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Abstract—Driven by the quality of experience (QoE) require-
ment of video streaming applications in the smart city, smart
education, immersive service, and connected vehicle scenar-
ios, the existing network poses significant challenges, including
ultra-high bandwidth, ultra-large storage, and ultra-low latency
requirements, etc. Multi-access edge computing (MEC) is a
potential technology, which can provide computation-intensive
and caching-intensive services for video streaming applications
to satisfy the requirement of QoE. Thus, focusing on video
streaming schemes, a comprehensive summary of the state of
the art applying MEC to video streaming is surveyed. Firstly,
the related overview and background knowledge are reviewed.
Secondly, resource allocation issues have been discussed. Thirdly,
the enabling technologies for video streaming are summarized by
taking account of caching, computing, and networking. Then,
a taxonomy of MEC enabled video streaming applications is
classified. Finally, challenges and future research directions are
given.

Index Terms—Multi-Access Edge Computing, Video Stream-
ing, Resource Allocation, QoE, Caching, Blockchain.

I. INTRODUCTION

W ITH the rapid development of mobile Internet tech-
nology, mobile network data traffic has experienced

an explosive growth trend. According to the 2019 Cisco VNI
report [1], global mobile data traffic will reach 61 EB (exabyte)
per month by 2022, when mobile video traffic will account
for nearly four-fifths (79%) of global mobile data traffic. The
explosive growth of data traffic, especially video traffic, poses
a huge challenge to mobile networks. Currently, immersive
videos such as virtual reality (VR) and augmented reality
(AR) have very good potential to be the next most important
application market. Globally, VR/AR traffic will account for
up to 254 PB (petabytes) per month in 2022. Together with
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the development of the 5th generation (5G) technology and
smart wearable devices, the growth of VR/AR applications is
rapid. However, VR/AR applications place higher demands on
the quality and performance of future networks [2], [3].

Moreover, 5G is expected to be an enabling technology for
smart city, smart education, AR/VR service, and connected
vehicle [4]. With the development of wireless communication
technology, 5G and smart cities are inextricably linked: (1)
smart surveillance needs to improve the efficiency of object
recognition/detection. (2) connected vehicles need to analyze
and adapt to their environment by using artificial intelligence
(AI) technology. Finally, 5G promises a more friendly ecosys-
tem for the Internet of Thing (IoT) applications, where data
collected by IoT devices need to be analyzed at the network
edge. Therefore, with regards to video streaming applications,
mobile networks need to provide higher data transfer rates and
lower network latency, which will provide users with a better
quality of experience (QoE).

To address these network challenges, based on the develop-
ment of capture and display devices dedicated to video coding
and transmission technologies have become an important task
of standardization [5]. In terms of video coding, High Effi-
ciency Video Coding (HEVC) which has been standardized
by the Joint Collaborative Team on Video Coding (JCT-VC)
can be used to encode VR/360◦ video. As the successor
of HEVC, the future video coding standard named Versa-
tile Video Coding (VVC) has been developed by the Joint
Video Experts Team (JVET) [6], which takes into account
camera-view video, high dynamic range (HDR) video and
VR/360◦ video. In terms of video transmission, the content
delivery network (CDN) is adopted to distribute in cloud-
manner content, enhancing media availability and distribution
performance [7]. CDN nodes are usually deployed in multiple
locations, often over multiple Internet backbones. Benefits
include reducing bandwidth costs, improving page load times,
or increasing global availability of content. However, as a
continuous increase in the number of video users further
triggers the quick growth of video traffic, the CDN-based
video systems need to increase the number of replica servers
to achieve the trade-off between bandwidth and the massive
traffic demand of users, which increases the cost of video
systems and affects negatively on QoE.

Multi-access edge computing (MEC) architecture promoted
mainly by ETSI [8], can offer low latency, high bandwidth,
location, and context awareness service for video streaming.
The MEC resources are placed at the network edge, such as
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Fig. 1: Road map of multi-access edge computing applied to video streaming.

base stations (BSs), access points (APs), and radio access
network (RAN). MEC is integrated into RAN and provides
computing, storage, and communication resources at the edge
of the mobile network. The MEC reference architecture con-
sists of the mobile edge host and its management [9], where
the mobile edge host includes a virtualization infrastructure
and the mobile edge platform. Fog computing (FC) introduced
by Cisco [10], refers to extending cloud computing to the
edge of an enterprise’s network. Fog standards are driven
by OpenFog consortium that defines FC as a system-level
horizontal architecture [11]. The node devices of FC include
routers, switches, APs, and gateways. Compared to the tradi-
tional cloud/fog network, MEC has some obvious advantages,
including low delay and high energy efficiency. Firstly, delay-

saving characteristics of MEC are particularly evident in delay-
sensitive applications, such as 360◦ video and VR applications
[12]. By using the storage resources of MEC that caches the
content on the MEC server, the user can directly obtain content
from the MEC server, which can greatly decrease the waiting
time between the request and the response, thereby improving
the user’s QoE [13]–[15]. Secondly, MEC computing and
storage resources can perform partial computational tasks to
reduce the computational energy consumption of the core
network [16], [17]. Moreover, the cost of storage resources is
lower than the cost of bandwidth resources. The deployment
of MEC is also a way of storing bandwidth for storage. The
local storage of content can greatly reduce the necessity of
remote transmission, thereby reducing transmission energy
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TABLE I: Summary of existing surveys on MEC for video streaming.
Theme Reference Major Contribution Related Content Differences of Related Content in this Paper

[19]
A review of MEC definition, application scenarios,
challenges and opportunities, as well as security and
privacy issues.

Sections II and
VI

A discussion about resource allocation for MEC-
based video streaming.

[20]

An overview of state-of-art MEC works by
considering resource management of communica-
tion/computation in different applications including
single-user, multi-user, and multi-server MEC sys-
tems.

Sections IV, VI Focusing on the state of art and difficulties of re-
source allocation for MEC-based video streaming.

[21]
A comprehensive survey of MEC’s use cases, ad-
vancement, and the previous works about computa-
tion offloading, as well as open research challenges.

Sections II and V
A thorough review of the MEC for video streaming
and converging of computing offloading, communi-
cation, and caching.

[22]
An exhaustive review of previous works about MEC
including the convergence and integration of com-
munication, computation, and caching.

Sections V and
VI

Providing a taxonomy for the resource allocation for
MEC-enabled video streaming.

MEC [23]
A complete summary of MEC architectures, enabling
technologies, and MEC-enabled IoT applications, as
well as the selected use case.

Sections V and
VI

Focusing mainly on MEC-enabled video applica-
tions.

[24]
A summary of MEC definition, architectures, ad-
vantages, applications, and state-of-art related re-
searches, as well as security and privacy issues.

Sections II, III,
and VI

Addressing the main challenges and enabling tech-
nologies in MEC-based video streaming.

[25]
A comprehensive of state-of-art MEC researches, the
integration of MEC with some emerging technolo-
gies, and a summary of lessons learned.

Section II Pinpointing on the challenges of resource allocation
in MEC-based video applications.

[26]
A comprehensive survey of applications of edge
caching including smart city, vehicular content net-
works, virtual reality and healthcare.

Section V
A more extensive summary of MEC-enabled video
applications and enabling communication, comput-
ing, and caching.

MEC for Video
Streaming [27]

A systematic review of edge video analytics applica-
tions, algorithms and platforms for public safety, as
well as open issues and future works.

Section VI
Giving a more detailed description of resource allo-
cation and applications for MEC-based video stream-
ing.

[28]
An overview of MEC feature capabilities including
edge caching, computing and multimedia Internet of
Things, as well as research challenges.

Sections II and
VI

Not only resource allocation but also service scenar-
ios for MEC-based video streaming are presented.

consumption [18]. MEC-based video streaming schemes are
largely ignored in most previous works [19]–[25]. In addition,
the enabling technologies and resource allocation issues need
to be investigated in future work.

A. Survey Novelty and Contributions
Some existing works have studied MEC and video stream-

ing, which are listed in Table I with a brief description
of their related topics and the differences with this survey.
To the best of our knowledge, different from the previous
works, this survey is the first to discuss methodologies and
approaches to solve the impediments when performing the
resource allocation for MEC-based video streaming. Most
previous works [26]–[28] only mentioned video streaming
applications in MEC systems, but the possible solutions of
conducting resource allocation in MEC systems are crucial for
the success of video streaming application in MEC systems,
which need further research.

To fill this gap, this survey focuses on the use of MEC
for video streaming applications. Different from the previous
works, this work provides a comprehensive survey on resource
allocation, the enabling technologies, and the applications
and use cases for MEC-based video streaming. The main
contributions of this article are summarized as follows.
• Overviews of MEC and video streaming are conducted,

and the benefits of MEC are stated.
• The resource allocation issues for MEC-based video

streaming are discussed. In this context, the network
architecture, manageable resources, optimization criteria,
control structure, and evaluation methods are reviewed.
Moreover, the main optimization tools for solving the
problem are summarized.

• The enabling technologies for MEC-based video stream-
ing are surveyed, such as blockchain, SDN, NFV, and
networking slice. Moreover, caching, computing and net-
working are considered to support video streaming, where
previous works are summarized logically. Moreover, the
system abstraction has been described in optimization
alternatives.

• The existing solutions to video streaming applications
by using MEC are classified, including intelligent video
acceleration, video streaming analysis, augmented reality
service, and connected vehicles.

• Challenges and future research directions of video
streaming are stated based on MEC.

B. Survey Structure
The remainder of this article is organized as follows.
• Section II: We provide basic background knowledge of

multi-access edge computing and video streaming. In
addition, the comparison of the concepts of cloud, fog,
and edge computing is given.

• Section III: We describe the motivation and require-
ments for applying multi-access edge computing to video
streaming.

• Section IV: We survey solution techniques that solve
the resource allocation problem of MEC-based video
streaming. We discuss the pros and cons of each solution
technique.

• Section V: We survey the enabling technologies for
MEC-based video streaming, including communication,
caching, and computing.

• Section VI: We classify existing video applications in the
MEC system.
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TABLE II: The main abbreviations.

Term Definition Term Definition
ABR Adaptive Bitrate MEC Multi-Access Edge Computing

ADMM Alternating Direction Method of Multipliers MSN Mobile Social Network
AP Access Point NDN Named-Data Networking
AR Augmented Reality NFV Network Functions Virtualization

AVC Advanced Video Coding OTT Over-the-Top
CDN Content Delivery Network PVRV Panoramic Virtual Reality Video
D2D Device to Device QoE Quality of Experience

DDoS Distributed Denial of Service QoS Quality of Service
DASH Dynamic Adaptive Streaming over HTTP RAN Radio Access Network
DRL Deep Reinforcement Learning RA Resource Allocation
FoV Field of View SDN Software-Defined Networking

HetNet Heterogeneous Network SVC Scalable Video Coding
HEVC High Efficiency Video Coding VR Virtual Reality

IoT Internet of Things VVC Versatile Video Coding
ICN Information-Centric Networks UE User Equipment

TABLE III: Cloud, Fog, and Edge Computing Concepts Comparison.

Cloud Computing Fog Computing Edge Computing
Node Devices Data Center Routers, Switches, Access Points, Gateways Base Stations

Location of data processing and storage Network Core Near-Edge, Edge Network Edge
Service Virtualization Virtualization Virtualization

Network Architecture Centralized Decentralized, Distributed Decentralized, Distributed
Location Awareness Low Medium High

Mobility Limited Supported Supported
Latency High Medium Low

• Section VII: We suggest future research directions based
on the overall trends observed from the survey results.

• Section VIII: We summarize the key ideas from this
survey.

Fig. 1 illustrates a road map of our approach, and the main
abbreviations in this paper are summarized in Table II.

II. OVERVIEW

In this section, different variations of the computing
paradigm, including cloud computing, fog computing, and
multi-access edge computing are described. Then, video
streaming technology is introduced.

A. Multi-Access Edge Computing

1) Cloud, Fog, and Edge Computing:
Cloud computing is the on-demand availability of com-

puter system resources, especially data storage and computing
power, without direct active management by the user. The
motivation of cloud computing is to provide IT services
on-demand. More comprehensively, initial steps toward de-
centralization of cloud computing are realized through the
emergence of fog and edge computing [29]. Fog computing
extends the concept of cloud computing to the network edge,
making it ideal for IoT and other applications that require real-
time interactions. Fog provides data, storage, computing, and
application services to end-users thanks to the intermediation
of a local proxy, often called Smart Gateway (SG) [30].
Moreover, fog computing is closer to end-users and has a wider
geographical distribution. Edge computing is a distributed
computing pattern that can bring computation and data storage
closer to the location, and improve response times and save
bandwidth [19]. At the edge, the devices can consume or
produce data. Moreover, the devices can request or perform
tasks from the cloud. Similarly, the edge can offload the

computing tasks, process data caching/storage, and service
delivery.

Table III details conceptual differences and similarities in
their current approaches. Cloud computing paradigm is based
on the data centers which are capable of handling storage and
processing of large scales of data. For cloud computing, the
location of data processing and storage is located close to
the network core. Fog computing implementation is a decen-
tralized computing infrastructure based on routers, switches,
access points, and gateways. For fog computing, the location
of data processing and storage is located close to the near-
edge and edge. Edge computing is to bring computational and
storage capacities to the edge of the network within the radio
access network. The edge computing nodes are usually co-
located with the macro base-station. For edge computing, the
location of data processing and storage is located close to the
network edge. Moreover, cloud computing lacks of location
awareness, while the location awareness of fog computing
and edge computing is medium and high. The mobility of
cloud computing is limited, while fog and edge devices support
mobility.

2) MEC Standardization:
Mobile edge computing provides an information service en-

vironment and cloud-computing capabilities at the edge of the
mobile network, within the RAN and near mobile subscribers
[24]. In 2017, mobile edge computing was renamed to multi-
access edge computing (MEC) by the European Telecom-
munications Standards Institute (ETSI) Industry Specification
Group (ISG). In February 2018, the document about the
deployment of MEC in the network function virtualization
(NFV) environment was approved by ETSI [31]. Moreover,
the use cases and requirements specification on MEC were
published by ETSI in October 2018 [32], which include an
annex describing example use cases and their technical bene-
fits, for deriving requirements. Most recently, the framework
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Fig. 2: ETSI MEC framework [8].

and reference architecture specification of MEC were released
by ETSI [8], which describe the functional elements and
the reference points between them, and some MEC services.
In July 2019, ETSI has announced the Proof of Concept
(PoC) framework that was accepted by ETSI ISG MEC [33].
Most recently, the document about MEC 5G integration was
produced by ETSI [34].

MEC enables the implementation of applications as
software-only entities that run on top of a virtualization infras-
tructure that is located close to the network edge. The frame-
work of ETSI MEC is shown in Fig. 2, which includes system-
level, host-level and network-level entities. The networks-level
offers connectivity to a variety of accesses, and the host-
level provides the virtualization infrastructure and the MEC
platform, facilitating the execution of MEC applications. The
system-level management provides an abstraction of the un-
derlying MEC system facilitating access for user equipments
(UEs) and third parties.

Moreover, D2D communication is direct communication
between two mobile users without traversing the Base Station
(BS) or the core network [35]. D2D-enabled MEC has been
investigated to support end device resource sharing [36].
The integration of D2D and MEC can further improve the
computation capacity of the cellular networks, where end-
devices with computing and storage capacities collaborate with
the conventional MEC infrastructure. As shown in Fig. 3, the
D2D-enabled MEC system consists of a macro base station
(MBS), small cell-based stations (SBSs), and end devices. In
this case, the end device can offload the task to either the
nearby MEC or a group of D2D nodes.

