stored in

the nodes are of no use and can be ignored. Also, the documents which result in only

one keyword after the keyword extraction process can be eliminated from indexing

thus eliminating self-loops in the graph structure. Since Boolean AND queries need

at least two keywords to execute and that the document ids found in the self-loops

are associated with only one keyword, loops will not contribute to any Boolean AND

query execution. Figure 3.4 and Figure 3.5 show the modified GBI graph and the hash

table representation for executing only Boolean AND queries for the same example

stated above.
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Figure 3.5: Pruned GBI - hash table representation.
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Figure 3.4 shows that the document ids are no longer collected in the node. Doc-

uments 3 and 5, which were represented with a self-loop in Figure 3.2, are also elim-

inated from indexing. In the hash table representation, the entries representing ids

collected in the node and loops are also removed. It can be noted that Caesar ’s

hash table mappings are removed completely. Since Caesar is alphabetically the last

keyword in the given example and keywords are always sorted in ascending order for

indexing and searching, Caesar ’s relationship with Anthony and Brutus can be found

in the Anthony and Brutus hash table mapping respectively. This setup for process-

ing only Boolean AND queries eliminates the need for hash table mapping for the

alphabetically last keyword among the set of keywords extracted from the documents

to be indexed. This results in improved memory consumption and indexing time for

GBI.

Algorithm 2 exhibits the construction of the Pruned Graph-Based Index targeted

for only Boolean AND queries. It is similar to the normal version of GBI (i.e. Al-

gorithm 1) except for storing document ids in keyword node and eliminating single

keyword documents from indexing. The inputs are a set of keywords (SI) and the

identifier for the document (Id) from which the keywords are extracted. The output

is the Pruned Graph-Based Index structure in the form of a hash table (G). A new

Pruned GBI is created when the first document is indexed and gets updated when

more documents are indexed. The condition is that at least two keywords should

represent a document otherwise it will be ignored from indexing. Initially, the key-

words in SI are sorted in ascending order [Line 1]. Then, for each keyword in SI

until the last keyword, an hash table entry is created in G. Each entry is identified
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by two keys. The current keyword is used as key1 and the keyword occurring next

to the current keyword in SI is used as key2 [Line 2-7]. This results in creating

edges between the keyword nodes with document ids as labels. This represents the

relationship between the different keywords extracted from the same document. If

the algorithm is processing the last keyword in set SI, then the indexing process is

complete. As mentioned earlier, this is because all the necessary information about

the last keyword can be found in preceding keywords hash table entries so there is

no need of creating a separate entry for the last keyword in the set. This helps in

reducing the required amount of memory space for storing the graph-based index.

Algorithm 2: Construction of Pruned Graph-Based Index

Inputs: Set of keywords (SI) and identifier of document (Id)
Output: New or updated hash table representing Pruned Graph-Based

Index (G)
Condition: At least two keywords exist in set SI

1 Sort set SI in ascending order
2 foreach keyword key1 until the last keyword in set SI do

/* Establishing relationship between keywords extracted from a document

*/

3 foreach keyword key2 occurring after key1 in set SI do
4 Key ← hash table key [key1][key2]
5 If an entry identified by Key exists in G, append Id to the list of

values, otherwise create an entry using Key with Id as value

6 end

7 end

Since the document ids found in the edges between the keyword nodes are used

to perform the intersection operations in both normal and Pruned GBI, the search

performance obtained by executing Boolean AND queries remains the same for both
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versions of GBI. The pruning only reduces the indexing time and the required amount

of memory. Hence, the normal GBI version will be used for all the search algorithms

listed in this chapter.

3.5 Boolean Queries and Search Algorithms

Using Graph-Based Index

This section describes the different types of Boolean queries and the various algo-

rithms that were developed for searching in the proposed Graph-Based Index.

3.5.1 Boolean AND Queries

The Boolean AND queries are a type of queries where all the search keywords specified

should be found in a document to qualify it to be a part of the resultant set. Even if

the document misses one search keyword, it is discarded. In other words, let:

• S = {S1, S2, ..., Sn} be the set of search keywords.

• R be the resultant set containing ids of the matching documents.

• D be the document that is currently being examined.

Then, D is qualified to be part of R if and only if all the search keywords from

the set S (i.e. S1, S2, ..., Sn) are present in document D. It is important to note
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that the position of the search keywords within the document is irrelevant. The only

condition is that all the search keywords should present in the document to be part

of the resultant set.

Thus, for the example stated in Section 3.3, the Boolean AND query “Anthony

AND Caesar AND Brutus” yields the result D1 since D1 is the only document that

contains all the three keywords.

3.5.1.1 Execution of Boolean AND Queries Using Graph-Based Index

Algorithm 3 exhibits the execution of a Boolean AND query using the Graph-Based

Index. In general, let S be the set containing the search keywords. Initially, the set S

is sorted in ascending order and the size of S is determined [Line 1-3]. Each keyword

except the last keyword in set S is paired with the next occurring keywords to find

whether there exists an edge between them. The document ids are collected only if a

keyword pair is non-overlapping or it is the last keyword pair in S [Line 5-11]. This

is to reduce the number of keyword pairs needed to compute the intersection between

them. To illustrate this, consider four keywords A, B, C and D. Since the keywords

are indexed in pairs (i.e. AB, AC, AD, BC, BD, and CD), only non-overlapping

keyword pairs are needed to compute the intersection. The non-overlapping keyword

pairs contain all the search keywords only once (in this case AB and CD for example).

Therefore, only the document ids of these two pairs are collected. Now, let us consider

five search keywords say A, B, C, D and E. The number of pairs from which the

document ids will be collected is AB, CD and also DE. As there is the need for one
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Algorithm 3: Executing a Boolean AND query search using Graph-Based
Index

Inputs: Set of search keywords (S), hash table representing Graph-Based
Index (G)

Output: NULL or the matching document ids.
Condition: At least two unique keywords exists in set S

1 Sort set S in ascending order
2 postings list collection← an empty hash table
3 search count← size of set S
4 foreach search keyword key1 in set S do
5 if key1 is not the last entry in S then

/* Check if all the search keywords are connected to each other in

GBI */

6 foreach search keyword key2 occurring next to key1 in set S do
7 Key ← hash table key [key1][key2]
8 if Key exists in hash table G then
9 if Key is non-overlapping or last keyword pair in S then

/* Collect document ids from the keyword pair’s postings

list only if it is a non-overlapping or last keyword

pair in S to reduce the number of postings list needed

for intersection */

10 create entry in postings list collection with key1 as key
and postings list at G[Key] as value

11 end

12 else
/* If any two of all the search keyword is not connected then

terminate keyword relationship checking. No possibility of

common documents. Terminate search process */

13 postings list collection← NULL
14 return NULL

15 end

16 end

17 end

18 end
19 Algorithm 3 continued in next page

61



Algorithm 3: Executing a Boolean AND query search using Graph-Based
Index (continued)

20 if postings list collection is not NULL then
/* If all the search keywords are connected to each other then common

documents are possible */

21 if search count == 2 then
/* If there are only two search keywords then return keyword pair’s

postings list directly as it is already available */

22 return postings list collection

23 else
/* If more than two search keywords then perform intersection

operation between keyword pairs postings lists */

24 output← Perform Small-Vs-Small (SvS) intersection algorithm on
postings list collection as described in Algorithm 4

25 return output

26 end

27 end

more pair to include keyword E in this case, the document ids are also collected from

the last pair which is DE. If a keyword pair does not exist in the Graph-Based Index,

then the search procedure stops as there is no possibility of a common document, and

NULL is returned [Line 12-18]. If all the keywords are connected, then one solution to

get all the matching document ids is performing the intersection between the keyword

pairs. The authors of [75] studied various intersection algorithms based on how the

data is stored. The study concluded that when data is stored as a sorted array

of explicit values (storing the values as it is without any compression techniques),

the traditional Small-Vs-Small (SvS) algorithm is one of the best way to perform

an intersection. If there are only two search keywords, then the result is directly

obtained as it is already indexed in pairs [Line 20-22]. The SvS algorithm is needed
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Algorithm 4: Small-Vs-Small Intersection Algorithm [74]

Input: A hash table containing a set of postings lists (P )
Output: NULL or an array containing common document ids among the

postings lists
Condition: At least two postings lists should be provided for performing

intersection
1 Sort P by the size of postings lists in ascending order
2 output← first postings list in P
3 remove first postings list from P
4 foreach remaining postings list PL in P do
5 foreach document id in output do

/* remove document ids from the smallest postings list if it does not

exists in other postings lists */

6 if document id does not exist in PL then
7 remove the document id from output array
8 end

9 end

10 end
11 return output
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only if there are more than two search keywords [Line 23-27]. If all the keywords are

connected, then the number of intersections to be made using SvS depends on the

number of keywords. In general, if there are n search keywords, and n > 2 and n is

even, then only n/2 - 1 intersections are needed. If n > 2 and n is odd, then only b

n/2 c intersections are needed. If n = 2, then no intersection operation is needed.

For completeness, Algorithm 4 presents the SvS intersection algorithm studied by

the authors of [74]. The SvS algorithm takes a set of postings list (P ) and performs an

intersection to return the common document ids between them. The inputs are the

set of postings lists for which intersection should be computed. The output is either

NULL meaning no common documents are found or the set of common document ids

between the postings lists. The condition is that at least two postings lists should

be provided. Initially, P is sorted in ascending order by the size of each postings list

[Line 1]. The smallest postings list is chosen as a candidate solution initially as this

contains the minimum possible number of document ids that are common between

the given postings lists [Line 2-3]. The document ids in the smallest postings list are

checked for existence in the remaining postings lists in P . If any of the document ids

in the smallest postings list are not found in the remaining postings lists, then those

document ids are removed from the smallest postings list [4-10]. After this checking

process, if any document ids are left untouched, then they are returned otherwise

NULL is returned [Line 11].

For the Inverted Index prototype that was developed in this thesis, the same SvS

algorithm is used for intersection computation. The results show that GBI always
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performs better than Inverted Index. Since it implements SvS between keyword

pair(s) whereas Inverted Index implements it between individual keywords in the

search keywords set. Thus, the number of postings list needed for intersection is

always smaller in GBI when compared to Inverted Index. Also, it is important to note

that in Graph-Based Index, there is no need to execute the SvS algorithm when there

is no relationship between any of the search keywords. However, in Inverted Index,

at least one intersection should be performed to validate that no common document

exists between the search keywords. In general, for Inverted Index, the number of

intersections performed using the SvS algorithm for executing a Boolean AND search

query is n-1 for n keywords (n > 1) and all n keywords appear together in at least

one document. Thus, irrespective of the intersection algorithm that is used, GBI will

always perform better than Inverted Index as GBI always uses a smaller number of

postings lists and also tries to avoid intersection.

The Boolean AND algorithm (i.e. Algorithm 3) execution sequence for the ex-

ample stated in Section 3.3 for the query “Anthony AND Caesar AND Brutus” is

discussed next. According to the algorithm, the input set S now contains {Anthony,

Caesar, Brutus}. The first step is to sort the set S in ascending order which results

in {Anthony, Brutus, Caesar}. Then, the second step is to check whether Anthony

is related to Caesar and Brutus and whether Brutus is related to Caesar. From Fig-

ure 3.3, it is inferred that Anthony ’s mapping has an entry for Caesar and Brutus.

Brutus mapping also has an entry for Caesar. Thus, the keywords Anthony, Brutus

and Caesar are related to each other. Then, the postings list for the pair (Anthony,

Brutus) is retrieved with a value of D1. Next, the postings list of the pair (Brutus,
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Caesar) is also retrieved with values D1 and D4. Finally, the collected postings lists

are sorted in ascending order by their size and it is found that Anthony and Brutus

pair’s postings list is the smallest one. The values in the smallest postings list are

iterated one by one to check whether they exists in all other postings lists. Since

D1 exists in Brutus and Caesar ’s postings list, it is not removed from the smallest

postings list. Since there are no other document ids in the smallest postings list, the

iteration is complete and the final output (D1 ) is returned.

3.5.2 Boolean NOT Queries

The Boolean NOT queries are a type of queries where all the search keywords specified

after the NOT operator should not appear in the same document as the keyword

specified before the NOT operator to be a part of the resultant set. More formally,

let:

• Sk be the keyword specified before the NOT operator.

• E= {E1, E2, ..., Ek} be the set of search keywords specified after the NOT

operator.

• R is the resultant set containing ids of the matching documents.

• D be the document that is currently being examined.

Then, D is qualified to be part of R if and only if Sk appears in the document D and

the keywords from the set E (i.e. E1, E2, ..., Ek) does not appear in the document
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D. The important thing to note is that the position in which the search keywords

appear within the document is irrelevant.

Thus, for the example stated in Section 3.3, the Boolean NOT query “Caesar

NOT (Anthony OR Brutus)” yields the result D3 since it is the only document that

contains Caesar but not Anthony or Brutus.

3.5.2.1 Execution of Boolean NOT Queries Using Graph-Based Index

Algorithm 5 exhibits the execution of a Boolean NOT query in GBI. The inputs

are: 1) the keyword (Sk) to be present in a document; 2) set of keywords (E) that

should not be present in the document with Sk; and 3) the hash table representing

Graph-Based Index (G). The condition is that at least one keyword should exist in

E otherwise there will be no keyword to exclude. Initially, the Sk is checked for its

existence in G. If it does not exist, then the algorithm terminates by returning NULL.

