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Abstract—Nowadays, many disruptive Internet of things (IoT)
applications emerge, such as augmented/virtual reality (AR/VR)
online games, autonomous driving, and smart everything, which
are massive in number, data-intensive, computation-intensive,
and delay-sensitive. Due to the mismatch between the fifth gen-
eration (5G) and the requirements of such massive IoT-enabled
applications, there is a need for technological advancements and
evolutions for wireless communications and networking toward
the sixth generation (6G) networks. 6G is expected to deliver
extended 5G capabilities at a very high level, such as Tbps
data rate, sub-ms latency, cm-level localization, and so on,
which will play a significant role in supporting massive IoT
devices to operate seamlessly with highly diverse service require-
ments. Motivated by the aforementioned facts, in this paper,
we present a comprehensive survey on 6G-enabled massive IoT.
First, we present the drivers and requirements by summarizing
the emerging IoT-enabled applications and the corresponding
requirements, along with the limitations of 5G. Second, visions
of 6G are provided in terms of core technical requirements, use
cases, and trends. Third, a new network architecture provided
by 6G to enable massive IoT is introduced, i.e., space-air-ground-
underwater/sea networks enhanced by edge computing. Fourth,
some breakthrough technologies, such as machine learning and
blockchain, in 6G are introduced, where the motivations, appli-
cations, and open issues of these technologies for massive IoT are
summarized. At last, a use case of fully autonomous driving is
presented to show 6G supports massive IoT.

Index Terms—IoT, 6G, Space-air-ground-underwater Net-
works, Machine Learning, Blockchain

I. INTRODUCTION

Instead of only exchanges of voice, image, or video in the
fifth generation (5G) mobile networks and the earlier gen-
erations, researchers are exploring new forms of interactions
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in the future, including holographic communications, five-
sense communications, and wireless brain-computer interfaces
(WBCI), which will lead to a true immersion into a distant
environment. At the same time, advances in personal com-
munications will promote the evolution of smart verticals in
the fifth generation networks (5G) to a higher level, including
healthcare, remote education/training, industry Internet, fully
autonomous driving, and super smart homes/cities. During
this paradigm shift, the Internet of Things (IoT) plays a vital
role in enabling these emerging applications by connecting
the physical environment to the cyberspace of communication
systems [1].

Although these IoT-enabled applications will bring conve-
nience to human life, it is an extremely daunting task for
5G to support these applications. First, these IoT-enabled
applications require superior performances in terms of data
rate, latency, coverage, localization, and so on. Second, they
are more data-intensive and computation-intensive, which far
exceeds the range of ultra-reliable low latency communications
(uRLLC) and massive machine-type communication (mMTC)
of 5G [2]. Third, it is hard to efficiently manage massive IoT
devices in this case. Fourth, with massive data generated, seri-
ous security issues are accompanying [3]. With IoT evolving,
5G will gradually reach its limitations and be unable to provide
support to most of these advanced applications, which can be
predicted from the history of previous generations. So there
is a strong motivation for the sixth generation networks (6G),
to extend 5G capabilities to a higher level to enable massive
IoT.

Motivated by the aforementioned facts, the visions of 6G in
terms of requirements, use cases, and trends should be clearly
investigated first, since 6G is not defined yet. Then, to have
massive IoT deployed in 6G, the development with respect to
architecture, breakthrough technologies, and their challenges
should be known.

A. Visions of 6G

Inspired by the robust requirements of the future IoT-
enabled applications and the limitations of 5G, 6G, as an
evolutionary generation, will expand and upgrade based on
5G from every aspect, which revolutionizes not only human
life but also society. First, network performance of 6G will
upgrade to a superior level, e.g., higher data rate (up to Tbps),
lower latency (sub-ms), three dimensional (3D)-ubiquitous
coverage (into space, sea, and even the undersea), more
accurate localization (up to cm-level), more stringent privacy
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and security, and so on. Second, use cases in 6G will be
more multitudinous and complex, resulting in different and
even conflicting requirements in different use cases. Third,
several trends about 6G have started to emerge, summarized
as follows:

• More bits and spectrum, and denser networks
• Convergence of various communication systems
• Convergence of communication, caching, computing,

control, sensing, and localization (4CSL)
• From network softwarization to network intelligentization
• From centralization to distribution
As a result, 6G maintains the ability to connect millions of

devices and applications seamlessly with performance guar-
anteed. Thus, 6G plays a major role in supporting massive
interconnectivity in IoT with highly diverse service require-
ments. To enable massive IoT, 6G will provide a new network
architecture and breakthrough technologies to meet their de-
mands.

B. New Network Architectures for Massive IoT

With human activities expanding to the extreme environ-
ment, e.g., higher altitudes, outer space, oceans, and deep
under the sea, a ubiquitous (covering earth, sea, sky, and
space), everything-connected (IoE), omniscient (with various
sensors), and omnipotent (4CSL) network should be built
to truly realize the connection anytime and anywhere with
diverse requirements. To achieve this goal, a four-tier network
architecture enhanced by edge computing is provided by 6G,
i.e., space-air-ground-underwater/sea networks.

The space tier contains various types of satellites, which
aims to provide Internet connections for some extreme envi-
ronment, e.g., rural areas, mountains, and so on. In this tier,
the very low earth orbit (VLEO) satellites are promising to
provide high data rates, low round trip latency, and accurate
localization with the lowest orbit [4], [5]. The air tier consists
of UAVs, airships, and balloons, which are aerial mobile sys-
tems to complement the terrestrial networks with its flexibility.
For example, UAVs could move closer proximity to the ground
IoT devices to collect data or acting as a computing hub,
achieving higher throughput rates and conserving the energy of
less-capable IoT devices [6], [7]. As the main way to acquire
services for most IoT-enabled applications, the ground tier
refers to the legacy wireless networks, e.g., cellular networks,
wireless local area networks, VLC, and so on, where terahertz
communications are promising to achieve the ambitious goals
of 6G [8]. In the underwater/sea tier, optical communications
play a vital role in providing Internet services for distributed
nodes over the broad or deep sea due to the water exhibits
different propagation characteristics from the land [9], [10].

For the IoT-enabled applications that require real-time oper-
ations and decentralized services, edge computing is regarded
as a key enabler [11], [12]. From the perspective of users’
level, edge computing directly helps IoT devices execute their
tasks, e.g., rendering for VR, decision making for autonomous
driving, and so on, which outperforms the centralized cloud
computing technology due to its distributed nature and low
latency. From the perspective of system, edge intelligence with

machine learning is enabled by edge computing to manage IoT
systems using an intelligent method.

C. Breakthrough Technologies

As an omnipotent network, 6G is enhanced by a number
of breakthrough technologies, including machine learning and
blockchain.

As one of the most powerful intelligence enabling tech-
nologies, machine learning has been widely used for different
aspects of the IoT-enabled applications, ranging from the
application layer and the network layer to the perception
layer. In the application layer, machine learning is widely
used for task offloading and resource allocation. In turn,
edge computing in the application layer provides storage and
computation capability to enable edge intelligence. In the
network layer, network intelligentization and automation are
the primary goals of the IoT systems in 6G. Machine learning
is recently being adopted in wireless systems to address the
related challenges and to pave the way for future massive IoT
communications [13]–[15]. Toward the future IoT networking
in 6G, machine learning algorithms are widely used for multi-
ple resource allocation, power allocation, transmit scheduling,
traffic offloading, and so on. In the perception layer, machine
learning is used for autonomous control for different IoT
scenarios, e.g., movement control for autonomous robots (e.g.,
tactile Internet, smart factory, and remote surgery), driving aid
for autonomous driving, intelligent management for smart grid
[16].

In addition to intelligence, another stirring premise promised
by 6G is distribution, which exactly hit the bullseye of
the future massive IoT systems. The current centralized IoT
network model, in which IoT devices use a single gateway to
transfer data between them and connect through a cloud server,
is no longer suitable for the future massive IoT devices and
the volumes of data they share due to its shortcomings, i.e.,
high costs of centralized cloud maintenance and networking
equipment, low interoperability due to restricted data exchange
with other centralized infrastructures, and severe security
issues due to the untrustworthy single gateway and centralized
cloud server. Blockchain, a decentralized distributed ledger, is
recently regarded as the key to solve many of the problems
faced with the current model and improve security [17]–[19].
First, dynamic network management is enabled by blockchain
with decentralization and low cost. Second, with a unified
authentication system in blockchain, interoperability among
different IoT systems is improved. Third, data stored on
various nodes eliminates the single point of failure. Confi-
dentiality, integrity, and authenticity of the data are protected
by the immutability, anonymity, and encryption of blockchain
[20], [21].

D. Review of Related Overview/Survey Articles

To the best of the authors’ knowledge, there is no detailed
survey paper dedicated to massive IoT enabled by 6G. The au-
thors of [22] presented a comprehensive survey on IoT toward
5G, while the authors of [23] talked about 5G networks for IoT
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Fig. 1: Roadmap of this paper.

from the perspective of communication technologies and chal-
lenges. In [24], Huang et al. presented an overview of wireless
evolution towards green 6G networks, where new architectural
changes related to 6G and related potential technologies are
discussed. In [25], the authors discussed the visions and
enabling technologies of 6G thoroughly, which provided an
insightful picture of 6G. Focusing on breakthrough technolo-
gies for IoT, the authors of [16] discussed the current issues
in ultra-dense cellular IoT networks and machine learning-
assisted solutions. The authors of [26] provided a survey on
different aspects of resource management in cellular and IoT
networks that leverage machine learning techniques. Several
surveys [18], [19], [27] discussed blockchain for IoT from
different aspects. Although these works have laid a solid
foundation on 5G for IoT, 6G, and breakthrough technologies
for IoT, the future massive IoT-enabled applications and the
role of 6G for massive IoT has not been covered in the existing

surveys. To fill this gap, we investigate the future IoT-enabled
applications, the visions of 6G, and the role of 6G for IoT in
terms of network architecture and breakthrough technologies.

E. Contributions

In this paper, we present a comprehensive survey of massive
IoT enabled by 6G. We mainly identify four aspects, on which
we focus, drivers and requirements, visions of 6G, network
architecture, and breakthrough technologies. The main contri-
butions of this paper are summarized as follows.

• Compared with the other survey papers related to this
topic, we provide a comprehensive survey on massive IoT
enabled by 6G, where the challenges of future massive
IoT are reviewed and the roles of 6G for massive IoT are
presented from the perspectives of network architecture
and breakthrough technologies.
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• The visions of 6G are presented, including core tech-
nical requirements, use cases, and trends of 6G. The
technical requirements in terms of data rate, latency, etc.
are summarized, along with use cases of 6G. Several
trends associated with 6G are presented, encompassing
more bits and spectrum, and denser networks, conver-
gence of various communication systems, convergence
of communication, caching, computing, control, sensing,
and localization (4CSL), from network softwarization
to network intelligentization, and from centralization to
distribution.

• A new four-tier network architecture enhanced by edge
computing for massive IoT is reviewed. The promising
technologies in each tier are presented, including VLEO
satellites, UAVs, terahertz communications, VLC, and
optical communications.

• The breakthrough technologies in 6G for massive IoT are
reviewed, e.g., machine learning and blockchain, which
provide intelligence and distribution, respectively. The
applications and open issues are also summarized.

F. Paper Organization

We structure this article in a manner shown in Fig. 1.
We begin by summarizing the motivations behind 6G, where
the IoT-enabled applications and corresponding requirements,
limitations of 5G, and necessities to develop 6G are presented
(Section II). It helps define the motivation and contributions of
this paper. Since 6G is not defined yet, we provide its visions
in Section III, highlighting its technical requirements, use
cases, and trends. To achieve 6G visions and enable massive
IoT, modifications to existing network architecture and cloud
computing technologies as well as the involvement of break-
through technologies are essential. We discuss the supporting
network architecture and breakthrough technologies, as well
as open issues in Section IV and Section V, respectively,
aiming at helping researchers understand the roles of 6G.
To show how 6G supports massive IoT, a use case of fully
autonomous driving is presented in Section VI. Finally, this
study is concluded in Section VII.