B. Video Streaming

1) HD/UHD Video:
With the development of display technology, the video

definition is higher. The high definition (HD) video refers
to higher quality video than standard definition video, which
has between 720 and 1080 lines of vertical resolution. The

Fig. 3: The D2D-enabled MEC.

ultra high definition (UHD) video refers to the higher quality
video that has a higher resolution than standard definition ones,
which has between 2160 and 3840 lines of vertical resolution.
Due to the increase in video streaming traffic over the Internet,
users’ quality of experience is significantly affected.

Video streaming is a type of media streaming, which is
continuously transmitted over the Internet to users. The size
of each streaming is determined by the compressed video
size, bandwidth, and latency. The widely-used video coding
formats include H.264/AVC [37], H.265/HEVC [38], AVS2
[39], VP6 [40], VP9 [41], VC-1 [42], and AV1 [43]. In
addition, H.265/HEVC was designed by the Joint Collabo-
rative Team on Video Coding (JCT-VC1). As a successor
to H.264/AVC, H.265/HEVC achieves to increase the coding
efficiency by 50%, while at the same time video quality is
not reduced. H.265/HEVC is friendly for real-time encoding,
which supports HD, UHD, and 8K UHD video. Moreover, the
next-generation video standard Versatile Video Coding (VVC)
will be released around 2020 by the Joint Video Experts Team
(JVET2). AV1 is an open, royalty-free video codec designed
for video delivery over the Internet, while the hardware design
of AV1 codec will be implemented at least in 2020.

To adapt to different network environments and varying
user requirement in video transmission and storage systems,
Scalable video coding (SVC) and Scalable High efficiency
Video Coding (SHVC) that are the scalable extensions of
the H.264/AVC and H.265/HEVC were presented to offer
the scalability [44], [45]. In lossy transmission environments,
the bit rate and format can be adjusted to adapt to vari-
ous terminal capabilities or network conditions. Furthermore,

1https://hevc.hhi.fraunhofer.de
2https://jvet.hhi.fraunhofer.de
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TABLE IV: HD/UHD Video Streaming Applications.

Applications Video Codec Highest Resolution Bandwidth
Amazon Video VC-1 1280× 720 (HD) 2.5-6 Mbit/s

Hulu On2 VP6 1280× 720 (HD) 2.5 Mbit/s
Apple TV H.264/AVC 1920× 1080 (HD)

Vimeo H.264/AVC 1920× 1080 (HD)
Netflix VC-1 3840× 2160 (UHD) 25 Mbit/s

Youtube H.264/AVC,
VP9 7680× 4320 (8K UHD)

Fig. 4: The VR system.

video traffic has caused a huge impact on mobile networks.
Mobile networks are required to provide a higher transmission
rate and lower network latency capability. To address these
challenges, adaptive bitrate (ABR) technology is adopted in
video distribution [46]–[48]. Firstly, in the mobile network,
the video is encoded into a variety of bit rate streaming
versions. Secondly, each streaming version is cut into multiple
segments. Therefore, according to terminal capabilities and
network conditions, the suitable streaming version will be
provided to the user dynamically. The benefit of ABR is
that the probability of choppy video can be reduced, while
the user’s QoE can be enhanced. Recently, ABR is used to
streaming transcoding and caching with different scenarios
[49].

Encoded video streams are assembled in a container ”bit-
stream”, and the bitstream is transmitted by using a trans-
port protocol. Popular streaming protocols include MEPG-
DASH [50], Apple HTTP Live Streaming (HLS) [51], Adobe
HTTP Dynamic Streaming (HDS) [52], and Microsoft Smooth
Streaming [53]. Table IV shows HD/UHD video streaming
applications.

2) AR/VR Video:
Immersive technologies such as augmented reality (AR) and

virtual reality (VR) bring new opportunities and challenges for
content storage, delivery, and display in the multimedia net-
work industry. By 2025, VR and AR ecosystem are expected
to be an $80 billion market. Virtual reality is a simulated
experience that can be similar to or completely different from
the real world. VR system has the following three basic
characteristics: immersion, interaction, and imagination, and it
emphasizes the dominant role of a user in virtual systems [54].
Fig. 4 emphasizes the whole VR system including person, VR
device, and the real world. The VR device contains at least one
screen, a set of sensors, and a set of computing components,
which can generate the stimuli and track user’s motion by
using various sensors. The user can respond to the stimuli

from the real world. VR applications include two categories:
360◦ VR video and computer-generated (CG) VR, which have
a broad application prospect. In the short term, the most
promising applications include video games, entertainment,
medical care, manufacturing [55], and education [56].

Augmented reality is an interactive experience of a real-
world environment where the objects that reside in the real-
world are enhanced by computer-generated perceptual infor-
mation, sometimes across multiple sensory modalities [57].
AR system is closely bound up to hardware, software, and
applications. For hardware, the combination of processor,
display, sensor, and input device can be suitable for the AR
platform. In terms of software, having the ability to combine
augmented objects with the real world is very critical. There-
fore, the AR algorithm must obtain the coordinates of the real
world from the images in the equipment, and then superimpose
the augmented objects onto the coordinates. AR technology
was used in various industries, and typical applications include
medicine, assembly, maintenance and repair, entertainment,
sport and marking, collaborative visualization space, tourism,
architecture and construction, teaching, education, and training
[58].

III. BACKGROUND

In this section, motivations for applying MEC to video
streaming are introduced. Moreover, the requirements for
video streaming are surveyed.

A. Motivation

MEC is a key enabling technology for 5G networks. MEC-
enabled video streaming applications can accelerate the com-
mercialization of enabling technologies. The core characteri-
zations of MEC can be summarized as flowing.

1) Computational Capacity: MEC can provide ultra-low
latency and ultra-high bandwidth, which is one of the am-
bitious need of MEC to obtain real-time network analysis.
MEC is suitable for computation-intensive services such as
AR and VR. Moreover, MEC is geographically close to users
or information sources, which can significantly reduce the
network latency of service response and reduce the possibility
of network congestion in the backpass network and core
network [59]. Finally, MEC can perceive network data in real-
time, including the condition of wireless links, users’ behavior
information, and location.

2) Storage Capacity:
Different from traditional networks, MEC has many sig-

nificant advantages, which can effectively solve the problems
of high delay and low efficiency in traditional networks. For
video streaming applications, MEC’s computing/storage re-
sources and network perception ability can effectively support
ABR technology. On one hand, video content can be cached
in distributed edge networks and offloaded to the local server,
where the transmission latency can be reduced and the energy
efficiency can be improved significantly. On the other hand,
by using ABR technology, the bitrate of the video version can
be adjusted adaptively based on mobile devices and network
conditions. Then, multiple bitrate versions can be cached,
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which will cause a large cache cost. The possible solution is
that a higher bitrate version to be cached in the MEC server.
When the bitrate version is not hit, the cached bitrate version
can be transcoded to the requested bitrate version in MEC
server, which can improve the efficiency of caching resources.
Therefore, the popular bitrate version is cached and transcoded
between different bitrate versions to respond to user requests
on the edge of the network, which has been considered as an
important approach to solve content distribution in adaptive
video streaming applications.

B. Requirements

With the development of the acquisition and transmission
technologies of immersive media, great challenges are fore-
seen in the network system for supporting a variety of video
streaming applications, which can be outlined in the following.

1) Ultra-High Bandwidth:
As users’ expectations for high resolution video quality

increase, the disadvantage of “occupying too much bandwidth”
is highlighted, and the delivery of video streaming in real-
time faces new challenges. On one hand, the pixel of 4K
(3820×2160) video is four times that of the 1080p HD video,
which can consume a lot of bandwidth. Moreover, compared
with 4K video, 8K (7640 × 4320) video needs a significant
more amount bandwidth to transmit.

On the other hand, as the 360◦ video and VR applications
such as virtual classrooms and virtual galleries are becoming
popular, people are also increasingly eager for a real mobile
experience. Providing 360◦ video and edge-based VR appli-
cations require ultra-high bandwidth and ultra-low latency,
which is difficult to achieve in mobile networks. Furthermore,
transmitting a high bandwidth will bring high operating costs
and potentially large delays. The Field of View (FoV) is
used to reduce the streaming bandwidth. However, extracting
and transmitting FoVs that respond to user head movements
can increase high latency and negatively impact the user
experience.

2) Ultra-Large Storage:
The digital video is rapidly evolved to 8K and beyond,

but their adoption and consumption have created immense
challenges for storage domains. Firstly, transcoding is one
of the critical media services that is required to produce
content. It is a conversion of data from one format to another.
Transcoded content must support many different formats, de-
vices, and platforms. Therefore, a lot of video files are proceed
concurrently, requiring high throughput, massive storage and
CPU intensive resources.

Moreover, for 360◦ video and AR/VR applications, cloud
storage is not suitable, because there is a constant need to
retrieve, edit, and enhance the content. Although upfront costs
of cloud storage are minimal, the cost of continuing storing
video data in the cloud is expensive as data grows.

3) Ultra-Low Latency:
Low latency is very vital for real-time streaming applica-

tions. When distributing videos using online streaming plat-
forms, latency issues are especially noticeable. The latency
over the network is proportional to bitrate and inversely

TABLE V: Typical bandwidth and latency for VR.

Standard Previous VR Entry VR Advance VR Ultimate VR
Resolution 960× 960 1920× 1920 3840× 3840 7680× 7680

Ratio 165:1 165:1 215:1 350:1
Frame rate 30 30 60 60
Bandwidth 25Mbps 100Mbps 418Mbps 4.95Gbps

Latency 40ms 30ms 20ms 10ms

proportional to bandwidth. Some factors are impacting the net-
work latency: file upload, CDN propagation, and file delivery.

Moreover, the bandwidth is the bottleneck for the VR
network latency. Transmission time thus dominates the overall
delay. There are two categories of latency for VR applications:
the transmission latency and the user’s perceived latency. VR
immersive experience brings shorter latency requirements to
the network. Table V shows the typical bandwidth requirement
and latency for various VR applications. The tolerable network
latency is 10ms for the ultimate VR, while the tolerable
network latency is 40ms for the previous VR. Therefore, the
processing of the VR video should be either on local devices
or on the MEC server.

4) QoE:

QoE has become a prominent problem for real-time video
streaming applications. The growth of online video streaming
can lead to network congestion, which brings a poor QoE
for users. The average bitrate is the most accurate indicator
of video quality. To increase the user’s QoE, ABR streaming
technology can be used to adapt video bit-rate to network
congestion. However, other streaming metrics including re-
buffering ratio and start buffering time have a major effect on
the QoE of the real-time streaming.

Furthermore, immersive video streaming is extremely wel-
comed by users. However, it is hard to understand the QoE of
VR streaming. Several factors, including presence, usability,
and cyber-sickness have a great correlation with the QoE of
VR streaming [60]. To offer satisfying end-user QoE, edge
computing has the potential to be the solution to transmit VR
video streaming [61].

5) Security and Privacy:

Currently, the security and privacy issues in smart city and
smart compus environments have attracted the academic and
industry. In general, security is associated with the robust-
ness of VR/AR devices against some attacks, and privacy
is associated with the protection and secrecy of sensitive
data [62]. For one thing, VR/AR video technologies have
been employed increasingly to increase efficacy and outcomes
by the education community. For instance, VR devices can
be used to visit a virtual campus, which enhances student
engagement. However, in the public environment, the data are
not secretive, and the data integrity can be compromised. For
another, distance learning and training can be enhanced by VR
technology. However, the distributed denial of service (DDoS)
attacks would happen in an on-line classroom more frequently.
Therefore, it is very vital to provide decentralized security and
privacy for VR/AR applications in IoT environments.
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IV. RESOURCE ALLOCATION

In this section, we study resource allocation issues for
video streaming. Firstly, different network architectures are
introduced, and the manageable resources in video commu-
nication are reviewed. Secondly, the optimization criteria are
described. Thirdly, the control structures of resource allocation
are discussed. Next, the single-objective and multi-objective
optimization problems are introduced. Then, optimization
tools for solving the resource allocation problem are described.
Finally, evaluation methods are surveyed.

A. Network Architectures

We consider the following four typical network architec-
tures: Macro-Cellular Networks, D2D Networks, Heteroge-
neous networks (HetNets), and C-RANs.
• Macro-Cellular Networks: Macro-cellular networks [63]–

[65] provide radio coverage served by a high power cell
site (tower, antenna or mast). Generally, macro-cellular
networks provide coverage larger than micro-cellular
networks. Macro-cellular networks base stations have
power outputs of typically tens of watts. Macro-cellular
networks performance can be increased by increasing the
efficiency of the transceiver.

• D2D Networks: D2D networks [66], [67] are cellular
networks that allow direct communication between two
mobile users without traversing the Base Station (BS)
or core network. D2D communication is generally non-
transparent to the cellular network and it can occur on
the cellular frequencies or unlicensed spectrum.

• HetNets: HetNets [68]–[70] consist of macro-cells, small
cells (femtocells, picocells), and relay nodes. In HetNets,
the small cell BSs and relay nodes transmit at low power
levels.

• C-RANs: A radio access network (RAN) is part of a
mobile telecommunication system, which implements a
radio access technology. RAN resides between a mobile
device and provides the connection with its core network
(CN). The typical RANs include cloud-based radio access
network (C-RAN) [71], [72]. Another similar concept is
called fog-based radio access network (F-RAN).

B. Manageable Resources

In the wireless cellular networks, the joint framework con-
sidering computation offloading, spectrum resource allocation,
and content caching are proposed to improve the performance
of video streaming with MEC. For wireless communication,
manageable resources are spectrum/bandwidth, power/battery,
time, and space resources [73]. The computation resource is
evaluated by computational ability. The caching resource is
evaluated by storage availability.

C. Optimization Criteria

In this work, the general criteria have been proposed for
resource optimization. We present the networking, caching
and computing related metrics, respectively. All the objective
metrics are classified and briefly described in Table VI.

1) Energy Consumption:
The energy consumption metric refers to the energy con-

sumed by network nodes, either user devices or servers, for the
execution of the computation task. The energy consumption
metric is in close relation to the execution time metric, since
energy consumption depends on the time during which the
network nodes work. In the MEC system, the energy consumed
by user devices for computation task offloading, and the
energy consumed by the MEC server for computation results
feedback, can also be included in this energy consumption
metric.

In the previous works, the approaches for energy consump-
tion minimization have been widely studied in [74], [75], [76],
[77]. In general, energy efficiency consists of signal transmis-
sion power consumption and equipment energy consumption.
Furthermore, in caching-computing-networking architecture,
the cache energy consumption and the computation energy
consumption can be considered in [78], [79].

2) Throughput:
The throughput metric refers to the data units delivered

through the network per unit time interval. This metric is often
used in the MEC system to serve as a joint indicator of the
network transmission capability and the network node’s com-
putation capability. Throughput maximization is an important
topic for optimal video experience. The criterion could be used
to maximize the total base stations (BSs) throughput [80], the
overall throughput of the networks [81]–[83], and the video
capacity [84].

3) QoE:
The characteristics of video streaming services are high real-

time requirements and high bandwidth resources. Therefore,
the impact of network parameter changes is very significant.
The quality of video streaming services is especially sensitive
to time-varying network characteristics. From the user’s point
of view, QoE analyzes the user’s experience quality of the
video streaming service and it is an intuitive feeling of the
user’s network video quality.

The QoE-driven approaches may be used to maximize
the aggregate average video distortion reduction [85]. More-
over, video stalling, video quality, bitrate switching, and ini-
tial/startup delay are related to QoE in [86], [64], [87]. In
addition, the subjective evaluation approaches of QoE can be
considered in [68], [88], [89].

4) Service Latency:
The service latency metric refers to the delay induced by

preparation and propagation of data packets in the system, in-
cluding the propagation delay, serialization delay and queuing
delay.