If Sk exists in G, then the output array is initialized with the postings list found at

G[Sk][Sk] [Line 4-8]. This collects document ids from the Sk node in GBI. Then, the

number zero (0) is appended to the Sk to form a key (exclusive key) to identify the

entry containing the exclusive document ids from the Sk mapping. If there exists an

entry in G pointed by the keys [Sk][exclusive key], then the document ids at that

entry are stored in the exclusive documents array [Line 10-12]. After these initial

assignments, a neighbour validation procedure is performed [Line 13-22].

A neighbour validation procedure checks whether the keywords in E are actually

the neighbours of the Sk. To perform this validation, each keyword (key2) in E is
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Algorithm 5: Executing a Boolean NOT query search using Graph-Based
Index

Inputs: A keyword (Sk) to be present in a document, set of keywords (E) to
be excluded, hash table representing Graph-Based Index (G)

Output: NULL or an array containing the matching document ids
Condition: At least one keywords exists in set E

1 neighbours← empty hash table
2 exclusive documents← empty array
3 output← empty array
4 if G[Sk] does not exist then

/* If the Sk does not exist in GBI then terminate search */

5 return NULL

6 else
/* Collect document ids from the Sk’s node */

7 output← postings list at G[Sk][Sk]

8 end
9 exclusive key ← append zero (0) to Sk

10 if G[Sk][exclusive key] exists then
/* Collect any exclusive documents available for Sk from its loop */

11 exclusive documents← postings list at G[Sk][exclusive key]

12 end
13 foreach keyword key2 in set S do

/* Verify each of the keywords (key2) in E are neighbours of Sk and if

neighbours, collect common document ids between them */

14 if key2 is alphabetically after Sk then
15 Key ← hash table key [Sk][key2]
16 else
17 Key ← hash table key [key2][Sk]
18 end
19 if G[Key] exists then
20 create entry in neighbours with key2 as key and postings list at

G[Key] as value

21 end

22 end
23 Algorithm 5 continued on next page
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Algorithm 5: Executing a Boolean NOT query search using Graph-Based
Index (continued)

24 if neighbours is empty then
/* If none of the keywords in E are neighbours of Sk then no need to

remove any documents. Return document ids collected from Sk’s node

and loop */

25 add exclusive documents (if exists any documents) to output array
26 return output

27 end
28 all neighbours← find all the neighbours of Sk using Algorithm 7
29 if all neighbours is same as E then

/* If all the neighbours of Sk are same as keywords in E then possible

result is only exclusive documents */

30 return exclusive documents

31 end
32 foreach postings list PL in neighbours do

/* Remove common document ids between Sk and its neighbours */

33 remove all the document ids found in PL from output array

34 end
35 add exclusive documents to output array
36 return output
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categorized based on whether it occurs before or after the Sk in G. If key2 appears

after the Sk in G, then the existence of key2 is checked in the Sk’s mapping. If found,

an entry is created in the neighbours hash table with key2 as key and postings list

at G[Sk][Key2] as value. If key2 appears before the Sk in G, then the existence of

the Sk is checked in key2’s mapping. If found, an entry is created in the neighbours

hash table with key2 as key and postings list at G[Key2][Sk] as value. This is because

before keywords extracted from a document are indexed in GBI, they are alphabeti-

cally sorted. To better illustrate this, consider an example where the set E contains

the keywords Anthony and Caesar and the Sk is Brutus. Now, to check whether

Brutus is related to Anthony or not, the existence of keyword Brutus is checked in

Anthony ’s mapping because Brutus is alphabetically after Anthony. But in order to

check whether Brutus is related to Caesar or not, the existence of keyword Caesar

is checked in Brutus ’s mapping because Caesar is alphabetically after Brutus. Fig-

ure 3.3 hash table representation gives a better visual about this neighbour checking

process.

Once the neighbour validation process is complete, the neighbours hash table

holds the information about the keywords in E that are related to the Sk with their

corresponding postings list. If the neighbours hash table is empty, then the ids of the

documents found in the exclusive documents array are added to output array and

are returned terminating the search operation [Line 24-27]. This means that the doc-

uments represented by their ids stored in the output array are free of all the keywords

in E. If the neighbours hash table is not empty, then all the possible neighbours of

the Sk are found using Algorithm 7 which is discussed later in Section 3.6.1 and are
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stored in the all neighbours array [Line 28]. If the all neighbours array is the same

as E, then document ids stored in exclusive documents array are returned, and the

search is terminated [Line 29-31]. This is because documents that contain only the

Sk can be part of the solution as all the remaining documents contain the keywords

which are to be excluded.

If the all neighbours array is not the same as E, then all the document ids in all

the postings lists of the neighbours hash table are removed from the output array,

adding any documents in which the search keyword alone appears (if any). Finally,

the document ids that are free from the keywords listed in E are returned [Line 32-36].

The Boolean NOT algorithm (i.e. Algorithm 5) execution sequence for the ex-

ample stated in Section 3.3 for the query “Caesar NOT (Anthony OR Brutus)” is

described next. According to the algorithm, the search keyword is Caesar and the

set of keywords that are to be excluded contains Anthony and Brutus . The first step

checks whether Caesar has any common documents with Anthony and Brutus. In

other words, validating whether they are neighbours or not. From Figure 3.3, it is

inferred that Anthony ’s mapping has an entry for Caesar and Brutus ’s mapping also

has an entry for Caesar. Thus, both Anthony and Brutus are related to Caesar.

Since all possible neighbours of Caesar are the same as the neighbours that are to

be excluded, the Boolean NOT algorithm returns only the documents that contains

Caesar alone which is D3.

For executing Boolean NOT queries using Inverted Index prototype developed,

the postings lists of the keywords in the set E are compared against the postings list
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of Sk and common document ids are removed. If there are any resultant document

ids, then they are returned as output.

3.5.3 Boolean OR Queries

The Boolean OR queries are a type of queries where at least one of the search keywords

specified should be found in a document to qualify it to be a part of the resultant set.

In other words, let:

• S = {S1, S2, ..., Sn} be the set of search keywords.

• R be the resultant set containing ids of the matching documents.

• D be the document that is currently being examined..

Then, D is qualified to be part of R if at least one of the search keywords from the

set S (i.e. S1, S2, ..., Sn) is present in the document D. It is important to note that

the position in which the search keywords appear within the document is irrelevant.

If none of the search keywords is found within the document, then the document is

discarded.

Thus, for the example stated in Section 3.3, the Boolean OR query “Anthony OR

Caesar OR Brutus” results in D1, D2, D3, D4 and D5. It is because either Anthony

or Caesar or Brutus is present in at least one of the document listed in the resultant

set.
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3.5.3.1 Execution of Boolean OR Queries Using Graph-Based Index

The Boolean OR search in GBI is modelled as a series of Boolean NOT search op-

erations. This is because Boolean OR queries is a union operation, combining ids of

the documents in which any of the search keywords occurs, removing duplicate doc-

ument ids in the process. Therefore, in GBI, while processing each search keyword,

the remaining search keywords are considered to be excluded. This results in faster

duplicate removal while performing the union operation. This process of executing

a Boolean OR query in GBI is exhibited in Algorithm 6. The inputs are the set of

search keywords (S) and the hash table representing the Graph-Based Index (G). The

condition is that at least two keywords should exist in S. The output is either NULL

if none of the search keywords in S are found in GBI or the set of matching document

ids. Initially, the Boolean OR algorithm sorts set S [Line 1]. Then, for each keyword

(key1) in S, key1’s node is checked for any document ids. If it exists, then it means

that key1 shares some documents with other keywords indexed. This signifies the

potential for performing the Boolean NOT operation. The remaining keywords that

occurs after key1 in S are collected in keywords to exclude. If keywords to exclude

is empty, then that means key1 is the last keyword in S. Since no keywords are there

to exclude (after key1 in S), the document ids stored at the last keyword’s node and

in its loop (if exists) are stored in output array, and the search operation is terminated

[Line 4-11]. The document ids in key1’s loop are found by appending the number

zero (0) to the key1 to form a key (exclusive key) to identify the entry containing

the exclusive document ids for key1. If there exists an entry in G pointed by the keys
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Algorithm 6: Executing a Boolean OR query search using Graph-Based
Index

Inputs: Set of search keywords (S), hash table representing the
Graph-Based Index (G)

Output: NULL or the matching document ids.
Condition: At least two unique keywords exists in set S

1 Sort set S in ascending order
2 output← an empty array
3 foreach keyword key1 in set S do
4 if G[key1][key1] exists then
5 keywords to exclude← all the keywords occurring after key1 in S
6 if keywords to exclude is empty then

/* If key1 is the last keyword in the set S, then no more

neighbours to remove, add the document ids found in its node

to the output array */

7 add the document ids found at G[key1][key1] to output array
8 exclusive key ← append zero (0) to the key1
9 if G[key1][exclusive key] exists then

/* add document ids found in key1’s loop if exists to the

output array and terminate search */

10 add documents ids found at G[key1][exclusive key] to output
array

11 end

12 else
/* Execute Boolean NOT algorithm to remove any duplicate

documents */

13 resultant document ids← result of execution of Boolean NOT
search algorithm as mentioned in Algorithm 5 with key1 as Sk

and keywords to exclude as set of keywords to exclude (E )
14 if resultant document ids is not NULL then
15 add resultant document ids to output array
16 end

17 end

18 end
19 Algorithm 6 from line 20 to 25 on next page goes here

26 end
27 return output
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Algorithm 6: Executing a Boolean OR query search using Graph-Based
Index (continued)

20 if G[key1][key1] does not exists then
/* If key1 under consideration does not appear together with other

keywords indexed in GBI. Boolean NOT operation is avoided. Add any

documents if available on key1’s loop */

21 exclusive key ← append zero (0) to the key1
22 if G[key1][exclusive key] exists then
23 add documents ids found at G[key1][exclusive key] to output array
24 end

25 end

[key1][exclusive key], then that entry represents the document ids found in the loop

of key1. If keywords to exclude is not empty, then the Boolean NOT query algorithm

(i.e. Algorithm 5) is executed. The inputs for the Boolean NOT query algorithm, in

this case, will be as follows: the current keyword under consideration (key1) as the

keyword to be found in the document and the remaining keywords that occur after

the current keyword as a set of keywords to be excluded (keywords to exclude). If

any document ids are left (resultant document ids) after the Boolean NOT opera-

tion, then they are stored in output array [Line 12-18]. This resultant document ids

signifies the documents that contain key1 but not any of the keywords occurring after

key1 in S.

If the document ids in key1’s node are not present, then if document ids exist in

the loop of key1, it is stored in the output array [Line 20-25]. This means that key1

does not share any documents with any other keywords indexed and therefore, the

Boolean NOT operation can be avoided for this keyword. After iterating for all the

keywords in S, the document ids stored in the output array are returned [Line 27].
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The Boolean OR algorithm (i.e. Algorithm 6) execution sequence for the ex-

ample presented in Section 3.3 for the query “Anthony OR Caesar OR Brutus” is

discussed next. According to the algorithm, the input set of keywords is {Anthony,

Caesar, Brutus}. The first step is to sort the input set in ascending order which

gives {Anthony, Brutus, Caesar}. The first keyword in the sorted set Anthony is

considered. Anthony ’s node is checked for any document ids. Since document ids

exists in Anthony ’s node, possibility of Anthony sharing documents with other key-

words is confirmed. Now as per the Boolean NOT query algorithm (i.e. Algorithm 5),

the relationship between Anthony and the other remaining keywords occurring after

Anthony (Brutus and Caesar) is determined. From Figure 3.3, it is inferred that

Anthony ’s mapping has an entry for both Brutus and Caesar meaning that both are

related to Anthony. Since all the possible neighbours of Anthony are the same as

the neighbours that are to be excluded, the documents containing only Anthony are

stored in output array (in this case D5 ). Now, the second keyword in the sorted set

Brutus is considered. Brutus ’s node is checked for any document ids. Since docu-

ment ids exists in Brutus ’s node, the possibility of Brutus sharing documents with

other keywords is confirmed. Now, as per the Boolean NOT query algorithm (i.e.

Algorithm 5), the relationship between Brutus and the remaining keywords occurring

after Brutus (Caesar) is determined. From Figure 3.3, it is inferred that Brutus ’s

mapping has an entry for Caesar. Thus, Caesar is related to Brutus. Since the

number of neighbour to be eliminated (Caesar) is only half of the total number of

neighbours (Anthony and Caesar), the document ids in Brutus-Caesar ’s postings list

are directly removed from the document ids stored at Brutus ’s node giving the result
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NULL. The result is NULL because all the documents in which Brutus appears also

contain Caesar. Finally, the last keyword in the set (Caesar) is considered. Since

there are no keywords that appear after Caesar, all the document ids found in Caesar

node (i.e. D1, D2, D4 and in its loop (i.e. D3 ) are stored in the output array and

the search is terminated. The final output array containing document ids D5, D1,

D2, D4 and D3 is returned.

For executing Boolean OR queries using Inverted Index prototype developed, the

postings lists of keywords from set S are sorted in ascending order by the postings

lists size. Each smaller-sized postings lists are compared with larger-sized postings list

and duplicate document ids are removed. Finally, the postings lists of the keywords

from the set S with the duplicate document ids removed are returned as output.

