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Abstract—Immersive virtual reality (VR) video is becoming
increasingly popular owing to its enhanced immersive experience.
To enjoy ultrahigh resolution immersive VR video with wire-
less user equipments, such as head-mounted displays (HMDs),
ultralow-latency viewport rendering, and data transmission are
the core prerequisites, which could not be achieved without a
huge bandwidth and superior processing capabilities. Besides,
potentially very high energy consumption at the HMD may
impede the rapid development of wireless panoramic VR video.
Multiaccess edge computing (MEC) has emerged as a promising
technology to reduce both the task processing latency and the
energy consumption for HMD, while bandwidth-rich terahertz
(THz) communication is expected to enable ultrahigh-speed wire-
less data transmission. In this article, we propose to minimize
the long-term energy consumption of a THz wireless access-
based MEC system for high quality immersive VR video services
support by jointly optimizing the viewport rendering offloading
and downlink transmit power control. Considering the time-
varying nature of wireless channel conditions, we propose a
deep reinforcement learning-based approach to learn the optimal
viewport rendering offloading and transmit power control poli-
cies and an asynchronous advantage actor–critic (A3C)-based
joint optimization algorithm is proposed. The simulation results
demonstrate that the proposed algorithm converges fast under
different learning rates, and outperforms existing algorithms
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in terms of minimized energy consumption and maximized
reward.

Index Terms—Asynchronous advantage actor–critic (A3C),
computation offloading, deep reinforcement learning (DRL),
terahertz (THz) communication, virtual reality (VR).

I. INTRODUCTION

IN THE last few years, the rapid development of fast video
processing and omnidirectional cameras has bred a new

media form, known as the immersive (360◦, or panoramic) vir-
tual reality (VR) video [1]. Using user equipment (UE), such
as head-mounted displays (HMDs), smartphones, and personal
computers, immersive VR video can provide a 360◦ omnidi-
rectional immersive experience of, e.g., concerts, exhibitions,
sports, etc. [2]. The realization of immersive VR video relies
on extremely large amount of data processing and transferring.
Current VR systems depend largely on wired transmission,
which restricts its applications, while wireless VR can poten-
tially unleash its potential to the maximum [3], [4]. Moreover,
processing computationally intensive tasks for immersive VR
video on HMDs will result in excessive heat, short battery life,
and high unit prices.

In order to deliver immersive VR video over wireless
networks, three fundamental challenges need to be urgently
addressed. The first challenge lies that it is hard for the current
cellular networks to provide sufficient high wireless transmis-
sion rate and thus to support the extremely high data rate
requirement of immersive VR video transmission [3], e.g.,
350 Mb/s [5]. The second major challenge lies in the heavy
energy consumption in HMDs. The portion of an immer-
sive VR video that a user is watching needs to be projected
to a 2-D plane referred to as the viewport. This portion
mapping is called viewport rendering [6], which requires map-
ping the spherical VR video signal to the viewport pixel
by pixel on an HMD, where complex matrix computation
is needed and a large amount of energy will be consumed
from the HMD’s battery. The third challenge lies in the strict
latency requirements (e.g., no more than 20 ms) imposed on
the total delay of immersive VR video decoding, wireless
transmission [7], and viewport rendering. The video decod-
ing and viewport rendering operations typically take about
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6–100 ms, while wireless transmission will take 100–200 ms.
The large end-to-end latency will degrade the Quality of
Experience (QoE) of interactive immersive VR video playback
significantly [5], [8].

To overcome the challenge in supporting very high data
rates, terahertz (THz) communication (0.1–10 THz) [9], [10]
has been proposed as a promising enabler of the super-
high data rate, ultrareliable, and low delay applications [3],
such as immersive VR video. Meanwhile, as a powerful
supplement and enhancement of cloud computing [11], multi-
access edge computing (MEC) enables HMDs to offload their
energy-demanding viewport rendering tasks to MEC servers
(MECSs) [12], [13], and consequently offers an opportunity to
tackle the last two challenges [14]. However, since the problem
of task offloading decision optimization is usually coupled
with resource management, making the problem usually non-
convex and NP-hard [15], [16]. Moreover, in fast time-varying
and highly dynamic mobile wireless networks, it is challeng-
ing to make optimized decisions for binary [17] task offloading
and resource allocation at all times. Recently, deep reinforce-
ment learning (DRL) [18], [19] has been employed as an
effective tool to obtain optimized solutions to nonconvex and
sophisticated optimization problems in highly dynamic wire-
less environments, especially the problems with continuous
state and action spaces. Motivated by their respective benefits,
it is quite interesting and inspiring to apply THz communi-
cation with MEC to support immersive VR video for QoE
promotion, and employ DRL for further performance improve-
ment in problem solving. However, this is a brand new area,
and is full of opportunities and challenges, which promote the
study of this article. The main contributions are summarized
as follows.

1) We propose a THz wireless access-based MEC system
to support high quality immersive VR video services,
where THz communication is employed to achieve
low latency for the elephant immersive VR video data
downlink transmission. The MECS will perform proac-
tive immersive VR video content caching, real-time
transcoding, and pixel-by-pixel viewport rendering on
behalf of HMD, depending on the viewport offloading
decision.

2) We formulate a novel optimization problem to mini-
mize the long-term averaged energy consumption of an
HMD by jointly optimizing the binary viewport render-
ing offloading decision for each immersive VR video
chunk and the downlink transmit power of the MECS,
with data queue stability guaranteed.

3) Considering the complexity, the joint optimization
problem is solved by employing asynchronous advan-
tage actor–critic (A3C) algorithm, where multiple deep
neural networks (DNNs) are trained asynchronously
using gradient descent method, and the optimal viewport
rendering offloading decision and transmit power control
policy can be obtained with a fast convergence speed
and good performance compared with other existing
algorithms.

The remainder of this article is organized as follows. Related
works are presented in Section II. Section III introduces

the system model and Section IV presents the problem for-
mulation. In Section V, the problem is solved efficiently
employing the A3C-based algorithm. The simulation results
are provided in Section VI. Finally, the article is concluded
in Section VII.