The MEC-based video streaming applications may be used
to minimize the average delay of its mobile users in [90], [7],
[91], [92], [93], maintain high transmission and low latency
in [65], [94], [95].

5) Cost:
The cost metric refers to the investment paid by infras-

tructure providers and system operators for infrastructure
construction and system operation, including Capital expen-
ditures (CAPEX) and operating expenses (OPEX). In MEC
systems, CapEX is composed of the expenses of constructing
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TABLE VI: Optimization Metrics.
Metrics Types Main Findings

Energy Consumption Computing metric Energy consumed for the execution of the computation task.

Throughput Networking and computing
metrics Data units delivered through the network per unit time interval.

QoE Networking and caching
metrics Quality of video experienced by end users.

Service Latency Networking metric Packet delay.
Cost General metric Including CAPEX and OPEX.
Fairness General metric The resource shared by each AP/user fairly.
Cache Hit Ratio Caching metric Number of content requests responded to by one network node.
Revenue General metric Earned revenue.

base stations, radio network controller equipment, backhaul
transmission equipment, core network equipment, caching and
computing equipment installation in network nodes [96]. OpEx
consists of energy charge, equipment lease and operation and
maintenance fees.

6) Fairness:
During the resource allocation for video streaming appli-

cations, fairness is a very vital optimization criterion. The
fairness in resource allocation can ensure that the scheduling
policy provides services to the access points (APs)/users fairly.
At present, the common fairness strategies include max-min
fairness [86], QoE-fairness [87], [97], [98] and proportional
fairness. Moreover, the work in [80] presents the fairness
measure approach using Jain’s fairness index.

7) Cache Hit Ratio:
The cache hits metric indicates the load of a node by

measuring the number of content requests responded to by the
node. When intended to reflect the load savings of a node due
to conducting caching, the node hits metric is determined as a
fraction called cache hit ratio, which is normalized by the total
number of content requests generated in the whole network.
In order to improve the cache capacity of video streaming,
the approaches of the cache-hit ratio maximization have been
studied in [82], [99], [70], [96], [71].

8) Revenue:
During a smart contract, blockchain technology provides

a solution to enforce a business strategy through robust
distributed authentication avoiding repudiability. For video
streaming applications, the revenues include the profit of
caching miners and the profit of transcoder. In communication-
computation-caching architecture, this criterion could refer
to maximizing the total profit of caching miners [67], the
average reward for transcoders [100], [101], the total revenue
of resource cost and the price for the transcoding and delivery
market [102], the aggregate reward for caching/computing
resources [103], and the total revenue, including communi-
cation/caching/computing revenues [69].

D. Centralized/Distributed Methods

RA can be controlled by one entity in a centralized structure,
or by multiple entities in a distributed structure. In this
subsection, the two control structures are introduced.

1) Centralized:
Based on the centralized approach, a centralized entity,

including BS and eNodeB is responsible for the resource

allocation. There are some advantages for the centralized-
based RA method: (1) It is easy to implement and the network
environment is stable and predictable. (2) It is easy to obtain
the optimal solution [63], [68], [104]. However, the complexity
of the centralized scheme is high.

2) Distributed:
Compared with the centralized approach, the distributed ap-

proach is a low-complexity solution the flexibility and robust-
ness. With the distributed-based approach, each node/user can
make the decision individually, and the optimization problem
can be divided into some subproblems. Several distributed
approaches are adopted to solve the resource optimization
problem, such as the alternating direction method of the mul-
tipliers (ADMM) [100], multiuser-based game model (MGM),
and blockchain-based approaches [100], [105].

E. Single-Objective/Multi-Objective Optimization

In MEC systems, the resource allocation can be divided into
the single-objective and multi-objective optimization. Some
details about single-objective and multi-objective optimization
are described as follows.

1) Single-Objective Optimization:
Optimization problems are normally stated in a single-

objective optimization (SOO) way, where the process must
optimize a single-objective function complying with a series
of constraints. A single-objective optimization problem may
be stated as follows [106]:

minimize/maximize
x

f(x)

subject to gi(x) ≥ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

(1)

where the function to be optimized is f(x), where x is
the optimization variable. Functions gi(x) and hi(x) are the
constraints of the model.

For the SOO problem, three sets of solutions include the
universal set, set of feasible solutions, and set of optimal
solutions. The traditional optimization tools can be used to
find a minimum or maximum of objective function, whether
local or global, which will be introduced in the Subsection E.

2) Multi-Objective Optimization:
Multi-objective optimization (MOO) is an area of multiple

criteria decision making that is concerned with mathematical
optimization problems involving more than one objective
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TABLE VII: Multi-Objective Optimization Methods.
Category Technique Advantage Disadvantage

Weighted Sum Computationally efficient in generating a non-
dominated solution. Depending on weight coefficients.

Mathematical Methods ε-Constraint Can identify trade-off points between multi-objective
functions. Time-consuming process.

Utility Function Method This idea is simple and ideal if adequate value
function information is available.

The obtained solution entirely depends on the chosen
value function.

Metaheuristics Methods Evolutionary Algorithm Provides heuristic but close-to-optimal solutions. Computationally intensive.

Simulated Annealing Good approximation solution for a large size solution
search space. No guarantee for the global optimum.

function to be optimized simultaneously. A multi-objective
optimization model may be stated as follows [107]:

minimize/maximize
x

(f1(x), f2(x), ..., fk(x))

subject to gi(x) ≥ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

(2)

where the functions to be optimized (whether minimize or
maximize) are the set of functions fk(x), where x is the set
of independent variables. Functions gi(x) and hi(x) are the
constraints of the model.

In the MOO, objective functions can be divided into three
types: minimize all objective, maximize all objective functions,
and minimize some and maximize others [64]. Solving multi-
objective problem can be complex, which requires optimizers
that instead of providing a single optimal solution. For MOO
problems, the Pareto optimal solution can be considered to
reach with the aid of specific parameters of the scalarization
[108]. There are various classes of methods for generating
the Pareto set of MOO problems, including mathematical
programming and metaheuristics methods. The MOO methods
are classified and briefly listed in Table VII.

Mathematical programming methods can be adopted to
solve multi-objective problems by using single-objective ap-
proximations, including weighted sum, ε-constraint, and utility
function method [109]. These methods are described as follow:

• Weighted Sum: This method is to create a single-objective
function by weighing the n objective functions. The
multi-objective function (2) above can be restated as:

minimize/maximize
x

n∑
i=1

ri × fi(x)

subject to gi(x) ≥ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,
n∑

i=1

ri = 1, 0 ≤ ri ≤ 1

(3)

where ri is the weight of each objective function. This
weighted sum method is the simplest way to solve the
MOO problem, which guarantees to find solutions on
the entire Pareto-optimal set. However, in handling mixed
optimization problems, all objectives have to be converted
into one type.

• ε-Constraint: This method consists of creating a single-
objective model, where only one of the functions will
be optimized and the remaining function becomes con-

straints. Therefore, the MOO function shown above (2)
can be rewritten as

minimize/maximize
x

fi(x)

subject to gi(x) ≥ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

fk(x) ≤ εk, k = 1, . . . , n, k 6= n
(4)

where fi(x) is the only one optimized and the remaining
functions act as constraints. Different Pareto-optimal so-
lutions can be found by using different εk. This method
can also be used for problems having convex or non-
convex objective spaces.

• Utility Function Method: This method assumed that the
decision maker’s utility function U is available over the
entire feasible search space. The utility function provides
interactions among different objectives, and the MOO
problem is then to maximize the utility function as
follows:

maximize
x

U(f1(x), f2(x), ..., fk(x))

subject to gi(x) ≥ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

(5)

The utility function methods are mainly used in prac-
tice to multi-attribute decision analysis problems with
a discrete set of feasible solutions [85]. Wang etal.
[110] apply a utility function method to solve resource
allocation in MEC systems. However, the utility function
method requires users to come up with a value function
which is globally applicable over the entire search space.
Thus, there is a danger of using an over-simplified value
function.

Metaheuristics are considered high-level algorithmic strate-
gies that are used to guide other heuristics in search of the
space of feasible solutions [111]. Metaheuristics are friendly
techniques to solve MOO problems, which can accomplish
the following functional features: (1) convergence toward
optimal; (2) optimal solutions not withstanding convexity; (3)
avoiding local optimal. Some typical metaheuristics include
evolutionary algorithm and simulated annealing [112].
• Evolutionary Algorithm (EA): Evolutionary algorithm

is a heuristic-based approach to solving problems that
cannot be easily solved in polynomial time, which con-
tains four overall steps: initialization, selection, genetic
operators, and termination. EAs can be adopted to solving
MOO problems, which can find the globally near-optimal
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TABLE VIII: Summary of Optimization tools.
Technique Description Examples of applicable problems Advantages Disadvantages

Convex
Optimization

The RA problems can be modeled
into a maximization or minimiza-
tion problem with constraints.

The optimization problem is suitable for
the convex problem or can be transfered
into convex problem, such as [114], [103],
[69], [96], [68], [100] [115], [72], [95].

Any local optimal solution is the global
optimal solution. Moreover, the distributed
method such as ADMM can reduce the
complexity of the RA problem.

It is hard to solve dynamic, time-varying
optimization problems.

Game Theory
The optimization model consists of
a set of makers who chooses the
strategy to maximize the utility.

1) Nash equilibrium game is a concept of
non-cooperative game solution involving
two or more players.(eg. [105])
2) Stackelberg game is a price leadership
model. (eg. [90], [82] [102], [116] )

The game theory optimization model has
broad applicability and preferable accu-
racy.

The assumption that players have the
knowledge about their own pay-offs and
pay-offs of others is not practical.

Stochastic
Optimization

The stochastic optimization
problem consists uncertain
operating conditions, which is
a novel methodology including
probability and randomness.

1) Queuing theory is constructed so that
queue lengths and waiting time can be
predicted, when making decisions about
the resources needed to provide a service.
(eg. [117])
2) Lyapunov theory is used to make con-
clusions about the trajectories of a system.
(eg. [118]–[120])

It is the potential for uncertain environ-
ments, where the optimization approach is
hard to solve.

No guarantee for global optimization so-
lution.

Reinforcement
Learning

The RA problems are formalized as
a discrete-time stochastic.

1) Q-learning is an value-based reinforce-
ment learning algorithm, which can solve
problems with stochastic transitions and
rewards. (eg. [98], [101], [121])
2) Actor-Critics method is temporal-
difference methods that have a separate
memory structure to explicitly represent
the policy independent of the value func-
tion (eg. [122]).

RL can address the RA problem by maxi-
mizing a numerical reward signal while in-
teracting with the unknown environment.

Reinforcement learning is not preferable
to use for solving simple problems.

solutions by repeatedly evaluating the objective functions
or fitness functions using exploration and exploitation
methods [113]. Liu etal. [76] use EA to maximize the
utilization of the wireless bandwidth for panoramic VR
video streaming. However, the solutions of EA may
converge towards local optima.

• (SA): It is a probabilistic technique for identifying the
global minimum of a cost function that may have a
number of local minima. Li etal. [85] use SA to solve
a resource allocation problem in MEC systems. SA is
useful when the search space is large, while it does not
guarantee the global optimum.

F. Optimization Tools

In the following, some possible problem solutions of re-
source allocation in video streaming applications have been
highlighted, including convex optimization, game theory,
stochastic optimization and reinforcement learning. Moreover,
we give a summary of the resource optimization tools in Table
VIII.

1) Convex Optimization:
Convex optimization deals with the minimization of convex

functions defined on convex sets. In some sense, convex op-
timization is simpler than general mathematical optimization.
Moreover, in convex optimization, the local optimal value must
be the global optimal value. The optimization problems can
be divided into convex/non-convex, linear/non-linear, and the
optimization variables include continuous and discrete. These
optimization problems, including least squares method (LSM),
linear programming (LP), Semi-definite programming (SDP),
second-order cone program (SOCP), etc. are convex, or can
be converted to convex problems by changing variables in
[114], [103], [115], [95]. A convex optimization problem is

in standard form if it is written as:

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

(6)

where x ∈ Rn is the optimization variable, the function f :
D ⊆ Rn → R is convex, gi : Rn → R, i = 1, . . . ,m, are
convex, and hi : Rn → R, i = 1, . . . , p, are affine.

The convex optimization problem can be solved by the
following methods: bundle method, sub-gradient method, and
interior point method [69], [96]. The authors in [68], [72]
propose the dual-decomposition method to solve the convex
optimization problem. Furthermore, the work in [100], [123]
presents the ADMM to solve the convex optimization problem,
where ADMM is with superior convergence. However, non-
convex optimization problems can be transformed into convex
approaches.

2) Game Theory:
Game theory is a useful mathematical tool that considers

the predicted behavior and actual behavior of individuals in
games, and studies their optimization strategies. In the game
model, all players must consider various possible courses of
action of their opponents and try to choose the most favorable
or reasonable one for themselves. Games theory can be divided
into cooperative games and non-cooperative games. Coop-
erative game theory is more complex than non-cooperative
game theory, therefore, the game theory generally refers to
non-cooperative games in practical applications. Moreover,
the Nash equilibrium (NE) is a proposed solution of a non-
cooperative game involving two or more players in which each
player is assumed to know the equilibrium strategies of the
other players. In a NE, each player chooses a strategy that
maximizes their expected payoff given the strategies employed
by other players [105], [124]. Other optimization problems
can be solved by using Stackelberg game [82], [90], where
Stackelberg model is a price leadership model. Furthermore,
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the authors propose the three-stage Stackelberg game to solve
the RA problem in [102], [116].

3) Stochastic Optimization:
Stochastic optimization refers to the optimization problem

with stochastic factors, which is solved by using probability
statistics, stochastic process, stochastic analysis, and other
tools. Stochastic optimization solutions can be used to solve
the optimization problem for video streaming applications,
including queuing theory [117] and Lyapunov theory [118]–
[120].
• Queuing Theory: Queuing optimization model is to min-

imize the total cost of waiting cost and service cost. The
queuing systems consist of input processes, queuing and
queuing rules, service agencies, and service rules. In the
queuing model based RA problem, the main optimization
objectives include: (1) to determine the optimum service
level to minimize the total cost; (2) to maximize the
difference between service income and service cost. The
most important aspect of queuing optimization is how
you value your customers compare to how you value the
cost of your servers.

• Lyapunov Theory: Lyapunov function is defined to be-
come larger when the system enters an undesired state
[125]. By taking control measures to make the Lyapunov
function drift to zero in the negative direction, the stabil-
ity of the system is achieved. Suppose there are N queues
in the network, and define the vector of queue backlogs
at time t by:

Q(t) = (Q1(t), . . . , QN (t)) (7)

The function L(t) is defined as the sum of the squares
of all queue sizes at time t, and is called a Lyapunov
function:

L(t) =
1

2

N∑
i=1

Qi(t)
2 (8)

Then, the Lyapunov drift is defined:

∆L(t) = L(t+ 1)− L(t) (9)

Every slot t, the current queue state is observed and
control actions are taken to greedily minimize a bound
on the following drift-plus-penalty expression:

∆L(t) + V p(t) (10)

where p(t) is the penalty function and V is a non-negative
weight.

4) Reinforcement Learning:
Reinforcement learning (RL) is an area of machine learning

concerned with how software agents ought to take actions
in an environment to maximize some notion of cumulative
reward. The general RL problem is formalized as a discrete
time stochastic control process, such as Markov decision
process (MDP). A Markov decision process is a 4-tuple:
(S,A, Pa, Ra), where S is a finite set of states, A is a finite
set of actions, Pa(s, s′) is the probability that action a in state
s at time t will lead to state s′ at time t+ 1, Ra(s, s′) is the
immediate reward received after transitioning from state s to

state s′, due to action a. The core problem of MDPs is to find
a ”policy” for the decision-maker: a function π that specifies
the action π(s) that the decision-maker will choose when in
state s. The goal is to choose a policy π that will maximize
some cumulative function of the random rewards, typically the
expected discounted sum over a potentially infinite horizon
[126]:

E[

+∞∑
t=0

γtRat
(s, st+1)] (11)

where at=π(st), and γ is the discount factor satisfying 0≤ γ
≤ 1.