3.6 Execution of Other Queries Using GBI

This section defines and describes the algorithms that were developed for other types

of queries such as neighbours of a keyword and exclusive keyword queries that can be

executed using GBI.

3.6.1 Neighbours of a Keyword Queries

The neighbours of a keyword queries are a type of queries where the resultant set con-

tains a set of keywords that co-exist with the search keyword in any of the documents
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indexed. Alternatively, let

• Ks be the search keyword.

• KI be the set of all the keywords found in the index structure except the search

keyword Ks.

• Ki be one of the keywords from the set KI that is currently being examined.

• R1 be the resultant set containing keywords that occur together with the search

keyword Ks

Then, Ki is qualified to be part of R1 if and only if Ki and Ks occur together in at

least one document. If there is no single common document between the keyword

under consideration and the search keyword, then that keyword is discarded.

Thus, for the example stated in Section 3.3, the “neighbours of a keyword query

on the keyword Brutus” yields the result Anthony and Caesar because Brutus shares

at least one document with Caesar and Anthony.

3.6.1.1 Execution of Neighbours of a Keyword Queries Using Graph-

Based Index

Algorithm 7 exhibits the execution of neighbours of a keyword query in GBI. The

inputs are the keyword (Ks) for which the neighbours should be found and the hash

table representing GBI (G). The outputs are either NULL meaning that no neighbour
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keywords exist or an array containing the keywords that share a common document

with the Ks. Initially, the Ks is checked for its existence in G. If it does not exist, then

the algorithm terminates by returning NULL [Line 2-4]. If the Ks exists in G, then for

each keyword (keyword) in G until the Ks, the Ks is checked for its existence in the

keyword’s mapping. If the Ks is found in the keyword’s mapping, then that keyword

is added to the output array (neighbours). This step retrieves all the keywords that

are related to the Ks that occurs before the Ks in GBI. [Line 5-9]. Finally, all the

keywords that are found in the Ks’s mapping are also added to the neighbours array

and it is returned [Line 10-12]. This step retrieves all the keywords that are related

to the Ks but occurs after the Ks in GBI.

A neighbours of a keyword query algorithm execution sequence for the example

stated in Section 3.3 for the keyword Brutus is discussed next. Initially, Brutus is

checked for its existence in GBI. Since the keyword Brutus exists in GBI (as shown

in Figure 3.3), a search for the keyword Brutus in all the keyword’s mapping starting

from the first keyword indexed in GBI until the keyword Brutus is initiated. Since

Anthony is the only keyword before Brutus, the keyword Brutus is checked in An-

thony ’s mapping and the keyword Brutus exists in it. Thus, the keyword Anthony is

added to the output array. After this, all the keywords found in Brutus ’s mapping

(except the entries representing Brutus ’s node and exclusive documents) are added

to the output array. Caesar is the only keyword matching this condition and hence

added to the output array. Thus, the final output array contains Anthony and Cae-

sar. In other words, Brutus shares document D1 with Anthony and Caesar and

document D4 with Caesar. These common occurrences makes Anthony and Caesar,
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Algorithm 7: Executing a neighbours of a keyword query using Graph-
Based Index

Inputs: A keyword (Ks) for which neighbours should be found, hash table
representing Graph-Based Index (G)

Output: NULL or an array containing neighbours of a keyword
1 neighbours← empty array
2 if G[Ks] does not exists then

/* If the Ks does not exists in GBI return NULL */

3 return NULL

4 end
5 foreach keyword in G starting from the beginning until Ks do

/* find all the keywords that are neighbour which appears alphabetically

before the Ks */

6 if G[keyword][Ks] exists then
7 add keyword to neighbours array.
8 end

9 end
/* Retrieve all the keywords that are neighbours which appears

alphabetically after the Ks */

10 Keywords← all the keys found in Ks’s hash table mapping except the ones
representing Ks’s node and exclusive documents

11 add Keywords to neighbours array
12 return neighbours

80



the neighbours of Brutus.

For executing neighbours of a keyword queries using Inverted Index prototype

developed, the postings lists of all the keywords indexed except for the search keyword

are compared with the postings list of the search keyword (Ks). If any common

document id is found, then that keyword is added to the neighbours list. Finally, the

output array containing the neighbours list is returned as output.

3.6.2 Exclusive Keyword Queries

Exclusive keyword queries are a type of queries where the resultant set contains the

documents in which only the search keyword appears, and no other keywords indexed

should co-exist with the search keyword. More formally, let:

• Ks be the search keyword.

• KI be the set of all the keywords found in the index structure except the search

keyword Ks.

• R be the resultant set containing ids of the matching documents.

• D be the document that is currently being examined.

Then, D is qualified to be part of R if and only if the search keyword Ks is present in

document D and no keywords from the set KI should be found in the document D.
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These queries are different from the Boolean NOT queries. In the Boolean NOT

query, only certain specified keywords should not appear with the search keyword in

the document. However, in an exclusive keyword query, all the keywords found in the

index should not co-exist with the search keyword in the document. To demonstrate

the difference, consider the example stated in Section 3.3. The Boolean NOT query

“Caesar NOT Anthony” yields D3 and D4. The “exclusive Caesar” query yields

only D3. It is because D3 is the only document which contains the search keyword

Caesar but not any of the other keywords indexed (Brutus or Anthony). The rest

of the documents which contain Caesar also contain other keywords indexed. Thus,

they are not eligible to be part of the resultant set. The same argument can be made

for the “exclusive Anthony” query which yields D5.

3.6.2.1 Execution of Exclusive Keyword Queries Using Graph-Based In-

dex

Algorithm 8 exhibits the execution of an exclusive keyword query using GBI. The

inputs are the keyword (Ks) for which the exclusive documents should be found and

the hash table representing GBI (G). The outputs are either NULL meaning that no

exclusive document exists for the Ks or an array containing the exclusive documents

for the Ks. Initially, the Ks is checked for its existence in G. If it does not exist, then

the algorithm terminates by returning NULL [Line 2-4]. If it exists in G, then the

number zero (0) is appended to the Ks to form a key (key2) that identifies the entry

containing exclusive document ids in the Ks’s mapping. If there exists an entry in
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G pointed by the keys [Ks][key2], then the document ids at that entry are returned

[Line 5-8]; otherwise NULL is returned [9-11].

Algorithm 8: Executing an exclusive keyword query using Graph-Based
Index

Inputs: A keyword (Ks) for which exclusive document ids should be found,
hash table representing Graph-Based Index (G)

Output: NULL or an array containing matching document ids
1 output← empty array
2 if G[Ks] does not exist then

/* If the Ks does not exists in GBI return NULL */

3 return NULL

4 end
5 key2← append zero (0) to the Ks

6 if G[Ks][key2] exists then
/* Collect document ids from the Ks’s loop */

7 output← document ids at G[Ks][key2]
8 return output

9 else
10 return NULL
11 end

For executing exclusive keyword queries using Inverted Index prototype developed,

the postings lists of all the keywords indexed except the search keyword are compared

with the postings list of the search keyword (Ks) and common document ids between

them are removed. If there are any resultant document ids, then they are returned

as output.
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Chapter 4

Experiments and Performance

Analysis

This chapter describes the implementation of the prototypes and the experiments

conducted on the prototypes to demonstrate the performance of GBI in comparison

to Inverted Index. The experiments are conducted for analyzing the search latency

of Boolean and the other types of queries described in Chapter 3. In addition to the

search latency, this chapter also describes the experiments for comparing the indexing

time and memory usage among GBI, Inverted Index, and Pruned GBI. Finally, this

chapter concludes by comparing the performance of GBI with that of Elasticsearch,

a popular enterprise-level search engine that uses Inverted Index.
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4.1 Prototype Implementation

A proof of concept prototype is built for GBI, Pruned GBI, and Inverted Index using

the PHP scripting language version 7.3. To implement all the three indices (GBI,

Pruned GBI, and Inverted Index) using a hash table, the PHP associative array is

used. An associative array is a type of array which holds data in key-value pair.

Array data structures are made up of hash tables in PHP [33]. Thus, the prototypes

built using an associative array are internally implemented as a hash table in PHP.

Each entry of the hash table for Inverted Index is identified by a key and an array

of values. The key is the unique keyword extracted from a document. The array of

values represents the ids of the documents from which the key (keyword) is extracted.

In GBI and Pruned GBI, extracted keywords are grouped in pairs of two and then

indexed. Thus, two keys (keywords) are used to identify an entry containing an array

of values (document ids) in which the keyword pair appears. As Pruned GBI is

targeted for executing only Boolean AND queries, only documents in which two or

more keywords can be extracted are indexed. In the case of GBI, documents resulting

in one keyword after extraction are also indexed. Thus, a separate entry in the hash

table of GBI is created to denote documents in which only one keyword is extracted.

One more entry is also created in GBI to represent each keyword node in the graph

structure to store the unique common documents ids found in the edges connecting

the node. Figures 2.2, 3.3 and 3.5 represents the hash table structure of Inverted

Index, GBI and Pruned GBI respectively.

Figure 4.1 describes the process of building GBI, Pruned GBI, and Inverted In-
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dex from the workload data. The workload data file contains the workload for the

experiment for which the index structures have to be built. The workload data file

contains a series of entries in which each entry denotes a document to be indexed.

Each entry has a set of keywords and id of the document to which the keywords

belongs to. Depending on the experiment, one or many workload data files are pos-

sible. The workload data files are read one by one to construct the index structures

by using the respective indexing algorithms of GBI, Pruned GBI, and Inverted In-

dex. Pruned GBI is a memory-optimized version of GBI built to handle only Boolean

AND queries. Thus, Pruned GBI cannot handle other search queries as efficiently as

GBI. Hence, GBI is used for all the search experiments. Pruned GBI is only used

for comparing the indexing time and memory usage with GBI and Inverted Index to

show how much memory can be saved by using Pruned GBI if only Boolean AND

queries are being executed. Therefore, Pruned GBI is only built for workloads mea-

suring indexing performance. GBI and Inverted Index are built for all the workloads

measuring both search and indexing performance. Finally, the index structures built

for a workload in the main memory is written to a file in JavaScript Object Notation

(JSON) for later use. JSON is a commonly used file format to store and transmit

data containing key-value pairs [76].
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Workload data file

PHP Inverted Index

indexing algorithm script

PHP GBI or Pruned GBI

indexing algorithm script

Inverted Index

GBI or Pruned GBI

Index data converted

to JSON string

Figure 4.1: Procedure for building prototypes using the workload data.

Figure 4.2 describes the process of executing search queries using GBI and Inverted

Index. GBI and Inverted Index data are read from their respective JSON file. The

JSON data is then converted back into Inverted Index and GBI hash table and placed

in the main memory for performing search operations. The search query algorithm to

be performed is executed using Inverted Index and GBI and the results are obtained.

Index data as

JSON string

Inverted Index in main memory

GBI in main memory Execute search queries

using GBI

Convert JSON data to

GBI hash table

Convert JSON data to

Inverted Index hash table

Execute search queries

using Inverted Index

Return the matching

document ids or keywords

Figure 4.2: Procedure for executing search queries using the prototypes.
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For measuring the time consumed for performing the search and indexing opera-

tions, PHP’s hrtime function is used to obtain the system’s high-resolution time. For

finding search latency, at the start of the search query execution, the hrtime function

is called to record the time, and then at the end of the search operation, the hrtime

function is called again to record the current time. The difference between the end

time and the start time gives the search latency. For finding the indexing latency,

the difference between the end and the start times for indexing each entry from the

workload data file is calculated using the hrtime function, and all the individual doc-

ument indexing times are added together to get the total time consumed for indexing

a set of documents. The hrtime function returns the time in nanoseconds and we

converted it to milliseconds and seconds for reporting the search and indexing laten-

cies respectively in this thesis. For obtaining the amount of main memory consumed

by the index structures, the PHP’s memory get usage function is used. The mem-

ory get usage function returns the memory in bytes and is converted to megabytes

for reporting in this thesis.

4.2 Experimental Setup

The proof of concept prototypes for GBI, Pruned GBI, and Inverted Index described

in Section 4.1 is used for experimentation. The experiments are performed on the

Carleton University Research Computing and Development Cloud (RCDC) system

[77] with the following resource specification: IBM POWER8E processor with 64 GB
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memory running Ubuntu version 18.04.4 as the operating system. Each experiment

discussed in this chapter was repeated 10 times and the resulting values were averaged

and rounded up to 2 decimal places. For a 95% confidence level, less than 5% deviation

from the mean value was observed from the multiple runs of each experiment presented

in this chapter.

4.2.1 Workload Generation

The following workloads were generated for evaluating the performance of search

queries described in Chapter 3.

4.2.1.1 Random Workload

A random workload is used for evaluating the performance of all the search queries

discussed in Chapter 3 using GBI and Inverted Index. The random workload is also

used for evaluating indexing time and memory for GBI, Pruned GBI, and Inverted

Index. Table 4.1 presents the list of parameters and their values for generating the

random workload. The default values are presented in boldface in Table 4.1. These

parameters are: total number of documents to be indexed (Dcount), number of key-

words in the search queries (SKcount), keyword pool containing an array of unique

names (Kpool), and the size of the keyword pool (Kpoolsize). Dcount is chosen in the

range of 2M to 10M and the search keywords are chosen in the range of 2 to 10 be-

cause such values are used by other researchers as well (see [25] for example). Since
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10 is the maximum number of search keywords used, it is used as a fixed keyword

pool size (Kpoolsize). For exclusive keyword and neighbours of a keyword queries, the

number of search keywords (SKcount) is always 1. For Boolean queries, all the values

of SKcount are used except 1 as Boolean queries need at least two keywords. The

default SKcount value used in Boolean queries is 4 because most Google search queries

have up to 4 keywords in length [78].