II. DRIVERS

Nowadays, many IoT-enabled applications emerge, such
as holographic communications, five-sense communications,
wireless brain-computer interfaces (WBCI), and new verticals.
The IoT system is evolving towards super-massive in number
and convergence of 4CSL, which needs higher key perfor-
mance indicators (KPI) and more complex usage scenarios.
As known, it is a rather daunting task for 5G to support this
evolving IoT system due to its limitations. In this section, we
try to summarize the main drivers behind 6G by introducing
the evolution of IoT, the limitations of 5G, and the necessities
to develop 6G.

A. Evolution of IoT

IoT in 5G is transforming and bringing industrial revolution
4.0 in every aspect of human life, including smart healthcare,

smart education/training, industry Internet, autonomous driv-
ing, smart homes, and cities. At the same time, people are
exploring new forms of IoT-enabled interactions in the future,
including holographic, five-sense, and even brain-computer
approaches, which will create new verticals in turn. All these
evolving IoT-enabled applications will propose more robust
requirements to the wireless communication networks. Next,
we aim to present the evolution of IoT by summarizing
emerging IoT-enabled applications and their requirements.

1) IoT-enabled Applications and Corresponding Require-
ments: Instead of only exchanges of voice, image, or video
in the earlier and current generations, people are exploring
new forms of IoT-enabled interactions in the future, including
holographic communications, five-sense communications, and
WBCI, which can lead to a true immersion into a distant
environment. Powered by near-real-time and true-immersive
experiences in personal communication using holograms and
five senses and autonomously operating machinery in the
industry as new fundamental media-objects, new verticals
emerge, including smart healthcare, smart education/training,
industry Internet, fully autonomous driving, and super smart
city/home.

Holographic communications: The first new form of in-
teractions refers to holographic communications, which is
capable of projecting full-motion 3D images in real time.
This technology captures images of people and/or objects,
presents in reality or at a remote location, and transmits these
images and related sounds to the receiver. In this way, it makes
objects or people along with the real-time audio information
present at a different location and appear right in front of the
users, resulting in a closer-to-reality experience than VR and
AR. Holographic type communications will have a big part
to play in the industry, agriculture, education, entertainment,
and in many other fields. Due to rich details to transmit,
the amount of data necessary to stream holographic media
can be very large even after compression, which calls for
very high throughput in the range of hundreds of gigabits per
second or even terabits per second to support such capabilities.
Besides, an additional ask from networks to provide reliability
and timeliness is required to eliminate any jitter since that
will immediately degrade interactive applications’ behaviors.
Concisely, the requirement of holographic communications is a
synergistic mix of URLLC and eMBB to guarantee low latency
and high data rates.

Five-sense communications: Despite tactile transmission
and traditional human interaction in terms of the exchange
of voice, images, and videos, researchers also state the trend
of new forms of remote human interactions [13], the so-
called immersive five-sense or five-dimension (5D) commu-
nications. The five-sense media will integrate all human sense
information, including sight, hearing, touch, smell, and taste.
This technology detects sensations from the human body
and the environment and integrates sensations by using the
neurological process. Then the information is transferred to the
receiver at a remote location, leading to a truer immersion into
a distant environment. Such multi-sensory applications (e.g., a
remote surgery), combined with VR/AR or holographic com-
munications, will constitute truly immersive services for 6G. It
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requires a joint design considering not only engineering (i.e.,
wireless, computing, storage) requirements but also perceptual
(e.g., human senses, cognition, and physiology) requirements,
which jointly determine the service performance. In view of
latency and data rate, the requirements of five-sense commu-
nications are a blend of traditional uRLLC and eMBB with
accurate localization ability, as well as incorporated perceptual
factors.

Wireless brain-computer interfaces (WBCI): Another po-
tential form of interactions refers to WBCI, also known as
wireless mind-machine interfaces (WMMI), which are in-
terfaces that use human thoughts to interact with machines
and/or the environments [28]. This technology first reads the
neural signals generated in the human’s mind with a certain
number of electrodes, then translates these acquired signals
into commands that a machine can understand [29], thus
achieving control or other functions, e.g., turn on a light.
WBCI is a communication pathway between the brain and
the external peripheral devices, which is a promising approach
to control the appliances that are used daily in smart cities,
homes, and medical systems in a more simple and intelligent
way. Beyond healthcare and smart cities/home scenarios, the
recent advent of WBCI revolutionizes this field and introduces
new use-case scenarios, ranging from brain-controlled movies
to fully-fledged multi-brain-controlled cinemas [30]. Coupled
with tactile Internet or haptic communications and related
ideas, in which the functions of emotion-driven devices can
match the users’ mood, WBCI will constitute important 6G
use cases [31]. WBCI requires high data rates, ultra-low
latency, and high reliability, as well as powerful computation
capability, which is similar to VR/AR but much more sensitive
than VR/AR to physical perceptions and necessitates quality
of services (QoS) and quality of experience (QoE) guarantees.

Smart healthcare: 6G can help build smart healthcare
systems, where a reliable remote monitoring system, remote
diagnosis, remote guidance, and even remote surgery can be
facilitated by 6G. 6G with high data rate, low latency, accurate
localization, and ultra reliability will help to quickly and
reliably transport huge volumes of medical five-sense data,
which can improve both the access to care and the quality
of care. Cooperated with artificial intelligence (AI), the data
can be better analyzed by doctors to make accurate diagnoses.
With blockchain, personal data can be privately and safely
shared among the world to contribute to the development of
medicine.

Smart education/training: Smart education/training will
benefit from 6G wireless systems because innovations,
e.g., holographic communications, five-sense communications,
high-quality VR/AR, mobile edge computing, and AI, will
help build smart education/training systems. With the support
of the above techniques, it allows students to view structures
and models in 3D form and even to be taught by a famous
teacher at a remote location, thus achieving interactive and
immersive online education. For training, by illustrating the
processes (live) in holography and interacting with objects or
other trainers, it helps learners retain more information, reduce
high costs, and avoid being in dangerous environments than
traditional training methods. 6G can also help build intelligent

classes, in which data are collected by sensors, and sent to the
clouds or edge clouds to be analyzed. Then the results can
be used to improve the quality of education to better interact
with students.

Industry Internet: 6G will facilitate a variety of vertical
industries, e.g., electricity, manufacturing, delivery, and ports.
Based on AI, full automation will be provided by 6G with
its ultra-massive connectivity capability and ultra reliability,
which means that automatic control of processes, devices, and
systems is enabled by 6G. By transmitting data to clouds or
edge clouds and analyzing the data, decisions are made intel-
ligently to achieve automatic manufacturing. In this process,
error-free data transfer is ensured by 6G. With the help of
VR/AR/holographic communications, remote maintenance can
be enabled by 6G, in which experts in remote locations and
workers in present can work together timely to solve problems,
resulting in higher efficiency and lower costs. Another service
refers to remote control, which controls machines remotely
to ensure the safety of workers and reduce costs. It requires
rigorous low-latency, broadband, and reliable transmission of
6G.

Fully autonomous driving: Equipped with multiple high-
definition cameras and high-precision radar sensors and sup-
ported by 6G, fully autonomous driving can be achieved,
which means that the vehicle performs all driving tasks
and there isn’t even a cockpit (opening up new mobility
possibilities for people with disabilities, for example). The
core functions of autonomous driving include perception,
planning, and control [32]. The information (including the
accurate vehicle location and target recognition) generated by
various sensors, e.g., image sensors or cameras, millimeter-
wave/terahertz radar, and LIDAR (LIght Detection And Rang-
ing), is as the input of the perception layer, which can be
regarded as the prerequisite to realize autonomous driving. The
instructions of the planning layer include following, overtak-
ing, and accelerating, which depend on the input information,
i.e., the information from the perception layer and the feedback
from the control layer. The control layer is in charge of
implementing the specific control over the vehicles according
to the instructions issued by the planning layer, including
throttle, brake, and gear control. The key challenge to achieve
fully autonomous driving is how to meet the stringent safety
demands when faced with different driving conditions. With
the help of AI, MEC, and reliable and low-latency transmission
of 6G, the complex information can be handled in time by 6G.
Besides, the information can be shared safely with blockchain
to enhance the performance of autonomous driving.

Super-smart city/home: The superior features of 6G will
lead to significant improvement of life quality, intelligent
monitoring, and automation to accelerate the building of super-
smart cities and homes. A city is considered to be smart
when it can run intelligently and autonomously by collecting
and analyzing mass quantities of data from a wide variety of
industries, from urban planning to garbage collection, which
can make better use of the public resources, increase the
quality of the services offered to the citizens, as well as reduce
the operational costs of the public administrations. The use
of smart mobile devices, autonomous vehicles, and so on
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TABLE I: Comparison of applications in 5G and 6G

5G 6G

Applications

VR/AR/4K/8K
videos Holographic communications

Tactile Internet Five-sense communications
Wearable Devices WBCI
Vehicle to everything Fully autonomous driving
Smart verticals Super smart verticals

Space communications
Deep-sea communications

will make the cities smarter in 6G. A smart home is not
only simply a residential or commercial building equipped
with Internet-connected smart devices to help people manage
and monitor a range of appliances and systems from mobile
phones, but also an intelligent entity with instantaneous and
distributive decision-making capabilities. Besides, people can
control light, heat, or multimedia entertainment by voice or
just mind (brain-computer interfaces, BCI) or leave them all
to AI, which can analyze your behaviors to make people’s lives
safer and easier. 6G will make smart home a reality. To achieve
smart city/home, it poses key challenges to the connectivity
and coverage capability of 6G, since there are so many sensors
and intelligent terminals.

2) Summary: 5G is the first generation that is specially
designed for vertical IoT use cases, including VR/AR, tactile
Internet, wearable devices, vehicle to everything, smart verti-
cals, and so on. As shown in Table I, each application of 5G
will evolve to be a part of 6G, which aims to boost every aspect
of human life. For example, holographic communications and
five-sense communications in 6G will bring a truer immersive
experience when compared with VR/AR and tactile Internet in
5G. Instead of vehicle to everything, fully autonomous driving
will bring more convenience to human life. Furthermore, 6G
will explore communications in space and deep-sea rather than
focusing on the ground like 5G. Build upon the unique creation
of new interactions, new verticals emerge and IoT in the future
6G will change a lot. The main differences of IoT in 5G and
6G are described as follows.

Super-massive in number: Owing to the aforementioned
applications, new device forms emerge. First, smartphones are
likely to be replaced with lightweight extended reality devices
(google glasses, for example) to deliver an unprecedented
resolution, frame rates, and dynamic range. Second, wearable
displays, mobile robots, and drones, specialized processors
will be used for high-resolution imaging and sensing to make
holographic experience or telepresence a reality. Third, with
fully autonomous driving coming true in 6G, more vehicles
will be connected to the Internet for ecologically sustainable
transport and logistics. All these mobile devices embedded
with various sensing abilities (called sensors) will contribute
to the growth of IoT in volume. According to the new analysis
from IHS Markit, the number of connected IoT devices will
jump 12% on average annually and reach 125 billion in 2030
from 27 billion in 2017. With this trend continuing, it can be
predicted that the number of IoT devices will be super-massive
in the future 6G, which will far exceed what 5G promises to
support.

More intensive and sensitive: IoT in future 6G will be
more data-intensive, computation-intensive, delay-sensitive,
and privacy/security-sensitive. First, evolving from VR/AR,
tactile Internet, and wearable devices to holographic communi-
cations, five-sense communications and WBCI brings a surge
of big volume of IoT data, which is generated in a nearly
real-time fashion. Second, in view of the quantum of IoT data,
more computation power will be needed for data processing
and analysis. Third, the aforementioned IoT-enabled applica-
tions in 6G usually need more stringent latency requirements
compared with 5G. Fourth, with more data involved, the desire
for data security/privacy protection will be more strong.

From communication, caching, and computing (3C) to
4CSL: For IoT, it is important to collect, store, query, un-
derstand, and utilize the raw sensor data. In 5G, a number
of works studied the convergence of communication, caching,
and computing in the case of edge computing [33], which
can be used for data transmission, storage, and processing.
However, it is not sufficient for IoT in 6G. For example,
fully autonomous driving, which is context-aware, needs to
exploit the localization and sensing information to construct
the environment accurately. Simultaneous localization and
mapping methods are required to enable holographic commu-
nications or enhance the navigation of autonomous vehicles
and drones. Remote control with ultra-reliability is the key
for industrial Internet and five-sense communications. Hence,
the convergence of 4CSL is necessary for IoT in 6G.