In general, there are two main types of RL methods,
including value-based and policy-based. The value-based RL
method try to find or approximate the optimal value function,
which is a mapping between an action and a value, and the
most famous algorithm is Q-learning. The policy-based RL
method tries to find the optimal policy directly without the
Q-value as a middleman. Moreover, some typical RL-based
approaches are proposed to optimize the resources in video
streaming applications, including Q-learning [121] and actor-
critic methods [122].
• Q-learning: This is a value-based reinforcement learning

algorithm, which can solve problems with stochastic tran-
sitions and rewards. Moreover, Q-learning can identify an
optimal action-selection for a given Markov decision pro-
cess. Q-learning algorithm has a function that calculates
the quality of a state-action combination:

Q : S ×A→ R (12)

The core of Q-learning algorithm as a Bellman equation
as a simple value iteration update, using the weighted
average of the old value and the new information:

Qt+1(st, at)=Qt(st, at)+α[rt+1+γmax
a

Qt(st+1, a)−Q(st, at)]

(13)
where r is the reward received when moving from the

state st to the state st+1, and α is the learning rate (0 ≤
α ≤ 1). The enhancements of Q-learning include deep Q
network (DQN) and double dueling Q network (DDQN)
[98], [101].

• Actor-Critics (AC): This methods are temporal-difference
methods that have a separate memory structure to explic-
itly represent the policy independent of the value function
[127]. Actor-Critics aims to take advantage of all the
good stuff from both value-based and policy-based while
eliminating all their drawbacks. There are two popular
improvements of AC models, including advantage actor-
critic (A2C) and asynchronous advantage actor-critic
(A3C) [128].

G. Evaluation methods

The evaluation method is a tool to verify the performance
of the optimization algorithm. The evaluation methods can be
divided into the four groups:
• Numerical Analysis: Numerical analysis is the study of

algorithms that use numerical approximation for the prob-
lems of mathematical analysis. The numerical analysis
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can be adopted to solve the optimization problems. There
is a trade-off between the computational complexity and
the scalability of the numerical analysis.

• Simulation: Simulation methods have been widely ap-
plied to reflect the operation a RAN. The characteristics
of simulation are simple and flexible. The discrete-event
simulators are widely used to study the behavior of a
RAN, including NS-3 1 and openWNS 2.

• Testbed: A testbed is a platform for conducting experi-
ment and is adopted to verify the practical feasibility of
an on/off switching strategy in a controlled environment.

• Realistic Network: The performance of a on/off switching
strategy can be evaluated by implementing the proposed
algorithm into a real network. The most realistic evalua-
tion can be performed in this manner.

H. Lessons Learned

Resource allocation in MEC systems is a fundamental prob-
lem that becomes increasingly complex with the consideration
of system uncertainties. For video streaming applications,
multiple resources should be considered to optimize resource
utilization, including networking, computing, and caching. The
computing related metrics include energy consumption and
throughput, and the networking related metrics include QoE
and latency. The caching related metric is cache hit ratio. It
is noticed that the general metrics of entire integrated system
include cost, fairness, and revenue.

Resource allocation problems are generally posed as op-
timization problems with one or more objective functions
and some constraints. For the single-objective optimization
problem, three sets of solutions include the universal set,
set of feasible solutions, and set of optimal solutions. The
traditional optimization tools can be used to find a minimum or
maximum of objective function. The traditional optimization
tools include convex optimization, game theory, stochastic
optimization, and reinforcement learning. It is noticed that the
solution of convex optimization is the global optimal solution,
while stochastic optimization cannot guarantee that the so-
lution is globally optimal. Moreover, reinforcement learning
is a vital tools to address RA problems in the unknown
environment.

Multi-objective optimization is an area of multiple criteria
decision making that is concerned with mathematical opti-
mization problems involving more than one objective function
to be optimized simultaneously. There are various classes
of methods for generating the Pareto set of multi-objective
optimization problems, including mathematical programming
and metaheuristics methods. Moreover, mathematical pro-
gramming methods can be adopted to solve multi-objective
problems by using single-objective approximations, including
weighted sum, ε-constraint, and utility function method. Some
typical metaheuristics methods include evolutionary algorithm
and simulated annealing. Evolutionary algorithms can identify
feasible solutions tend to converge toward optimal or near-
optimal solutions. Simulated annealing algorithm has a good

1https://www.nsnam.org/
2https://launchpad.net/openwns

approximation solution for a large size solution search space,
while it can not guarantee that the solution is globally optimal.

V. ENABLING TECHNOLOGIES

In this section, enabling technologies of video stream-
ing, including blockchain, software-defined networking, net-
work function virtualization, networking slicing, caching-
networking, computing-networking, and caching-computing-
networking are surveyed.

A. Blockchain

Blockchain technology has aroused great interest in both
academia and industry recently, which is a secured/distributed
ledger, which does not require third part authorization [129].
In the peer-to-peer (P2P) based blockchain network, the trans-
action is recorded by the majority, which is transparent to all
partners. Blockchain architecture combines cryptography, data
management, networking and incentive mechanisms [129].
Moreover, the consensus algorithm is used to decide how
the agreement is achieved to record the last block into the
blockchain [130], [131]. Blockchain consensus algorithms
are divided into two categories: (1) Proof-based consensus
algorithm, (2) Byzantine Agreement based consensus algo-
rithm. The core characteristics of blockchain are distribution,
trust, transparency, and traceability. Firstly, blockchain is a
distributed network system. Data storage, transmission, and
accounting are based on distribution. Secondly, blockchain
uses consensus machines to solve trust problems. Therefore,
the ledger itself can be programmed to trigger transactions
automatically. Thirdly, except the private transaction is en-
crypted in the blockchain network, and the data is transparent
to all nodes. Finally, the data in the chain is traceable, and any
subtle change is known and recorded by all the nodes.

Therefore, when edge computing meets blockchain, it
makes their respective advantages complementary to each
other [132]. Integrated edge computing and blockchain
will bring many benefits [133]. On one hand, integrating
blockchain into the MEC system can provide secure data
protection. On the other hand, integrating MEC into the
blockchain system can offer rich computation and storage
spaces. Blockchain can provide a secure/distributed solution
for solving many challenges in video streaming applications
[134].

Ensuring security is one of the achievements for blockchain-
enabled edge computing network. Rivera etal. [135] propose
a blockchain framework to provide a trusted collaboration
mechanism among edge servers in a MEC environment. With
the proposed framework, Hyperledger Fabric is adopted to
add a security blanket to the task sharing/offloading processes
among edge nodes. A Hyperledger Fabric network runs with
M number of nodes, and node N requests additional resources
to perform a specific task. Therefore, the proposed system
will provide smart and distributed communication architecture
between the edge and cloud levels.

Due to the separate storage locations in MEC systems,
data integrity is criticized. The integration of blockchain and
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edge computing for data storage can guarantee decentralized
data validity. Zyskind etal. [136] develop a decentralized
personal data management system that ensures users own and
control their data. Based on a distributed hashtable (DHT),
the integration of blockchain and off-blockchain storage is
designed to provide privacy.

In the MEC systems, blockchain can work as the incentive
as well as verification. the blockchain-enabled MEC systems,
Feng etal. [137] propose the blockchain-enabled MEC sys-
tems, where MEC servers process offloading and blockchain
tasks simultaneously. The computation tasks can be offloaded
to MEC, and the transactions are recorded by the blockchain.
The benefit of this integrated system is to maximize the
revenue of MEC computing and storage resources.

1) Lessons Learned: Key lessons learned from the inte-
gration of blockchain and MEC systems discussed above are
summarized below.
• Multimedia streaming communications combined with

the blockchain communications ensure the secure and re-
liable cooperation of network. Furthermore, the combina-
tion of blockchain and distributed multidomain networks
can effectively accomplish the trusted cross-domain col-
laboration and topology privacy protection in 5G net-
works.

• In a fully decentralized network, blockchain-based frame-
work can guarantee data integrity. However, due to the
limited size of data storage provided by blockchain, off-
chain data storage is necessary for multimedia applica-
tions.

• In the MEC systems, blockchain can provide computing
resources management. The computation offloading from
the end device to the edge server enables the resource-
limited end users to take part in the blockchain.

B. Software-Defined Networking

Software-defined networking (SDN) is an emerging network
architecture with separate control and forwarding and direct
programming. The core of SDN is to decouple the tightly
coupled network architecture of traditional network equipment
into a three-layer separation architecture of the application,
control, and forwarding, and implement centralized control
of the network and programmable of network applications
through standardization [138]. SDN is based on OpenFlow
protocol which is a communications protocol that gives ac-
cess to the forwarding plane of a network switch or router
over the network [139]. The SDN architecture is directly
programmable, centrally managed, and programmatically con-
figured.

The MEC system is composed of an array edge servers with
three capabilities: storage, communication, and computing.
MEC can push the services to the edge and closer to the
end-user with ultra-low latency and high throughput. However,
this approach comes with some challenges [140]: (1) The
computational resources of MEC servers are limited; (2) The
heterogeneity of requests from users needs to be handled;
(3) It needs to achieve the load balancing among MEC
servers. Therefore, the integration of SDN and MEC can

bring some benefits, including effective control, service-centric
implementation, adaptability, and interoperability [141]. SDN
enables effective network management by presenting a global
perspective of the network [142].

Salman etal. [143] design an architecture that employs the
SDN paradigm while extending the MEC concept, named SD-
MEC. With the proposed system, the heterogeneity and the
scalability of the IoT network can be addressed. Moreover,
the software-defined gateways can provide interoperability
and virtualized functions for the IoT nodes. A collection of
network functions are performed by these gateways.

SDN can be adopted to improve the scalability and cost-
efficiency of MEC servers. Jararweh etal. [144] introduce
software defined based framework to enable efficient mobile
cloud computing (MCC) services. The SDN components con-
sist of software-defined compute, software-defined storage,
and software-defined security. The integration of SDN and
MEC system can smoothly handle the global and local client
requests.

Video over SDN can enhance users’ QoS/QoE for real-time
interactive video applications. Zhang etal. [145] propose a
video multicast orchestration approach by using SDN in ultra-
dense networks (UDN) environment. The proposed frame-
work of the hybrid and concurrent multicast (HCM) consists
of group identification and management, hybrid multicast
method, multicast orchestration, and packet loss recovery.
Based on HCM, the bandwidth consumption and delivery
latency can be reduced. The advantage of HCM is to optimize
the network resource and limit the video traffic. However, the
scalable video streaming approach is used considered.

Yang etal. [120] focus on scalable video streaming over
dense small-cell networks (DSCN), where segment-routing
technology in SDN is proposed to enhance the network col-
laboration. Moreover, a joint optimization problem is modeled
to maximize the time-averaged QoE subject. In this context,
the Lyapunov optimization technique is used to solve this
problem. The advantage of the proposed approach is that an
intelligent scalable video transmission framework is designed
to improve users’ QoE. However, this imposes a challenge on
the transmission schedule, because the SDN has to frequently
configure forwarding paths for each flow.

In order to leverage the flexibility of SDN and features of
forwarding device, Bentaleb etal. [146], [147] focus on ad-
dressing HTTP adaptive streaming (HAS) scalability problem
further, an intelligent streaming framework, named SDNHAS,
is proposed to improve the users’ QoE, where SDN is used
to help HAS players make better decisions. Moreover, a novel
algorithm is designed to group players into clusters to optimize
the performance. In this context, the computational complexity
of the proposed approach is low. However, SDNHAS should
be extended to support multi-bottleneck shared networks.

In order to assure the best users’ QoE, Liotou etal. [148]
develop a programmable QoE-SDN video application, where
mobile network operators (MNOs) and video service providers
(VSPs) are isolated by using SDN. Moreover, the Knapsack
optimization method is used to model the video selection prob-
lem. The simulation results show that the proposed scheme
can enhance QoE as well as saving bandwidth. The advantage
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of the proposed approach is that enabling network support
feedback capabilities. However, the scalability need to be
investigated.

1) Lessons Learned: Key lessons learned from the in-
tegration of SDN and MEC systems discussed above are
summarized below.
• SDN is the key enabling technology of 5G networks,

which improve the performance of video streaming. SDN
provides MEC system with decision making for compu-
tational offloading in 5G networks, including the channel
conditions, server load.

• The integration SDN and MEC system brings easy plug-
gability of edge nodes, where new devices are easily
detected and traffic information can be easily updated.

• The integrated framework can compute the load balancing
by using a collection of OpenFlow-based statistics.

C. Network Function Virtualization

Network function virtualization (NFV) is a network archi-
tecture concept that uses the technologies of IT virtualization
to virtualize entire classes of network node functions into
building blocks. NFV can decouple software from hardware,
offer flexible network function deployment, and support dy-
namic operation [149]. The whole NFV architecture can be
divided into three parts: NFV infrastructure (NFVI), virtual
network function and services (VNFs), and NFV management
and orchestration (NFV MANO). NFV has the potential to
lead to significant reductions in OPEX and CAPEX [150].

The MEC server includes a mobile edge host and associated
management components, and the mobile edge host consists of
the mobile edge platform and the virtualization infrastructure.
The MEC and NFV have similar architectures and both require
a network infrastructure virtualization platform. Therefore, the
management function of MEC/NFV has components that can
be combined and re-divided [151]. The MEC platform is
deployed as a VNF, and the MEC applications behave as VNFs
for the rest of NFV MANO components. The virtualization
infrastructure is deployed as the NFVI [152].

NFV decouples the software and hardware to reduce the cost
of communication systems. In Li’s work [153], an architecture
of NFV-based MEC platform and analyzes is designed to
enhance QoE. Virtualized network functions can help MEC
to diminish the negative effects of hardware, features, and
platform. Moreover, NFV can provide flexible and scalable
services for MEC. In this context, the open platform for
NFV (OPNFV) is used for QoE analysis of HTTP video, and
the mean opinion score (MOS) is adopted to evaluate QoE.
The advantage of NFV-based MEC approach is that the high
bandwidth and ultra-low latency are provided to improve video
quality. However, virtualization’s impact on cellular networks
has not been considered.

Kourtis etal. [154] focus on developing an appropriate QoE
assessment solution in 5G small cell networks (SCNs) by
taking account of virtualization’s impact. The video quality
assessment (VQA) is proposed to address the quality degra-
dation based on the structural similarity (SSIM) index, where
SSIM index can be as a VNF. The VQA task is performed

at an edge server, which can reduce the power consumption
of the user equipment (UE). Moreover, a long term evolution
(LTE) infrastructure is adopted to implement, test, and evaluate
the VQA approach. In addition, the proposed method can be
offered as a service to mobile network operators. However,
the dynamic deployment of NFV has not been studied.

To address network latency and stalling of video applica-
tions, Ma etal. [155] proposes an NFV-based MEC system to
improve ultra-high quality video streaming in 5G networks.
The proposed NFV-based streaming system consists of the
streaming server, MEC server, and UEs, where MEC server
can be as a VNF. By the dynamic deployment of NFV, the
power consumption of the system can be reduced. Based on
DASH protocol, the adaptive video streaming technology is
used to support streaming seamlessly with bandwidth fluctu-
ation. An important advantage of the method lies in the fact
that it provided 4K and 8K video streaming efficiently with
lower latency. However, the context-awareness component is
not investigated.