Table 4.1: Parameters for Random Workload

Parameter Values Description

Dcount 2M, 4M, 6M, 8M, 10M Number of documents indexed

SKcount 1, 2, 4, 6, 8, 10 Number of search keywords

Kpool An array of unique names Keyword pool

Kpoolsize 10 Size of keyword pool

To generate the documents needed for this workload, a fixed keyword pool, (Kpool)

is defined with unique names. A document is generated randomly by selecting the

keywords from the keyword pool. There are two integer random numbers (Xrandom

and Yrandom) involved in the process of creating a set of keywords for a document to

be indexed. The two random numbers follow a uniform distribution U(1, 10). Xrandom

specifies the number of keywords that the document will contain. Yrandom determines

which keyword from Kpool goes into that document. After generating Xrandom, a loop

is ran for Xrandom number of times. In each iteration, a random number Yrandom,

which specifies the index of the keyword in the array Kpool, is generated. Yrandom

is generated repetitively until a unique keyword is drawn from Kpool which is not

in the set of already selected keywords. Finally, a set of unique keywords for that
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document is generated after the termination of the loop. The indexing algorithm

described in Algorithm 1 is used to construct the GBI and the same set of keywords

is also used to construct the Inverted Index. This procedure is repeated for generating

Dcount documents. By checking the documents generated, it has been observed that

all the 10 keywords co-occur with each other in at least one document within the

first few documents. Thus, each of the 10 keywords has the remaining 9 keywords as

neighbours in GBI.

A factor at a time experimentation is performed using this workload: one pa-

rameter is varied while the other parameters are held at their default values. Two

experiments (Experiment A and B) of this workload have been conducted based on

varying the two workload parameters - Dcount and SKcount, one at a time. In Experi-

ment A, the number of documents indexed Dcount has been increased from 2M to 10M

in steps of 2M while SKcount is held at 4. In Experiment B, Dcount has been fixed at

6M and SKcount is increased from 2 to 10 in steps of 2. Both Experiment A and B

are conducted for evaluating the performance of Boolean queries. Since only 1 search

keyword is used in exclusive and neighbours of a keyword queries, only Experiment

A has been performed for these queries.

4.2.1.2 Relationship-based Workloads

The relationship-based workloads are only used for evaluating the search performance

of Boolean queries. This workload is created to study the impact of the relationship

among search keywords on the search performance for Boolean queries. Table 4.2
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presents the list of parameters and their values for generating the relationship-based

workloads. The Dcount and Kpoolsize values are the same as random workload. SKcount

is set as 4 as it is the default number of search keywords used for the random work-

load. We define three different type of relationship between the search keywords: No,

Partial and Full relationship. These relationships are discussed next.

No relationship: A No relationship between keywords refers to the situation in

which none of the search keywords appear together in any of the documents indexed.

Partial relationship: A Partial relationship between keywords refers to the situ-

ation in which some keywords among the entire search keyword set appear together

in one or more documents.

Full relationship: A Full relationship between keywords refers to the situation

in which all the keywords in the search keyword set appear together in one or more

documents.

Table 4.2: Parameters for Relationship-based Workload

Parameter Values Description

Dcount 2M, 4M, 6M, 8M, 10M Number of documents indexed

SKcount 4 Number of search keywords

Kpool An array of unique names Keyword pool

Kpoolsize 10 Size of keyword pool

For generating workloads for all the three relationship-based experiments, all the

10 keywords in Kpool are utilized. The ways the 10 keywords are utilized to create
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documents are described next. Dcount has been increased from 2M to 10M in steps of

2M for all the experiments. Out of 10 keywords, 6 keywords which are not used as

the search keywords appear in all the document indexed. The remaining 4 keywords

are used as search keywords. These 4 search keywords are controlled on how they can

co-appear with each other in a document. Let the 4 search keywords be Anthony,

Brutus, Caesar and Romeo. The way these 4 search keywords can co-occur within a

document based on the relationship is discussed next.

In the experiment for No relationship, the documents are created in such a way

that no search keywords among the 4 search keywords appear together in any docu-

ments. To achieve this, each of the Dcount document indexed contains only 1 of the

4 search keywords. Thus, each of the documents indexed contains 1 of the 4 search

keywords (either Anthony or Brutus or Caesar or Romeo) apart from the fixed set of

6 keywords.

In the experiment for Partial relationship, the 4 search keywords are divided into

2 keyword pairs. Let one keyword pair be (Anthony and Brutus) and other keyword

pair be (Caesar and Romeo). Each document indexed contains either (Anthony and

Brutus) or (Caesar and Romeo) with the rest of the 6 keywords such that both pairs

of keywords does not appear together in any documents out of the Dcount documents

indexed.

In the experiment for Full relationship, the documents are created in such a way

that all the 4 search keywords appear together in one or more documents. To achieve

this, the total number of documents Dcount to index is divided into 2 parts. One-half
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of the documents contain all the 4 search keywords together and the other half of

the documents contain only 2 keywords together (out of 4). This is done to avoid

all the documents indexed containing all the search keywords together. Thus, each

of the documents contains either all the search keywords “Anthony, Brutus, Caesar

and Romeo” with the rest of the 6 keywords or only “Anthony and Brutus” with the

rest of the 6 keywords.

All the documents indexed containing all the 4 search keywords is a special case

of the experiments concerning the Full relationship. For this experiment, all the

search keywords Anthony, Brutus, Caesar and Romeo appear in all the documents

indexed (Dcount). Thus, all the documents contain all the 10 keywords from the

Kpool. The motivation for doing this special experiment is to analyze how much

better a GBI performs than the Inverted Index in the worst-case scenario of all the

documents containing all the search keywords. This is the worst case because the size

of the postings list of all the search keywords (in Inverted Index) or keyword pairs (in

GBI) is equal to the total document count Dcount indexed. For example, if 2 million

documents are being indexed then all the search keywords Anthony, Brutus, Caesar

and Romeo appear in all the 2 million documents.

4.2.1.3 Workloads for Neighbours of a Keyword Queries

In this section, a special set of workloads is generated to obtain a detailed perfor-

mance insights for executing neighbours of a keyword queries with GBI and Inverted

Index. This workload is not used for any other queries. Table 4.3 presents the list
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of parameters and their values for this workload. The default values are presented

in boldface in Table 4.3. These parameters are: number of keywords in the search

queries (SKcount), keyword pool containing an array of unique names (Kpool), size of

the keyword pool (Kpoolsize), the total number of keywords found in both GBI and

Inverted Index except the search keyword (KIcount), the number of keywords (neigh-

bours) that co-occur with the search keyword (Ncount), and the point of neighbourhood

(Pn). Point of neighbourhood or the point of co-occurrence defines the number of doc-

ument ids to be compared between the postings list of search keyword and the other

keyword to confirm that they are neighbours. At the end of Pn comparisons, we get

the id of the document in which the search keyword and the neighbour keyword has

made their first appearance together.

Neighbours of a search keyword query has only one search keyword hence the

value of SKcount is always 1. Neighbours of a keyword queries can be used in ERP

applications where an item could be associated with thousands of products. That is

the reason for choosing the Kpoolsize as 10,001 and Ncount in the range of 2K to 10K.

It is 10,001 because a maximum of 10,000 possible neighbours can be created for the

search keyword plus the number of search keywords which is 1. When indexing a large

number of documents, any two keywords can appear together in the very first docu-

ment or the last document indexed. Since we are considering millions of documents,

20K to 100K seems to be a moderate range of values for point of neighbourhood.

Four types of experiments are conducted (Experiment A, B, C, D). The workloads

for these experiments are discussed next. For demonstrating the workloads, let us
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Table 4.3: Parameters for Neighbours of a Keyword Query Workload

Parameter Values Description

Kpool An array of unique names Keyword pool.

SKcount 1 Number of search keywords.

Kpoolsize 10001 Size of keyword pool.

KIcount 2K, 4K, 6K, 8K, 10K Total number of keywords found in the index except the search keyword.

Ncount 2K, 4K, 6K, 8K, 10K Neighbour count of the search keyword.

Pn 20K, 40K, 60K, 80K, 100K Point of neighbourhood.

consider the search keyword to be Romeo.

In Experiment A, Ncount and KIcount are fixed to their default values of 2K and

Pn is varied from 20K to 100K. To generate the workloads for this experiment, 2K

unique keywords are selected from Kpool containing 10,001 keywords. In addition to

2K keywords, one more keyword is chosen for being a search keyword. The 2000

keywords are selected in such a way that 1000 keywords appear alphabetically earlier

than the search keyword and the other 1000 keywords appear alphabetically later than

the search keyword. For example, the keyword Santos appears alphabetically later

than the search keyword Romeo, and the keyword Anthony appears alphabetically

earlier than the search keyword Romeo. Each of 2000 keywords has a postings list size

equal to Pn and will co-occur with the search keyword Romeo in the last document

in its postings list. For example, if Pn is chosen as 20K, then each of the 2000

keyword will have 20,000 documents in its postings list and appear together with the

search keyword (Romeo) at the 20,000th document (last document) in its postings list.

Thus, to check whether a keyword is related to Romeo, 20,000 document ids should be

compared to confirm the neighbourhood (co-occurrence). The goal of this experiment

is to investigate the effect of Pn on the execution of neighbours of a keyword query
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using Inverted Index and GBI. This experiment shows how GBI and Inverted Index

search latency is affected by delaying the co-occurrence of keywords with the search

keyword in the documents indexed.

In Experiment B, Ncount and KIcount is varied from 2K to 10K in steps of 2K and

Pn is fixed to its default value of 60K. To generate workloads for this experiment,

Ncount keywords are selected from Kpool containing 10,001 keywords. At any given

time, the entire index structure contains only the search keyword and the chosen

Ncount keywords. Each of the Ncount keywords has a postings list size equal to Pn

which is 60K and will co-occur with Romeo at its last document in its postings list.

For example, if Ncount is chosen as 2K, then each of the 2000 keywords will appear

together with the search keyword (Romeo) at the 60,000th document in its postings

list. Thus, to check whether a keyword is related to Romeo, 60,000 document ids

should be compared to confirm neighbourhood (co-occurrence). The goal of this

experiment is to study the effect of Ncount and KIcount on the execution of neighbours

of a keyword query with Inverted Index and GBI.

In Experiment C, Ncount and Pn are fixed to their default values of 2K and 60K

respectively and KIcount is varied from 2K to 10K in steps of 2K. To generate workloads

for this experiment, KIcount keywords are selected from the keyword pool (Kpool) along

with the search keyword for indexing. The keywords are chosen in such a way that

all the keywords appear alphabetically later than the search keyword Romeo. Out of

the KIcount keywords selected, only 2000 keywords will be selected as neighbours and

the remaining keywords will be non-neighbours. Documents are generated in such
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a way that each of the 2000 neighbour keywords appears together with Romeo at

the 60,000th document indexed. The size of the postings list for the remaining non-

neighbour keywords is also equal to the default value of Pn. Thus, to check whether

a keyword is neighbour to Romeo or not, 60,000 document ids should be compared to

confirm the neighbourhood (co-occurrence). The goal of this experiment is to study

the effect of KIcount on the search latency achieved by GBI when all the keywords

indexed are alphabetically later than the search keyword.

Experiment D is similar to Experiment C except for the fact that keywords are

chosen from the keyword pool such that all the keywords appear alphabetically earlier

than the search keyword Romeo. The goal of this experiment is to study the effect

of KIcount on the search latency achieved by GBI when all the keywords indexed are

alphabetically earlier than the search keyword.

4.2.2 Performance Metrics

Table 4.4 describes the performance metrics used in the experiments conducted.

Three performance metrics are collected: Ts, Ti and Mi. A definition of each metric

is provided next.

• Ts: The search latency associated with the queries execution. It is the differ-

ence between the end and start times of the search algorithm used in GBI and

Inverted Index.
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Table 4.4: Performance Metrics

Parameter Description Unit

Ts Average time consumed for executing a query milliseconds (ms)

Ti Average time consumed for indexing a set of documents seconds (s)

Mi Amount of main memory consumed Megabytes (MB)

• Ti: The latency associated with indexing a set of documents. To calculate Ti,

the difference between the end and the start times for indexing each document

is calculated and all the differences are added to get the final value.

• Mi: It is the difference between the amount of memory consumed before and

after indexing a set of documents using GBI and Inverted Index in the main

memory.

Note that a log scale has been used for the Y-axis in some of the figures presented in

this chapter.

4.3 Experiments for Boolean Queries

This section presents the search performance analysis for Boolean queries in GBI and

Inverted Index using random and relationship-based workloads.
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4.3.1 Boolean AND Queries

4.3.1.1 Analysis of the Search Latency Using Random Workload

Figure 4.3 shows the result of Experiment A. As Dcount increases, the search time

(Ts) for Inverted Index is increasing at a much faster rate compared to GBI. This

is because as Dcount increases, there is a sharp growth in the size of the smallest

postings list among all the search keywords postings lists in Inverted Index. This

leads to the comparison of more document ids resulting in increased search time.