B. Limitations of 5G

The limitations of 5G come from not only its architecture
but also its technologies, both resulting in a mismatch between
its capabilities and the requirements of all aforementioned IoT-
enabled applications. The limitations of 5G will be described
in detail as follows.

• The first limitation lies in the best performance that 5G
could provide in terms of data rate and latency. From the
perspective of data rate, a peak data rate of 20 Gb/s and
an experienced data rate of 100 Mb/s are touted, which
indeed sounds fantastic. But this projection overlooks the
critical fact that the capacity must be shared among mul-
tiple users and assumes unrealistic conditions that result
in a condition that actual throughput capacity for wireless
users is often only 15 percent of the peak data connection
rate. In addition, the required data rate of an ideal VR
user could reach several Gb/s and even Tb/s, and it is far
away from meeting the requirement of high-quality VR
for 5G. From the perspective of latency, a latency of 1 ms
is promised by 5G. However, latency of less than 1 ms
is needed for many IoT-enabled applications, e.g., fully
autonomous driving, tactile Internet, and remote control.

• The second limitation comes from the supporting service
classes of 5G, i.e., eMBB, mMTC, and uRLLC. mMTC
and uRLLC are designed for IoT. uRLLC supports low-
latency transmissions with very high reliability for small
payloads from a limited amount of user devices, which
are active according to patterns typically triggered by out-
side events (e.g., alarms). While mMTC aims to connect a
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massive number of IoT devices, which are with small data
payloads and only sporadically active. However, most
of the future IoT-enabled applications are data-intensive,
computation-intensive, and delay-sensitive, e.g., AR/VR
online games, which exceed the range of any of these
three typical scenarios. Obviously, 5G will not be able to
support such scenarios that combine any two classes or
a synergistic mix of all three classes. For example, the
requirements of five-sense communications are a blend
of traditional uRLLC and eMBB.

• The third limitation of 5G refers to its connection capabil-
ity, which aims to connect everything (i.e., the Internet of
everything, IoE). With technologies developing, humans
are exploring mountains, seas, and even space, where
communications should follow. Besides communications
for human, IoT devices will vastly expand the geographic
space for communication access, including deploying
unmanned detectors deep into the earth, sea, and space,
UAVs at median altitude, autonomous robots that pene-
trate into harsh environments, and smart machines that are
controlled remotely. However, 5G, including the earlier
generations, focuses on communications over the surface,
which ignore the activities in these extreme environments.
So 5G is far away from connecting everything and
ubiquitous connectivity is desired with time going on.

• The fourth limitation of 5G is related to its coverage in ru-
ral areas. People in rural areas are by far the most under-
served population when it comes to broadband access.
Let alone for IoT. In 2018, the federal communications
commission (FCC) found that 98 percent of Americans
in urban areas had access to a broadband connection, yet
only 69 percent of rural Americans do [34], which is
nowhere near fast enough to be useful for most modern
applications. In 5G, rural areas won’t be left out, but
it will be different there. The multi-Gbps speeds and
massive capacity of 5G is an urban phenomenon to a great
extent, achieved by the huge bandwidths of mmWave
spectrum, which doesn’t travel very far, resulting in ultra-
dense small cells. Considering the profitability, rural areas
will get a form of 5G called “low-band” or “sub-6”
5G, which will have less capacity. Thus, how to provide
IoT enabled services for the last 4 billion people with
broadband services in rural areas still remains unsolved
in 5G, which is what rural residents probably most want
and are most frustrated.

• The fifth limitation is the new key performance indicators
arising from emerging applications, including privacy
and security. With the capabilities promised by 5G,
nearly all aspects of human life will be connected to
communication networks, but it also provides a fertile
hunting ground for criminals who are able to access the
communication between a device and a network in order
to intercept conversations or steal data [35]. The need
for robust security mechanisms is underscored across all
network segments of 5G. However, the research from the
University of Dundee and so on found that while data
protection in 5G has improved on that offered in the 3G
and 4G versions, critical security gaps still exist [36].

For 6G, this problem will keep exacerbating, since so
many sensors, that are used in IoT-enabled applications
such as healthcare, remote education, smart homes, and
autonomous driving, will be involved in 6G. Hence, how
to ensure privacy and security is a key challenge in the
future.

C. Necessities to start the study on 6G

Besides the above drivers, we provide the following neces-
sities of 6G.

Ten-year rule: A new mobile generation has appeared
approximately every 10 years since the first 1G system was
introduced since 1982 and it needs at least ten years from
definition to commercial deployment, which means that when
the previous generation enters the commercial phase, the
concept and technology research of the next generation begins.
Assuming that this trend continues, 6G will be a reality around
2030. With 5G rolling out across the world, it is the perfect
time to start to study 6G.

Catfish effect: Unlike previous generations of mobile com-
munication systems, 5G is also targeted at IoT/vertical industry
application scenarios. With 5G networks scaling, especially in
the middle and late stages of 5G, more vertical industry mem-
bers will surely participate in the 5G ecosystem. Compared
with the current conditions that are dominated by traditional
operators, the in-depth participation of emerging enterprises
(especially Internet companies with innovative thinking) in the
future will have a huge impact on the traditional communica-
tions industry, which is even revolutionary.

Exploding potentials of emerging applications: Just as the
emergence of smartphones which stimulates the development
of 3G and triggers the demand to deploy 4G, it is believed that
IoT business will also stimulate 5G at some point in the 5G
era [15], and then further stimulate the demand for future 6G
networks. To have enough imagination, it needs us to prepare
for possible future networks and lay the technical foundation
in advance.

III. VISIONS OF 6G: CORE REQUIREMENTS, USE CASES
AND TRENDS

6G envisions a data-driven society, which is enabled by
near-instant and unlimited connectivity to anything, ranging
from tiny static sensors to autonomous objects, from anywhere,
including the rural areas, mountains, and seas, and anytime.
With 6G not defined, this section introduces the core technical
requirements along with the use cases of 6G, followed by the
arising trends of 6G.

A. Core Requirements and 6G Scenarios

With technologies developing and time going on, the current
support scenarios will not be able to support the applications
in the future, as stated in the limitations of 5G. Hence,
new technical requirements will be imposed and new service
classes should be supported in the future. In this section, core
technical requirements will be introduced and new service
classes will be defined.
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1) Core Technical Requirements:

• Peak data rate: Peak data rate is one of the key technical
indicators that has been pursued since 1G. Without a
doubt, 6G will further enhance the achieved peak data
rate, which is expected to reach up to Tb/s [15], [31].
First, it can be predicted from the history of peak data
rate improvement from 1G to 5G. Second, the demands
of big data transmission for intelligence and emerging
applications (e.g., high-quality VR/AR, and holographic
communications) will far exceed the current wireless
applications.

• Sub-ms end-to-end latency: Low latency is pivotal to
many wireless applications. For example, it makes the
users feel dizzy with a latency of more than 20 ms for
VR/AR users. 20 us ∼ 10 ms is required for machine to
machine communications (M2M). For remote surgery or
other remote control in most of the industrial use cases
(e.g., industrial IoT, IIoT), a higher requirement in terms
of latency is proposed [37], e.g., one submillisecond.

• Higher energy efficiency: The energy consumption of mo-
bile networks has become an ignorable problem around
the world [38], which will not only generate a huge
amount of carbon emissions that is harmful to the en-
vironment, but also accounts for a considerable part of
the operating expenses. First, with ultra-large through-
put, ultra-broad bandwidth, and ultra-massive ubiquitous
wireless access points, 6G will bring unprecedented huge
challenges to energy consumption. Second, various sen-
sors will be ubiquitous in human’s life, which needs bulky
energy to operate and manage these sensor networks.
Hence, green communication is particularly urgent for
6G, e.g., energy efficiency of 10-100 times (in J/bit) [39].

• Accurate localization: First, to determine the location of
the mobile terminals in a cellular system is mainly in
case of an emergency call, which is also the demand
of governmental institutions. Second, the location of the
mobile device can be exploited for commercial services to
obtain revenue, e.g., the so-called location-based services.
Examples of such services include navigation, mapping,
asset tracking, geo-marketing and advertising, social net-
working, location-sensitive billing, AR, etc. Third, the lo-
cation information can be also used for network optimiza-
tion to improve network efficiency and communication
capacity. Examples are network management, resource
management for device to device (D2D) communications,
intelligent transportation systems, radio reconfigurable
spectrum, vehicular ad-hoc networks, etc. [40]. Fourth,
new applications, e.g., autonomous driving, autonomous
factory, and remote surgery, which involve complicated
operations, pose a stringent localization requirement to
6G to ensure the safety of users and protect the values and
people, both indoors and outdoors, which can reach up to
the level of several centimeters for indoor localization and
1 meter for outdoor localization. Hence, more accurate
localization capability is required in 6G.

• High reliability: Many applications with remote control
functions are emerging, such as autonomous driving,

autonomous factory, and tactile Internet, which all require
high reliability to ensure safety. The reliability require-
ments of different 6G applications are predicted to be
dependent, the most extreme case of which can be one
billion bits transmission with only one-bit error and a
delay of 0.1 ms.

• Full coverage: With the advancement of science and
technology, human activities are further expanded to the
extreme environment, e.g., higher altitudes, outer space,
oceans, and deep under the sea. Communication nodes,
especially the IoT devices, will spread over a wider
area, which is inseparable from human social activities.
As a result, an ubiquitous (covering earth, sea, sky,
and space), everything-connected (IoE), omniscient (with
various sensors), and omnipotent (based on big data and
deep learning) network should be built to truly realize
the connection anytime and anywhere. The ultimate goal
of mobile communications is the provision of ubiquitous
super-connectivity on the global scale [41], i.e., anywhere
on Earth, outside or inside buildings, prosperous cities,
or remote rural areas. Hence, full coverage should be
provided by 6G.

• Privacy and security: Individuals should have the rights
to choose under what conditions his/her personal infor-
mation can be accessible by others. However, privacy vi-
olations occur sometimes, e.g., unapproved auxiliary uti-
lization and unauthorized gathering of individual data and
unauthorized access of securely stored individual data.
With new applications emerging (e.g., autonomous driv-
ing, healthcare) and technologies maturing (e.g., cloud
and MEC), there will involve more personal information
in the future wireless networks, which must be protected.
Therefore, an extra level of privacy and security should
be provided by 6G networks compared to the current 5G
and the earlier generation of networks.

• Programmable service to deal with different require-
ments: With the breakthrough and development of new
technologies, new business and scenarios are spawned
and users’ demands will tend to be more diversified
and personalized. Hence, on-demand services should be
provided by future 6G networks, which are designed to
meet the individual needs of users and provide users
with extreme experiences. Dynamic and extremely fine-
grained services should be enabled, which enable users
with different service types, service levels, and free com-
binations of different services according to their demands.
Considering this, to provide the end-users with tools
allowing the individuals to configure/program personal
services is a promising solution.

B. 6G Use Cases

Beyond imposing new performance metrics (e.g., technical
requirements), the new technological trends will introduce new
use cases, i.e., service classes, to redefine the application
types by morphing classical eMBB, uRLLC, and mMTC,
which depend on only one single constraint. Though different
researchers have different opinions on classification, what is
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commonly agreed with is that the classification should be
based on the requirements of different applications. Following
this common rule, several novel forward-looking scenarios,
i.e., service classes, are defined in [31], [39], [42].

In [31], the authors defined four service classes, mobile
broadband reliable low latency communication (MBRLLC),
massive URLLC (mURLLC), human-centric service (HCS),
and multi-purpose communications, computing, control, lo-
calization, and sensing (3CLS) and energy service (MPS).
MBRLLC provides services that require any performance
within the rate-reliability-latency space, which merges eMBB
and uRLLC. Examples of applications are AR/VR and WBCI.
mURLLC scales classical uRLLC across the device dimension
that generalizes 5G uRLLC with legacy mMTC, which brings
forth a trade-off among reliability, latency, and scalability.
Examples of mURLLC are classical IoT, blockchain, and
autonomous robots. HCS is tightly coupled with humans, the
performance of which depends largely on the physiology of the
human users and their actions rather than raw rate-reliability-
latency metrics. Typical application refers to WBCI. MPS
aims to provide 3CLS services including their derivatives,
and can also offer energy to tiny devices via wireless en-
ergy transfer, which is important to the applications such as
telemedicine, special cases of AR/VR, and connected robotics
and autonomous systems.