Furthermore, the flexibility of 5G networks is not exploited
well in the state of the art. By integrating SDN and NFV,
Alvarez etal. [156] proposes a service virtualization platform
(SVP) to facilitate the development, deployment, and opera-
tion of media services. The proposed system architecture is
comprised of the development and service preparation and
evaluation layer, the SVP layer, and the physical layer, which
can support the cognitive management environment for the
provisioning of network services (NSs) and media-related
applications. Moreover, the integration of edge computing and
multimedia service can simplify development and deployment
time. The main advantage of the proposed platform is it
can flexibly adapt service operations for dynamic conditions.
However, the cost effectiveness of the operation is high.

1) Lessons Learned: Key lessons learned from the in-
tegration of NFV and MEC systems discussed above are
summarized below.
• The integration of the 5G network with NFV can provide

some benefits for reducing the infrastructure cost and
network latency for video streaming applications.

• In 5G networks, NFV optimizes resource provisioning
of the VNFs for cost and energy efficiency and ensures
the coexistence of VNFs with non-virtualized network
functions.

• NFV ensures performance guarantees of VNFs opera-
tions, including failure rate and latency.

D. Networking Slicing

5G network slicing is a network architecture that enables
the multiplexing of virtualized and independent logical net-
works on the same physical network infrastructure [157].
Several techniques are employed, including network functions,
virtualization, and orchestration. The main architecture of
networking slicing consists of service layer, network function
layer, infrastructure layer, and network slice controller [158].
Network slicing can optimize radio resources to provide per-
formance guarantees and isolation for 5G use cases, including
ultra-reliable low-latency communications (URLLC), massive
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machine-type communications (mMTC), and enhanced mobile
broadband (eMBB) [159].

MEC can support virtual network function for core network
and radio access network for latency sensitive services, and
MEC server can be considered as a pool of virtualized
resources [160]. MEC provides networking, computing, and
storage resources, which is a key component of network
slicing. Moreover, MEC plays different roles for different 5G
network slicing [161]: (1) For URLLC applications, MEC
can provide low latency and high reliability services. (2)
For mMTC applications, MEC can ensure high performance
and scalability. (3) For eMBB applications, edge caching
can increase overall capacity. Therefore, the integration of
MEC and network slicing can reduce network management
complexity [162].

To achieve the extremely low latency for multimedia stream-
ing in 5G networks, Dong etal. [163] proposes a mobile
multimedia streaming slice model. The mobile multimedia
streaming slice consists of storage allocation slice, network
bandwidth allocation slice, context tracking slice, route cal-
culation slice, content provisioning and delivery slice. The
base station (BS) mapping algorithm is proposed to optimize
storage and bandwidth resources. Then, the orchestration pro-
cedures for the multimedia streaming service is designed to
orchestrate the necessary services. In addition, the proposed
approach is contextually aware. However, QoS’s impact on
networking slicing is not discussed.

Wang etal. [164] focuses on studying the migration of
multimedia services to 5G network challenges in the QoS,
and the SliceNet framework is proposed to improve the perfor-
mance of eHealth telemedicine services based on networking
slicing. The SliceNet consists of the application programming
interface (API), the RAN and core slicing, the low-complexity
platform, and the control framework. Moreover, the proposed
framework can be applied to the eHealth system with a high
degree of QoS guarantee. An important advantage of the
method lies in the fact that managing the QoS is considered for
sliced services. However, the QoE of the multimedia system
needs to be improved.

In order to improve user QoE of video streaming, Yan etal.
[119] propose a customized transmission protocol in sliced
networks by using SDN and scalable video coding (SVC)
technologies. The proposed protocol is composed of bottleneck
queue management, selective caching, and enhanced trans-
mission (ET). According to the network condition, ET can
be devised to improve users’ QoE. Therefore, the proposed
approach can alleviate network congestion and provide better
QoE. However, the reliability of the system is not studied.

Unlike Yan’s work [119], Khan etal. [165] propose a joint
video quality selection and resource allocation method to en-
hance the vehicular devices’ QoE in sliced vehicular networks.
The optimization problem is formulated to maximize the QoE,
which can be divided into two subparts. Moreover, a network
slicing-enabled clustering method is adopted to partition the
network. Then, the Lyapunov method is used to solve the
vehicle scheduling and quality selection problem. The main
advantage of the proposed approach is that it achieves low
latency and high-reliability communications. However, the

computational complexity of the proposed algorithm is high.
1) Lessons Learned: Key lessons learned from the integra-

tion of networking slicing and MEC systems discussed above
are summarized below.
• Networking slicing is a key enabler of 5G networks to

address the cost, efficiency, and flexibility requirements
of video streaming applications.

• 5G RAN slicing can relieve the pressure on the core
network, reduce the transmission delay for multimedia
applications.

• The integration of MEC and network slicing can address
architectural, security, and isolation-related challenges in
5G networks.

E. Caching-Networking

In this section, the state-of-the-art MEC caching categories
include video content placement and delivery. Therefore, some
typical caching schemes are introduced and discussed here.
Finally, the summary of edge caching according to their
structures is listed in Table IX.

1) Placement:
To improve QoE for video streaming in information-centric

networks (ICNs), a centralized edge caching scheme is pro-
posed in [63]. The controller collects the network conditions,
and the video pre-fetching decision is made. In this context, the
proposed scheme is based on dynamic adaptive streaming over
HTTP (DASH) protocol. Assuming a Poisson arrival process
of video streams [171], the controller can formulate as a func-
tion of video initial request arrival rate. The tasks performed by
the controller include residual capacity estimation and segment
scheduling. Moreover, the resource allocation mechanism is
designed to improve users’ QoE. The tested includes a video
server, a cache, a proxy, and three clients. In this scenario, the
video streaming is based on a variable bit rate (VBR), and the
testing video is trimmed from the DASH data set.

The authors of [64] propose a DASH-aware video caching
approach to enhance users’ QoE by using edge computing in
the cellular network. The main caching strategy is to ensure
that the bit rates of cached video representations match the
network’s downlink capacity. Based on the content context
(e.g., popularity) and network condition (e.g., throughput), a
two-dimensional user QoE-driven cache replacement method
is designed to maximize video quality as well as minimizing
playback quality fluctuation. The performance of the proposed
approach is evaluated on a real LTE-A wireless testbed. 3
identical copies of the video Big Buck Bunny 1 are used
for video traces. However, the caching manager acts as the
centralized controller for video caching at the local cache.

Similar to [63], [64], the authors of [65] propose the radio
network-aware edge caching and updating approach to en-
hance users’ QoE based on DASH and radio network informa-
tion service (RNIS). A cached video is determined by network
condition and video popularity. Firstly, the information of
network edge is obtained to help MEC cache. In the context,
assume that some segments with many representations are

1https://peach.blender.org/download/
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TABLE IX: The summary of MEC caching for video streaming.
Ref. Caching Strategy Networking Objective Control Optimization Tool Streaming Evaluation Main Findings

[63] Improving users’ QoE Centralized N/A VBR, HTTP-
based Tested This approach is optimized for

multi-rate DASH videos.

[64] Maximizing video quality as well as minimiz-
ing playback quality fluctuation Centralized N/A VBR, HTTP-

based
A real LTE-A wire-
less testbed

This approach is driven by the pop-
ularity and network conditions.

[65] Macro-cellular
networks

Improving video quality as well as reducing
buffering time based on video popularity Centralized N/A VBR, HTTP-

based A real 4G LTE BS
A cached video is determined by
network condition and video popu-
larity.

[166] Minimizing sum of content access delay Centralized Approximation
algorithm VBR Simulation

Increasing caching capacity con-
tributes to delay reduction and hit
ratio increment.

[167] Maximizing the system utility Centralized Approximation
algorithm

VBR, HTTP-
based Simulation

The system utility achieved by ev-
ery strategy decreases with the in-
crease of the number of video qual-
ity levels.

[66] Placement D2D networks
Maximizing the QoE as well as minimizing
the backhaul data traffic and edge data pro-
cessing

Centralized Online algorithm VBR, HTTP-
based Simulation

The integration of D2D into the
collaborative edge caching and pro-
cessing can help to alleviate load
from the backhaul network.

[85] HetNets
Maximizing the aggregate average video dis-
tortion reduction as well as minimizing the
additional cost of representation downloading

Centralized Approximation
algorithm VBR Simulation

The proposed approach is applied
to VoD systems with larger set-
tings.

[87] Minimizing the rate of cache misses as well
as maximizing the average video quality Centralized Approximation

algorithm
VBR, HTTP-
based Simulation

Using the proposed approach yields
noticeable reduction in the per-
centage of cache miss compared
to both least-frequently-used (LFU)
and least-recently-used (LRU).

[168] RAN Maximizing the QoE of individual client as
well as minimizing the backhaul data traffic Centralized Approximation

algorithm
VBR, HTTP-
based Simulation

The superiority of the proposed
system can indeed act as guidelines
for DASH video streaming in next
generation of mobile networks.

[115]
Macro-cellular
networks

Maximizing the weighted average QoE of
VoD users Centralized Convex optimiza-

tion VBR Simulation
The proposed caching policy effi-
ciently improves the average QoE
of VoD users.

[67] D2D networks Maximizing the total profit Distributed Approximation
algorithm VBR Simulation

The caching-enabled mobile device
prefers to store the contents with
larger popularity for the linear re-
lationship.

[86] Maximizing the QoE, fairness as well as min-
imizing the overall data traffic Centralized Online algorithm VBR, HTTP-

based Simulation

The collaborative edge caching is
more effective in reducing back-
haul data traffic than increasing
video bitrate.

[169] Maximizing the number of requests Centralized Greedy algorithm VBR Simulation
The traffic grows smoothly after
applying the adaptive-rate approach
when requests arrive.

[105] Delivery HetNets Finding the best cache helper Distributed Game theory VBR Simulation

The reward pricing scheme with
identical reward potential is able to
achieve better fairness among the
cache helpers

[99] Maximizing the cache hit ratio Distributed N/A VBR A realistic network
The caching algorithm based on
blockchain based CDN signifi-
cantly reduces the delivery time.

[91] RAN Maximizing the revenue as well as minimiz-
ing the average delay Distributed Matching theory VBR Simulation

The average revenue obtained
by the proposed optimal policy
achieves the best performance.

[170]
Joint placement
and delivery HetNets Maximizing the utility Distributed Greedy algorithm VBR Simulation

The caching price increases over
the caching capacity of the edge
node.

[90] RAN Maximizing the utility of the cache node Distributed Game theory VBR Simulation
The utility of mobile users in each
social group decreases with the in-
crease of price.

stored at MEC server. Secondly, the cache replacing algorithm
is developed to improve video quality and reduce buffering
time based on video popularity, including requested popularity
and expected popularity. In addition, the testbed is based on
a real 4G LTE BS, and the testing video is trimmed from the
DASH data set and divided into 50 segments. However, the
incentive mechanism of caching needs to be investigated in
future research.

Existing caching schemes lack interaction of video caching
and retrieving and collaboration among servers. The work
in [166] proposes collaborative video caching and retrieving
in multi-server MEC systems under two timescales. More-
over, a two-timescale optimization problem is formulated to
minimize the sum of content access delay, including the
long-term caching placement and short-term video retrieval
mode selection. Finally, a sample average approximation based
two-phase algorithm is adopted to solve this problem. In
the simulation, the authors assume that video requests at
SCceNBs follow a Poisson process, and the popularity of
videos at different SCceNBs follows Zipf distribution [172].
However, trust management of collaboration servers should be

investigated in future work.

To avoid the unnecessary caching cost and improve QoE,
the authors of [167] propose an architecture for D2D-based
cellular network, which integrates radio access network (RAN)
traffic handling, UE caching, and video quality adapting abil-
ities into MEC. In the proposed framework, multiple UEs can
cache and share multi-bitrate videos, and the caching strategy
is based on placement. In the system model, the authors
assume that the video request arrival is a Poisson process, and
the popularity of videos follows a Zipf distribution. Moreover,
the proactive multi-bitrate video caching strategy problem is
formulated to maximize the system utility, which is an integer
linear programming problem. In this context, the approximate
solutions are used to solve this problem. In future work,
the cooperation between multiple MEC servers should be
considered.

However, the impact of D2D on joint QoE-traffic optimiza-
tion is still underexplored in previous works. The authors of
[66] propose a system for joint QoE-traffic optimization and
edge processing based on MEC and D2D communication.
In the proposed system, the neighborhood edge servers can
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collaborate with the end devices, and neighborhood devices
can share resources through D2D communication. The authors
assume that the relation between video bitrate and the per-
ceived quality by the client is linear, and the system design
takes explicit measures to ensure fairness. Therefore, a joint
optimization problem is formulated to maximize the QoE
as well as minimizing the backhaul data traffic and edge
data processing. Then, a low-complexity online algorithm is
adopted to solve this problem. In future work, the switching
mechanism of retention-based collaborative caching at the
local cache need to be investigated.

Li etal. [85] take account of the rate-distortion charac-
teristics of the video encoder and the collaboration edge
servers, and a QoE-driven edge caching placement approach
is proposed to reduce the service load of BSs. In the system
model, the authors assume a caching system where a repre-
sentation of a video file is either cached fully or not cached
at all in any edge server. Moreover, the rate-distortion (R-D)
model is adopted to denote the distortion of the representation
of the video [173]. In this context, the distributed caching
placement problem is modeled to maximize the aggregate
average video distortion reduction as well as minimizing the
additional cost of representation downloading. The constraints
include the storage capacity and the transmission and initial
startup delay. Moreover, an approximation algorithm is used to
solve this problem with low complexity. In the simulation, the
authors assume that the neighboring edge servers are operating
on the orthogonal bands and each edge server allocates its
transmission resource in a fair and uniform way. Moreover,
four test videos, including Crowd Run, Riverbed, Tractor, and
Sunflower 1, are selected as the video files needed for caching.
The proposed scheme should be extended to future network
architectures, including SDNs and ICNs.

In order to achieve the trade-off between video traffic
and QoE, the authors of [87] study the cache-aware QoE-
traffic optimization. In this context, the impact of fixed video
content caching on the optimal QoE of mobile clients has been
investigated. The theoretical downlink throughput is based on
Shannon upper bound approximation [174]. In order to avoid
stall events, the authors assume that the player starts to play
the video after the startup phase. Then, the joint optimization
problem is formulated to minimize the rate of cache misses
as well as maximizing the average video quality. Moreover,
an approximation algorithm is adopted to solve this problem
with low complexity. In the simulation, the adaptive streaming
is transmitted by DASH, and the chunks of four videos with
different popularities are available in ten different qualities.
However, the collaborative edge caching scheme needs to be
exploited in future work.

In previous work, the objective of jointly optimizing the
trade-off between the QoE of mobile video streaming clients
and created backhaul traffic has been overlooked. The authors
of [168] propose the green mobile edge computing (GMEC)
system to improve the QoE of HTTP adaptive streaming. In
this context, the Gaussian-shape function is used to estimate
the time-varying solar energy harvesting during one day time

1http://media.xiph.org/video/derf/

duration [175]. Firstly, the joint optimization problem is for-
mulated to maximize the QoE of the individual clients as
well as minimizing the backhaul data traffic. Then, a subop-
timal algorithm using self-tuning parametrization mechanism
is used to solve this problem. Moreover, a proactive edge
caching heuristic algorithm is proposed to improve cache
placement efficiency. For the performance verification, the
adaptive streaming is based on DASH, and four videos with
different popularities are divided into consecutive chunks. In
addition, the energy consumption problem should be studied
by using D2D communication among neighborhood nodes.