Even if postings list for each search keyword pairs also grows with Dcount in GBI,

only a single intersection operation is needed between 4 search keywords as discussed

in Section 3.5.1.1. This leads to a lower search time in GBI. Thus, GBI shows an

average improvement of 70% over Inverted Index in this experiment.
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Figure 4.3: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Inverted Index when the number of search keyword (SKcount) is kept at
the constant value of 4 for a Boolean AND query.

In the case of Experiment B, Figure 4.4 shows that for any given SKcount, GBI

is performing better than Inverted Index. The search time (Ts) is almost negligible

(around 0.03 ms) for GBI with a search latency improvement of 99.9% when there

are only two keywords involved. This is because the ids of the documents are stored

in keyword pairs so a single direct access (hash table lookup) gives the result in

GBI. For SKcount > 2, as the number of search keyword increases, the number of

intersection operations increases in Inverted Index resulting in higher search time

latency. Although the number of intersection operations increases in GBI as well,

it will always be lower than Inverted Index as discussed in Section 3.5.1.1. This

results in GBI performing well even when the number of search keywords increases.

For SKcount > 2, the average overall improvement in GBI is 62% in comparison to
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Inverted Index.
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Figure 4.4: Effect of number of search keywords (SKcount) on the search time (Ts) in
GBI and Inverted Index when number of documents indexed (Dcount) is kept at the
constant value of 6M for a Boolean AND query.

4.3.1.2 Analysis of the Search Latency Using Relationship-based Work-

loads

Figure 4.5 shows the performance of GBI and Inverted Index when the search key-

words do not appear together in any of the documents indexed (i.e. the No relation-

ship). For a given Dcount, GBI shows a significant performance improvement of 99.9%

over Inverted Index with a negligible search time (Ts) of around 0.02 ms. This high

performance is because GBI checks whether all the search keywords occur together

in any of the documents before performing an intersection. Checking for the simulta-

neous occurrence of two keywords in a document (connection between two keywords)
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is a hash table lookup in GBI. Since there is no simultaneous occurrence of any of

the search keywords, GBI stops further action and does not perform any intersection

operation. If there are more connections between keywords to check, then the execu-

tion time for GBI increases. Since hash table lookup takes a negligibly small amount

of time, the search time for checking more connections will not increase significantly.

As the number of search keyword is kept at a constant value of 4, the number of

connections to check remains the same. Thus, a similar time is observed for GBI for

different values of Dcount. With Inverted Index, the execution time for Boolean AND

queries depend on the size of the smallest postings list among the search keywords.

As the total number of documents indexed (Dcount) increases, the size of the smallest

postings list also increases leading to an increase in the search time for Inverted Index.
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Figure 4.5: Effect of number of documents indexed (Dcount) on the search time (Ts) in
GBI and Inverted Index for a workload with No relationship among search keywords
for a Boolean AND query.
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Figure 4.6 shows the performance of GBI and Inverted Index when some of the

search keywords appear together in one or more documents indexed (i.e. the Partial

relationship). For a given Dcount, Once again, GBI shows a significant performance

improvement of 99.9% over Inverted Index with a search time of around 0.03 ms.

Since some of the keywords do not appear together in any of the documents, no

common document is possible for all the search keywords. Hence, no further action is

required with GBI and the search is terminated. With Inverted Index, the execution

time depends on how many keywords among the search keywords set appear together

in a document. If more keywords are appearing together in many documents, then

Inverted Index takes more time to perform the intersection.
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Figure 4.6: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Inverted Index for a workload with Partial relationship among search
keywords for a Boolean AND query.

Figure 4.7 shows the performance of the GBI and Inverted Index when all the
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search keywords occur together in some of the documents indexed (i.e. the Full rela-

tionship). Figure 4.8 corresponds to the special case of the Full relationship exper-

iment where all the search keywords appear in all the documents indexed. In both

Figures, for any given value of Dcount, GBI shows a better performance over Inverted

Index. This is because intersections in GBI are done in pairs and so the number of

intersections performed is only one as opposed to three intersections performed with

Inverted Index as discussed in Section 3.5.1.1. In both the cases, the performance

improvement achieved by GBI is becoming much more evident for larger values of

Dcount with an overall average improvement of approximately 67%.
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Figure 4.7: Effect of number of documents indexed (Dcount) on the search time (Ts) in
GBI and Inverted Index for a workload with Full relationship among search keywords
for a Boolean AND query.
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Figure 4.8: Effect of number of documents indexed (Dcount) on the search time (Ts) in
GBI and Inverted Index for a workload with Full relationship among search keywords
in which all the search keywords appear in all the documents indexed for a Boolean
AND query.

4.3.2 Boolean NOT Queries

4.3.2.1 Analysis of the Search Latency Using Random Workload

For Experiment A, Figure 4.9 shows that Ts for Inverted Index is higher than Ts

for GBI. This is because Inverted Index does not have knowledge about the common

documents for any two keywords indexed. It has to iterate through the entire postings

list to check and remove the necessary document ids. As Dcount increases, there will

be a growth in the size of the postings list of all the search keywords. This leads

to iterating through more documents ids to check and remove. Hence it leads to
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more search latency in Inverted Index. In case of GBI, common document ids for

any two keywords are stored separately as well. This helps in iterating over common

document ids and removing them instead of iterating the entire postings lists of search

keywords. This helps lower the search time for Boolean NOT queries execution in

GBI. GBI shows an average improvement of 28% in comparison to Inverted Index for

Experiment A.
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Figure 4.9: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Inverted Index when the number of search keyword (SKcount) is kept at
the constant value of 4 for a Boolean NOT query.

For Experiment B, Figure 4.10 also shows that GBI is performing better than

Inverted Index. It is due to the same reason of knowing exactly what document

ids to be removed instead of iterating through the entire postings list of the search

keywords. The interesting point to note is that search time (Ts) is negligible (0.04

ms) for GBI when all the ten keywords are involved in a Boolean NOT query. To
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explain this, consider a Boolean NOT query in which the search keyword Anthony is

to be present in the document and nine search keywords E1, E2, ..., E9 should not be

present in the document. Also, let us assume that Anthony appears either alone or

with one of the nine keywords in any document indexed. This means that Anthony is

not associated with any other keyword other than these nine keywords. GBI performs

an optimized execution where instead of removing common documents ids for E1 and

Anthony, E2 and Anthony and so on. It directly returns the ids of the document

in which only Anthony exists. This is possible because GBI checks whether all the

keywords to be excluded is equal to the total number of neighbours of the search

keyword before performing Boolean NOT operation as discussed in Section 3.5.2.1.

Thus, GBI performs significantly better with an overall improvement of 99.9% when

returning the documents which should not contain any of the neighbours of a search

keyword. Recall from Section 3.1 that a neighbour of a keyword X is the keyword

that is modeled by a (neighbouring) node that is directly connected to the node

corresponding to X in the graph structure of GBI. For SKcount ! = 10, the average

overall improvement in GBI is 28% in comparison to Inverted Index.
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Figure 4.10: Effect of number of search keywords (SKcount) on the search time (Ts) in
GBI and Inverted Index when number of documents indexed (Dcount) is kept at the
constant value of 6M for a Boolean NOT query.

4.3.2.2 Analysis of the Search Latency Using Relationship-based Work-

loads

Figure 4.11 shows the performance of GBI and Inverted Index when the search key-

words do not appear together in any of the documents indexed (i.e. the No relation-

ship). GBI shows a significant performance improvement of 99.9% over Inverted Index

having a negligible search time (Ts) of around 0.02 milliseconds. This high perfor-

mance improvement is because GBI checks whether the search keywords that are not

to be found are neighbours of the search keyword that is to be found in a document

before performing Boolean NOT operation. Checking whether any two keywords are

neighbours is a hash table lookup in GBI. Since there is no simultaneous occurrence
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of the search keywords in any of the documents indexed, GBI directly returns all the

document ids in which the search keyword that is to be present appears. To illustrate

this performance gain of GBI, consider the Boolean NOT query in which the search

keyword Anthony should be present whereas the search keywords Caesar or Brutus

or Romeo should not be present in the document. According to the workload for No

relationship experiment, Anthony does not co-occur with any other search keywords

(Caesar or Brutus or Romeo). GBI using its relationship knowledge finds that no

common document ids are possible between the search keywords. Hence, GBI directly

returns the ids of the documents in which Anthony appears and terminates the search.

With Inverted Index, the knowledge of relationship among the search keywords is not

present. Therefore, Inverted Index being unaware that there is no common document

ids between the search keywords compares the postings list of Anthony with all the

remaining search keywords postings lists to check and remove any common document

ids. This leads to increased search time for Inverted Index.

110



0.02 0.02 0.02 0.02 0.02

40.09

80.74
121.62

160.77 201.43

0.01

0.1

1

10

100

1000

2 4 6 8 10

S
ea

rc
h

 T
im

e 
-

T
s 
(m

s)

Number of documents indexed - Dcount (in Millions)

GBI Inverted Index

Figure 4.11: Effect of number of documents indexed (Dcount) on the search time (Ts) in
GBI and Inverted Index for a workload with No relationship among search keywords
for a Boolean NOT query.

Figure 4.12 shows the performance of GBI and Inverted Index when some of the

search keywords appear together in one or more documents indexed (i.e. the Partial

relationship). GBI shows an average performance improvement of 30% over Inverted

Index. To illustrate this performance gain of GBI, consider the Boolean NOT query

in which the search keyword Anthony should be present whereas the search keywords

Caesar or Brutus or Romeo should not be present in the document. According to

the workload for the Partial relationship experiment, apart from the fixed set of

keywords, Brutus is the only search keyword that appears with Anthony. Neither

Caesar nor Romeo appears with Anthony in any document indexed. GBI, by using

hash table lookup, checks the different neighbours of Anthony and finds that Brutus

is the only neighbour among the search keywords that are to be removed. Therefore,
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GBI removes only the common document ids between Anthony and Brutus. GBI does

not care about the other search keywords Caesar or Romeo because it finds that these

keywords are not neighbours of Anthony and so no common document exists. Thus,

the knowledge of relationship among the search keywords in GBI leads to a reduced

search latency for GBI. Since this relationship knowledge is not present in Inverted

Index, the search operation in Inverted Index compares Anthony ’s postings list with

the postings lists of other search keywords (Romeo or Caesar) instead of directly

comparing with only Brutus ’s postings list resulting in increased search latency.
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Figure 4.12: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Inverted Index for a workload with Partial relationship among search
keywords for a Boolean NOT query.

Figure 4.13 shows the performance of GBI and Inverted Index when all the search

keywords occur together in some of the documents indexed (i.e. the Full relationship).

Figure 4.14 shows a special case of the Full relationship category where all the search
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keywords appear in all the documents indexed. In both the figures, for any given

Dcount, GBI shows a comparable performance with Inverted Index. For the workload

of Full and the special case of Full relationship, Anthony appears in all the documents

in which Brutus, Romeo, and Caesar appear together. There is no document in

which the search keywords (Anthony or Brutus or Romeo or Caesar) alone appears.

Thus, the Boolean NOT operation for both of the workloads results in NULL. Since

the total number of document ids to process for removing common document ids

and the number of times the common document ids has to be removed among the

search keywords postings lists remains the same for both Inverted Index and GBI,

the comparable performance between the two techniques in this case is expected.
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Figure 4.13: Effect of number of documents indexed (Dcount) on the search time (Ts) in
GBI and Inverted Index for a workload with Full relationship among search keywords
for a Boolean NOT query.
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Figure 4.14: Effect of number of documents indexed (Dcount) on the search time (Ts) in
GBI and Inverted Index for a workload with Full relationship among search keywords
in which all the search keywords appear in all the documents indexed for a Boolean
NOT query.

4.3.3 Boolean OR Queries

4.3.3.1 Analysis of the Search Latency Using Random Workload

The results of Experiment A and B are shown in Figure 4.15 and Figure 4.16 respec-

tively. In both the Figures (4.15 and 4.16), it can be seen that for a given Dcount,

search time (Ts) for Inverted Index is higher in comparison to Ts for GBI. This is

because, in Inverted Index, the union operation is performed between individual post-

ings lists of the search keywords to get the resultant document ids. A union operation

involves removal of duplicates between the postings lists of the search keywords and
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Inverted Index requires additional time for iterating through all the document ids in a

postings list to check for duplicates and remove them. In Inverted Index, as Dcount in-

creases, the size of the postings list of all the search keyword increases. This results in

more document ids to be checked for duplicates when performing the union operation

between all the postings lists. In the case of GBI, the exact duplicates to be removed

from the postings lists are know apriori. This is possible because GBI also stores the

ids of the common document (if any) between any two keywords indexed. This setup

leads to iterate over only the duplicate elements to be removed instead of iterating

over the entire postings list resulting in reduced search latency in GBI as explained

in Section 3.5.3.1. In Experiment B, as the number of search keyword increases, more

number of union operations are performed leading to a increase in search time in both

GBI and Inverted Index. When SKcount = 10, the search keyword count is equal to

the total number of keywords found in the index. Therefore, the search operation

results in returning all the document ids indexed. As discussed in Section 3.5.3.1,

GBI does not perform duplicate removal process when all the document ids found

in the search keyword’s node have to be removed instead GBI directly returns the

document ids in which only the search keywords alone appears in. This happens

when all the document ids shared between search keyword and all its neighbours has

to be removed. This optimization helps GBI to have lower search time than Inverted

Index in this case. Thus, GBI shows a average improvement of 28% in comparison to

Inverted Index in both Experiment A and B.
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Figure 4.15: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Inverted Index when the number of search keyword (SKcount) is kept at
the constant value of 4 for a Boolean OR query.
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Figure 4.16: Effect of number of search keywords (SKcount) on the search time (Ts) in
GBI and Inverted Index when number of documents indexed (Dcount) is kept at the
constant value of 6M for a Boolean OR query.
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4.3.3.2 Analysis of the Search Latency Using Relationship-based Work-

loads

Figure 4.17 shows the performance of the GBI and Inverted Index when the search

keywords do not appear together in any of the documents indexed (i.e. the No rela-

tionship). GBI shows a significant performance improvement (99.9%) over Inverted

Index with a negligible search time (Ts) of around 0.02 ms. This high performance

of GBI is because it checks whether any of the search keywords appear together in

any of the documents before performing a union operation. Checking for the simul-

taneous occurrence of two keywords in a document is a hash table lookup in GBI.