The authors of [39] introduce five service classes, including
further eMBB (FeMBB) to provide higher data rate, extremely
URLLC (eURLLC) to meet the demand of lower latency,
ultra mMTC (umMTC) to further scales the device amount,
long-distance and high-mobility communications (LDHMC) to
support deep-sea sightseeing and space travel, and extremely
low-power communications (ELPC) to enable e-health and
nano-robots.

In the opinions of the authors of [42], revolved core require-
ments for 6G will lead to ubiquitous mobile ultra broadband
(uMUB), ultrahigh data density (uHDD), and ultrahigh-speed-
with-low-latency communications (uHSLLC). uMUB aims to
provide ultrahigh data rate and ultra-low latency ubiquitously
by integrating space and terrestrial networks. uHDD requires
huge wireless capacity and high-reliability, while uHSLLC
aims at ultrahigh rates and ultra-low latency.

Worth noted, the above definitions are quite different and
not considerate, since the affiliation of one application may be
confusing based on the above definitions. In summary, novel
service classes aim to provide compound services, which de-
pend on more than one single constraint and, more importantly,
are with varying granularities [43], as well as to support new
functions such as localization, mapping, computing, privacy,
and so on. What is concrete is that 6G will provide more
complex and heterogeneous services than ever before.

C. Trends of 6G

The applications above, limitations of 5G, and the develop-
ment of new technologies will lead to new system-wide trends,
which will be discussed in the following.

More bits and spectrum, and denser networks: Fig. 2
presents the evolution of wireless technologies. From the
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history of mobile communications from 1G to 5G, it shows the
trend of pursuing higher data rates. This trend will continue
in 6G. As discussed above, most of the driving applications
of 6G require much higher data rates than 5G, and a 1000x
increase in data rate should be delivered by 6G to cater to these
applications like holographic communications and WBCI [31].
To support these extremely high data rate requirements in 6G,
new spectral bands will be explored [44]. In this context,
the terahertz spectrum (0.1-10 THz) has been envisioned as
a key technology to fulfill this requirement [45], [46], as
well as the visible light spectrum (430 THz-790 THz) and
unlicensed spectrum (e.g., 2.4 GHz/5-7 GHz/57-71 GHz).
Worth noted, the handsets will combine more modes of oper-
ation from multiple frequencies in addition to cellular, WiFi,
and Bluetooth [47]. Providing a massive amount of available
bandwidth up to several THz (three orders of magnitude higher
than unregulated regions at mmWave frequencies), terahertz
spectrum has the potential to provide several Tbps data rates.
By using the terahertz spectrum, the communication range
of which is limited to 50m [48], an unprecedented level of
network densification, and base stations (BSs) miniaturized
and embedded all around us will be needed [49]. At the same
time, hundreds of simultaneous beams will be a part of 6G,
which helps yield much higher data rates. In addition to the
licensed spectrum, unlicensed spectrum, and VLC will play
crucial roles in achieving the ultra-high data rate.

Convergence of various communication systems: In the
earlier generations of mobile communications, researchers
have tried to integrate the satellite networks with the terrestrial
wireless networks [50], as well as in 5G [51], though it was
never integrated into cellular handsets [47] due to a series of
complications in terms of technical and political challenges.
In 6G, this trend will continue, which will extend to a
convergence of various communication systems, focusing not
only on terrestrial wireless networks but also on airborne com-
munication networks [52]. Airborne communication networks
are engineered to utilize various aircraft, including satellites,
airships, and balloons on high-altitude platforms, and UAVs
on low-altitude platforms [52], while a terrestrial wireless
network is a typical heterogeneous wireless network comprised
of macro-, micro-, pico- or femtocells, WiFi, VLC access
points (APs) and even D2D devices. In this converged system,
each communication technology maintains its advantages and
disadvantages, which could compensate each other to improve
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the system performance, e.g., coverage.
Convergence of communications, caching, computing,

control, sensing, and localization (4CSL): As stated by the
authors of [31], the past four generations of cellular systems
maintained one exclusive function: wireless communications.
When it comes to 5G, more functions are involved, e.g.,
caching and computing. It is believed that 6G will completely
disrupt this premise through a convergence of diverse func-
tions including communications, caching, computing, sensing,
control, and localization. The drivers behind this convergence
mainly refer to the inherent features, e.g., tracking, control,
localization, and computing, of applications such as AR, au-
tonomous driving, and smart homes. Hence, 6G is envisioned
to be a multi-purpose system that could deliver multiple 4CSL
services and functions. Especially, sensing and localization
services will enable 6G systems to provide users with a 3D
mapping of the radio and physical environments. Hence, to
tightly integrate and manage 4CSL functions is vital to 6G,
and it will be enabled by the evolutions pertaining to previous
trends.

From network softwarization to network intelligentization:
It is envisioned that 6G will take network softwarization
toward network intelligentization, i.e., a new level of soft-
warization [53]. In 5G, two key technologies, SDN and NFV,
have shifted modern communication networks to software-
based virtual networks, which is enabled by network slicing to
create multiple virtual networks atop a shared physical infras-
tructure to meet the diverse and heterogeneous requirements.
In 6G, diverse capabilities, such as communication, caching,
computing, and even energy harvesting, should be supported
by the network entities to support the AI-based applications.
More advent IoT functionalities, including sensing, control,
localization, data collection and analytics, caching, and com-
puting, should be supported by 6G. Furthermore, intelligent
surfaces and terahertz communications will be embraced in
6G. All these contribute to a more complex and heterogeneous
future network, which calls for a flexible, adaptive, and more
importantly, intelligent architecture. As a result, softwarization
is not going to be sufficient for 6G, which needs to be further
improved to meet these challenges. Recent successes have
motivated AI to form part of 5G. However, the combination of
AI and 5G only scratch the surface and is only expected to be
operated in isolated areas which involve powerful computing
facility and massive training data. It is envisioned that a part
of 5G will realize some form of AI and AI will become one
of the core components in 6G [54], from the application layer
to the physical layer, i.e., ubiquitous intelligence.

From centralization to distribution: A trend from central-
ization to distribution has arisen in 6G, from the architecture to
technologies. In 5G, the weakness of the centralized architec-
ture and management mechanisms has been initially revealed,
an example of which is the proposal of distributed SDN,
MEC, and edge caching to meet the increasing complexity.
Besides the complexity, the drivers behind the distribution of
6G are omnifarious, including the development of IoT appli-
cations, the increasing amount of users, and the introduction
of AI and blockchain. In 6G, various functionalities, e.g.,
communication, caching, computing, sensing, localization, and

so on, are integrated, and the networks tend to be more
complex and heterogeneous, especially with the increase of
mobile users. To operate and manage the huge networks with
stringent requirements and limited resources, fully distributed
management mechanisms are desired. With emerging IoT ap-
plications containing personal information and the popularity
of cloud services, future wireless networks are generating
and carrying massive data. In view of privacy, the data are
usually stored on mobile devices, which needs distributed
training when applying AI [55], i.e., distributed computing and
intelligence. A new mechanism is needed to enable the sharing
of a large amount of information without jeopardizing users’
privacy, which is also required to be distributed due to the
complexity. A promising solution refers to blockchain, which
could enable safe data sharing with its nature of distribution
and immutability. In addition, FCC states that blockchain can
help remake spectrum access, which reboots the old binary
system of licensed or unlicensed airwaves [49], thus improving
spectral efficiency. Besides spectrum, blockchain can be also
used for resource management in terms of computing, caching
and so on.

D. A Full Picture of 6G

A schematic diagram of future 6G wireless systems is
shown in Fig. 3, which includes applications, services, ar-
chitecture, and management. As shown in this figure, the
applications and services encompass every aspect of human
life and society, which are both human- and machine-centric.
It provides more ways, such as through gestures, voices, and
minds, for communicating and interacting with mobile users
and intelligent devices [39], and the interaction forms are
diverse, such as hologram videos and five senses. As a result,
immersive experiences and super smart verticals based on IoT
will be supported by 6G. For the network architecture, 6G
is envisioned to incorporate multiple innovative technologies,
such as space-air-ground-underwater/sea networks and cloud
technologies. First, the integration of space, air, ground, and
underwater/sea networks will constitute a large-dimensional
6G network, which will provide ubiquitous and unlimited
connectivity. By adding terahertz spectrum, visible light spec-
trum, and unlicensed one, full spectra will be featured by
this network architecture. To make full use of full spectra,
massive MIMO, full duplex, and beamforming are necessary
to achieve high network capacity and data rates, which need to
be adjusted and upgraded of course. Especially, the usage of
terahertz spectrum will lead 6G to be even denser. For network
management, facing with more types of terminals and network
devices, more complex and diverse business types, and more
complex and huge networks, intelligence and distribution are
needed by incorporating machine learning, blockchain, and
SDN/NFV.

6G vision can be summarized into, immersive connectivity,
ubiquitous connectivity, intelligent connectivity, distributed
connectivity, which constitute the overall vision of 6G, ”Wher-
ever you think, everything follows your heart” [15]. In sum-
mary, 6G will be the first generation that fully achieves the
digital transformation of societies by providing ubiquitous,
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Fig. 3: Schematic diagram of future 6G wireless systems.

near-instant, ultra-reliable, and secure wireless connectivity
for both humans and machines. The incorporation of inno-
vative technologies, such as space-air-ground-underwater/sea
networks, machine learning, blockchain, and so on, will make
it multi-dimensional, human-intelligent, and fully distributed.

IV. NETWORK ARCHITECTURE FOR 6G-ENABLED
MASSIVE IOT: A SPACE-AIR-GROUND-UNDERWATER

NETWORK WITH EDGE COMPUTING

In this section, we first introduce the space-air-ground-
underwater/sea network and edge computing. Then the overall
network architecture is described by explaining how this
network architecture can support the massive IoT in 6G. At
last, we discuss some open issues faced by the system design.

A. Space-Air-Ground-Underwater/Sea Networks

A space-air-ground-underwater/sea network is a large-
dimensional network, which consists of four tiers, i.e., a space-
network tier formed by various satellites, an air-network tier
constituted by various flying BSs (e.g., high-altitude platforms,
mobile airborne cells, UAVs, and so on), a terrestrial-network
tier consisting of all kinds of legacy BSs, and an underwater-
network tier including underwater hubs, ships, and so on.

1) Space Tier-Massive VLEO Satellites: The space tier is
composed of all kinds of satellites, constellations, and their
corresponding terrestrial infrastructures (e.g., ground stations).
These satellites are deployed at different orbits and maintain
different characteristics, which can be classified into four
categories based on the altitude, i.e., geostationary earth orbit
(GEO), medium earth orbit (MEO), low earth orbit (LEO),

and VLEO satellites [56]. Among these four kinds of satel-
lites, VLEO satellites are promising to provide high-rate data
services and accurate localization due to the lowest orbit.

Considering the outstanding performance in terms of ex-
tremely low round trip latency and low cost of VLEO satel-
lites, this technology attracts the attention of academia and
industry in the future wireless communications [57], [58].
The ongoing VLEO constellation projects, e.g, SpaceX [58]
and OneWeb [59], plan to launch over thousands of VLEO
satellites over the earth, aiming to construct a massive VLEO
constellation and cooperate with the traditional terrestrial op-
erators to support seamless and high-capacity communication
services. In the future 6G, massive VLEO satellites will be de-
ployed in the sky to provide both diverse geographic coverage
and enough capacity to support a wide range of broadband
communication services for residential, commercial, institu-
tional, governmental, and professional clients globally [60].

2) Air Tier-UAVs: The air tier consists of UAVs, airships,
and balloons, which is an aerial mobile system to comple-
ment the terrestrial networks by providing broadband wireless
communications. Compared with terrestrial networks, it has
the advantages of low cost, flexibility, easy deployment, large
coverage, and no infrastructure required to offer wireless
access services on a regional basis. Among these carriers,
UAVs attract the focus of academic and industry due to
its salient attributes of strong line-of-sight (LOS) connection
links, and additional design degrees of freedom with the
controlled mobility [61].