2) Delivery:
Furthermore, a QoE-oriented edge caching strategy for

video on demand (VoD) applications taking into account video
quality adaptation is investigated in [115]. The authors assume
that the BSs are equipped with ideal backhaul links, and a
VoD user can pull part of a video from the BS and part from
the helper. Therefore, the instantaneous signal-to-interference-
plus-noise ratio of the typical user is served by its nearest
helper. Moreover, the caching policy optimization problem
is formulated to maximize the weighted average QoE of
VoD users, where the impact of video quality adaptation on
QoE is considered. In this context, a low-complexity convex
optimization algorithm is used to solve this problem. Results
from the experiment show the proposed caching method can
improve the QoE of users significantly. However, the incentive
mechanism of edge caching should be studied in the future.

Taking the consensus mechanism and the content sharing
of UEs into account, Cui etal. [67] propose a blockchain-
enabled framework for caching and video sharing by using
MEC and D2D communication. In the network model, BSs
offer the computing resource to UEs to perform caching tasks
and receive the reward, while the cached content can be shared
by the neighborhood UE over D2D. In the blockchain system,
the process of solving problem can be modeled as a stochastic
process following a Poisson process. Moreover, the optimal
caching scheme is formulated to maximize the total profit for
both the linear and nonlinear relationships between computing
power and content sharing size. Finally, the difference of the
convex (DC) program is adopted to address this problem.
In the simulation, the popularity distribution is modeled as
a Zipf distribution, and the results show that the caching-
enabled mobile device prefers to store the contents with
larger popularity for the linear relationship. However, the UE
mobility management is ignored in this work.

Further research on [87], the authors of [86] propose a
collaborative edge caching mechanism to improve users’ QoE.
In the proposed network framework, the neighborhood edge
servers form the edge clusters in which they collaborate to
serve the request of users. The impact of collaborative edge
caching on joint QoE and backhaul data traffic is studied.
In system model, the authors assume that there is no traffic
incurred when the requested chunks are retrieved from the
local caches. Moreover, joint QoE-traffic optimization is for-
mulated to maximize the QoE, fairness as well as minimizing
the overall data traffic. Finally, an online scheduling algorithm
is adopted to solve this problem with low complexity. With the
simulation, the collaborative edge caching is more effective in
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reducing backhaul data traffic than increasing video bit rate.
However, the incentive mechanism needs to be investigated in
future research.

In order to reduce network bandwidths and balance traffic
loads, the authors of [169] propose an integrated video dis-
tribution approach, including in-network caching and collab-
oration distribution. In the proposed framework, a controller
can collect fine-grained network and user information across
various domains by using SDN. The authors assume that an
edge server can be concretized as a BS that caches content
and serves a number of user equipment. The request screening
problem is formulated to maximize the number of requests
based on graph theory, and a greedy algorithm is developed
to solve this problem. Moreover, a joint source redirection and
flow routing problem is formulated to maximize the minimum
buffer time, and a linear program is adopted to solve this
problem. In the simulation, 200 videos from Youtube dataset 1

are provided. The results show that the traffic grows smoothly
after applying the adaptive-rate approach when requests arrive.
However, the payment mechanism should be studied in future
work.

To offer the financial incentive in the autonomous content-
caching market, the authors of [105] propose a decentralized
caching framework with blockchain. In the system model, Zipf
distribution is adopted to model the probability of content.
An automatically executed smart contract is constructed to
manage the caching market. Then, a proof-of-stake (PoS)-
based consensus mechanism is adopted to encourage the cache
helpers to stay active in service. Moreover, the proposed
caching system is mapped as a Chinese restaurant game theory,
and a decentralized Nash Equilibrium (NE) searching method
is used to find the best cache helper. The performance of the
proposed caching algorithm significantly outperforms that of
random content selection in both the cache helpers’ average
payoff and the total number of offloaded deliveries. However,
the trust degree of end users needs to be quantified in future
work.

To comprehensively offer user privacy and benefit to all
partners, the authors of [99] propose a blockchain-enabled
CDN architecture. The proposed system leverages users’ in-
formation to different content provides and develops a public
ledger for the demands of content providers. The cosine
similarity [176] is adopted to measure the correlation between
content and the global feature popularity. Moreover, feature-
based edge caching algorithm is proposed to maximize the
cache hit ratio. The video traces are based on MovieLens
20M Dataset 1. The proposed caching algorithm can improve
the performance in term of the cache hit ratio and quality of
experience. However, UE mobility needs to be investigated in
future work.

Existing caching schemes ignore the security of MEC. the
authors of [91] propose a dynamic edge caching framework
with blockchain. In the proposed system, edge servers can
authorize legitimate users to predict and update their content
demands based on blockchain and advanced machine learning

1http://netsg.cs.sfu.ca/youtubedata/
1https://grouplens.org/datasets/movielens/20m/

technologies. Moreover, a caching resource allocation problem
is modeled to maximize the revenue as well as minimizing the
average delay. Finally, a matching theory is used to address
this problem. The simulation shows that the average revenue
obtained by the optimal policy achieves the best performance.
However, collaborative caching and payment management in
MEC are open research issues.

3) Joint Placement and Delivery:
When we jointly design the content placement and delivery,

the traffic between BSs and UEs can be significantly offloaded.
Therefore, in this subsection, the joint placement and delivery
approaches are described as follows.

Securely caching content is still not discussed well in
previous works. Xu etal. [170] propose a blockchain-enabled
trustworthy edge caching approach for the mobile cyber-
physical system (MCPS). In the network model, the mobile
cyber physical system consists of content provider, multiple
edge nodes, and some social groups. In the content model,
the authors assume that the popularity of contents follows
the Zipf distribution. In the blockchain system, Proof-ofwork
(PoW) consensus algorithm is utilized to reach consensus on a
mined block. The caching transactions between BSs and UEs
are recorded by the decentralized blockchain. Then, a trust
management mechanism is designed to enjoy the trustworthy
caching services, where the trust degree of BSs can be updated
dynamically. Moreover, a max-min based fair caching resource
allocation problem is formulated to maximize the utility. With
the simulation, the proposed approach can reduce delivery
delay to improve mobile users’ QoE. However, the cooperative
edge caching approach needs to be studied to improve the
profits and QoE in future research.

Due to the limited caching capacity, how to allocate the
caching capacity on a cache node with an optimal price is a
great challenge. The authors of [90] propose an edge caching
approach to cache layered videos in RAN. The proposed
system consists of content servers, edge cache nodes, and
multiple social groups. In the content model, the authors
assume that one video content is stored for a social group on
the cache node, and the content’s popularity is characterized
by a Zipf distribution. The framework is designed to cache the
layered videos based on user requests. Then, the system and
content models are formulated to maximize the utility of the
cache node. Moreover, a Stackelberg game theory is utilized
to solve this problem. However, a distributed content caching
approach needs to be studied in future work.

4) Lessons Learned:
Mobile edge caching technology can not only improve the

utilization of caching resource, but also reduce the network
transmission cost. Generally, BSs usually cooperatively cache
a set of video streaming. Then, a user can obtain the requested
video content from either the local BS or from a set of
neighboring BSs. In contrast to placement strategies that move
the content to the edges of the cellular networks, e.g., BSs,
delivery strategies serve the UEs using the cached content.
D2D-enhanced MEC caching exploits the extensive storage
capacities of end devices. Moreover, the blockchain can work
as a distributed ledger and provide the cache sharing incentive
mechanism.
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The main purpose of the existing MEC caching approaches
focus on maximizing users’ QoE, the utility of the cache node,
the number of requests, the revenue, as well as cache hit ratio,
and minimizing the overall data traffic, the average delay, as
well as the additional cost. However, to achieve the best overall
performance, the trade-off between different purposes needs to
be studied in future work.

For video streaming applications, the control structure of
MEC caching can be divided into a centralized manner and a
distributed manner [177]. For video streaming applications, the
typical distributed structure refers to the blockchain-enabled
MEC systems. In the resource allocation, an MEC with a
centralized manner decides the caching placement or delivery
strategies. The centralized approach can obtain the optimal
solution in the cellular networks, while the computational
complexity of solving-problem is high. In the distributed
approach, each access point (AP) or user equipment (UE) can
decide which file needs to be cached without a centralized con-
troller. The distributed approach can not provide the globally
optimal solution, while it has a lower complexity. Moreover,
blockchain-based video streaming application is a typically
decentralized structure, which can bring high profit for content
producers and consumers, and the privacy of consumers can
be enhanced.

To improve the performance of edge caching, the optimiza-
tion problems have usually been solved with some mathe-
matical tools, including convex optimization, game theory,
stochastic optimization, and approximation algorithms. In the
future, the various tools should be combined to solve and
trade-off various problem aspects. In addition, most of the
previous works are based on simulation, and some works are
based on practical testbed. Therefore, the result evaluations
should consist of simulation and testbed measurements in
future research.

F. Computing-Networking

This subsection focuses on the MEC computation with
the partial offloading or full offloading. The computation
offloading is a very complex process affected by some factors,
such as user preference, UE capability, and MEC capability.
The related schemes are summarized in Table X.

1) Partial offloading:
With the rapid growth of immersive video technology,

panoramic virtual reality video (PVRV) delivery over wireless
networks can bring challenges for bandwidth and latency. The
authors of [76] propose the tight of MEC with the multi-
connectivity millimeter wave (mmWave) cellular network to
accelerate PVRV streaming applications. With the proposed
system, MEC is intermediate processing component to enable
transcoding and execute viewport rendering computations,
which can satisfy the high bandwidth and ultra-low latency
demand of PVRV streaming. In the system model, the PVRV
streaming system consists of the content provider, the MEC
server and the mmWave/sub-6 GHz cellular network. The
authors assume that chase combining with reduced half size
retransmission is used and each re-transmission uses the same
channel coding schemes mode. Moreover, the communication

and computation resource allocation problem is formulated
to minimize the energy consumption as well as maximizing
the quality of the received viewport. Then, the non-dominated
sorting genetic algorithms are adopted to address this problem.
Finally, NS-3 simulator is used to verify the PVRV streaming
performance of the proposed method. In addition, the payment
mechanism needs to be studied in future work.

In the above works, the security enhancement issues are
ignored in MEC-enabled video applications. Lin etal. [114]
propose the optimization of multimedia transmission delay
and the computation delay of the MEC-based healthcare
applications. In the proposed system, a blockchain is integrated
into the MEC system, which includes the integrity chain
and fraud chain. In the communication model, the authors
assume that these mobile users employ OFDM schemes for
communications, and the data rate of mobile user is based on
Shannon theorem. The priority of a mobile user is recorded
into the blockchain ledger and broadcast to all the users. The
consensus mechanism is adopted to ensure authenticity. More-
over, a communication and computation resource allocation
problem is formulated to minimize the overall delay with
the authenticity of the user priorities. Finally, Lagrange-based
approaches are used to solve these problems. In future work,
blockchain-enabled incentive mechanisms need to be designed.

The main drawback in [74] is that it ignores the fairness and
resource utilization for adaptive video streaming delivery. The
authors of [97] propose an optimized approach for network
assisted adaptation specifically targeted to mobile streaming
in MEC systems. Moreover, a joint optimization problem of
QoE and fairness is formulated to maximize the resource
utility, which is an NP-hardness problem. Therefore, a near-
optimal greedy-based online algorithm is adopted to address
these problems, including the client to edge server mapping
and the bitrate selection problem. The performance evaluation
is based on a standard LTE simulator, called SimuLTE1, and
the results show that the proposed algorithm performs overall
better in terms of QoE, fairness, and resource utilization. In
future work, an optimized edge caching and bitrate adaptation
approach should be studied to maximize QoE as well as
minimizing the network traffic.

In order to reduce the delay of computation offloading, the
authors of [104] study the joint computation partitioning and
resource allocation based on MEC for an AR application. In
the system model, the users share the bandwidth provided
by the wireless network and the task offloading can be
executed on both local devices and the edge servers. The joint
optimization problem is formulated to minimize the average
application delay. Then, an offline algorithm, namely multi-
dimensional search and adjust, is used for theoretical perfor-
mance analysis. Furthermore, an online algorithm, named by
cooperative online scheduling, is adopted to solve this problem
in practical deployment. In the simulation, a constant bit rate
(CBR) is fixed, and the proposed approach can outperform the
benchmark methods in terms of the overall application latency.
However, the main limitations of this work are the lack of
consideration of UE energy consumption and incentives.

1https://simulte.com/
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TABLE X: The summary of MEC computation offloading for video streaming.
Ref. Offloading Type Networking Objective Control Optimization Tool Streaming Evaluation Main Findings

[76]
Minimizing the energy consumption as well
as maximizing the quality of the received
viewport

Centralized Genetic algorithm VBR NS-3 simula-
tor

The proposed scheme improves the
PVRV streaming performance in term
of latency, energy efficiency, and QoE.

[114]
Macro-cellular
networks Minimizing the overall delay Distributed Convex optimization VBR Simulation

The network delay in the local/edge
cloud computation model is much
lower than that in both the local com-
putation model and the edge cloud
computation model.

[97] Partial offload-
ing HetNets Maximizing the resource utility Centralized Greedy algorithm VBR, HTTP-

based Simulation
The proposed approach performs over-
all better in terms of QoE, fairness, and
resource utilization.

[104] Minimizing the average application delay Centralized Online algorithm CBR Simulation The average latency increases as the
number of users increases.

[178] Maximizing users’ QoE Centralized Greedy algorithm VBR, HTTP-
based Simulation

The proposed approach achieves high
fairness value and efficiently uses the
bandwidth.

[74] RAN Maximizing QoE while guaranteeing wireless
communication energy efficiency Centralized The truncation-point-

optimized algorithm CBR Simulation
The proposed approach has significant
energy efficiency potentials for big
data multimedia communications.

[179] Maximizing the system performance Centralized Greedy algorithm VBR Simulation
The human detection accuracy in-
creases with the average video coding
ratio increasing.

[75] Minimizing the mobile energy consumption Centralized Approximation algo-
rithm AR Simulation The proposed approach achieves min-

imal mobile energy expenditure.

[78] Macro-cellular
networks

Maximizing the streaming quality for users
as well as minimizing the computation and
bandwidth cost

Distributed Heuristic algorithm VBR, HTTP-
based Simulation The startup delay is reduced with the

improvement of download speeds.

[92] Improving uers’ QoE Centralized N/A VBR A real life
testbed

The MOS value starts reducing with
the degradation in network conditions.

[180] D2D networks Maximizing the transcoding revenue Distributed DRL VBR Simulation The proposed scheme receives higher
transcoding revenue.

[100] Full offloading HetNets Maximizing the average transcoding profit Distributed ADMM VBR Simulation

The average transcoding profit of our
proposed algorithm is very close to that
achieved by the centralized algorithm.

[80]
Maximizing QoE of multiple video streams
while satisfying the bandwidth and video
transcoding capability

Centralized Approximation algo-
rithms VBR Simulation

The CloudEdge system performs in-
network transcoding and resource
management in a wireless access net-
work.

[110] Maximizing the bandwidth utility Centralized Approximation algo-
rithm

VBR, HTTP-
based Simulation

The proposed system adapts to the
diversity of users’ channel conditions
with lower transcoding costs.

[81] RAN Minimizing bandwidth and latency Centralized N/A VBR A 4G LTE
tested

The proposed approach provides the
immediate benefts in bandwidth sav-
ing.

[116] Maximizing the revenue Distributed Game theory VBR Simulation

The proposed system achieves good
performance in terms of average time
to finality, average access delay, and
network cost.

The authors of [178] propose an edge cloud-assisted rate
adaptation solution to improve QoE of video streaming in the
RAN. Firstly, a joint throughput estimation method is pro-
posed to enhance video quality for HTTP adaptive streaming.
Moreover, a rate adaptation optimization problem is mod-
eled to maximize users’ QoE, which is the non-deterministic
polynomial-time NP-hard problem. In this context, a greedy
algorithm is designed to solve this problem. The simulation
results show the proposed algorithm is promising under slow-
moving and fast-moving environments. In future work, the
payment mechanism should be studied.