II. RELATED WORKS

With the rapid development of VR, MEC, THz communi-
cation, and DRL, the attempt of using DRL to imporve the
performance of MEC, and the idea of using MEC and THz
communication to support wireless VR, have attracted increas-
ing attention.

The combination of MEC and DRL has become a hot
topic in recent years. Sun et al. [20] considered task offload-
ing among neighboring vehicles in vehicular-edge computing
systems. Based on the multiarmed bandit theory, they proposed
a learning-based task offloading algorithm where vehicles
could learn the offloading delay information from their adja-
cent vehicles in the process of task offloading, and thereby to
minimize the average offloading latency. Min et al. [21] stud-
ied a scenario where multiple edge devices acted as the MECS,
and one energy harvesting enabled IoT device could offload
its task to one of the edge devices. According to the battery
level, previous radio transmit rate, and the predicted amount
of harvested energy, they presented a reinforcement learning
(RL)-based offloading scheme to obtain the optimal offloading
decision for the IoT device. In order to minimize the ser-
vice delay, Zhao et al. [22] investigated the joint optimization
of computation resource allocation and network resource
assignment in an integrated software-defined MEC system,
and proposed a deep Q network (DQN)-based algorithm for
adaptive resource allocation optimization. Qiu et al. [23]
considered the task offloading problems in a blockchain-
empowered MEC system where the offloading decisions of
both mining tasks and data processing tasks were jointly
optimized to minimize the long-term cost in task offload-
ing. Leveraging DRL, the optimal offloading decision was
obtained based on past experience, and the convergence was
sped up by integrating the genetic algorithm in the exploration
process of DRL where useless exploration was discarded.
Chen et al. [24] investigated the joint computation resource
allocation and task offloading in a space-air-ground integrated
network, where unmanned aerial vehicles (UAVs) served as
the MECS and satellites acted as the remote cloud center.
To address the system dynamics and the complex control
process, they leveraged DRL to learn the optimal offloading
decision and actor–critic algorithm to accelerate the learning
process.

With the increasing popularity of VR/AR, combining VR-
related services with other technologies for performance
improvement is a fairly new and valuable area. To sup-
port immersive VR video stream processing and transmission,
Liu et al. [5] proposed a MEC platform operating in both
mmWave and sub-6 GHz bands that could maximize the wire-
less bandwidth utilization and the mobile device’s energy
efficiency by jointly optimizing the link adaptation, video
chunk quality adaptation, and viewport rendering optimization.
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Chaccour et al. [3] studied the elephant data transmission of
VR services in a THz cellular network, derived the PDF of
the transmission delay, and showed that THz band wireless
communication can support the elephant VR data flow with
high reliability and high data rates. Chen et al. [25] consid-
ered a data correlation-aware resource allocation problem in a
VR system in order to maximize the VR users’ successful
data transmission probability, and developed a Q-learning-
based algorithm to find the optimal resource allocation scheme,
which could adapt to different users’ VR content requests and
data correlation. Chen et al. [26] studied a VR system where
VR users sent their requests to the BS for downlink 360◦
image transmission, and formulated a problem that jointly opti-
mizes the image transmission and image rotation to maximize
the users’ successful transmission probability. To solve this
optimization problem, they proposed a transfer learning algo-
rithm based on liquid state machine, which could transfer the
learned successful transmission into a new one in order to
increase the convergence speed.

The above studies have provided some insightful ideas
about using DRL to obtain the optimal offloading decision
and/or resource allocation in MEC systems [20]–[24], or sup-
port VR service from some certain aspects, e.g., using MEC
to support VR services for more powerful processing [5],
using THz/mmWave to support the elephant VR data flow [3],
and using RL to make full use of resources in VR support-
ing [25], [26]. However, as an increasingly important and
highly resource-demanding application nowadays and in the
near future, VR still needs to be supported from multiple
aspects in order for better QoE. To achieve this goal, some
important technologies in 5G/6G can play their own roles
from different aspects, where THz can provide extremely
high date rate for VR data transmission, MEC can provide
VR with stronger processing capability, and DRL algorithms
can obtain the optimal solution and thus to further improve
the performance of using THz and MEC for VR, where
A3C is an effective and outstanding algorithm among the
DRL family [27], [28]. Motivated by the above consider-
ations, in this article, we use MEC and THz to improve
the performance of VR, and develop an effective algorithm
based on A3C for optimal viewport rendering offloading deci-
sion making and downlink transmit power control for THz
wireless link.

III. SYSTEM MODEL

The proposed system is composed of a MECS and an HMD
user, with a THz cellular network connecting the two entities.
The MECS is located at the THz base station and is connected
to the content provider where the compressed original immer-
sive VR video resources are stored through wired fiber links.
In our system, all immersive VR videos that the user requests
are cached at the MECS [12] and the case when the requested
content is not cached and should be retrieved from the con-
tent provider is out of the scope of this article. Next, we will
introduce the MECS and the THz downlink communication
model in detail.

A. MEC Server

The MECS contains a transcoding module, a decision
maker, a information acquisition module, and a computing
module [5], [29].

Originally, immersive VR video is encoded into space-
partitioned tiles, and then each tile is further partitioned into
chunks temporally in order to facilitate viewport rendering
operation [5], [6]. The small data chunk can be used to avoid
large motion-to-photon latency in HMD when HMD’s view-
port changes rapidly during the interactive of immersive VR
video. The decoding module in MECS is used for decompress-
ing each chunk from the original compressed immersive VR
video stream, including viewport tiles and nonviewport tiles,
and provides the uncompressed full-resolution immersive VR
video to HMD [30], as shown in Fig. 1. The output chunk data
stream from the transcoding module is first assembled into a
series of chunks where each chunk is with a duration of one
Group of Pictures (GOPs) and consisting of four frames, and
then transmitted over high-speed THz link to the HMD [5].