UAVs originated mostly in military applications. In recent
years, the use of UAVs has quickly expanded into commu-
nication, commercial, scientific, recreational, agricultural, and
other domains, the applications of which include acting as a
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Fig. 4: Network architecture for 6G-enabled massive IoT: space-air-ground-underwater/sea networks with edge computing.

relay, broadcasting, cargo transport, weather control, forest fire
recognition, traffic detection, emergency search, and rescue.
To deploy UAVs in wireless communication networks, it offers
cost-effective services with no or limited infrastructure, which,
as a relay, can extend the coverage of the traditional cellular
networks. UAVs can be considered as a substitute to a wireless
recovery network in cases of terrestrial disruption. Compared
with satellite communications, UAV communications are more
cost-effective and provide lower latency and better signal-
to-noise ratio [62]. In addition, the feature of UAVs, i.e.,
short-range LOS, provides better communication channels and
mobility provides flexibility in deployment. Thanks to these
advantages, many wireless applications for UAVs have been
proposed, such as mobile relays, cache in the air, mobile
computing cloudlets, and so on.

3) Ground Tier-Terahertz Communications and VLC: The
ground tier refers to the legacy wireless networks, e.g., cellular
networks, wireless local area networks, VLC, and so on, which
is still the main way to acquire services for most IoT-enabled
applications. 6G will be enhanced with higher spectrum bands
(e.g., mmWave and terahertz bands), better modulation and
channel coding, and new spectrum utilization (e.g., flexible
spectrum sharing technology) to improve its system capacity.

Terahertz communications use the terahertz electromagnetic
spectrum that lies in the boundary region between radio
frequency (RF) and optical frequency, which is envisioned
as a key technology to enable real-time applications for 6G
by alleviating the spectrum scarcity and capacity limitations
of current wireless systems [13], [45], [46]. Compared with
mmWave communications, terahertz communication maintains
a wider bandwidth, which induces various inspiring advan-
tages. First, it has the potential to support unprecedented data
rates from tens of Gbps to several Tbps than mmWave commu-
nications, which can enable innovative applications for diverse

scenarios. Second, it is easy to track beams for indoor wireless
communications, which will enormously affect the mobility
of the wireless communication systems. Third, the reflection
paths can be utilized by terahertz communication systems
to enhance link gains, especially for indoor applications.
Fourth, thanks to the short transmission range of terahertz
communications, interference in terahertz band based networks
can be substantially cut down with highly directional beams,
resulting in terahertz band based networks to be noise-limited
rather than interference-limited, which further increases the
performance. Fifth, extremely directional beams narrow beams
can be used to partially secure the data at the physical layer
in addition to extending the communication range [63]. As
a result, more antenna elements (i.e., massive multiple-input
and multiple-output, MIMO) can be packed at terahertz fre-
quencies than at microwave (including mmWave), the formed
beams of which can be narrower. It further facilitates the
development of other applications, e.g., detection radars. Due
to the short transmission range of terahertz communications,
6G envisions an ultra-dense network than ever before, which
could further enhance the connectivity capacity and data rates
of 6G. In summary, all these inspiring advantages make it ideal
for transmission among IoT devices.

Another attractive technology for indoor IoT transmissions
refers to VLC. VLC, a class of optical wireless communi-
cations, can be utilized as one of the promising alternative
methods to the existing RF-based wireless communications,
especially for indoor communications [64]. VLC can use
the existing illuminating devices for communication purposes,
which uses the visible light (430 ∼ 790 THz) as a carrier for
the data, and offers a 1000 times greater bandwidth compared
to the RF communications [65]. The communication through
visible light holds special advantages when compared to the
other existing forms of wireless communications, such as
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several tens of Gbps data rate [66], cost efficiency [67],
security [65], and large geographical distribution [65]. The
high data rates, ease of availability, and low cost of VLC
make it a relevant wireless communication technology and
a possible complementary technology that would cater to all
kinds of future applications [68]. As a consequence, it has
been widely considered as an enabling technology of 6G [13],
[24], [39], which can be used for indoor positioning, human-
computer interface (HCI), vehicular communications, and even
underwater communications.

4) Underwater/Sea Tier-Optical Communications: The un-
derwater tier aims to provide Internet services for distributed
nodes over the broad or deep sea, including seabed sensors,
relay buoys, autonomous underwater vehicles, and remotely
operated underwater vehicles. All these nodes collaborate with
each other to fulfill sensing, processing, and communica-
tion tasks for environmental monitoring, disaster precaution,
offshore exploration, and military operations [9]. Compared
with the acoustic and RF methods, optical communications,
which employ optical waves as the transmission carrier, could
provide the highest transmission data rate, lowest link delay,
and lowest implementation costs for bi-directional underwater
communications [10] due to water exhibit different propaga-
tion characteristics from the land. Especially, VLC has been
proven the possibility for underwater communications [69] by
employing a single-photon avalanche diode for transmission in
pure seawater, which maintains high data rate and low power
consumption [70].

B. Edge Computing

As a dynamic global network infrastructure with self-
configuring capabilities, IoT makes all things communicate
with each other based on standard and interoperable communi-
cation protocols and realize information sharing and decision-
making [71], which involves data acquisition, exchange, and
analysis. In addition to data analysis, edge computing plays a
pivotal role in supporting massive computation-intensive IoT-
enabled applications. First, these applications propose more
robust requirements in terms of computation power, such as
holographic communications, high-precision VR, autonomous
driving, smart factory, and so on. Second, the caching power
of edge computing could help further relieve the heavy burden
caused by massive data uploaded to cloud [72]. Third, edge
intelligence can be enabled by edge computing, which is
expected to provide intelligent services at the network edge,
such as training machine learning models for decision-making
and analyzing big data generated by massive IoT devices at the
network edge. In summary, the introduction of edge computing
can significantly reduce the latency, save bandwidth resources,
and protect privacy to some extent.

As noted, this section aims to introduce the network archi-
tecture for massive IoT provided by 6G. Since edge computing
has been studied thoroughly, we only briefly introduce edge
computing, focusing on its functions and advantages. For
details on edge computing, we recommend the readers to refer
to [72]–[77].

C. Overall Network Architecture

The overall network architecture for massive IoT in the
upcoming 6G is shown in Fig. 4, which consists of space-
air-ground-underwater/sea networks and edge computing. As
described above, the space-air-ground-underwater/sea network
extends the traditional cellular networks by integrating space,
air, and underwater/sea networks, which cover all natural
space such as space, air, land, and ocean. It will lead to
ubiquitous connectivity, that is, providing information assur-
ance for any user who can access any sub-networks. With
resorting to terahertz spectrum, visible light spectrum, and
unlicensed spectrum (for both communication and sensing),
this network can provide ultra-high data rate and low latency
for some data-intensive and mission-critical IoT applications.
Edge computing endows tiny IoT devices with additional
computational and caching capabilities through computation
offloading. Rather than outsourcing storage and processing
functionalities of IoT data to a third party with cloud comput-
ing, edge computing can realize edge storage and processing
for the cumbersome traffic created by massive IoT and fill the
gap between centralized clouds and distributed IoT, such as
single point of failure, reachability, lack of location awareness,
and latencies associated with core networks. As a result, the
incorporating of edge computing can enable applications with
the needs for mobility management, location awareness, geo-
distribution, scalability, and ultra-low latency.

D. Open Issues

As discussed above, VLEO satellite, UAVs, terahertz, op-
tical communications (especially VLC), and edge computing
play important roles in supporting massive IoT. Though these
technologies promise superior performances for IoT, there
are some open issues needed to be addressed before fully
achieving these visions.

1) VLEO satellites communications: Satellite communica-
tions are usually suffered from long latency, which consists
of transmission time, propagation time, processing time, and
queuing time. Though VLEO satellite communications main-
tain the lowest latency due to the lowest deployed altitude
compared with GEO, MEO, and LEO satellites, it is far from
enough to meet the demands of some time-sensitive applica-
tions. Hence, it is viable to integrate with other technologies,
such as in-network caching. Not only technical challenges,
e.g., long latency, are associated with VLEO satellite com-
munications, but also the ones related to standardization and
political factors.

2) UAV communications: There are different kinds of UAVs
for different purposes. For example, consumer low-cost UAVs
are with limited capabilities in terms of payload and flying
time, which are suitable for photo/video shooting applications
for entertainment. Commercial or military UAVs are capable
of traveling long distances with heavy payloads carried, which
are mainly for strategic operations like surveillance and wide-
area communication coverage involving high data throughput
requirements, cargo delivery, and so on. How to achieve a
balance among flying time, carried payload and associated
costs is essential where a joint optimization of these three
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important metrics is desirable in the future. Although some
works have been done in this direction, several years are
still needed to close this gap. Despite the technical aspects,
regulations concerning privacy, data protection, and public
safety should be also paid attention to.

3) Terahertz communications: The research on terahertz
communications needs further investigation, the achievement
of which relies on various aspects.

Hardware design: Transistor and hardware materials need
to comply with excellent high-frequency characteristics, the
potential materials of which is graphene. The researchers may
also find more suitable materials. In addition, nanoantennas
are desired to enable massive MIMO.

Channel modeling: It is hard to establish the channel and
noise modeling in terahertz bands. A mixture of models that
consider path loss mechanisms may be the solution to this
problem.

Medium access control (MAC) layer design: In view of
the relatively wide terahertz bands, the properties of different
carrier frequency windows will be rather different. The MAC
layer protocols and network deployment schemes need to be
redesigned. To improve the coverage and support the seamless
connection, new error control mechanisms and networking
strategies should be developed, due to the high path loss.

Network deployment modeling: The future network will be
multi-tier and heterogeneous. In 5G small cells, it tends to
be user-centric, which will be more emphatic in future 6G
with even smaller cells. In addition, future networks will
be deployed in 3D. Thus, the current Poisson point process
will not be applicable. A new network deployment model is
required to consider the above facts.

4) VLC: As discussed in [70], LEDs in VLC has interesting
properties to be used as sensors. The usage of VLC for sensing
has attracted more focuses in recent years. In view of the
complexity, it can be combined with WiFi or other techniques
to improve accuracy.

Hybrid systems: Adopted as a complementary technology
to the current RF-based systems, new hybrid VLC systems
are pointed out as a future trend. To enhance the quality of
communications, VLC is expected to cooperate with wired-
based-network devices, RF, and Ethernet networks.

Standardization: The research on VLC has conducted sev-
eral years. However, actual solutions are not interoperated, due
to the different VLC hardware and testbeds. To better organize
and optimize the research field, it calls for standardization.

5) Optical communications: First, optical communications
cannot perform well for scenarios with non-line-of-sight
(NLOS) links, while for LOS scenarios, precise pointing
between the transceiver is essential. Second, the performance
of optical communications for underwater scenarios can be
severely degraded due to the absorption and scattering effects
of seawater, misalignment errors, channel turbulence, and
other impact factors, resulting in recurrent communication
failures [10], [78]. To this point, how to ensure the reliability
of optical communications for underwater networks should be
further studied.

6) Integration: Despite the challenges associated with in-
dividual tier, the integration of the four tiers faces unprece-

TABLE II: Roles of Machine Learning in 5G

Layer Roles
Application Layer Machine learning as a service

Network Layer

Handover optimization
Mobility management
Load management
Routing management

MAC Layer

User selection
Resource allocation
Modulation and coding scheme selection
Power control
Handover control

Physical Layer

Channel coding
Synchronization
Positioning
Channel estimations

Cross Layer Cross-layer optimization
Wireless security

dented challenges due to its specific characteristics of high
heterogeneity, time-variability, and self-organization. Since
the space-air-ground-underwater networks are significantly
affected by the limited, heterogeneous, and unbalanced re-
sources in all four network segments, to obtain the best
performance is difficult for traffic delivery. As known, ex-
isting works are mainly focusing on the space-air-ground
integrated architectures, performance analysis, challenges in
space-ground or air-ground integrated networks [79]. And few
of them concerned the case of space-air-ground networks,
let alone space-air-ground-underwater networks. As noted, the
heterogeneity, time-variability, and self-organization in space-
air-ground-underwater networks bring new challenges, which
will seriously affect the network performances, e.g., latency,
throughput, and reliability for data transmission. That is, more
research works are expected to concern such issues involving
all four network tiers.