However, the above research focus on latency bounded
multimedia delivery over RAN, while the energy efficiency
considerations are ignored. The authors of [74] develop a
multimedia sensing and communication framework, namely
MSaaS, and propose a resource management strategy to im-
prove the energy efficiency in MEC-enabled IoT networks. In
this context, the optimization problem is formulated to maxi-
mize QoE while guaranteeing wireless communication energy
efficiency. Moreover, a truncation-point-optimized algorithm is
adopted to address this problem. The simulation results show
the proposed approach has significant energy saving potentials.
In addition, the payment mechanism should be studied in
future work.

Most existing works about edge computing for processing
video tasks mainly adopt the “partition and allocation” strategy
without cooperative processing. The authors of [179] propose

an edge computing framework to improve object detection
accuracy. The proposed system consists of a camera node,
edge node and server. In the system model, the authors
assume that each edge node has the same computation rate,
and the human detection accuracy is modeled as a function
of the video coding rate. Moreover, jointly partition tasks,
compress and allocate video sub-tasks problem is formulated
to maximize the system performance, which can be divided
into the group formation and video-group matching problems,
respectively. In this context, a greedy algorithm is used to solve
the group formation problem, and a low-complex heuristic
algorithm is adopted to address the video-group matching
problem. The simulation results show that the human detection
accuracy increases and its speed slows down at the same
time with the average video coding ratio increasing. However,
the trade-off between energy consumption and the completion
time should be considered in future research.

2) Full offloading:

The drawback of [104] is that the offloading decision does
not take account of energy consumption. In [75], a task
offloading framework is proposed for the AR application
based on MEC. In the system model, the authors assume
that the offloaded application has shared inputs, outputs and
computational tasks, and the Channel State Information (CSI)
is assumed to remain constant for the frame duration. More-
over, a joint optimization problem is formulated to minimize
mobile energy consumption. In this context, the successive
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convex approximation (SCA) algorithm is adopted to address
this problem. The simulation results show that the proposed
approach can achieve minimal mobile energy expenditure.
However, carrying out the non-collaborative components lo-
cally to reduce the energy consumption should be considered
in future work.

The traditional adaptive video streaming approaches are
oblivious to the user preferences of different peering servers.
The authors of [78] propose a joint online transcoding and
geo-distributed delivery strategy. In the system model, the
authors assume the transcoding is performed from high-bitrate
versions to low-bitrate versions, and segments of the highest
versions are already replicated to the geo-distributed CDN
regions. Moreover, a joint optimization problem is formulated
to maximize the streaming quality for users and minimize the
computation and bandwidth cost for transcoding and replicat-
ing the video segments, which is an NP-hardness problem.
In this context, the heuristic and distributed algorithms are
adopted to solve this problem with low complexity. Finally, the
trace-driven experiments are used to evaluate the performance
of the proposed algorithms in terms of users’ experience
and computation resource utilization. However, the incentive
mechanism should be studied to encourage transcoding in
future research.

Another idea aiming at improving users’ QoE is introduced
in [92]. Based on ABR technology, a QoE-aware transcoding
approach is proposed based on the mobile edge. In the pro-
posed system, the best configuration is used for transcoding,
and the transcoding service can satisfy users’ request based
virtual network function (VNF). The performance verification
is based on a real life testbed, and the simulation results
demonstrate that it can ensure reduced latency and better
QoE. However, the incentives need to be investigated in future
research.

Liu etal. [180] propose a transcoder selection framework for
blockchain-based D2D networks, where the stakes, reputation
of candidates, and communication and computation capability
have been considered. In the system model, the download and
upload rates are based on Shannon’s Theorem. The DRL-based
approach is proposed to determine a group of transcoders.
Then, a joint task scheduling and resource allocation prob-
lem is formulated to maximize the transcoding revenue, and
the constrained stochastic successive convex approximation
(CSSCA)-based approach is utilized to solve this problem. The
simulation results show the proposed approach can achieve
high transcoding revenue as well as QoS requirement. In the
future, the distributed transcoder selection with a light-weight
DRL approach should be investigated.

Furthermore, the incentive mechanism to facilitate collabo-
ration between video producers and consumers is ignored in
the state of the art. The authors of [100] propose a blockchain-
enabled video transcoding framework with MEC, while the
block size can dynamically be changed to accommodate the
time varying nature of video streaming and its low-latency
requirements. Mobile users can offload their sub-tasks to MEC
servers or nearby mobile nodes via D2D communication.
In the system model, the authors assume that the arrival of
video segments follows a Poisson distribution, and the video

segments generated from the video stream source are main-
tained in a queue. Then, a joint video offloading and resource
allocation problem is formulated to maximize the average
transcoding profit. In this context, an ADMM-based approach
is adopted to solve this problem with low-complexity. In future
research, the transcoders selection approach considering the
held stake, reputation value, and communication capability
should be investigated.

Unlike [92], Smith etal. [80] propose an adaptive video
streaming framework to address the multi-resource manage-
ment challenges. In the proposed system, the resource opti-
mization problem maximizing QoE of multiple video streams
while satisfying the bandwidth and video transcoding capa-
bility is proposed. Moreover, two simplified approximation
algorithms are used to solve this problem. The first algorithm
is the throughput maximization method that is a linear pro-
gramming (LP) problem. The second algorithm is a heuristic
iterative method. However, a prototype network should be built
to validate the effectiveness of the algorithm in future work.

The resource utilization problem is further investigated in
[110] with the consideration of adaptive bitrate streaming.
An adaptive transcoding framework is proposed based on
MEC. The source streaming is transmitted to the edge server
and transcoded with various versions. In the system model,
the user’s channel capacity is approximated according to
Shannon’s Theorem. Moreover, a spectrum resource allocation
problem is formulated to maximize the bandwidth utility,
which is an NP-hardness problem and hard to solve. A con-
strained concave-convex procedure (CCCP) based algorithm is
used to address this problem with low complexity. Simulations
show that the proposed framework can significantly improve
system performance. In addition, combining edge computing
and caching schemes with DASH should be studied to enhance
the performance of video transmission in future research.

Previous works ignore the requirements of 360◦ video
delivery with ultra-low latency and ultra-high throughput, the
authors of [81] propose a field of view (FOV) rendering
approach at the edge of a mobile network for VR applica-
tions. In the proposed framework, the 360◦ video service can
produce a 360◦ video stream at the video hub. Then, the edge
server processes the 360◦ video and performs optional motion
prediction, FOV extraction, and transcoding and optimization
to minimize bandwidth and latency. Finally, FOV control
indications are sent upstream from the user to the edge server.
The experiment evaluation is based on a 4G LTE test lab
environment. In future research, VR value-added services in
the edge network should be investigated.

The consensus process, the latency of block generation,
and incentive mechanisms are not well studied in [180].
The authors of [116] propose a blockchain-enabled MEC
network framework for video transcoding and delivery in a
decentralized manner, where blockchain maintains publicly
auditable video transaction records. With the framework, PoS-
based smart contracts are built to execute automatically the
transcoding transactions among video producers, MEC servers
and users, and the latency of the blockchain generation is
considered. In the system model, the authors assume that the
channel keeps unchanged during the transmission of a packet,
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and the transmission rate of user is approximated according to
Shannon’s Theorem. Moreover, a joint optimization problem is
formulated to maximize revenue. In this context, a three-stage
Stackelberg game technology is used to solve this problem.
The results show that the proposed system could achieve
good performance in terms of average time to finality, average
access delay, and network cost. However, the security issues
regarding the malicious consensus nodes in blockchain should
be studied in future work.

3) Lessons Learned:
MEC can aid mobile end devices in providing compute in-

tensive services with low latency. MEC computation offloading
type is divided into full offloading and partial offloading. In
the full offloading manner, the whole computation is offloaded
and processed by the MEC. In the partial offloading manner,
a part of the computation is processed locally and the rest
is offloaded to the MEC. The partial offloading can save
significantly more energy at the UE when compared to the
full offloading. With D2D-enhanced MEC, end devices can
offload tasks that require heavy computations to powerful
MEC servers or nearby UEs in order to fulfill the low
latency demands and extend the battery lifetime. Moreover,
blockchain-enabled MEC can provide high profit for content
creators and high privacy for consumers in the video streaming
system.

For video streaming applications, the main purpose of
the MEC computation schemes focuses on minimizing the
network delay and energy consumption as well as maximizing
QoE, the resource utility, bandwidth utility, and revenue. How-
ever, the joint optimization approach should be investigated to
balance the different purposes in the future.

The structure of MEC computation offloading for video
streaming applications is divided into a centralized and dis-
tributed manner. In the resource allocation, the centralized
structure needs an entity such as BS or eNodeB to take charge
of information collecting and computing resource decision. In
general, the centralized structure can be implemented with
simple connection, and it can obtain the optimal or near-
optimal solution. Compared with the centralized approaches,
the distributed approach do not need the central entity.
Blockchain-based MEC system is a typical decentralized net-
work, where each AP/UE can make the computing resource
decision individually. In addition, the distributed approach is
more flexible and robust.

For video offloading decisions, the optimization problems
can be solved with some optimization tools, including con-
vex optimization, game theory, DRL-based algorithm, and
approximation algorithm. An interesting future research direc-
tion will be to combine the various solution approaches and
tools into hybrid approaches that comprehensively solve and
achieve the trade-off for various problem aspects. Most of the
existing works are verified by the simulation. Therefore, the
performance evaluation should include simulation and testbed
environments.

Furthermore, the incentive mechanism of MEC computation
offloading is ignored in the existing centralized approaches. In
some previous works, the blockchain has been integrated into
the MEC system to offer the revenue between video producers

and consumers. In future work, trust management should be
studied in the blockchain-based MEC networks.

G. Caching-Computing-Networking

For computation-intensive and time-consuming video
streaming applications, the integration framework of caching,
computing, and networking can provide rich computing and
storage resources in the network edge, which can make users
access to media through any platform and any device. The
related approaches applying the integration framework to
video streaming are summarized in Table XI.

Most existing studies focus on computation-constrained
MEC, the authors of [118] propose a communications-
constrained MEC framework for VR applications. The two
computation modes are considered, including MEC computa-
tion and local computation. In the system model, the system
is time-slotted with the time slot length, and the task request
arrival process is modeled as a Bernoulli process. Moreover,
a task scheduling algorithm based on the Lyapunov theory is
proposed to minimize the average transmission data per task.
Finally, the trade-offs between communications, computing,
and caching are studied, and the closed-form expression about
the average transmission data per task, the CPU frequency,
and the caching size is derived. The results demonstrate that
the proposed approach can achieve a significant reduction in
the average transmission data consumption. However, in future
work, the cooperative video caching and computing approach
should be studied.

Software-defined mobile network (SDMN), in-network
cache and MEC are the important next-generation technologies
of mobile networks, which are important for enhancing the
quality of video services. The authors of [68] study the
video rate adaptation problem in an MEC-SDMN, where the
Unified Video Mean Opinion Score (U-vMOS) is used to
evaluate video performance [181]. U-vMOS considers three
elements: video quality, viewing experience, and interactive
experience. Rated on a 1 to 5 scale, sub-categories include
video definition, the quantity of video sources, screen size,
usage experience, and streaming smoothness [182]. In the
system model, the authors assume that each video streaming
is served by one data flow, and the spectrum efficiency of
wireless link is approximated according to Shannon’s bound.
Then, a joint optimization problem is formulated to maximize
the mean U-vMOS of a HetNet. Then, the dual-decomposition
algorithm is used to decouple variables, including video data
rate, computing resources, and traffic engineering. Finally,
the ADMM-based algorithm is adopted for solving this prob-
lem. However, a communications-constrained MEC approach
should be studied in the future.

The RA problem of massive video content delivery is
ignored in previous works. The authors of [69] propose a
virtualized heterogeneous network framework to support video
transcoding, caching, and multicast, where information-centric
networking (ICN) is integrated into the MEC system. In the
system model, each content can be transcoded into versions
with different bitrates, and the minimum achievable spectrum
efficiency is approximated according to Shannon’s theory.
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TABLE XI: The summary of MEC caching and computation offloading for video streaming.
Ref. Networking Caching Strategy Offloading Type Objective Control Optimization Tool Streaming Evaluation Main Findings

[118]

Macro-
cellular
networks

Delivery Partial offloading Minimizing the communication-resource
consumption Centralized Lyapunov theory VR Simulation

The proposed approach achieves a
significant reduction in the average
transmission data consumption.

[68]
Placement and
delivery Full offloading Maximizing the mean U-vMOS Distributed ADMM VBR, HTTP-

based Simulation

Increasing the capability of MEC
servers and the capacity of caches
can further improve the perfor-
mance.

[69] HetNet Delivery Full offloading Maximizing the aggregate revenue Centralized Convex optimiza-
tion VBR Simulation

The proposed approach promotes
the alleviation of backhaul and
bring a higher caching revenue.

[70] Placement Partial offloading Minimizing the expected delay cost of video
retrieval Centralized Greedy algorithm VBR, RTSP-

based Simulation

The proposed approach provides
significant performance improve-
ment in terms of cache hit ratio,
backhaul traffic load, and average
access delay.

[96]
Placement and
delivery Full offloading Minimizing the backhaul network cost Centralized

Alternative
optimization
algorithm

VBR Simulation
Improving the users access data
rate leads to increasing the provi-
sioning cost of slices.

[77]
Placement and
delivery Full offloading Minimizing the system energy consumption Centralized Heuristic

algorithm
VBR, HTTP-
based Simulation

The proposed approach has ob-
vious performance improvement
when the bitrate version interval
grows.

[79] RAN Delivery Partial offloading Minimizing the average required transmis-
sion rate under a given latency constraint Centralized Approximation

algorithm VR Simulation
The approach saves communication
bandwidth while meeting low la-
tency requirement.

[103] Delivery Partial offloading Maximizing the aggregate reward Centralized Approximation
algorithm VR Simulation

The proposed framework takes ad-
vantage of the higher number of
base stations available to pool and
utilize their resources.

[71] Placement Partial offloading Maximizing the edge caching Centralized Greedy algorithm VBR Simulation
The proposed approach improves
the performance in terms of cache
hit ratio, access delay and cost.

[72]
Placement and
delivery Partial offloading Maximizing the average tolerant delay Centralized Convex optimiza-

tion VR Simulation

The proposed scheme improves
spectral efficiency while meet-
ing high transmission rate require-
ments.

Moreover, a joint optimization problem is formulated to
maximize the aggregate revenue, including communication
revenue, caching revenue, and computing revenue. Finally, the
primal-dual interior point method is used to solve this problem.
Simulations results show the effectiveness of the proposed
approach.

The existing joint optimization scheme is mainly based
on the scenario of single server independent caching and
transcoding task decision, without considering the cooper-
ation among servers. The authors of [70] propose a joint
collaborative caching and processing framework for adaptive
video streaming over Real-time Transport Protocol (RTSP). In
this context, there are three ways to get the requested video
contents: (1) obtaining the cache from the local server and
transcoding, (2) obtaining the cache from the collaboration
server, transcoding and returning and (3) obtaining the cache
from the collaboration server and transcoding locally after
returning from the collaboration server. In the system model,
each server is provisioned with a storage capacity. More-
over, a joint optimization problem is formulated to minimize
the expected delay cost of video retrieval, which is NP-
complete. Then, the original problem is decomposed into a
cache placement problem and a request scheduling problem.
Finally, a greedy algorithm is used to solve the proactive
cache placement problem, and an online algorithm is adopted
to solve video request scheduling problem. The results show
that the proposed approach provides significant performance
improvement in terms of cache hit ratio, backhaul traffic load,
and average access delay. However, the incentive mechanism
should be investigated in future work.