For full-resolution videos, the tiles within the viewport
region are called viewport tiles, which are with high resolution
and need the aforementioned viewport rendering operation,
while the tiles outside the viewport are called standby tiles,
which is with low quality and are not necessary to be ren-
dered. When the viewport video data could not be able to
keep pace with the rapid variation of viewport in HMD, the
low-quality standby tiles will be mapped to the viewport at
HMD for smoothing viewport viewing experience. Viewport
rendering can be performed at different places. Fig. 1(a) illus-
trates local rendering where the uncompressed full-resolution
immersive VR video data are first transmitted to HMD and
viewport rendering will be performed locally at the HMD.
Fig. 1(b) shows the situation where viewport is rendered on
the MECS, where the uncompressed viewports tiles is first
rendered at the “Viewport Rendering” module, and then the
rendered viewport as well as the uncompressed standby tiles
are then transmitted to the HMD. If viewport rendering is con-
ducted by MECS, the computing module in the MECS will
work and perform viewport rendering operation for the HMD.

The information acquisition module is in charge of col-
lecting the power and the viewport information of the HMD,
and estimates the THz downlink quality information from the
uplink reference signals broadcasted by the HMD.

According to the collected link quality information, and
HMD’s viewport information, the decision maker performs
optimization under given latency constraints. The optimization
terms include downlink transmit power control, and viewport
rendering offloading optimization, i.e., should the viewport be
rendered on the MECS and then be transmitted to the HMD,
or first be transmitted to HMD and then rendered there.

B. THz Band Channel Model

In this section, we present some basic knowledge and the
characteristics of the THz band channel.

The THz wireless propagation model is a multipath model,
including LOS and the reflected path rays. Since the scattered
and diffracted rays play insignificant roles on the received
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signal, similar to [9], they are not taken into consideration
in our system model. In our system, time is slotted where
the length and the index of a time slot are denoted as �t
and t, and the set and number of time indices are denoted
as T and T , respectively. We consider a quasistatic scenario,
where the environment keeps static at each time slot but varies
between different time slots.

For a distance d at time slot t, supposing there are totally
Ud(t) THz subwindows1 [9] and the uth subwindow is com-
posed by Nref(t) reflected rays, the multipath channel response
model can be given by [9]

hd
u(t) = αd

u,LOS(t)δ
(

t − τ d
u,LOS(t)

)
1d

u,LOS(t)

+
Nref(t)∑
q=1

αd
u,q(t)δ

(
t − τ d

u,q(t)
)

(1)

where 1(·) is the indicator function and 1d
u,LOS(t) equals 1

or 0 denotes the presence of LOS path or not. The terms
αd

u,LOS(t) and αd
u,q(t) are attenuation factors indicating the

attenuation of the LOS path and the qth reflected ray of the
uth frequency subwindow, and τ d

u,LOS(t) and τ d
u,q(t) are the

propagation delay of the LOS path and the qth reflected ray,
respectively. The set and number of all multipath components
for the uth subwindow is denoted by N d

u (t) and Nd
u (t), and

we have Nd
u (t) = 1d

u,LOS(t) + Nref(t). In this article we sup-
pose Nref(t) = 2. In the HMD side, the received signal is
constructed by a superposition of the LOS and the reflected
rays, and the material parameters are available and could refer
to [10].

Invoking the Wiener–Khinchin theorem [10], the attenu-
ations of the LOS and the qth reflected rays of the uth
subwindow can be given by [10]

αd
u,LOS(t) = |HLOS(fu, t)|
αd

u,q(t) =
∣∣Href,q(fu, t)

∣∣ (2)

where fu is the center frequency of the uth subwindow, and
HLOS(fu, t) and Href,q(fu, t) are the corresponding transfer
functions, which are functions of fu.

The transfer function of LOS channel HLOS(fu, t) com-
poses the spreading loss function Hspr(fu) and the molecular
absorbtion loss function Habs(fu), which is given by [10]

HLOS(fu, t) = Hspr(fu) · Habs(fu) · e−j2π fuτ d
u,LOS(t)

= c

4π fd
· e− 1

2 k(fu)d · e−j2π fuτ d
u,LOS(t) (3)

where c is the speed of light, d is the distance between
the THz base station (the transmitter) and HMD (the receiver),
τ d

u,LOS(t) = (d/c) is the time of arrival of the LOS ray,
and k(fu) is the frequency-dependent medium absorption coef-
ficient which depends on the material of the transmission
medium at molecular levels.

The transfer function of the reflected path can be obtained
as follows. Denote dq,1 as the distance between the THz base

1In the THz band, the basic unit of wireless resource allocation is called
a subwindow, and the available bandwidth and the number of subwindows
changes with the variation of distance d.

station and the reflector, and dq,2 as the distance between the
reflector and HMD, and dq as the distance between the THz
base station and HMD, then the transfer function of the qth
reflected ray, Href,q(fu, t), is given by

Href,q(fu, t) = c

4π fu
(
dq,1 + dq,2

) · e−j2π fuτ d
u,q(t)− 1

2 k(fu)(dq,1+dq,2)

× Ru,q(fu) (4)

where τ d
u,q(t) = τ d

u,LOS(t) + (dq,1 + dq,2 − dq)/c is the time
of arrival of the reflected ray, and Ru,q(fu) is the rough
surface reflection coefficient. According to Kirchhoff scatter-
ing theory [10], Ru,q(fu) can be obtained by multiplying the
smooth surface reflection coefficient ηu,q(fu) with the Rayleigh
roughness factor ρu,q(fu) as follows:

Ru,q(fu) = ηu,q(fu) · ρu,q(fu)

= − exp

⎛
⎝−2 cos

(
θq
)

√
n2

t − 1

⎞
⎠ · exp

(
−8π2f 2

u σ 2 cos2
(
θq
)

c2

)

(5)

where θq is the angle of the qth reflected ray and can be
obtained by θq = (1/2) cos−1([d2

q,1 + d2
q,2 − d2

q]/[2dq,1dq,2]),
and nt is referred to as the refractive index which depends
on the frequencies and the transmit medium [10], and σ is a
parameter called the rough surface height standard deviation
coefficient [10].