V. BREAKTHROUGH TECHNOLOGIES

Considering the increasing growth of IoT-enabled applica-
tions in terms of volume and requirements, it is essential to
integrate breakthrough technologies to meet their demands,
the most two promising of which refer to machine learning
and blockchain. In this section, we mainly introduce the
motivations, applications (or functions), and open issues when
applying these two technologies to massive IoT.

A. Machine Learning

1) Motivation: The term “edge big data” results from
the overwhelming volume of data, which is generated and
collected by massive IoT devices at the network edge [80],
[81]. As we know, machine learning is a data-driven technique,
i.e., the machine learning models need to be trained and tested
by using massive data. In this case, it just so happens that we
cloud apply machine learning to massive IoT to fully unleash
the potential of edge big data by data analytics, which in turn
provides the opportunity to develop intelligent applications at
the network edge.

From the perspective of communication networks, 6G will
become more complex and heterogeneous, as more techniques
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Fig. 5: A typical architecture of IoT systems.

are emerging, such as caching, edge computing, and terahertz
communication networks, which provide more possibilities as
well as pose more challenges for network organization, man-
agement, and optimization [82]. With computing and caching
capabilities throughout the network, pervasive intelligence is
expected to enable 6G, driving a fully autonomous future
wireless system. With machine learning being such a craze,
it has been considered as a key approach in [31], [39],
[53] to realize 6G from a user perspective. With intelligence
introduced to 6G, machine learning enables wireless networks
learning capabilities to autonomously make optimal decisions
to adapt to the complex and varying environment, i.e., self-
adaptive, self-upgrade, self-aware, and predictive ability.

In summary, for both IoT applications and communication
networks, machine learning will play vital roles in building
an intelligent IoT system to deliver smart services in the 6G
massive IoT realm.

2) Roles of Machine learning: In wireless communica-
tion networks, machine learning can be used for prediction,
big data analysis, and decision-making [15]. Considering its
attractive advantages, machine learning has been proposed
for 5G, the roles of which are summarized in Table II. As
we can see, machine learning is proposed to be applied
to the whole network, ranging from the physical layer to
the application layer, which aims to provide automation for
network management. Despite these roles in 5G, machine
learning will play even more important roles in the future
6G. First, different from the global evolution in 5G, in which
the system has to be rebuild when new waveforms, coding,
and multi-access protocols are applied, machine learning can
enable local evolution to upgrade the local networks, which
brings more flexibility. Second, different from 5G, which
developed an intelligent physical layer paradigm relying on
the algorithm-hardware coupled architecture, machine learning
will enable intelligent radio based on the hardware-algorithm
separation architecture [53], which can adapt the environment
and hardware in an intelligent way by replacing the conven-
tional modulation/coding modules with deep neural networks
(DNNs). As 6G becoming concrete and machine learning
developing, it is believed that machine learning will have more
positions in 6G.

TABLE III: Summary of existing works of machine learning
in IoT

Learning Methods Applications Ref.
Logistic regression Anomaly detection [84]
Grey systems theory Outlier detection [85]
SVM Fault detection [86]
Support Tucker machine Outlier detection [87]

Q-learning
Relay selection [88]
Network association [89]
Autonomous overtaking [90]

Deep learning Resource scheduling [91]

Deep Q learning Relay selection [92]
Transmission scheduling [93]

RL
Task offloading [94]
Dynamic spectrum access [95]
Energy storage decision [96]

DRL

Offloading decision [97]
Continuous resource allocation [98]
IoT connectivity [99]
Channel and power allocation [100]
Trajectory planning [101]
Path planning [102]
Autonomous lane changing [103]

Federated learning [104]
Meta learning Sensing [105]
Transfer learning Compressed sensing [106]
A3C Multi-robot collaboration [107]
Multi-agent RL Driving coordination [108]
Actor-critic learning load scheduling [109]

3) Applications of Machine Learning for Massive IoT in
6G: The future IoT-enabled applications encompass identifi-
cation/authentication, sensing, communication, caching, com-
putation, and localization services [83], which establish a more
complex ecosystem than ever before. A typical architecture
for these IoT-enabled applications is shown in Fig. 5, which
consists of three typical layers, i.e., a perception layer, a
network layer, and an application layer. The perception layer
refers to the physical systems where IoT devices acquire data
and exert control actions by interacting with the environment.
The network layer corresponds to the communication networks
for IoT, which encompasses wireless access networks and the
Internet, aiming at discovering and connecting IoT devices to
edge/cloud servers for data or control information transmis-
sion. The application layer refers to edge computing systems,
which is in charge of data processing, storage, and decision-
making for control determination.

There have been many works focusing on the applications
in the three layers of this IoT architecture, a brief summary of
which is shown in Table III. As seen in Table III, deep rein-
forcement learning (DRL) has been attracted wide attentions
from all areas.

Applications of Machine Learning in the Application Layer:
With limited energy and computation capability in IoT devices,
edge computing is essential for data analysis, prediction,
decision-making, (e.g., control instruction for IIoT and au-
tonomous driving), and computation tasks execution (e.g.,
rendering for VR videos) [83]. IoT devices could offload such
kinds of tasks to edge servers to save energy and reduce
latency. To further improve the performance of IoT systems,
the caching capability of edge computing can be utilized
by some data-reusable applications, e.g., high-definition live
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streaming and VR/AR (i.e., rendering results [110]).
There have been numerous works dedicated to task of-

floading and resource allocation in edge computing for IoT
systems. Different from task offloading and resource allocation
in cellular networks with edge computing, some different
aspects of IoT should be considered, e.g., ubiquitous coverage
to suburban and rural areas and mobility in vehicular networks.

Space-air-ground networks are promising to provide ubiq-
uitous services for remote IoT devices, which, however, leads
to higher complexity for task offloading. Considering this fact,
the authors of [94] proposed a reinforcement learning (RL)-
based algorithm for task offloading, which was proven to
achieve a near-optimal solution with low complexity. However,
the mobility of UAVs was ignored in this work, which intro-
duces flexibility in terms of implementation and offloading
choices as well as management complexity. Considering a
hybrid edge computing platform with ground stations, ground
vehicles, and UAVs, the authors of [91] proposed a deep
learning-based algorithm to solve the resource scheduling
problem, where a large-scale path-loss fuzzy c-means algo-
rithm was proposed to predict the optimal positions of ground
vehicles and UAVs and a deep neural network was introduced
for real-time decision making. It was proven that the proposed
methods have better accuracy and could make real-time and
optimal design feasible in the proposed architecture.

In vehicle edge computing networks, vehicles act as mobile
edge servers to provide offloading services for nearby users,
which extends the range of computation services, as well
as calls for intelligent networks. Constructing a three-layer
offloading framework for the Internet of vehicles, the authors
of [97] put forward a DRL algorithm to solve the flow
redirection and offloading decision problem. However, this
work only focused on services for vehicular entertainment.
Focusing on time-critical services like safety warnings and
navigation suggestions, the authors of [98] constructed a
vehicular network with MEC in the finite block-length coding
regime and proposed a deep deterministic policy gradient
approach to solve the continuous resource allocation problem.
However, the aforementioned works did not apply to large-
scale problems. In this case, distributed machine learning
provides a promising solution, e.g., multi-agent RL [111] and
federated learning [104], which needs further exploration.

Applications of Machine Learning in the Network Layer:
Reliable and efficient wireless communication networks

are essential for an IoT ecosystem, which range from short-
range local area networks to long-range wide area networks.
To transmit the tremendous amount of IoT data, efficient
resource control mechanisms are desired to efficiently utilize
the scarce radio, caching, and computing resources. First, the
characteristics of IoT devices need to be considered, such as
massive in number, limited energy, memory, and computation
resources. Second, the diverse requirements of the IoT-enabled
applications need to be taken into account, such as high
data rate, low latency, high reliability, privacy, and so on.
In addition, different applications may possess conflicting re-
quirements. To counter these challenges, a promising solution
is to deploy intelligence in the IoT ecosystem to enable IoT
devices to operate autonomously, e.g., to use machine learning.

In a mesh topology, better network connectivity is essential
for performance improvement, e.g., throughput, which could
be achieved by deploying more relay nodes at the cost of
larger energy consumption and higher complexity. Hence, it
is important to achieve a tradeoff between node coverage and
energy consumption and complexity. Reference [99] proposed
a distributed intelligent IoT connectivity solution based on
DRL that enables mobile IoT devices to strategically make
decisions on whether to activate the transmission and the
transmission power, which was proven to outperform the
current state-of-the-art solutions only with a minimal amount
of information from the IoT system. However, the cooperation
between different agents was ignored in this work.

By using the licensed spectrum, narrowband IoT (NB-IoT)
provides higher reliability and QoS. To enhance coverage,
NB-IoT chooses to increase the number of retransmissions
for data and control signals, which leads to throughput im-
provement, but in turn, lowers the spectral efficiency. Hence,
it is important to extend coverage and reduce the number
of retransmissions. The authors of [95] proposed a RL-based
dynamic spectrum access approach to increase the coverage.
Based on the proposed approach, the IoT devices select the
best channel considering both the criterion of availability and
the best coverage condition. However, this work focused on a
single-player scenario, which is not practical.

Cooperative communication has been regarded as a promis-
ing solution to enhance spectrum utilization, throughput, cov-
erage, and so on. The cooperation among the relay nodes
realizes the transmission sharing, thereby improves the system
performance. In this case, it is important to select the best relay
node. The authors of [88] applied Q-learning to solve the relay
selection problem for wireless cooperative networks. In this
work, based on the state of previous system performance and
the reward function about quality, the source node could deter-
mine the optimal relay with its learning capabilities. However,
the proposed Q-learning-based algorithm cannot deal with
large scale problems. Considering this fact, the authors of [92]
proposed a deep Q network-based relay algorithm to rectify
this problem, which selected the optimal relay from a plurality
of relay nodes without any prior data or the need for a network
model. However, this work did not consider the mobility of
sensor nodes and assumed simple channel conditions.

To tackle the problem of the crowded spectrum to support
the increasing amount of IoT applications, cognitive networks
are regarded as one of the enablers in future IoT systems
[112]. In this case, the IoT devices need to coordinate with
the actions of the primary users with effective mechanisms in
terms of spectrum access, transmission power control, trans-
mission scheduling, and so on. The authors of [93] proposed to
utilize deep Q learning to solve the transmission scheduling
problem in cognitive IoT networks. An appropriate strategy
is found by the proposed mechanism to transmit packets with
different buffers to maximize the system throughput. However,
the authors only considered one relay in this work and the
cooperation and competition between multiple relays were
ignored.

In the resource-constrained IoT systems, an intelligent and
efficient resource management scheme is pivotal to guarantee
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performance, since the future networks are more complex and
heterogeneous. In a two-layer heterogeneous IIoT network,
a distributed Q-learning aided network association scheme
was proposed [89]. However, the proposed algorithm cannot
support a massive number of IoT connections. Considering
the fact that the conventional RF networks may fail to support
massive IoT connections as well as high data rate, a collab-
orative RF-VLC architecture was proposed for indoor com-
munications [113], where RF networks offered long-distance
transmissions with wide-range coverage, while VLC provided
short-distance transmissions with high date rates. UAV plays
an important role to collect information for IoT devices in
remote or mountainous areas. Considering the high mobility
of UAVs, which results in high dynamics for channel gain, it is
impractical to obtain global information in the UAV-enabled
IoT system. Hence, the authors of [100] proposed a DRL-
based algorithm for channel and power allocation with only
partial network information. However, the utilization of the
proposed algorithm depended on the discretization of action
space, which could not obtain the optimal solution.

Applications of Machine Learning in the Perception Layer:
The applications of machine learning in the perception layer
include sensing, control, and so on. Sensing refers to the
procedure to collect the data generated by the IoT sensors.
Control mainly refers to movement control for autonomous
robots (e.g., tactile Internet, smart factory, and remote surgery),
driving aid for autonomous driving, intelligent management for
smart grid.