Furthermore, the authors of [96] study MEC-enabled coop-
erative video transcoding and caching approach in heteroge-
neous virtualized MEC networks. In the system model, each
user is subscribed to only one slice. Then, a joint optimization

problem is formulated to maximize slice revenues. Moreover,
the problem is decomposed into a cache placement problem
and a delivery problem, which is an NP-hard problem. Fi-
nally, the alternate optimization algorithm is used to solve
this problem with low complexity. Simulation results show
the proposed scheme has a better convergence performance.
However, the trust management of mobile nodes should be
considered in future work.

In previous works, the problem of energy efficiency is
largely ignored. The authors of [77] propose a joint caching
and transcoding schedule strategy for HTTP adaptive video
streaming delivery in RAN. In the system model, each seg-
ment can be encoded to different bitrates. Moreover, a joint
optimization problem is modeled to minimize the system
energy consumption, which takes the caching and transcoding
into consideration. In this context, a heuristic algorithm is
adopted to solve this problem. Simulation results show that the
proposed strategy presents an excellent performance. However,
the payment mechanism should be studied in the future.

This challenge of VR over wireless networks has not been
well addressed in previous works, including ultra-low latency
and ultra-high transmission rates. The authors of [79] propose
an MEC-based mobile VR delivery framework to enable VR
caching and post-processing at the mobile device. In the
system model, the request stream at the mobile VR device
conforms to the independent reference model, and both 2D
and 3D FOVs of all the viewpoints are cached at the MEC
server. Then, a joint caching and computing decision problem
is formulated to minimize the average required transmission
rate under a given latency constraint. When FoVs of VR
streaming is homogeneous, a closed-form expression is ob-
tained for the optimization problem, which reveals interesting
communications-caching-computing trade-offs. When FOVs
are heterogeneous, the concave convex procedure (CCCP)
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based algorithm is used to solve this problem. However, the
incentive mechanism between VR produces and consumers
should be studied in future research.

Furthermore, in order to achieve the trade-offs among
caching, computing, and communication for VR/AR applica-
tions, the authors of [103] propose the 360◦ video delivery
framework, where only the scenic viewpoint of present interest
needs to be transmitted to the user. In the system model, the
video access rates at each base station are modeled as indepen-
dent Zipf distributions. Moreover, an optimization problem is
formulated to maximize the aggregate reward, taking account
of caching, computing, and streaming. In this context, an
efficient fully-polynomial time approximation algorithm is
used to solve this problem. Simulation results demonstrate that
the proposed scheme achieves better efficiency gains compared
with the state of the art. However, collaborative caching and
computing should be investigated in future work.

Further improvement of [103], the authors of in [71]
proposes a collaborative caching and transcoding model for
VoD in MEC networks, where neighboring MEC servers can
collaborate to store and transcode different video chunks. In
the system model, the authors assume that these servers can
share resources, and all requested videos have different bitrate
versions. Firstly, a probabilistic model is adopted to study the
popularity of different chunks of videos. Then, two popularity-
aware caching policies are proposed to cache only the highest
probably requested chunks, including proactive caching policy
(PcP) and cache replacement Policy (CrP). Finally, a greedy
algorithm is designed to schedule collaborative caching and
transcoding. In the future, the payment mechanism should be
studied.

In order to balance latency, throughput, and complexity
in an economic way, the authors of [72] propose a fog
radio access networks (F-RANs) enabled mobile VR deliv-
ery framework, where the projection component from the
two-dimensional monocular video (MV) to three-dimensional
stereoscopic video (SV) is allowed to be computed at fog
access points (F-APs) and mobile VR devices. In the system
model, the VR delivery system consists of one mobile VR
device, one F-AP and several remote radio heads. The service
requests of the mobile VR device conform to the independent
reference model. Moreover, a joint radio communication,
caching, and computing decision problem is modeled to max-
imize the average tolerant delay under a given transmission
rate constraint. The optimization problem can be transformed
into a multiple knapsack problem, where the Lagrangian
dual decomposition approach is used to solve this problem.
Simulation results show the proposed scheme achieves an
intuitive communication-caching-computing trade-off.

1) Lessons Learned:
Caching and computing at the edge is a powerful tool for

multimedia streaming applications. Implementation framework
by utilizing edge caching and computing capabilities of end
devices can alleviate the traffic burden over wireless networks.
For AR/VR application, the energy-efficient video delivery can
be achieved in the combination MEC system.

This subsection jointly considers video offloading and con-
tent caching to improve the performance of cellular networks

with MEC. The caching strategy can be divided into place-
ment and delivery, and the offloading type includes full and
partial offloading. Some collaborative caching and transcoding
approaches are proposed to improve the system performance.
However, blockchain-based joint optimization approach is
rarely studied in previous works.

In order to optimize spectrum, computation, and storage
resources, the purpose of the joint approaches is to maximize
the QoE, the aggregate revenue and the average tolerant delay
cost, or minimize the energy consumption, the expected delay,
and the average required transmission rate.

For joint video caching and computation offloading ap-
proaches, the optimization problems can be solved with some
optimization tools, including convex optimization, the Lya-
punov theory, and approximation algorithm. Moreover, the
Lyapunov algorithm can solve the offloading optimization
problems with low-complexity online computations.

In addition, some payment mechanisms are proposed to en-
courage caching and offloading services with revenue/reward.
However, the fairness of the payment mechanism needs to be
studied in future work.

VI. APPLICATIONS AND USE CASES

In this section, we focus on how video streaming can lever-
age MEC in different application scenarios. The application-
oriented video streaming classification is provided in this
work, which includes intelligent video acceleration, video
streaming analysis, augmented reality service, and connected
vehicles. Therefore, MEC based video streaming applications
are summarized as follows.

A. Intelligent Video Acceleration

Due to rapidly varying bandwidth for end users, the trans-
mission control protocol (TCP)-based video delivery approach
can lead to the inefficient use of the network resources and
degrade application performance and user’s QoE. MEC can en-
hance the QoE by reducing the content’s time-to-start as well
as video-stall occurrences, and guarantee maximum utilization
of the radio resources [183]. Therefore, the radio analytics
application located at the RAN can estimate the throughput
by the indication for video server, and the information can
be used for TCP congestion control to match the estimated
throughput.

The MEC-based intelligent video acceleration service sce-
nario is shown in Fig. 5, where a radio analytics application
can provide the video server with an indication of the through-
put estimated. Based on the indication, the video server can
select the initial window size, set the value of the conges-
tion window, and adjust the size of the congestion window.
Moreover, the indication can be adopted to ensure that the
application level coding matches the estimated throughput. In
this context, the time-to-start and video-stall occurrences can
be reduced, and the maximum utilization of network resources
can be achieved. In other words, MEC can ensure efficient
utilization of the network resources and improve user’s QoE
for video applications [184].
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Fig. 5: MEC for video acceleration [185].

Fig. 6: MEC for video streaming analysis [185].

B. Video Streaming Analysis

Video streaming analysis has a range of applications such as
license plate recognition, face recognition, and urban surveil-
lance. The general tasks of video analysis include object de-
tection, object tracking, and semantic segmentation. However,
the computation complexity of video analysis algorithms is
high. Therefore, moving the video analysis away from the
video camera reduces the cost of cameras [186]. Compared to
processing video analysis tasks in the central cloud, perform-
ing video analysis locally, i.e. close to edge nodes, can enjoy
the benefits of low latency and avoid the network congestion
[187]. The valuable data can be transmitted to the application
server with the low data rate.

Fig. 6 shows the MEC-enabled video analysis architecture,
where MEC server can execute the video analysis task with
low complexity, and the extracted information is forwarded
into the cloud server. Compared with a cloud-based video-
analytics system, it saves from transporting high data video
streaming to central cloud.

C. Augmented Reality Service

AR is a live direct or indirect view of physical, real-world
environment whose elements are augmented by computer-
generaged sensory inputs, including video, audio, and graph-
ics. AR service requires an application to analyze the output
from a device’s camera. After analysing such information, the
AR application can provide additional information in real-
time [188]. For example, a smart museum AR application
may provide additional information when a smart phone or
a viewing device is pointed at a museum object, or a smart
hard hat may project key information such as wiring diagrams
onto components for field technicians. Augmented information

Fig. 7: MEC for AR service [190].

pertaining to a point of interest is highly localized and thus
hosting the information locally is advantageous compared with
hosting in the cloud.

The MEC-enabled AR application is shown in Fig. 7, where
the MEC server can analyze the output from the camera and
transmit the AR data to the user. AR data requires low latency
and a high rate of data processing. Therefore, The use of a
MEC server is highly advantageous since augmented reality
information is highly localized [189].

D. Connected Vehicles

The connected vehicle technology has the potential to
enable diverse applications associated with traffic safety, traffic
efficiency, and infotainment. The IEEE 802.11bd for the
DSRC and NR V2X for C-V2X can supplement today’s
vehicular sensors in enabling autonomous driving [191]. Based
on vehicular ad-hoc network (VANET), video streaming ap-
plications in connected vehicles can be divided into safety
applications and non-safety applications. MEC is an enabling
technology to reduce network delay and energy consump-
tion in VANETs environment. Moreover, MEC-based video
streaming can enhance safety for the driver’s decision of
overtaking or stopping. In intelligent transportation systems
(ITS), different types of cameras can be used to detect the
moving objects, where object detection tasks can be executed
at the network edge [192]. When an emergency occurs, video
broadcast messages can be transmitted to vehicles to warn
drivers. MEC provides the hosting services for the application,
enabling lower latency for the applications and a layer of
abstraction from the host services running across the internet.

The MEC-based connected vehicle architecture is shown
in Fig. 8, where MEC are deployed at the wireless base
station site to provide the roadside functionality. The MEC
applications can receive local messages directly from the
applications in the vehicles and the roadside visual sensors,
analyze them and then propagate hazard warnings and other
latency sensitive messages to other vehicles [193].

VII. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

In this section, some challenges are discussed, and potential
research directions are proposed for future video streaming
applications.
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Fig. 8: MEC-based connected vehicle system [194].

A. Energy Consumption

The MEC deployment sinks storage and computing re-
sources that were originally in the cloud to the edge of the
network. On one hand, the network edge can respond to user
requests, on the other hand, it can reduce the waste of returning
resources. In terms of network optimization of MEC, energy
efficiency is one of the key areas of concern. In the MEC
deployment scenario, video caching, computing, and commu-
nication between MECs and users can result in significant
energy consumption. Therefore, in order to schedule caching,
computing, and communication resources reasonably, it is very
vital to establish an efficient resource optimization mechanism
to reduce the system energy consumption.

In addition, for the joint optimization of MEC-based video
caching and transcoding, there are three kinds of energy
consumption, including caching, transcoding, and transmission
energy consumption. Therefore, how to jointly consider the
caching, transcoding, and transmission, and optimize the total
energy efficiency is a great challenge for future work.

B. Bandwidth and QoE Tradeoffs

QoE is a measure of the delight or annoyance of a cus-
tomer’s experiences with a service, which focuses on the entire
service experience. The development of adaptive bitrate is a
key driver for exploring an effective approach to improve QoE,
thereby providing a differentiated service to users to enhance
the user experience [85]. Moreover, the research on the trade-
off between bandwidth optimization and QoE optimization
in MEC-based caching and transcoding approaches is a very
meaningful research direction. From the perspective of video
content providers, two important factors need to be considered
for system optimization: (1) it is necessary to reduce the costs
of caching and computing, (2) it is to ensure the users’ QoE.
Therefore, how to balance the cost of bandwidth resources of
MEC-based caching and transcoding and the users’ QoE is an
important direction for future research.

C. DRL-based Strategy

Based on the deep reinforcement learning method, the ABR-
based caching approach is an important research direction

for video streaming applications [195]. In the adaptive bi-
trate streaming system, each video block has multiple bitrate
versions. Owing to the capacity limitation of the MEC-based
cache system, cache all bitrates can lead to a decrease in
caching resource utilization and an increase in network costs.
Therefore, by using MEC technology, network information can
be perceived in real-time, including network link status and
user behavior. Moreover, these information can be analyzed
and processed by using the DRL-based method, and it is to
predict the popularity of video content and bitrate version
for user responses. Therefore, for video caching with the
corresponding bitrate version, the resource allocation strategy
can be decided in advance, which can improve the cache hit
ratio and the utilization of caching resources.

D. Multi-MEC Collaboration

The deployment of MECs in edge networks is usually
distributed, so that the MEC-based caching and computing
resources are distributed in different locations on the network.
The storage space and computing power of a single MEC are
limited. Excessive caching and computing tasks will overload
the MEC server. When these tasks are returned to the cloud
data center, it will result in a higher cost. Therefore, based
on multi-MEC with the distributed mode, adjacent MEC
servers can collaborate to perform caching and computing
tasks. When the current MEC server lacks of cached or
computing resources, other idle MEC servers can be used to
reduce network costs and improve network performance [196].
Moreover, sharing resources between different MEC nodes
becomes an important research issue. For instance, when the
target video content requested by the user is not cached by
the local MEC server, how to select an optimal node among
other MEC nodes that cache corresponding content. When the
computing load of the local MEC server is overloaded, how
to offload local computing tasks to other MEC nodes. The
resource sharing mechanism based on distributed multi-MEC
collaboration needs to be further studied to improve resource
utilization and QoE in the future.

Furthermore, MEC node collaboration to fully support
users’ mobility should be investigated in future work. The
Follow-Me Edge (FME) model is adopted to reduce core
network traffic and ensure ultra-short latency [197]. In this
context, the FME architecture includes two-tier, where cloud
service providers use the cloud resource to deploy its applica-
tion and mobile network operators manage its own set of edge
server clusters. The FME ensures that the service constantly
follows the user and that the user is always serviced from the
closest edge.

E. Security Enhancements

Compared to traditional cloud computing, the benefits of
MEC stem from the potential for location-awareness, band-
width availability, real-time, privacy protection, and low-cost
services to support emerging video streaming applications.
However, the disadvantages of MEC are as follows: weak
computational ability, attack unawareness, and communication
protocol heterogeneities. Therefore, its emergence introduces
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more security issues, and the potential attack models include
DDoS attacks, side-channel attacks, malware injection attacks,
authentication, and authorization attacks [198] [199]. In order
to defense different attacks, various types of security mecha-
nisms of MEC need to design for identity and authentication,
access control systems, trust management, and intrusion de-
tection systems [200].

Moreover, the authors of [201] focus on the context-aware
vehicular applications, and a blockchain-inspired approach is
proposed to enhance the security of vehicular edge comput-
ing and networking. In this context, information and energy
interactions are based on Proof of Work consensus in edge
computing. The work in [202] presents a physical layer
authentication enabled security mechanisms in MEC system,
and the deep learning (DL)-based approach is designed to
train the multi-user authentication model. In [203], a secure
resource allocation approach is proposed to maximize the
capacity of computation resources in the MEC system, where
the the Lyapuonv theory is used to solve this problem.

VIII. CONCLUSION

In this work, an exhaustive survey and research outlook
of applying MEC to video streaming was presented. To this
end, at first, the details about overview and background
were introduced. At first, the categories of resource allo-
cation schemes were presented, which included manageable
resources, optimization criteria, and optimization approaches.
Next, enabling technologies for video steaming applications
ware summarized. Then, the taxonomy for MEC enabled video
streaming applications was provided, from the perspectives
of intelligent video acceleration, video streaming analysis,
augmented reality service, and connected vehicles. Finally,
some challenges were discussed.

In summary, research on applying MEC technology to video
streaming is quite broad, and some challenges lay ahead.
Nevertheless, it is favorable for the network community to
address the challenges and go forward. This paper is trying
to briefly summarize video streaming applications by using
MEC, which may open a new avenue for the development of
video streaming applications.
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