Since there is no simultaneous occurrence of any of the search keywords, there is no

duplicates to remove so GBI does not perform any union operation. GBI directly

returns the ids of all the documents in which each of the search keywords appears

in. For Inverted Index, the execution time for Boolean OR queries depend on the

size of all the postings lists except for the largest postings list. As the total number

of documents (Dcount) indexed increases, the size of the postings lists also increases

resulting in more document ids to be compared for removing duplicates. This leads

to an increase in the search time for Inverted Index.
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Figure 4.17: Effect of number of documents indexed (Dcount) on the search time (Ts) in
GBI and Inverted Index for a workload with No relationship among search keywords
for a Boolean OR query.

Figure 4.18 shows the performance of GBI and Inverted Index when some of the

search keywords appear together in one or more documents indexed (i.e. the Partial

relationship). GBI shows a performance improvement of around 29% over Inverted

Index. Since some of the keywords do not appear together in any of the documents,

only the duplicate document ids for the related keywords are removed to eliminate

duplicates while performing the union operation. To explain this performance gain

in GBI, consider the example stated for the description of Partial workload in Sec-

tion 4.2.1.2, Anthony and Brutus appear together in some documents and Romeo

and Caesar appear together in the remaining documents. The GBI technique finds

that Anthony is connected with only Brutus and not with any other search keywords

(Romeo or Caesar). Similarly Romeo appears with only Caesar and does not appear
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with either Anthony or Brutus. Therefore, in GBI, a Boolean OR operation between

Anthony, Brutus, Romeo and Caesar involves removing only the duplicate document

ids between Anthony and Brutus and between Romeo and Caesar. The reduction in

number of search keyword’s postings lists to compare for removing duplicates leads to

lower search time in GBI. With Inverted Index, this knowledge of relationship is not

present. Hence, Anthony ’s postings list will be compared with the rest of the search

keywords (Brutus, Romeo, and Caesar) postings lists and again, Brutus ’s postings

list will be compared with Caesar and Romeo and so on. Thus, the execution time

depends on how many keywords among the search keyword set appear together in a

document. If a higher number of search keywords are appearing together in many

documents indexed, then Inverted Index takes more time to perform the union opera-

tion as the entire postings lists of all the search keywords has to be compared leading

to an increased time spent on duplicate removal process.
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Figure 4.18: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Inverted Index for a workload with Partial relationship among search
keywords for a Boolean OR query.

Figure 4.19 shows the performance of GBI and Inverted Index when all the search

keywords occur together in some of the documents indexed (i.e. the Full relationship).

Figure 4.20 shows a special case of the Full relationship category where all the search

keywords appear in all the documents indexed. In both the figures, for any given

Dcount, GBI shows a comparable performance with Inverted Index. For the workload

of Full and special case of Full relationship, the search keyword Anthony, Brutus,

Romeo, and Caesar always appear together in some or all of the documents indexed

respectively. Therefore, in this case, the total number of duplicate document ids to

remove remains the same for both Inverted Index and GBI. This is the reason for the

comparable performance between the two techniques.
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Figure 4.19: Effect of number of documents indexed (Dcount) on the search time (Ts) in
GBI and Inverted Index for a workload with Full relationship among search keywords
for a Boolean OR query.
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Figure 4.20: Effect of number of documents indexed (Dcount) on the search time (Ts) in
GBI and Inverted Index for a workload with Full relationship among search keywords
in which all the search keywords appear in all the documents indexed for a Boolean
OR query.
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4.4 Experiments for Neighbours of a Keyword

Queries

4.4.1 Analysis of the Search Latency Using Random Work-

load

The results of Experiment A from the random workload for the neighbours of a

keyword query can be seen in Figure 4.21. In GBI, the search time for the neighbours

of a keyword query does not depend on the number of documents indexed rather

on the number of keywords found in GBI. In other words, the search time for GBI

depends on the number of incoming and outgoing edges incident on/from the search

keyword node in the graph structure of GBI. According to the random workload

described in Section 4.2.1.1, there can be 9 keywords that can be connected to the

search keyword for any given value of Dcount. Since the number of neighbours of the

search keyword remains the same for different values of Dcount, the search time in

GBI also remains the same. For Inverted Index, the search time depends on the total

number of keywords found in Inverted Index as well as how soon the keywords co-

occur with the search keyword in the indexed documents. For the random workload,

by checking the documents generated for different values of Dcount, it is found that the

10 keywords in the Kpool used to generate the documents are co-occurring with each

other within the first few documents itself. As the keywords found in the Inverted

Index are co-occurring soon with the search keyword for different values of Dcount,
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the search time remains the same. Since the number of edges (hash table entries) to

check in the case of GBI and the number of document ids to compare in the case of

Inverted Index is almost similar, the search time obtained by using both GBI and

Inverted Index appears to be the same for any given value of Dcount.
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Figure 4.21: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Inverted Index for a neighbours of a keyword query.

4.4.2 Analysis of the Search Latency Using Workloads for

Neighbours of a keyword Queries

In all the four experiments conducted in this category, GBI performs significantly

better than Inverted Index with an average overall improvement of 99%.

For Experiment A, Figure 4.22 shows that Ts for GBI is constant around 0.18 ms.

This shows that the point of neighbourhood (Pn) does not affect the time needed for
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the execution of neighbours of keyword queries in GBI. This is because GBI checks

whether two keywords are neighbours by using a hash table lookup for the existence

of keys representing the keywords. Thus, checking for the neighbourhood in GBI is

not based on the ids of the documents in which the keywords occur together. In the

case of Inverted Index, as Pn increases, the search time also increases. This is because

Inverted Index does not have the advantage of a hash table lookup for finding whether

two keywords are neighbours. It has to iterate through all the document ids of the

postings list of one of the keywords to find which document id is matching with the

document id of the other keyword’s postings list. This means that sooner the search

keyword and neighbouring keywords occur together in the document indexed, faster

the result is obtained for Inverted Index.
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Figure 4.22: Evaluation of search time (Ts) in GBI and Inverted Index when Pn is
varied from 20K to 100K, keeping KIcount and Ncount fixed to 2K for a neighbours of
a keyword query.
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For Experiment B, Figure 4.23 shows that Ts for GBI is increasing with an increase

in Ncount but it still has a negligibly smaller value in comparison to Inverted Index

for any given Ncount. This is again because GBI takes advantage of hash table lookup

to check whether two keywords are neighbours. As the number of keywords to check

for neighbourhood increases, the number of hash table lookups also increases leading

to an increase in search time. Since hash table lookup takes a very small time to

check for an entry in the hash table, the increase in search time is not significant in

comparison to Inverted Index. In the case of Inverted Index, to determine whether

more keywords as neighbours or not, more postings lists comparisons have to be made,

resulting in very high search time.
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Figure 4.23: Evaluation of search time (Ts) in GBI and Inverted Index when Ncount

and KIcount is varied from 2K to 10K, keeping Pn fixed to 60K for a neighbours of a
keyword query.

For Experiment C, Figure 4.24 shows that Ts achieved by GBI for any given
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value of KIcount, is constant around 0.2 ms. In this case, all the neighbours of the

search keyword appear lexicographically later than the search keyword. As per the

GBI structure, all the neighbours which appear alphabetically later than the search

keyword appears in the search keyword’s hash table. Hence, a simple traversal of keys

on the search keyword’s hash table gives the result. Since the number of neighbours

remains at the constant value of 2000, the number of neighbours found in the search

keyword’s hash table will be the same for different values of KIcount. Hence, the time

it takes to traverse the 2000 keys is the same for different values of KIcount. Thus, if

all the neighbours of a search keyword appear after the search keyword in GBI, the

total number of keywords found in the index (KIcount) does not affect the search time

for finding the neighbours of a keyword using GBI.
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Figure 4.24: Evaluation of search time (Ts) in GBI and Inverted Index when KIcount
is varied from 2K to 10K such that all the keywords occur after the search keyword in
GBI, keeping Pn fixed to 60K and Ncount to 2K for a neighbours of a keyword query.
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For Experiment D, Figure 4.25 shows that Ts for GBI is increasing in much smaller

value in comparison to Inverted Index. Since all the keywords found in the index

appear alphabetically earlier than the search keyword, GBI has to visit all keywords

hash table to check whether the search keyword is present or not. As the total number

of keywords found in the index grows, the number of hash table to check also increases.

Therefore, there is an increase in search time. In this case, KIcount affects the query

search time for GBI but the hash table lookup time is so small it is still much better

than that for Inverted Index.

In the case of Inverted Index, it does not matter whether all the keywords appear

before or after the search keyword in the index structure. All the keywords postings

lists have to be compared to the search keyword’s postings list to find out the neigh-

bours. Thus, an increase in KIcount increases the number of keywords postings lists

to be compared, increasing the overall search time for Inverted Index.
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Figure 4.25: Evaluation of search time (Ts) in GBI and Inverted Index when KIcount
is varied from 2K to 10K such that all the keywords occur before the search keyword
in GBI, keeping Pn fixed to 60K and Ncount to 2K for a neighbours of a keyword query.

4.5 Experiment for Exclusive Keyword Queries

4.5.1 Analysis of the Search Latency Using Random Work-

load

In the experiment for evaluating the performance of exclusive keyword queries using

GBI and Inverted Index, the number of documents indexed Dcount has been increased

from 2M to 10M in steps of 2M. The exclusive keyword queries return the documents

in which only the search keyword (Anthony) appears, and no other keywords found in

the index appear together with the search keyword in those documents. The search

128



time for the execution of exclusive keyword query using GBI and Inverted Index is

shown in Figure 4.26. As can be inferred from the figure, Ts for GBI is on average

around 0.01 ms. This low search latency is due to the fact that exclusive documents

are stored separately for each search keyword in the underlying graph structure of

GBI. The exclusive documents for Anthony can be obtained by looking up Anthony ’s

hash table. Since a single hash table lookup is enough to find the exclusive documents

for a search keyword, the search time is constant and does not depend on Dcount. In the

case of Inverted Index, the search keyword’s postings list should be compared with

all the remaining postings lists in Inverted Index until all the common documents

are removed. The remaining document ids are returned as the results. As Dcount

increases, the size of the search keyword’s postings list also increases. This in turn

increases the number of document ids to be compared resulting in increased search

latency. Thus, for this workload an overall improvement of 99.9% over Inverted Index

is achieved by GBI.
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Figure 4.26: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Inverted Index for a exclusive keyword query.

4.6 Experiments for Analyzing the Indexing Per-

formance in GBI, Pruned GBI, and Inverted

Index

4.6.1 Workload for Analyzing the Indexing Performance

The random workload described in Section 4.2.1.1 is also used here for comparing

the indexing performance of GBI, Pruned GBI, and Inverted Index. The size of the

keyword pool (Kpoolsize) is fixed to 10 and number of documents indexed (Dcount) is

varied from 2 to 10 million. The goal of the experiment is to measure time and
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memory consumed by GBI, Pruned GBI, and Inverted Index when the number of

documents indexed increases.

4.6.2 Analysis of the Indexing Performance

The time and memory consumed by all three indices are shown in Figure 4.27 and

Figure 4.28 respectively.

It is observed that Inverted Index is performing better than the other two tech-

niques (GBI and Pruned GBI) both in terms of indexing time and memory usage.

This is evident as in Inverted Index, each keyword extracted from a document is

stored individually with its postings list. But in the case of GBI and Pruned GBI,

relationships are established in pairs of two keywords. Thus, there will be a post-

ings list for every such keyword pairs. For n keywords (nodes), the number of edges

needed in Pruned GBI is nC2 (n choose 2). For GBI, it is nC2 plus one for the edge

representing the self-loop of the node. In addition to these edges, for all the keyword

nodes, GBI also collects documents ids from all its edges (except the one for self-

loop) and stores it in the node. GBI and Pruned GBI take time to create and form

connections between these keywords and hence the increase in time and memory. For

any given Dcount, Ti and Mi achieved with GBI and Pruned GBI is higher than that

of achieved with Inverted Index.
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Figure 4.27: Effect of number of documents indexed (Dcount) on the indexing time
(Ti) for GBI, Pruned GBI, and Inverted Index.