As the foundation of an IoT system, sensing is important for
decision-making policies, where the reliability and accuracy
of the sensed data need to be ensured. Since the IoT sensors
are susceptible to malicious attacks, it is essential to detect
outliers to ensure data quality. Recently, machine learning
has been proven to be a powerful tool to detect outliers in
sensor data [114], which can be classified into parametric
methods, non-parametric methods, supervised learning, and
unsupervised learning. The authors of [84] used logistic re-
gression to detect anomaly or outlier in sensed data. Though
it is simple and learns fast from the data, it suffers from the
drawback of assuming a priori of the data distribution. To
this end, the authors of [85] proposed an outlier detection
approach based on grey systems theory. Though it does not
make an assumption about the data distribution, which makes
it more pliable for any data, a lot of training data is needed to
create a mapping function. The authors of [86] used support
vector machine (SVM) to detect faults in sensed data, where
a cluster head made decisions on detection. However, this
vector-based approach may destroy the original structure and
correlation within large scale sensed data, resulting in low
detection accuracy. Thus, the authors of [87] proposed an
intelligent outlier detection method with one-class support
Tucker machine and genetic algorithm, which extended SVM
to tensor space with retaining the structural information of
data, resulting in improved accuracy and efficiency of anomaly
detection.

Despite outlier detection in sensor data, another problem
in sensing is the increased communication overhead and data
redundancy, which needs an efficient method to cut down the

size of the dataset and to reduce the communication cost.
Traditional sensing algorithms are usually task-specific and
cannot be directly applied to other field sensing tasks, which
is energy-inefficient and time-consuming. Considering this, the
authors of [105] developed an efficient sensing algorithm with
the help of RL and meta learning, which significantly reduced
the communication head with integrated communication and
computation. Compressed sensing is commonly used to down-
size the transmitted data, and deep learning is proven to have
better performance for data recovery. However, it does not
apply to small data samples. To this end, the authors of [106]
developed a convolution-based transfer compressed sensing
model with the help of transfer learning, which could transfer
a well-trained model to other related but insufficient datasets,
resulting in better performance but less time cost.

Machine learning plays a pivotal role in enabling au-
tonomous robots with or without intelligence, the research
of which mainly focus on mobile behavior control, robotic
manipulation, and multi-robot collaboration. Referring to gen-
eral movement control, DRL has been widely applied to
existing research, e.g., trajectory planning for UAVs [101],
[115] and path planning for navigation robots [102], [116].
Intelligent robots could perform some tasks in practice, where
an appropriate control scheme tells the robot how to achieve a
target. For example, the authors of [117] utilized DRL to teach
the machine itself to play Atari 2600 games from the Arcade
Learning Environment, where it learned control policies from
high-dimensional sensory input. For multi-robot scenarios,
collaboration among these robots is essential in order to
achieve a common goal. In this case, a distributed machine
learning algorithm may be more popular and appropriate, e.g.,
asynchronous actor-critic algorithms (A3C) [107].

Machine learning is considered as the key enabler of
autonomous driving by the academia and industry, which is
used to control the vehicles without the help of humans, e.g.,
following, overtaking, accelerating, and direction-changing
(i.e., remaining in the current direction, turn right or left,
or lane-changing). To study the autonomous lane changing
problem for a single vehicle, the authors of [103] proposed
a DRL-based approach to learn high-level decision makings,
where the relative distance between the considered vehicle
and the neighboring six vehicles and the relative velocity
of the neighboring vehicles were input as the state of the
learning approach. Considering the overtaking problem, the
authors of [90] proposed a Q-learning-based approach to
improve the overtaking policies to accord with the driving
habits of humans. However, these works only consider a single
vehicle, where the interactions among different vehicles are
ignored. Motivated by this fact, cooperative adaptive cruise
control [118], navigation coordination through intersections
[119] through interactions, and cooperative lane changing
on a freeway [120] have been studied using RL in multi-
vehicle scenarios. However, these works only directly applied
distributed RL, which ignored the coordination among vehicles
in the process of learning. To solve this problem, the authors
of [108] proposed a strategic distributed learning solution for
coordinating multiple vehicles.

Smart grid has been the trend for future wireless networks
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and attracted the attention of the world [121], which aims to
improve the electricity generation, consumption, transmission,
and distribution. Due to its uncertainty, complexities, high
volume of data, machine learning has revealed its advantages
in smart grid management, e.g., energy trading, energy stor-
age management, and demand response [83]. The research
and practice of deep learning and RL in smart grid were
reviewed in [121]. Energy trading allows the users to switch
their role between a consumer and provider depending on
its relationship between its generated and demanded energy,
where an autonomous control scheme is essential to ensure
the supply/demand balance, especially for microgrid [122]. A
promising solution is to integrate games with machine learning
to achieve Nash equilibrium autonomously in a centralized or
distributed way [123], [124]. To further consider prices, energy
storage takes advantage of price fluctuations to buy or sell
energy at a proper price in order to generate profit. Unlike
previous works [125], with more practical assumptions, e.g.,
unknown electricity market prices, the authors of [96] adopted
a model-free RL approach to learn an optimized control policy
for storage charging/discharging. Demand response aims to
control the customers’ usage patterns in response to electricity
tariffs or other incentives and reduce the demand during
system contingencies or at peak time periods [126]. In view of
the facts of the dynamic and unknown energy prices and the
demand of the users’ appliances, an online demand response
scheme based on actor-critic learning was proposed in [109],
where the long-term load scheduling problem was investigated
with real-time prices. However, only one householder was
considered and the competition among multiple multiple utility
companies needs to be explored in the future.

4) Open Issues of Machine Learning for Massive IoT in 6G:
Though there has been a flurry of research activities dedicated
to machine learning, these works only scratch the surface,
and the potential of machine learning to tackle problems for
massive IoT in 6G remains largely unexplored [127]. Some
challenges are summarized as follows.

Incomplete dataset in perception layer: Most machine
learning methods require data for training and testing, e.g.,
supervised, unsupervised learning, RL, and so on, which
can be generated or collected with different approaches. For
example, the more the data samples, the more accurately the
machine learning algorithms can achieve. The more complete
data samples are, the more accurately deep learning can learn
its model. However, it is not easy to acquire the perfect data
samples needed. First, the unpredictable link delays and radio
interference may result in slow response and certain parameter
miss or data errors. Second, some private data are usually
possessed by different entities, which is to sell or for secrecy.
Third, it is a privacy problem.

Long time cost: The long time cost may prevent the ap-
plications of machine learning, which includes training time
and inference time. The former refers to the time to train
the models to be accurate enough, while the latter refers to
the time to output the results using the trained-well models.
For some applications such as autonomous driving and tactile
Internet, it needs a near real-time response, e.g., usually a
timescale of milliseconds. However, it is far more behind

enough to train the machine learning algorithms in time,
especially for large-dimensional IoT scenarios.

Computation and storage hungry: Most machine learning
algorithms require powerful computation power and storage
capacity. To implement machine learning on the clouds in core
networks incurs long latency. To avoid transmission latency,
machine learning can be implemented at the network edge,
e.g., edge computing servers, which in turn may not meet the
computation demands of machine learning algorithms.

Centralized or distributed: Considering the high complexity,
centralized machine learning methods are not practical, espe-
cially for large-scale IoT problems. To cater to the scalability
problem, distributed machine learning plays an important role.
However, it usually induces high overhead for information ex-
change and privacy problems. Also, it requires each node to be
with powerful computation capability. Hence, a sophisticated
choice between centralized and distributed machine learning-
based schemes is crucial, which should be based on various
factors about the addressed problem.

Optimization of machine learning: Due to the characteristics
of IoT and 6G, the implementation of machine learning in 6G
is not straightforward and some modifications need to be made.
First, each machine learning model has its drawbacks, and it
is essential to combine several machine learning techniques
to provide better performance. Second, the capabilities of
network entities may vary in hardware, connectivity, and
energy. This heterogeneity is believed to bring flaws for
machine learning models. Hence, machine learning should be
optimized to fix this problem. In addition, model updates can
be disclosed, and techniques such as deep net pruning, dif-
ferential privacy, and gradient compression are recommended
to preserve privacy for machine learning. Third, distributed
machine learning is considered to be more suitable for 6G
and IoT, which, however, involves massive communication
between different edge devices. Hence, distributed machine
learning needs to be modified to cope with the wireless
communication conditions.

B. Blockchain

This section mainly introduces motivations to apply
blockchain to IoT, applications of blockchain for massive IoT
in 6G, and some open issues. For a more explicit understand-
ing of blockchain, please refer to [18], [128], [129].

1) Motivations of Blockchain for IoT in 6G-A Perfect
Match: With the evolution of IoT, several challenges are
arising, including high complexity in network management,
poor interoperability, and privacy and security vulnerabilities,
which are explained as follows.

First, IoT systems are becoming more complex and het-
erogeneous. In the perception layer, IoT devices are hetero-
geneous, which involves various sensors, machines, vehicles,
robots, and so on. In addition, massive data are generated
with different types, i.e., structured, semi-structured, and non-
structured. In the network layer, the multi-dimensional space-
air-ground-underwater networks incur extra management com-
plexity with full spectra. In the application layer, multi-level
caching and computing resources are presented from near to
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far from IoT devices. In summary, all these pose challenges
to network management. For resource management, various
resources are involved, i.e., communication, caching, and
computing, the management of which should take sensing,
control, and localization into considerations as well. For data
management, massive data are difficult to manage with respect
to elaboration, communication/transmission, and storage.

Second, interoperability for massive IoT in 6G becomes
difficult in the presence of multiple protocol options and cross-
platform architectures. To provide diverse services to IoT
devices, multiple operational platforms, radio access service
providers (SPs), edge cloud vendors, caching vendors, and so
on coexist. It is essential to collaborate with different SPs and
vendors and exchange data between different strategic centers,
industrial sectors, and IoT systems, which is impractical in
the current network architecture. First, a unified authentication
and authorization mechanism is required to integrate individ-
ual systems of different operators. Second, diverse service
provision and proper payment to different SPs and vendors
need to be audited and ensured. For example, the computation
offloading in the heterogeneous networks with MEC involves
cellular networks and MEC providers. However, there is no
trusted entity in this system to audit the computation offloading
process or ensure the surefire payments to the SPs and edge
cloud vendors.

Third, it refers to privacy and security issues. Massive data
are generated by massive IoT devices, which may contain
confidential and private information. It is important to use
IoT data with an appropriate approach so that there is no
disclosure of user private information without users’ consent.
However, it is challenging to protect users’ privacy in IoT
due to the decentralization, heterogeneity, and complexity of
IoT systems. In addition, a trend to integrate cloud technolo-
gies, i.e., fog/edge/cloud computing with IoT arises, which
aims to empower IoT applications with extra computing and
caching/storage capabilities. In this case, if clouds are attacked,
a massive amount of data may be leaked, breaching users’
privacy [130]. Due to the characteristics of IoT systems, i.e.,
decentralized, heterogeneous, and highly complex, it is also
difficult to ensure the security of IoT. The current methods
for providing privacy, security, and data handling rely heavily
on the control of third-party entities, few of which can be fully
trusted by end-users.

With improved interoperability, reliability, privacy, security,
and scalability, blockchain is perfect for massive IoT, which
could exactly deal with these challenges. The combination of
blockchain and IoT can bring the following merits.

• Decentralized network management. It can be achieved
by recording all network events as transactions of
blockchain. In this way, all events will be audited without
a third party, which is more cost-efficient.

• Interoperability across IoT devices, IoT systems, indus-
trial sectors, and SPs. This can be achieved by building a
blockchain-composite layer on the top of an overlay P2P
network with uniform access to different systems by pro-
viding a unified authentication, authorization mechanism,
and billing system.

• Traceability and reliability of IoT data. A historic times-
tamp in each data block saved in a blockchain will
consequently assure the data traceability. With inherent
asymmetric encryption algorithms, digital signatures, and
hash functions in blockchains, the integrity of IoT data is
enforced. In this way, the security and privacy of massive
IoT will be ensured.

In addition, as analyzed in Section III, a trend from cen-
tralization to distribution in 6G is arising. And blockchain
is regarded as a promising technology of 6G to provide a
distributed network management platform, which can be used
for resource management, data sharing, data storage and so
on. Hence, blockchain is a perfect match with IoT and 6G.