C. Transmit Rate of THz Channel

To obtain the THz transmit rate, we first derive the expres-
sion of SINR in downlink THz wireless transmission. For a
distance d in slot t, there are Ud(t) subwindows can be used for
data transmission. Here, the number Ud(t) is the ratio between
the total available bandwidth and the bandwidth of a general
subwindow [10]. In the THz band, the number of subwin-
dows for a general distance d is at the order of multiple tens.
As in [10], the bandwidth of each subwindow can be set as
Bg = 10 GHz, which is less than the coherence bandwidth and
therefore, the intersymbol interference (ISI) [31] can be elim-
inated and narrowband communication on each subwindow
can be enabled. However, severe interband interference (IBI)
caused by the power leakage from the adjacent subwindows
occurs and could not be ignored. Han et al. [10] have shown
that the IBI from adjacent subwindows can be approximated
as a Gaussian distributed random variable, and the distribution
of the IBI on the uth subwindow follows:

Id
u (t) ∼ N

⎛
⎜⎝0,

∫

fu

Ud(t)∑
v,v �=u

Pv(t)

∣∣∣∣∣∣
Gv(fu)

∑
m∈Nu

αd
v,m(t)

∣∣∣∣∣∣

2

dfu

⎞
⎟⎠ (6)

where Gv is the waveform, Pv(t) denote the transmit power
allocated on the vth subwindow, and the path attenuation
vector is given by

αd
v (t) =

{
αd

v,m(t), m ∈ Nu

}

=
[
αd

v,LOS(t), αd
v,1(t), . . . , α

d
v,N(v)

ref

(t)

]
. (7)
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Fig. 1. MEC-based immersive VR video transcoding framework.

Based on the above defined channel response hd
u(t) and

interference Id
u (t), the instantaneous SINR γ d

u (t) can be
given by

γ d
u (t) = Gt(t)Gr(t)

∣∣hd
u(t)

∣∣2Pu(t)

Gt(t)Gr(t)Id
u (t)+ Bgn0

(8)

where n0 is the power spectral density of Gaussian white noise.
In THz band, the noise mainly comes forme the molecular
absorption, which is frequency dependent [32]. Another major
noise source results from the receiver and depends on the pro-
duction technology. As in [10], we suppose the noise can be
approximated as Gaussian white noise. Moreover, let εu denote
the bit error rate (BER) on the uth subwindow, and for a given
BER, the transmit rate of each Hz on the subwindow u in slot
t (in bit/Hz) is given by [33]

kd
u(t) = log2

(
1− 1.5γ d

u (t)

ln(5εu)

)
(9)

where the expression in log(·) stands for the maximum sup-
ported constellation of MQAM. Consequently, the data rate of
each subwindow at distance d in slot t can be given by

Rd(t) = Bg

Ud(t)∑
u=1

kd
u(t). (10)

Remark 1: The potential of using THz frequencies to sup-
port super high data rate applications, including immersive
VR video, while ensuring ultrareliable, low-latency commu-
nications has been demonstrated in [2], [3]. By analyzing the
delay and reliability, the authors demonstrated that it is feasi-
ble to provide satisfactory immersive VR services by operating
on THz cellular networks. Standing on the shoulders of giants,
we build our MEC system on THz frequency, and shows our
system performs well in energy minimizing in the simulations.

IV. PROBLEM FORMULATION

In this section, we first analyze the latency and energy con-
sumption in different scenarios, based on which we give our
problem formulation. Finally, we transform our problem into
a new form that is easy to solve.

A. Latency and Energy Consumption Models

As was mentioned, we suppose all the requested immersive
VR video tiles have been cached at the MECS, so the delay
and energy consumption during data delivery from the content
provider to the MECS does not need to be considered. Recall
that the computational-intensive immersive viewport rendering
process can be performed on the HMD as in Fig. 1(a) or on
the MECS as in Fig. 1(b). We use a binary variable η(t) to
indicate where viewport rendering is performed, i.e., η(t) = 1
indicates viewport rendering is offloaded to the MECS, and
η(t) = 0 means the viewport is rendered locally at the HMD.
Next, we will analyze the energy consumption under different
scenarios.

1) Viewport Rendering at HMD Locally: In this case, the
task requesting session includes the following steps: decoding
the original data representation by the MECS, transmitting the
uncompressed immersive VR video chunks, including view-
port tiles and standby tiles to HMD over the THz link, and
rendering the viewport on the HMD.

In order to prepare the requested data of a chunk, MECS
first needs to decode the original cached immersive VR video
data. Assume the playback duration of a chunk equals to the
length of a time slot �t, and denote the bitrate of one origi-
nal full-resolution video chunk as b (in bps), then we need to
decode b · �t bits in order to obtain the uncompressed orig-
inal data. Denote the size of the uncompressed original data
as xv(t)+ xs(t) bits, where xv(t) (in bit) and xs(t) (in bit) are
the data volume of viewport tiles and the standby tiles, respec-
tively. Denote the MECS’s decoding speed as vde (in bps), and
then it needs [(b ·�t)/vde] seconds for the MECS to perform
data decoding. To transmit the decoded original uncompressed
immersive VR video chunk over the THz band from MECS
to HMD requires ([xv(t)+xs(t)]/[Rd(t)]) seconds. Then HMD
needs to perform viewport rendering. Denote the processing
capability of HMD as zl (in CPU cycles/s), and let the data vol-
ume that one CPU cycle can process as bzl (in bits/cycle), then
local viewport rendering will consume ([xv(t)]/[zl · bzl]) sec-
onds. Consequently, the overall energy consumption of HMD
in local viewport rendering is given by

El(t) = b ·�t

vde
· Pid + [xv(t)+ xs(t)]

Rd(t)
· Pb + xv(t)

zl · bzl
· ξ (11)

where Pid (in Watt) is the idle power of HMD, and [(b ·
�t)/vde] ·Pid is the energy consumed by HMD in waiting for

Authorized licensed use limited to: Carleton University. Downloaded on March 04,2021 at 16:36:47 UTC from IEEE Xplore.  Restrictions apply. 