From Figure 4.28, it can also be noted that the memory usage is the same for the

Pruned GBI for Dcount ranging from 6M to 10M. This can be explained in terms of

hash table resizing. To accommodate more data, the hash table uses strategies like

doubling or increasing the size in the power of two to avoid resizing often [33]. This

exponential increase in size provides the capacity for more data. It is because of the

same reason, there is a huge size difference between the Pruned GBI and Inverted

Index at Dcount = 6M. Also, it can be observed that the memory consumed by GBI

is almost equal to the sum of memory consumed by Pruned GBI and Inverted Index.

The difference between GBI and Pruned GBI is that GBI also stores the document

ids in the keyword node and the keyword node’s self-loop. The document ids found

in the keyword node and its self-loop when combined forms a set of document ids

that are similar to the one found in the postings list of the same keyword found in
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Figure 4.28: Effect of number of documents indexed (Dcount) on the indexing memory
(Mi) for GBI, Pruned GBI, and Inverted Index.

Inverted Index. Thus, GBI is essentially a combination of Inverted Index and Pruned

GBI. The Mi obtained for GBI demonstrates this fact.

Thus, the significant reduction in search time of GBI and Pruned GBI comes at

the cost of spending more time and memory for performing the indexing operations.

GBI is nevertheless preferable to Inverted Index in the common use case where the

number of times an indexing operation is performed is far less frequent than the

search operations.
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4.7 Performance Comparison between GBI and

Elasticsearch

Elasticsearch is a popular search engine built using Apache Lucene1. It is used as

an important back-end component in tech companies like Netflix and Tinder [79]. It

provides full-text searching capabilities and uses Inverted Index as its index structure.

In the remainder of this section, the performance of GBI is compared with that of

Elasticsearch for Boolean queries.

4.7.1 Elasticsearch Setup

The Elasticsearch version 7.62 is used for experimentation. The heap memory re-

quired for the Elasticsearch instance to run is set to 30 Gigabytes as recommended3.

Elasticsearch-PHP client API is used to send requests to and receive responses from

Elasticsearch. OpenJDK version 11 is used in the system and G1 garbage collection

is enabled for Elasticsearch. Memory for Elasticsearch is allocated in such a way that

more memory has been allocated to the younger generation of JVM heap so that

minor garbage collection is avoided [80]. In addition to this setup, Elasticsearch log

file is also continuously monitored for any major garbage collection activity when ex-

ecuting a search query. If the garbage collection activity is observed in the log, then

the Elasticsearch is shut down and restarted to completely wipe the heap memory

1https://www.elastic.co/what-is/elasticsearch
2https://www.elastic.co/downloads/elasticsearch
3https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
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allocated for Elasticsearch. Then, the search query is executed again on the restarted

Elasticsearch. This ensures that the garbage collection does not affect the search

time.

Elasticsearch is a distributed search engine. Hence, index in Elasticsearch is usu-

ally split into smaller units known as shards that are distributed across multiple

computing nodes. Replicas are the duplicates of shards created for redundancy pur-

poses [81]. Since Elasticsearch is used for performance evaluation, it is deployed in

single computing node with only one shard and no replicas. Elasticsearch, by default,

stores document id, keyword frequencies, and position of the keyword in the document

in its Inverted Index. Since we are executing only Boolean queries, Elasticsearch is

configured to store only document ids in its Inverted Index.

Elasticsearch, by default, enables scoring of the results and returns only the top

ten results. The results also contain source data from which the keywords are ex-

tracted. For the experiments performed in this research, the scoring of the document

is disabled and Elasticsearch is configured to return all the matching document ids

at once ignoring the source data. Caching of the search results is also disabled in

Elasticsearch to get consistent results while running an experiment multiple time.

Indexing of documents in Elasticsearch is done in bulk with refresh interval disabled

for better indexing performance4.

4https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-
indexing-speed.html
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4.7.2 Performance Metrics

The search time (Ts), indexing time (Ti) and indexing memory (Mi) metrics defined

in Table 4.4 are used to compare the performance of GBI and Elasticsearch. For

communicating with Elasticsearch, Elasticsearch-PHP client serializes the request

into JSON format and sends the request to the port on which Elasticsearch is running

where the request message is obtained from de-serializing the JSON data. Again, once

the response is ready in Elasticsearch, the response message is serialized back into

JSON format and sent back to the client where the JSON data is de-serialized to

get the response message. When the hrtime function provided in PHP is used to

measure the search and indexing performance of Elasticsearch, the resulting time

value includes the overhead time spent for communicating with Elasticsearch and

other activities occurring within Elasticsearch. To avoid the additional overhead in

impacting the search and indexing time measurements, a set of info APIs provided

by Elasticsearch is utilized. The info APIs provides a detailed report on the time and

memory consumed when handling a search or indexing request.

For measuring a query execution time, Elasticsearch has provided Profile API for

obtaining time consumed by each component of the search operation5. Hence, for

Elasticsearch, Ts is the time consumed for a Boolean query execution reported in

the “BooleanQuery” field of the Elasticsearch Profile API response. The search time

obtained from Elasticsearch is in nanoseconds and it is converted to milliseconds for

reporting in this thesis. Similarly, Elasticsearch has provided Index stats API for

5https://www.elastic.co/guide/en/elasticsearch/reference/current/search-
profile.html
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measuring indexing time and memory consumed6. Hence, for Elasticsearch, Ti is

the time value reported in “index.time in millis” field of Index stats API response.

The indexing time obtained from Elasticsearch is in milliseconds and it is converted

to seconds for reporting in this thesis. Mi for Elasticsearch is the memory value

reported in “store.size in bytes” field of Index stats API response. The memory value

obtained from Elasticsearch is in bytes and it is converted to megabytes for reporting

in this thesis. For GBI, Mi represents the size of the compressed GBI index file which

contains data in JSON format (discussed in Section 4.1).

4.7.3 Analysis of the Search Latency in Elasticsearch and

GBI

A representative set of experiments based on random and relationship-based work-

loads (see Section 4.2.1) are used for analyzing the performance of Elasticsearch.

Elasticsearch search latency is analyzed only for Boolean queries. To the best of my

knowledge, exclusive and neighbours of a keyword queries are not supported by Elas-

ticsearch. Thus, the workload parameters concerning the Boolean queries presented

in Table 4.1 and Table 4.2 are used in this set of experiments to investigate the search

performance of Boolean queries in Elasticsearch and compare it with to that obtained

with GBI. The selected set of experiments are:

• Experiment A based on random workload discussed in Section 4.2.1.1.

6https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-
stats.html

137

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-stats.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-stats.html


• Partial and special case of Full relationship experiments based on relationship-

based workloads discussed in Section 4.2.1.2.

4.7.3.1 Analysis of the Search Latency for Boolean AND Queries

Figure 4.29 shows the search time (Ts) for GBI and Elasticsearch for Experiment A

associated with random workload. Though Elasticsearch is equipped with the skip

list (discussed in Section 2.1.2.1) to speed up the postings lists traversal for intersec-

tion operation, the reduction in the number of postings lists needed for intersection

operation in GBI (as keywords are indexed in pairs) leads to a smaller search time.

For this experiment, GBI shows a search time that is, on average, 50% lower than

that of Elasticsearch.
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Figure 4.29: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Elasticsearch when the number of search keyword (SKcount) is kept at the
constant value of 4 for a Boolean AND query.
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Figure 4.30 shows the search time (Ts) for GBI and Elasticsearch for the Partial

relationship experiment. For a given Dcount, Ts for Elasticsearch is higher than GBI.

Though Elasticsearch was able to reduce the search time using skip list, the hash table

lookup for connection checking before an intersection operation resulted in negligibly

smaller search time for GBI. The performance improvement achieved by GBI over

Elasticsearch in this experiment is 99.9%.
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Figure 4.30: Effect of number of documents indexed (Dcount) on the search time
(Ts) in GBI and Elasticsearch for a workload with Partial relationship among search
keywords for a Boolean AND query.

Figure 4.31 shows the search time (Ts) for the special case of the Full relationship

experiment in which all the search keywords occur in all the documents indexed. In

this experiment also, for any given value of Dcount, Elasticsearch shows a higher search

time than GBI. This is because all the search keywords appear in all the documents

indexed. Hence, more number of document id comparison has to be performed to
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execute the query. The presence of skip list in Elasticsearch does not seem to offer

much help for this workload as none of the skip pointers can be avoided. In GBI,

the lesser number of intersection operations leads to a lower search time. In this

experiment, the performance improvement for GBI over Elasticsearch is around 70%.
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Figure 4.31: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Elasticsearch for a workload with Full relationship among search keywords
in which all the search keywords appear in all the documents indexed for a Boolean
AND query.

4.7.3.2 Analysis of the Search Latency for Boolean NOT Queries

As explained in Section 3.5.2.1, a Boolean NOT query returns a set of documents in

which a particular search keyword (Sk) is present and set of search keywords (E1, E2,

..., Ek) are not present.

Figure 4.32 shows the search time (Ts) for GBI and Elasticsearch for Experiment
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A associated with random workload. As inferred from Profile API, Elasticsearch

is performing Boolean NOT query in two steps. In the first step, a Boolean OR

operation is performed between the search keywords E1, E2, ..., Ek to get a list of

document ids. In the second step, the resultant document ids for the Boolean OR

query operation are removed from the postings list of Sk. This two-step execution

of Boolean NOT queries make Elasticsearch search time much higher than that of

GBI when retrieving all the matching document ids at once. In the case of GBI,

document ids of all the search keywords that are not to be present (E1, E2, ..., Ek)

are known apriori as keywords are always indexed in pairs in GBI. Thus, the common

documents (if any) between Sk and E1, Sk and E2 and so on are known beforehand and

these common documents are directly removed from Sk’s postings list. Therefore, an

expensive Boolean OR operation is avoided in the case of GBI. This leads to a lower

search time for GBI in comparison to that of Elasticsearch. For this experiment, GBI

shows a search time that is, on an average, 68% lower than Elasticsearch.
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Figure 4.32: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Elasticsearch when the number of search keyword (SKcount) is kept at the
constant value of 4 for a Boolean NOT query.

Figure 4.33 shows the search time (Ts) for GBI and Elasticsearch for the Partial

relationship experiment. For a given Dcount, Ts for Elasticsearch is higher than GBI

in this experiment as well. GBI uses hash table lookup to check whether the search

keywords (E1, E2, ..., Ek) are actually the neighbours of Sk. Among the keywords

(E1, E2, ..., Ek), if only E1 appear together with Sk then only the documents that

are common between Sk and E1 only are identified and removed. Thus, if none of

the keywords in the set (E1, E2, ..., Ek) is connected to Sk, then the Boolean NOT

operation is avoided. If some of the keywords from E1, E2, ..., Ek are connected with

Sk, then only the common document ids of the connected keywords are removed. This

setup leads to a lower search latency for GBI in comparison to that of Elasticsearch.

The performance improvement observed in this experiment for GBI is on an average
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85% over Elasticsearch.
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Figure 4.33: Effect of number of documents indexed (Dcount) on the search time
(Ts) in GBI and Elasticsearch for a workload with Partial relationship among search
keywords for a Boolean NOT query.

Figure 4.34 shows the search time (Ts) for the special case of the Full relationship

experiment in which all the search keywords occurs in all the documents indexed.

Thus, the search keywords Sk and E1, E2, ..., Ek appear together in all the docu-

ments indexed. In this experiment as well, Elasticsearch shows a higher search time

than GBI. Elasticsearch first performs a Boolean OR operation for E1, E2, ..., Ek.

This Boolean OR operation results in all the document ids indexed. Then, the resul-

tant document ids have to be removed from Sk’s postings list. Sk’s postings list also

contains the ids of all the documents indexed. Thus, in this case, after the Boolean

NOT operation, there will be no document ids left returning a NULL value. As can

be seen, due to a lack of knowledge of search keywords relationships, Elasticsearch is
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performing a large number of computations to produce the NULL result. But GBI

is aware of the relationships among Sk and E1, E2, ..., Ek. Also, GBI avoids doing

Boolean OR operation and directly removes the duplicate document ids between Sk

and E1 and so on. Thus, by avoiding additional computations, GBI gains a perfor-

mance improvement of approximately 88% over Elasticsearch in this experiment for

any given value of Dcount.
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Figure 4.34: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Elasticsearch for a workload with Full relationship among search keywords
in which all the search keywords appear in all the documents indexed for a Boolean
NOT query.

4.7.3.3 Analysis of the Search Latency for Boolean OR Queries

Figure 4.35 shows the search time (Ts) for GBI and Elasticsearch for Experiment A

associated with random workload. The search time for Elasticsearch is much closer
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to the search time of GBI. The presence of skip list (discussed in Section 2.1.2.1)

in Elasticsearch might leads to an efficient traversal of postings lists for union op-

eration. In GBI, knowing duplicates to be removed in advance while performing a

union operation helps maintain lower search time for any given value of Dcount. For

this experiment, GBI shows a search time that is, on an average, 13% lower than

Elasticsearch.
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Figure 4.35: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Elasticsearch when the number of search keyword (SKcount) is kept at the
constant value of 4 for a Boolean OR query.