2) Applications of Blockchain for Massive IoT in 6G:
With the inherent superior properties of blockchain, i.e.,
distributed nature, decentralized consensus, trust-less system,
cryptographic security, and non-repudiation guarantees, it is
considered as the key enabler of massive IoT, as well as the
next revolution of future mobile communication technology
[24]. Generally, the use of blockchain can be categorized into
three types: recording as a distributed ledger, decentralized
storing, and realizing automation with smart contracts [131].
The exact applications of blockchain for massive IoT are
described as follows.

Recording as a distributed ledger: Blockchain is attracting
the focus of 6G on the perspective of dynamic resource
management, e.g., spectrum, computation, caching, network
slicing, and so on, which could be used to record transactions
of resource trading and audit the process of resource trading.
Currently, spectrums are auctioned off one at a time in a
process that is slow, complex to manage, and expensive. One
option is to share the spectrum by using different bands at
different levels of priority. Another option is to build a real-
time spectrum market that would issue permissions dynami-
cally using AI, which will bring new efficiencies and move the
system from one of scarcity to one that can manage relative
abundance. To achieve this goal, blockchain is one of the most
promising solutions being looked at by the researchers. There
have been some works dedicated to blockchain-based spectrum
management. In [132]–[135], the spectrum sharing problem
was investigated, where blockchain acted as a peer-to-peer
decentralized ledger to record the spectrum trading efficiently.
However, all these works ignored an important problem,
i.e., the performance of blockchain itself. For example, the
trading of the spectrum is obviously frequent, which is far
larger than the throughput of the current blockchains. Also,
blockchain itself is resource-hungry in terms of computation
and transmission. How to ensure the advantages of utilizing
blockchain for spectrum sharing is essential. To create a new
spectrum market is not easy, ranging from the framework
design to the optimization of the system.

Decentralized storage: In traditional cloud-based IoT sys-
tems, a centralized cloud server maintains and controls all the
data, which poses some challenges: 1) high storage capacity
required from the centralized server, and 2) sensitive data easy
to be leaked. To handle these issues, a decentralized structure
may be more proper. Fortunately, decentralized storage is one
of the most popular applications of blockchain in IoT systems
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[136]. In [137], a decentralized platform was studied, where
blockchain was used to protect personal private data. Here
blockchain acts as a decentralized personal data management
system to ensure users owning and controlling their data. In
this work, the data was stored off blockchain, the security
of which can not be ensured. The authors of [138] proposed
to store the IoT data in Distributed Hash Tables (DHTs) and
the pointer to the DHT storage address in blockchain. In this
work, the authentication of the data requester is handled by the
distributed blockchain nodes rather than a central server, which
maintains the advantages of decentralized storage, without any
intervention from a trusted server, traceability and accountabil-
ity. However, the authentication in this work was done by only
verifying the identity of the data requester, which needs further
improvement.

Realizing automation with smart contracts: A smart contract
is a computer program, which is self-executing, self-verifying,
and tamper-resistant. It takes the transactions as input, then
executes the code. When some conditions are met, some events
are triggered, in which way automation is achieved. In IoT
systems, different nodes need to cooperate with each other to
provide services, which necessities the need of managing the
identity of nodes and realizing security authentication between
nodes [139]. Some works have adopted smart contracts for
access control in IoT systems [140], [141], where the main
function of smart contracts is to manage the data records. Dif-
ferent from these works, the authors of [142] proposed a smart
contract-based access control framework, which consisted of
multiple access control contracts to achieve distributed access
control for untrustworthy IoT systems. The authors of [20]
proposed a blockchain-based decentralized trust management
and data usage scheme, where a smart contract was in charge
of all data operation, i.e., data gathering, invoking, processing,
transfer, and usage. In IoT networks, a blockchain-based iden-
tity management framework was proposed in [143], where a
smart contract was utilized to govern the interactions between
IoT devices by implementing the processes and rules. Apart
from identity management, smart contract can be also used for
autonomous energy trading [144], adaptive offloading [145],
IoT device behavior regulation [146], and so on.

3) Open Issues of Blockchain for Massive IoT in 6G:
Despite these potential visions of blockchain in massive IoT,
multiple challenges need to be addressed before its widespread
applications.

Performances of blockchain-based systems: In blockchain-
based systems, it performs as an overlaid layer to provide
services to the underlaid layer, i.e., IoT systems. Hence, we
need to guarantee the performances of both systems, which
affect each other significantly.

Resource hungry: Blockchain is inherently resource-hungry
in terms of both computation, caching, and transmission for
block generation, verification, ledger storage, the consensus
among nodes. How to ensure the advantage of incorporating
blockchain into IoT should be investigated.

New security threats: Outsourcing a large scale of services
at the edge and self-organization to achieve automation both
triggerts new security problems, which need to be studied
furthermore.

Resource management: On one hand, the resources of
the networks are limited, such as computation, caching, and
wireless resources, especially at the network edge. On another
hand, the blockchain system itself is resource-hungry. Thus,
the resources need to be allocated between the blockchain and
wireless systems to make the best use of limited resources.

Optimization of blockchain: To make full use of blockchain
for IoT and 6G, it should be optimized in various ways. First,
the services of IoT-enabled applications are highly hetero-
geneous in terms of different technical requirements. Some
require ultra-low latency, while some care only about privacy.
Hence, blockchain needs to be modified with more powerful
adaptivity to support a wide variety of services, where a
generic blockchain platform for IoT and 6G is desired. Second,
blockchain is limited by its own properties, i.e., scalability
and delay (or time to finality), which is vital to apply it to
massive IoT. Hence, a novel consensus protocol needs to be
designed to improve the throughput, time to finality, security,
and so on, which should meet the corresponding demands of
IoT applications in 6G.

C. Combination of AI and Blockchain
As two of the most disruptive technologies, AI and

blockchain has it own natural limitations which restrict their
applications to 6G. To fully unleash the potential of this two
techniques and meet the future intelligent, distributed, and
secure requirements, it is essential to combine these two mega-
trends, which will make mutual enhancement.

Blockchain for AI: To date, the majority of AI methods rely
on a centralized model for training and inference by uploading
data collected at edge devices to data centers. This centralized
nature will lead to massive communication overhead and a
possibility of data tampering. As a result, the decisions made
by AI may be delayed and highly erroneous [147]. In this
case, distributed AI is in dire need, where privacy preservation
and network traffic congestion reduction are enabled by avoid-
ing data uploading to a central server. However, distributed
training and inference still require communications between
different agents and a centralized server for data and model
sharing. First, model updates can be disclosed. Second, it is
hard to evaluate the contributions of each agent and lacks
motivation for data and model sharing.

To deal with these problems, blockchain is considered as a
promising solution. By replacing the centralized server in dis-
tributed AI with blockchain, in which models are stored in the
form of transactions, model sharing is operated autonomously
with smart contracts, and decisions are made on blockchain,
multiple benefits are brought, which are illustrated in Fig. 6.
First, it will provide rational motivations for data and model
sharing. Second, security and privacy can be ensured with
inherent asymmetric encryption algorithms, digital signatures,
and hash functions in blockchain. Third, decisions made by
distributed AI that utilize blockchain can be trusted. As a
result, distributed intelligence will be enabled.

AI for blockchain: The benefits brought by AI to blockchain
are mainly twofold. First, AI can manage blockchains more
efficiently. Nowadays, the operation of blockchain on com-
puters requires a large amount of computer processing power,
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Fig. 6: Benefits of integrating blockchain to artificial intelli-
gence (AI).

which is inefficient. Take the hashing algorithm as an example.
A brute force approach is used by the Bitcoin blockchain to
mine blocks, which tries every combination of characters until
a transaction can be verified. Moving away from this brute
force approach, a more intelligent and thoughtful manner to
manage tasks is desired, e.g., a machine learning-powered
mining algorithm. Despite mining, the other tasks can also
be enhanced with AI, e.g., AI-powered smart contracts [148].
With AI embedded, blockchain will become more efficient,
resulting in better performance. Second, AI could make full
use of blockchain encrypted data. Information is held on a
blockchain database in an encrypted state, which provides
high security for sensitive data, but in turn, proposes extra
challenges for data usage. To make things safer, we should
reduce such incidents in which unencrypted data is exposed
in any part of data processing. Nowadays, a new field of
AI is emerging, which aims at building algorithms capable
of operating on encrypted data [149]. With AI working with
encrypted data, it will further enhance data security and make
full use of blockchain database.

VI. CASE STUDY

To show how 6G can support IoT-enabled applications, we
present a case study on fully autonomous driving in 6G, which
is shown in Fig. 7. This system enables fully autonomous
driving through offloading from CAVs to edge servers via
the space-air-ground-underwater/sea networks, which includes
three layers, connected autonomous vehicle (CAV) layer,
network layer, and application layer. In the CAV layer, an
autonomous vehicle is equipped with various sensors, includ-
ing LIDAR, RADAR, cameras, GPS, ultrasonic sensors, and
so on, which convert some events and physical environment
into electrical signals for measurement, i.e., sensed data. The
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Fig. 7: Fully autonomous driving in 6G. CAV: connected
autonomous vehicles); TBS: terrestrial base station; UAV:
unmanned aerial vehicle; ML: machine learning.

network layer refers to the space-air-ground-underwater/sea
network, which aims to provide connectivity to CAVs. Es-
pecially, the ground tier is the main solution. The air tier
provides flexible coverage for CAVs, which can also help sense
the environment. The space tier can be used for localization
and coverage for extreme areas. The application layer enables
machine learning and blockchain by providing computing
and storage capabilities. Here machine learning deployed on
edge servers could help solve tasks that CAVs could not
deal with, which could also help enhance the performance of
blockchain embedded on edge servers. Blockchain can help
store important information for CAVs and model parameters
for machine learning (in an encrypted state, of course), and
audit the offloading process of CAVs, which ensures the
security and privacy of this system.

As shown in Fig. 7, fully autonomous driving can be
achieved in the following procedure. 1) The vehicles use
terahertz spectrum or other unlicensed spectrum for sensing
data, e.g., the location and velocity of the surrounding vehicles,
the conditions of the road surface, and the traffic light.
Then the sensed data are transferred to the application layer
through the network layer with the help of the space-air-
ground-underwater networks, which provide high data rate,
low latency, full coverage, and high reliability. 2) These data
can be stored on blockchain, which preserves privacy for
CAVs. 3) Machine learning models are trained with these
sensed data on blockchain. 4) CAVs offload computation tasks
to edge servers via the space-air-ground-underwater/sea net-
works. 5) The application layer uses trained machine learning
models to make intelligent decisions for driving assistant,
e.g., lane changing and overtaking (i.e., strategy inference).
6) Offloading processes are stored on blockchain, which pro-
vides audition and motivation for offloading services. 7) The
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inference results e.g., the control information, are delivered
to the vehicles through the network layer. In this way, fully
autonomous driving is achieved. In addition, access control,
data sharing between different cars and edge servers, and
resource sharing can be controlled by blockchain, which could
further enhance the performance of this system.

VII. CONCLUSION

In this paper, we did a comprehensive survey on massive IoT
enabled by 6G. We provided an overview of the drivers and
requirements, where the emerging applications and limitations
of 5G were summarized. These applications include holo-
graphic communications, five-sense communications, WBCI,
smart healthcare, smart education/training, industry Internet,
fully autonomous driving, and super-smart city/home. Then a
discussion on the visions of 6G in terms of core technical
requirements, use cases, and trends is carried out. To meet
the demand of the IoT-enabled applications, especially the
full coverage requirement, 6G provides a four-tier network
architecture enhanced by edge computing. As an omnipotent
network, 6G also provides some breakthrough technologies,
including machine learning and blockchain, to enable intelli-
gence and distribution in future IoT systems, which play vital
roles in the whole IoT architecture, from the perception layer
and network layer to the application layer. At last, we present a
use case of fully autonomous driving to show how 6G supports
massive IoT.

In summary, research on 6G and massive IoT is quite broad
and a number of challenges lay ahead. Nevertheless, it is
in favor of the wireless community to swiftly address the
challenges and go forward. This article attempts to briefly
explore the technologies related to 6G and IoT, and to discuss
future research that may benefit the pursuit of this vision. We
hope that our discussion and exploration here may open a new
avenue for the development of 6G and IoT, and shed lights on
effective and efficient designs therein.
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