9522 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

the data when MECS performs viewport rendering. Denote
the data receiving power of HMD as Pb (in Watt), then the
energy for receiving the original uncompressed immersive VR
video is ([xv(t) + xs(t)]/[Rd(t)]) · Pb. Moreover, denote ξ

(in W) as the power of HMD in task processing, then the
required energy for local viewport rendering can be calculated
as ([xv(t)]/[zl · bzl]) · ξ .

In addition, HMD maintains a first in first out (FIFO) data
buffer for caching the not yet rendered tasks. At the begin-
ning of time slot t, the queue length of HMD’s buffer is Ql(t)
(bits), i.e., the amount of tasks that have not yet been executed
till the beginning of solt t, then Ql(t + 1) varies dynamically
according to

Ql(t + 1) = [Ql(t)+ (1− η(t)) · (xv(t)− zl · bzl ·�t)
]+ (12)

where [x]+ = max(x, 0).
2) Viewport Rendering on MEC Server: When viewport

rendering is performed on MECS, MECS should first decode
the original data with the viewport data volume as xv(t) and
the standby data volume as xs(t), which is the same as in local
rendering, and then render the viewport data, and the volume
of the rendered viewport data is denoted as xr(t). Then, the
standby data together with the rendered viewport data will be
transferred to HMD through the THz link. The only task that
HMD should implement is to receive those data. However,
extra energy will be consumed when HMD waiting for the
MECS to decode the original data and perform viewport ren-
dering. Denote the computation capability of MECS as zf (in
CPU cycles/s), and the data volume one CPU cycle can pro-
cess as bzf (in bits/cycle), the overall energy consumption of
HMD in MECS viewport rendering is given by

Ef (t) =
[

b ·�t

vde
+ xr(t)

zf · bzf

]
· Pid + xr(t)+ xs(t)

Rd(t)
· Pb. (13)

Similarly, MECS maintains a data queue Qf (t), which
evolves according to

Qf (t + 1) = [Qf (t)+ η(t) · (xr(t)− zf · bzf ·�t
)]+

. (14)

B. Problem Formulation and Transformation

Our objective is to minimize the long-term averaged energy
consumption while ensuring the QoE of the HMD, by a joint
optimization on the viewport rendering offloading decision
η = {η(t), t ∈ T } and the downlink transmit power control
Ptx = {Ptx, t ∈ T }. Our problem is formulated as

(P1) : min
η,Ptx

1

T

∑
t∈T

(1− η(t))

× [El(t)+ ωlHl(t)]+ η(t)
[
Ef (t)+ ωf Hf (t)

]

s.t. (C1) : η(t) ∈ {0, 1}, t ∈ T
(C2) : Ptx ∈ (0, Pmax], t ∈ T . (15)

In problem (P1), Hl(t) and Hf (t) are the punishment terms
on HMD’s energy consumption in local rendering and MECS
rendering, respectively, which are used to avoid the long
latency caused by HMD/MECS accepting tasks when their
queues are too long to process. The two coefficients ωl and
ωf (in J/bit) are the corresponding punishment factors. At the

end of each time slot t, when the queue is nonempty, the
energy consumption of HMD will gain a punishment ωlHl(t)
or ωf Hf (t). Thus, Hl(t) and Hf (t) represent the amount of
the backlogged data, i.e., the data has not been executed
by HMD and MECS at the end of time slot t, respectively.
According to their meanings, we have Hl(t) = Ql(t + 1) and
Hf (t) = Qf (t + 1). Consequently, at the end of each time
slot t, once the queues are not empty, the HMD’s energy con-
sumption will gain a punishment ωlHl(t) in local rendering, or
a punishment ωf Hf (t) in MECS rendering, respectively. The
two punishment terms can avoid the HMD or the MECS to
accept excessive viewport rendering tasks, and can avoid queue
overflow effectively, and thus to guarantee fluent playback of
immersive VR videos on HMD [34].

V. DRL-BASED JOINT OPTIMIZATION

In this section, we first introduce some basics about DRL
and the newly emerging DRL algorithm A3C, then we propose
an A3C-based joint viewport rendering offloading decision and
transmit power control algorithm to solve it.

A. Deep Reinforcement Learning

RL [35] is a learning framework where an agent interacts
periodically with the environment, by continuously mak-
ing decisions, observing the rewards, and then automatically
adjusting its parameters, finally to obtain the optimal policy
that can maximize the long-term expected cumulative reward
that the agent could get. However, the learning process of
RL converges too slow since it has to explore and obtain
knowledge of the entire system. In recent years, deep learn-
ing [36] is introduced and deemed as a promising technique
to break the curse of high dimensionality when used in RL,
which is known as DRL. DRL employs DNNs as the function
approximator [37] to train the learning process and updating
parameters, so it could not only improve the poor performance
of traditional RL methods in dealing with high dimension state
space or large action spaces, and especially, DRL could also
manage continuous state and action spaces effectively. As a
consequence, DRL has been adopted in broad areas, such as
robotics, VR, computer vision, etc.

In the area of wireless communications and networking,
DRL has also been employed as an effective technique to
handle various issues and challenges. Modern wireless com-
munication networks become more large scale, heterogeneous,
high dynamic, and complicated, and need to provide vari-
ous services and make decisions for large quality of UEs, to
achieve different goals of different networks. However, the het-
erogeneity, high dynamic, and uncertainty of wireless networks
make conventional approaches, such as dynamic programming,
value iteration, etc., for decision making and resource man-
agement inefficient or even inapplicable, since complete and
perfect system knowledge are required by these algorithms;
on the other hand, since the decision-making problems are
usually with both integer and continuous variables, along with
the large-scale and high complexity, making traditional RL
impotent and powerless. As a result, DRL has been developed
as an alternative solution to overcome the challenges and has
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been widely used in various communication systems, where
superior performance could be obtained [18], [38].

Remark 2: In the following elaboration of A3C, the time
indices are represented using subscript instead of being put
in parentheses for notational simplicity. For the notations that
have appeared above, we still use the same notations to keep
consistent.