Figure 4.36 shows the search time (Ts) for GBI and Elasticsearch for the Partial

relationship experiment. For a given Dcount, search time for Elasticsearch is higher

than that for GBI. The hash table lookup for checking whether search keywords ap-

pear together enables GBI to perform union operation only between the search key-

words that have a common document id. If there is no common document id between
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some search keyword then the expensive union operation involving duplicate removal

process is avoided between those search keywords. The performance improvement

observed in this experiment for GBI is on an average, 41% over Elasticsearch.
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Figure 4.36: Effect of number of documents indexed (Dcount) on the search time
(Ts) in GBI and Elasticsearch for a workload with Partial relationship among search
keywords for a Boolean OR query.

Figure 4.37 shows the search time (Ts) for the special case of the Full relationship

experiment in which all the search keywords occurs in all the documents indexed.

Similar to Partial relationship experiment, this experiment also leads to a much

higher search time for Elasticsearch in comparison to GBI for any given values of

Dcount. This is because all the search keywords appear in all the documents indexed.

This results in all the document ids to be identified as duplicates while performing

union operation. Since there are 4 search keywords, three times all the document

ids has to be removed. This result in higher search time in GBI and Elasticsearch.
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Though the number of document ids and the number of times it has to be removed

remains the same for both GBI and Elasticsearch, GBI still performs better than

Elasticsearch. The possible reason could be Elasticsearch might be more optimized

for retrieving small set of documents at a time. Since all the matching documents are

retrieved at once, the performance suffers in Elasticsearch. In this experiment, the

performance improvement for GBI over Elasticsearch is on an average around 59%.
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Figure 4.37: Effect of number of documents indexed (Dcount) on the search time (Ts)
in GBI and Elasticsearch for a workload with Full relationship among search keywords
in which all the search keywords appear in all the documents indexed for a Boolean
OR query.
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4.7.4 Comparison of the Indexing Performance between GBI

and Elasticsearch

For the comparison of indexing time and memory consumed by GBI and Elasticsearch,

the random workload described in Section 4.2.1.1 is used.

Figure 4.38 shows the indexing time (Ti) for the random workload where the

number of documents indexed (Dcount) is increased from 2M to 10M in steps of 2M.

For a given Dcount, the indexing time for Elasticsearch is higher than GBI. In the

proposed experimental prototypes, the time taken for indexing the keywords alone is

considered. The indexing time value provided by Elasticsearch is the total time taken

for indexing and does not provide the time consumed by the individual component of

the indexing operation. Therefore, the indexing time reported by Elasticsearch may

include time for processing the request, analyzing the keywords, and then indexing

in its Inverted Index. These may contribute to a higher Ti for Elasticsearch. To

the best of my knowledge, Elasticsearch does not provide the time for an individual

component of the indexing operation. Thus, further investigation is warranted for

detailed analysis of indexing time in Elasticsearch.
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Figure 4.38: Effect of number of documents indexed (Dcount) on the indexing time
(Ti) for GBI and Elasticsearch.

Figure 4.39 shows the memory (Mi) consumed by Elasticsearch and the compressed

GBI index file. It can be inferred from the figure that for any given value of Dcount, Mi

for Elasticsearch is much lower in comparison to GBI. This is because Elasticsearch

compresses and stores its index in a disk. Elasticsearch uses a lossless compression

algorithm called LZ4 to compress its data7 8. We tried using the LZ4 compression

algorithm (with default options) on the index file containing GBI data in JSON

format. The result of compression on GBI index file for different values of Dcount can

be seen in Table 4.5. On average, approximately a 50% reduction in GBI file size is

achieved by using the LZ4 compression algorithm. Although the memory consumed

by the compressed GBI index file is almost half of the original file size, it is still

7https://www.elastic.co/blog/store-compression-in-lucene-and-elasticsearch
8https://en.wikipedia.org/wiki/LZ4 (compression algorithm)
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Table 4.5: Original and Compressed GBI File Size

Number of Documents Indexed Original GBI File Size Compressed GBI File Size

2M 708.2 MB 361.11 MB

4M 1463.54 MB 722.71 MB

6M 2220.24 MB 1084.91 MB

8M 2975.77 MB 1447.26 MB

10M 3729.81 MB 1808.67 MB

around 10 times greater than the equivalent Elasticsearch index file. To the best of

my knowledge, in Elasticsearch, the format of the data, the strategy for compressing

the data stored in the index file is not described in detail. Thus, these factors might

be some of the reasons for the large difference in memory consumption between GBI

and Elasticsearch. Further investigation is warranted for more detailed analysis of

memory consumption by Elasticsearch.
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Figure 4.39: Effect of number of documents indexed (Dcount) on the indexing memory
(Mi) for compressed GBI and Elasticsearch.
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Chapter 5

Conclusions and Future Work

In this chapter, the synopsis of the concepts presented in this thesis, and a summary of

the performance comparison between GBI and Inverted Index are provided. Finally,

the limitations of the presented research and directions for future work are discussed.

5.1 Synopsis of the Concepts Presented

Indexing is one of the efficient techniques used for accessing the data faster. The

challenge involved in constructing an index structure depends on the type of search

query that is being executed and the data that is being indexed.

Inverted Index is a popular text indexing technique used in web search engines like

Google [9] and enterprise search engines like Elasticsearch [10]. The Inverted Index

structure is described in detail in Section 2.1.1. Section 2.1.2.1 describes various

optimization techniques used for executing Boolean queries using Inverted Index.
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Most of the works are done on retrieving top K results only by using ranking or

scoring methods. A hash table is the data structure that provides constant lookup

time irrespective of the number of elements stored in it. The construction and working

of the hash table are described in Section 2.2. In general, not all the words found in a

document are used for indexing. The different strategies used for selecting potential

keywords for efficient indexing are discussed in Section 2.3.

The primary goal of the proposed research is to use a graph-based indexing tech-

nique to improve the search performance of various queries. The proposed index

structure (GBI) uses a directed graph to represent keywords that appear together in

a document. A brief overview of graph theory and its application in textual indexing

is discussed in sections 2.4 and 2.4.2.1 respectively. The structure of the directed

graph used in the proposed indexing technique is discussed in Section 3.1. Section 3.3

details how the graph structure represented by a modified adjacency matrix is built

using the hash table.

The proposed graph-based indexing technique aims to retrieve all the matching

results at once which is the primary motivation for the proposed approach. Apart

from document ids, other details such as word frequency, the position of the word

in the document can also be stored in the postings lists of GBI. Thus, the different

details stored for a document in Inverted Index can also be stored in GBI. This

allows an effective algorithm for executing Boolean queries using Inverted Index to

be applied to systems using GBI as well. Also, due to the graph structure of GBI,

queries like neighbours of a keyword and exclusive keyword (described in Section 3.6.1
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and Section 3.6.2) are executed efficiently.

The search latency for various query execution is analyzed for GBI and Inverted

Index by varying different workload parameters described in Section 4.2.1. GBI is also

compared with Elasticsearch, a real-world Inverted Index based system in Section 4.7.

5.2 Performance Insights

A thorough performance analysis of the prototype systems (GBI, Pruned GBI, and

Inverted Index) is described in Chapter 4. A number of synthetic workloads, as

described in Section 4.2.1, are used in the performance analysis. The key insights

from the experiments are summarized next.

• For the random workload in which the number of documents indexed is increased

from 2 to 10 million in steps of 2 million while the number of search keywords

is kept at a constant value of 4, the search time obtained using GBI is 70%,

28%, and 28% lower than those achieved with Inverted Index for Boolean AND,

NOT and OR queries respectively (see sections 4.3.1.1, 4.3.2.1 and 4.3.3.1).

Thus, GBI is able to maintain its superior performance over Inverted Index

when the number of the documents indexed increases.

• For the random workload in which the number of search keywords is increased

from 2 to 10 while the number of documents indexed is kept at a constant

value of 6 million, the search time obtained using GBI is 62%, 28%, and 28%
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lower than that observed for Inverted Index for Boolean AND, NOT and OR

queries respectively (see sections 4.3.1.1, 4.3.2.1 and 4.3.3.1), Thus, GBI is able

to maintain its superior performance over Inverted Index when the number of

search keywords used in the query increases.

• If the search keywords do not occur together in any document indexed (i.e.

No relationship), the search latency obtained for GBI is 99.9% lower than that

obtained with Inverted Index for all the Boolean queries discussed (see sec-

tions 4.3.1.2, 4.3.2.2 and 4.3.3.2). Thus, if a set of documents whose contents

are highly diverse is indexed, then the Boolean search queries using GBI show

significant improvement over Inverted Index.

• If some of the search keywords do not occur together in any document indexed

(i.e. Partial relationship), the search latency obtained for GBI is on aver-

age 99.9%, 30%, and 29% lower than that obtained with Inverted Index for

Boolean AND, NOT and OR queries respectively (see sections 4.3.1.2, 4.3.2.2

and 4.3.3.2). Thus, if a set of documents whose contents slightly overlap is in-

dexed, then performing the Boolean search queries using GBI shows a significant

improvement over Inverted Index.

• If all of the search keywords occur together in some or all of the document

indexed (i.e. Full relationship), the search time is 67% better than Inverted In-

dex for Boolean AND queries. For Boolean NOT and OR queries, a comparable

search time between GBI and Inverted Index is observed (see sections 4.3.1.2,

4.3.2.2 and 4.3.3.2). Thus, if a set of documents whose contents completely
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overlap is indexed, then GBI shows superior performance in the case of Boolean

AND queries and comparable performance for Boolean NOT and OR queries

with respect to Inverted Index.

• For neighbour of the keyword queries, the search time for GBI depends on

how many keywords indexed are lexicographically before and after the search

keyword. If more keywords are alphabetically after the search keyword, then

finding its neighbour will have a constant search time. Even if there is a large

number of keywords occurring before the search keyword, the search time is

significantly lower than Inverted Index as GBI uses hash table lookups. On

the other hand, with Inverted Index, the search time depends on how early the

search keyword and the neighbouring keywords occur together in the documents

indexed (see Section 4.4).

• For exclusive keyword queries, the search operation shows a constant time in

GBI with an overall improvement of 99.9% in comparison to Inverted Index (see

Section 4.5.1). Thus, it is faster to access the exclusive contents of a keyword

using a single hash table lookup in GBI.

• For Boolean AND queries and a given set of system and workload parameters,

GBI shows a performance improvement of 50%, 99%, and 70% over Elastic-

search for random, Partial, and a special case of Full relationship workloads

respectively (see Section 4.7.3.1).

• For Boolean NOT queries and a given set of system and workload parameters,

GBI shows a performance improvement of 68%, 85%, and 88% over Elastic-
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search for random, Partial, and a special case of Full relationship workloads

respectively (see Section 4.7.3.2).

• For Boolean OR queries and a given set of system and workload parameters, GBI

shows a performance improvement of 13%, 41%, and 59% over Elasticsearch for

random, Partial, and a special case of Full relationship workloads respectively

(see Section 4.7.3.3).

• Indexing latency of Inverted Index is on average 4.2 and 5.2 times lower than

Pruned GBI and GBI respectively (see Section 4.6). Also, memory consump-

tion by Inverted Index is 2.5 and 3.5 times lower than Pruned GBI and GBI

respectively. Establishing links between different keywords extracted from a

document incurred an overhead in indexing latency in GBI and Pruned GBI.

5.3 Limitations and Recommendations

The proposed solution was primarily designed with Boolean queries in mind and

further changes would be required to optimize GBI for different types of queries. The

proposed GBI structure provides an arena for these future improvements.

The main limitations of GBI are its indexing time and memory consumption.

Based on the indexing performance analysis described in Section 4.6, GBI can be used

for applications that involve indexing once and searching multiple times throughout

document lifetime. Examples include indexing large scale historical archival data
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and indexing data for web search engines in Google and Twitter for example. Also,

when more keywords are extracted from a document for indexing, more time and

more memory are consumed by GBI for creating a relationship between the extracted

keywords during the indexing process. Thus, GBI is most suitable for indexing docu-

ments with short textual content because they usually result in a smaller number of

keywords when the documents are subjected to the keyword extraction process. As

a result, this thesis also recommends that GBI will be most suitable for indexing a

large volume of short textual documents. One example of documents with the short

textual content is tweets (micro-blogs) generated on the social networking website

Twitter.

5.4 Future Work

Directions for further research include the following:

• The performance analysis in this thesis is based on synthetic workloads. Eval-

uating the performance of GBI with workloads of real systems can form an

important direction for future research.

• Using various concepts of graph theory, analyzing the structure of GBI in terms

of node degree (in/out) could provide important information about the set of

documents indexed such as the keywords that occur the most, and the keyword

that has maximum connectivity with other keywords. This information could
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further be used to improve the search performance and observe the sentiment

of the context found in the indexed documents. Further research is required.

• One research direction is to make the indexing operation in GBI consume less

time and memory so that it can be adopted to a wider variety of scenarios.

Since GBI also indexes all the keywords extracted from the document in pairs,

the same document id will be stored multiple times and thus consuming more

time and memory. A possible solution is to optimize the storage of the postings

list by storing document ids once and devising a way to refer to it multiple

times wherever needed. Further investigation is warranted.

• Another research direction is to extend GBI support in optimizing the execution

of other types of queries (such as prefix, wildcard, and phrasal) that will allow

GBI to offer a wide range of searching capabilities.

• Comparing the performance of GBI with other textual indexing techniques (such

as Suffix and Radix tree) could provide a more complete evaluation and more

insights.
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