B. A3C Algorithm

DRL algorithms are realized by a combination of RL algo-
rithms with DNNs and are unstable since online RL updates
are strongly correlated, which can be solved by experience
replay as in DQN [37]. However, experience replay con-
sumes more memory and requires off-policy learning policies,
and update is performed based on the data generated by an
older policy. Asynchronous execution is a promising way to
replace experience replay, where multiple agents work in par-
allel employing different exploration policies to learn from the
environment, so asynchronous execution can decorrelate data
since parallel agents will experience different states and thus
can stabilize the training process of DRL.

actor–critic (AC) [27], [39] algorithm is proposed based on
policy-based model-free algorithms, and meanwhile also com-
bines the advantage of the value-based algorithm. In the AC
algorithm, policies are directly parameterized as π(at|st; θ)

and the parameter θ is updated by gradient ascent on the
difference between the expected accumulated return Rt and
the learned value function V(st, θv), i.e., Rt − V(st, θv), under
the policy π(at|st; θ). The actor is the learned policy function
π(at|st; θ), under which the action that can obtain the maxi-
mum reward will be picked out and performed. The action will
trigger changes in the environment, and meanwhile, the agent
will receive the corresponding reward. Based on the difference
between the reward and the learned value function V(st, θv),
i.e., the TD-error, the critic will evaluate the policy and update
the parameter θ of the actor network in order to improve the
probability of choosing actions that generate higher reward
and meanwhile, update the parameter θv of the critic network
so as to receive more accurate estimation value. As thus, the
AC algorithm learns the policy and the value function, in the
process of iteration, the critic could obtain more accurate esti-
mation and the actor could make more judicious decision untill
the system converges.

A3C [27] was proposed based on the AC algorithm.
Different from the AC method with only one agent, A3C
employs multiple agents with different policies concurrently
to train the DNNs asynchronously, thus can explore different
parts of the environment, so that the updates are less correlated
than using a single agent as AC does, and the training time are
significantly reduced. Similar to other asynchronous strategies,
there is a global network that stores the network parameters.
Each time once the agent updates its parameters of the actor
and the critic networks, it submits the parameters to the global
network, based on which the global network updates the global
parameters and then sends them to the agents in order to make
sure that all the agents can share same policy. This process
repeats until a terminal state or the maximum action index
tmax is reached.

A3C has many advantages over other existing DRL algo-
rithms. Compared with value-based algorithms, such as
Q-learning, DQN [37], SARAS [38], etc., where optimization
relies on value functions and the optimal policies is obtained
only when all the states are traversed, leading to high complex-
ity when the state and action space is large. Meanwhile, when
the state space and/or action space is continuous, value-based
algorithms could not play their effects [40]. A3C based on the
policy-based method where policies are directly parameter-
ized, so it can deal with continuous state and/or action spaces,
and can learn policies directly and effectively in discrete
systems with large numbers of states or actions. Compared
with policy-based algorithms, such as REINFORCE [38],
where updating are performed based on episode, A3C employs
step-based updating, so the efficiency is improved significantly.
Compared with AC, the multiple agents parallel training brings
less training delay and more effective exploration.

Next, we will explain how the A3C algorithm works. At
each time slot t, the environment is in state st, which has an
estimated state value V(st; θv) with parameter θv. Under st,
the agent performs a feasible action at according to policy
π(at|st; θ) with parameter θ , and then the environment may
transfer to an attainable following state st+1 by certain proba-
bilities, and receives a feedback in the form of an immediate
reward rt. The state value function of A3C is defined as

V(st; θv) = E[Gt|s = st, π ]

= E

[ ∞∑
k=0

γ krt+k

∣∣∣s = st, π

]
(16)

where Gt is the discounted accumulated return of step t, and
γ ∈ [0, 1] is called the discount factor, reflecting the impor-
tance of immediate reward and future rewards. When γ = 0,
only the next following reward is considered, and when γ = 1,
all the future rewards are equally important no matter how
soon they occur.

A3C employs k-step reward for parameter updating, where
both the policy and the value function will be updated after
every tmax actions or when a terminal state is reached. The
k-step reward is defined as

Rt =
k−1∑
i=0

γ irt+i + γ kV(st+k; θv) (17)

where k is upper bounded by tmax. The A3C algorithm is based
on AC architecture and also defines the advantage function
At as the difference between the real reward Rt and the esti-
mated value function V(st; θv). The advantage At can be given
by A(st, at; θ, θv) = Rt − V(st; θv), which is used to measure
how favorable a function at is compared with the value of
the current state, from the standpoint of long-term expected
reward. Using advantage At could improve the agent’s learn-
ing capability so as not to overestimate or underestimate the
quality of the action, and thus to enhance the decision-making
capabilities.

Based on the advantage function, the loss function [28] for
policy (or for actor) can be given by

fπ (θ) = log π(at|st; θ)(Rt − V(st; θv))+ βH(π(st; θ)) (18)
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where H(π(st; θ)) is an entropy term which is used for explo-
ration during the training process and thus to avoid possible
premature convergence to suboptimal policies, and β is used to
control the strength of the entropy regularization term, which
could help to manage exploration and exploitation in train-
ing, and higher β tends to exploration. Based on fπ (θ), the
accumulated gradient of policy loss functions is given by

dθ ← dθ +∇θ ′ log π(at|st; θ ′)(Rt − V(st; θv))

+ δ∇θ ′H
(
π
(
st; θ ′

))
(19)

according to which the actor network can be updated.
The loss function for the estimated value function (i.e., for

critic) is defined as

fv(θ) = (Rt − V(st; θv))
2 (20)

based on which the accumulated gradient of actor’s loss
functions is given by

dθv ← dθv + ∂(Rt − V(st; θv))
2

∂θ ′v
(21)

and according to which the critic network can be updated. In
the above, updating (19) and (21), θ ′ and θ ′v are the thread-
specific actor and critic network parameters of each agent,
and θ and θv are the parameters of the global actor and critic
network, respectively.

Next, we use the standard noncentered RMSProp algorithm
to perform training for both actor and the critic. By mini-
mizing the two loss functions, parameters are updated based
on the above-accumulated gradients. The estimated gradient
under RMSProp can be given by [27], [41]

g = αg+ (1− α)�θ2 (22)

where α is the momentum, and �θ is the accumulated
gradients of the policy or value loss function.

Based on the obtained g, update is performed according to

θ ← θ − η
�θ√
g+ ε

(23)

where η is the learning rate, and ε is a tiny positive number
used to avoid errors when denominator equals to 0 [27], [41].

The algorithm structure of the A3C-based optimization in
this article is illustrated in Fig. 2.

C. A3C-Based Viewport Rendering Offloading and Transmit
Power Control

We consider the MECS as the decision-making agent, which
interacts with the immersive VR video environment. The goal
is to select actions in a fashion that maximize the cumulative
future reward. The detailed information is given as follows.

1) System State: The system state at the tth time slot,
denoted st ∈ S where S is the state space, represents a set of
states, including the distance D(t) = {dt, dq,1(t), dq,2(t)}, q ∈
Nref, the attenuation α(t), the number of subwindows Ud(t),
the lengths of the task queues Q(t) = {Ql(t), Qf (t)}, and is
described by s tuple st � {D(t),α(t), Ud(t),Q(t)}. The system
state st ban be observed at the beginning of the tth time slot.

Fig. 2. Structure of the A3C-based optimization algorithm.

Algorithm 1 A3C-Based Viewport Rendering Offloading and
Transmit Power Control Algorithm
Initialization:

1: Initialize the global actor network and global critic network with
parameters θ and θv.

2: Initialize global shared counter as T = 0 and thread-specific
counter as t = 1.

3: Initialize the thread-specific actor and thread-specific critic
network parameters θ ′ and θ ′v.

4: Initialize Tmax, η, α, ε, γ , and tmax, respectively.
Iteration:

5: while T < Tmax do
6: for each agent do
7: Set gradients of two global networks: dθ = 0, dθv = 0.
8: Synchronous thread parameters by global parameters θ ′ =

θ and θ ′v = θv.
9: obtain the system state st.

10: for t ≤ tmax do
11: Perform at according to policy π(at|st; θ ′) in thread

actor network.
12: Obtain reward rt and new state st+1.
13: t = t + 1.
14: end for
15:

R =
{

0, for terminal state st,
V(st, θ

′
v), for non− terminal state sM .

16: for t = tmax, t ≥ 1 do
17: R = rt + γ R.
18: Obtain accumulate gradient wrt θ ′ based on (19);
19: Obtain accumulate gradient wrt θ ′v based on (21);
20: end for
21: Asynchronous update θ and θv according to (23), respec-

tively.
22: T = T + 1.
23: end for
24: end while

2) Actions: At each time slot t, the action at ∈ A includes
the viewport rendering offloading and the downlink power
allocation and can be given by at � {η(t), ptx(t)}. Accordingly,
the available actions for the tth time slot are given as {η, Ptx}.

3) Actor–Critic Network: We use two DNNs with weights
θ and θv to approximate the stochastic policy function (actor)
and the value function (critic). The output layer that estimates
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TABLE I
SIMULATION PARAMETER SETTINGS

the stochastic policy using a Softmax function. A total of six
workers are trained concurrently and optimize their individ-
ual weights using gradient descent. Each worker calculates its
own successive gradients during each episode. At the end of
each episode, each worker updates the global network and then
collects the new state of the global weights. The loss func-
tions for the actor and the critic employ that defined in (18)
and (20), respectively. The parameters θ and θv are optimized
using gradients defined in (19) and (21), respectively.

4) Reward Function: rt is the immediate reward, which is
defined as

rt = 1

(1− η(t))[El(t)+ ωlHl(t)]+ η(t)
[
Ef (t)+ ωf Hf (t)

] .
(24)

5) Policy: The policy of the formulated MDP is a mapping
π(at|st; θ) : S → A.

Based on the defined system states, the actions, the reward
function, the policy, and the update equations in (19) and (21),
the proposed A3C-based viewport rendering offloading deci-
sion optimization and downlink transmit power control algo-
rithm is detailed in Algorithm 1 [27], [28], [35], [42].

D. Implementation of Algorithm 1

As was mentioned in Section III-A, there is a decision maker
in MECS to make optimization decisions, and the core of
the decision maker is actually our A3C-based optimization
algorithm. In Algorithm 1, there is a central brain and some
agents. Both the central brain and each agent are composed
by an actor and a critic. In each time slot t, each agent first
synchronous its parameters by global parameters of central
brain as in line 8, and then interacts with the environment
simultaneously and independently, by choosing actions, i.e.,
the viewport rendering offloading decision and transmit power
control, under its current policy. When actions are taken, each

Fig. 3. System reward under different learning rate of the actor network.

agent obtains a reward and the system transforms to the next
state. The process repeats until a final state is reached, as in
lines 10–14. Then each agent updates the parameters of its
actor and critic networks as in lines 16–20, and sends its cor-
responding updated parameters to the actor and the critic of
central brain asynchronously as in line 21. With time elapses,
the above process repeats until the algorithm converges and the
final time slot reaches, and then the optimal policy [25], [27]
that can maximize the long-term expected cumulative reward
can be obtained.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide simulations to verify and discuss
the performance of our proposed joint optimization algorithm.
We consider an indoor system where MECS locates in the
center, serving an area with the radius being 20 m. The usable
bandwidth and number of subwindows refers to the Fig. 1(b)
in [10], and it can be know that when the distance rises from
1 m to 20 m, the total bandwidth shrinks from 0.94 THz to
0.78 THz nearly linearly [10]. Based on this observation, we
can obtain the decreasing rate of the total usable bandwidth
is approximately 8.42 GHz/m. The relationship between the
two can be approximately as B ≈ 984.42 − 8.42d GHz, so
Ud(t) = �(984.42 − 8.42d)/Bg�, t ∈ T . We consider the IBI
leakage of 17.47% to the neighboring subwindows in (6), for
the rectangular waveform [9]. Regarding the content, we use
4K immersive VR video clips from MPEG [43]. All the videos
are in 3840 × 1920 resolution at 30 frame-per-second (fps),
with a bit depth 8 b. Each chunk contains 4 frames. The size
of viewport is 856×856. Detailed default parameters are sum-
marized in Table I, they will keep unchanged unless otherwise
specified.

A. Convergence of Algorithm 1

We first illustrate the convergence of our proposed algorithm
under different learning rates. Fig. 3 shows the convergence
under different actor’s learning rate, with the critic’s learning
rate set as the default value lc = 10−2, and Fig. 4 shows the
convergence under different critic’s learning rate, while the
actor’s learning rate takes the default value la = 10−2. As can
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Fig. 4. System reward under different learning rate of the critic network.

Fig. 5. System reward versus HMD’s data receiving power consumption.

be seen from the two figures, the system reward first increase
sharply, and converges at nearly the 50th episode under dif-
ferent learning rate combinations, demonstrating our proposed
algorithm converges considerably fast.

B. Performance Evaluation of Algorithm 1

Next, we evaluate the performance of our proposed algo-
rithm by comparing it with the following two algorithms.

1) Local rendering, which is shorted as “Local” in the fol-
lowing context. In Local, there is no rendering offloading
decision optimization, so the MECS will first decode all
the original data into uncompressed immersive VR video
chunks, including viewport tiles and standby tiles, and
then deliver them over the THz link to HMD, and then
the HMD will render the viewport by itself.

2) Actor–Critic-based algorithm, which is denoted as
“Actor–Critic.” The only difference between this method
and our proposed algorithm is based on A3C, and
“Actor–Critic” is based on AC.

Remark 3: As was mentioned, the reward is defined as
the reciprocal of our objective function, i.e., the energy con-
sumption of the HMD. So, in the following, we can consider
either the system reward or the HMD’s energy consumption
as our performance metrics when we evaluate the performance
of the algorithms. For a certain algorithm, the larger system

Fig. 6. System reward versus the local viewport rendering power of HMD.

reward, or the smaller the energy consumption of the HMD the
algorithm could achieve, the better performance the algorithm
could obtain.

In Fig. 5, we show how the system reward changes under
HMD’s different basic circuit power consumption Pb. As
can be seen, the system reward decrease with Pb increase,
which is the same for the four algorithms. This is easy to be
understood, when Pb increase, the data receiving energy con-
sumption will increase, so the reward will decrease. Moreover,
it can be observed that our proposed A3C-based algorithm per-
forms the optimum, followed by the AC method. Since AC
also employ THz as the wireless channel, the only difference
between it from our proposed algorithm lies in the DRL meth-
ods they adopt. Moreover, as a result of multiagent concurrent
training, A3C performs better than AC which is adopted by
AC, so AC performs worse than our proposed A3C-based
algorithm. For Local method, since energy-demanding view-
port rendering is always performed locally, and large quality
of energy is consumed, it performs the worst among all the
algorithms.

Fig. 6 plots the system reward versus HMD’s local task
processing power ξ .

1) When ξ = 0.001, i.e., the local processing power is
very small, all the methods will choose local viewport
rendering, i.e., the uncompressed original data will be
transmitted to HMD, and the viewport data will be ren-
dered by HMD in all the four methods. Thus, the energy
consumed in viewport rendering is the same for all the
four algorithms. Since the three algorithms all adopt the
larger capacity THz link in wireless data transmission,
so the energy consumed in data receiving is all the same
for the three algorithms. Therefore, when ξ = 0.001, the
reward of our proposed A3C-based algorithm, AC and
local method nearly perform all the same.

2) When local task processing power ξ increases from
0.001 to 0.2, the energy consumed in local viewport
rendering increases quickly, making the energy con-
sumption of all the algorithms increase significantly.
Therefore, the system reward decrease quickly, wherein
Local decrease the sharpest, this is because all viewport
data will be rendered by HMD in Local method, while
in other algorithms, the viewport is not always rendered
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Fig. 7. System reward versus different BER requirement.

Fig. 8. HMD’s energy consumption versus distance between HMD and
MECS.

in HMD, and therefore, the decrease in reward is not so
sharp.

3) When ξ continues to increase from 0.2 to 1.2, MECS
rendering becomes more suitable. Since the Local
method always chooses local viewport rendering even
if this is not so appropriate, the reward of the Local
method keeps droping gradually.

The other three algorithms will choose MECS rendering by
offloading decision optimization, so their reward nearly keeps
unchanged. From Fig. 6, we also can find that our proposed
A3C-based algorithm always performs the optimum.

In Fig. 7, we plot the effect of BER εu on the system reward,
where BER takes its values from 10−7, 10−6, . . . , 10−1,
respectively. As the required BER increases, the wireless rate
increase, leading to a decrease in energy consumption, and
consequently the reward will increase. It can be also known
that our proposed algorithm performs the best, followed by
AC and local, respectively.

Fig. 8 plots how the distance between HMD and MECS
affects the energy consumption of the four algorithms. First,
we can find that our A3C-based algorithm consumes the least
energy, followed by AC and local method. Moreover, it can
also find that the distance nearly has no effect on the energy
consumption for each method, since their energy consumption

nearly keeps unchanged with distance grows. This is because,
in our system model, we consider the simple one user scenario,
so the wireless resource will be exclusively used by this HMD
user, and the wireless resource is sufficiently abundant in all
the methods, no matter how far the user is. By the way, the
general case with multiple users will be one of our future
work, and then we will also show the effect of distance on the
energy consumption of the multiple HMD users.

VII. CONCLUSION

In this article, we have proposed a THz access-based MEC
system to support wireless immersive VR video services. We
have formulated a joint viewport rendering and THz downlink
transmit power control problem to investigate the HMD’s long-
term energy consumption minimization. Based on the A3C
DRL algorithm, we developed a low-complexity algorithm to
obtain the optimal solution to viewport rendering offloading
decision making and transmit power control. The simulation
results have verified the convergence of our algorithm, and
have demonstrated that our algorithm could perform much bet-
ter than other algorithms in energy consumption minimization
or system reward maximization.
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