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Abstract
By enabling information networking among 

people and machines, the Internet has become 
one of the major foundations for our socio-eco-
nomic systems. After several decades of research 
and development of the Internet, it is relatively 
easy for humans/machines to obtain information. 
However, there are new challenges in the post-In-
ternet era, including information overload, fake 
information and the design of trustworthy, cost-ef-
fective autonomous systems. In order to address 
these challenges, we need to think about net-
working in a larger timescale. Actually, in order to 
facilitate humans’ cooperation, we have invented 
technologies enabling networking for matter (grid 
of transportation), for energy (grid of energy), and 
for information (the Internet). In this article, we 
argue that the next networking paradigm could 
be intelligence networking, where intelligence 
can be easily obtained, like matter, energy, and 
information. Specifically, we present the moti-
vations, scenarios and challenges of intelligence 
networking. In addition, we present a novel col-
lective reinforcement learning scheme enabled by 
intelligence networking. Some simulation results 
are presented to show the effectiveness of the 
proposed intelligence networking paradigm.

Introduction
The Internet has become one of the major foun-
dations for our socio-economic systems. By 2023, 
there will be 5.3 billion total Internet users (66 
percent of the global population) and 29.3 billion 
networked devices (more than three times more 
networked devices on Earth than humans) [1]. By 
enabling information networking among people 
and machines, the Internet has become embed-
ded in every aspect of our day-to-day lives, chang-
ing the way of business, education, government, 
healthcare, and so on [2]. After several decades 
of research and development of the Internet, it 
is relatively easy for humans/machines to obtain 
information.

Although the Internet has made our lives eas-
ier in some aspects, there are new challenges in 
the post-Internet era. For example, an excessive 
amount of information causes the information 
overload problem, which results in difficulty of 
decision-making and may lead to physical and 
psychological strain [3]. Larger and larger quan-
tities of fake information are appearing on the 

Internet, which has a significant impact on busi-
ness and society through influencing people’s 
beliefs and decisions [4]. In addition, it is still dif-
ficult for us to address the existing challenges, 
including the development of trustworthy, cost-ef-
fective autonomous systems (e.g., autonomous 
vehicles), which shows the limitation of informa-
tion networking.

In order to address these challenges, we need 
to think about networking in a larger timescale. 
Actually, in order to facilitate humans’ cooper-
ation in our socio-economic systems, we have 
invented technologies enabling networking for 
matter (grid of transportation), for energy (grid of 
energy), and for information (the Internet) [5], as 
shown in Fig. 1. Therefore, networking is not just 
for information only, as thought by most people 
in the networking research community. Although 
networking technologies for matter and energy 
are taken for granted by most people, they are 
important foundations as well. In this larger times-
cale, we can observe the pattern of networking 
paradigm evolution: a new networking paradigm 
is built upon the existing ones, but provides a 
higher level of abstraction.

On the other hand, artificial intelligence (AI) 
has gone through several stages in the past more 
than 70 years of extensive research and develop-
ment, aiming to imitate the cognitive abilities of 
humans. Although recent public successes based 
on deep learning have boosted a new wave of 
interest in AI, it is well believed that AI remains far 
from human intelligence, which requires a lot less 
datasets and is much more flexible when adapting 
to new environments. According to the Big Histo-
ry Project [6], the unique collective learning capa-
bility of humans enables us to share intelligence 
efficiently, which explains the dominant role we 
play in the biosphere.

In this article, we envision that the next net-
working paradigm could be intelligence net-
working, which will enable intelligence to be 
easily obtained, like matter, energy, and infor-
mation. We believe that intelligence network-
ing can help address the challenges in our 
socio-economic systems and have significant 
impacts on our daily lives, as did the three pre-
vious networking paradigms. The contributions 
of this article are as follows.

We review the networking paradigm evolu-
tion and the artificial intelligence evolution, based 
on which we argue that networking needs intel-
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ligence, intelligence needs networking, and the 
next networking paradigm could be intelligence 
networking.

Two scenarios of intelligence networking are 
presented. One is a practical scenario for con-
nected and autonomous vehicles, and another 
one is a theoretical scenario for collective rein-
forcement learning. We describe the open issues 
and research challenges of intelligence network-
ing that need to be addressed in future efforts. 
Some simulation results are presented to show 
the eff ectiveness of the proposed intelligence net-
working paradigm.

The rest of the article is organized as follows. 
We review the networking paradigm evolution 
and the artifi cial intelligence evolution, and pres-
ent the motivation of intelligence networking 
in the following section. Then we describe two 
scenarios of intelligence networking. Some open 
issues and research challenges are presented fol-
lowing that. We then discuss simulation results. 
Finally, we conclude the article with a discussion 
of future work.

MotIvAtIons of IntellIgence networkIng
In this section, we present the motivations of intel-
ligence networking, from both the perspective of 
networking paradigm evolution and the perspec-
tive of artifi cial intelligence evolution.

networkIng PArAdIgM evolutIon
Cooperation lies at the heart of human society, 
from day-to-day interactions to great endeavors. 
Human beings are a social species that relies on 
cooperation to survive and thrive. It is believed 
that when compared to other species, humans 
are the only species that can cooperate fl exibly in 
a large number [7]. In order to facilitate humans’ 
cooperation in our socio-economic systems, we 
have invented technologies enabling network-
ing for matter (grid of transportation), for energy 
(grid of energy), and for information (the Inter-
net), which are briefl y reviewed in this subsection. 
Figure 1 shows this evolution process.

Matter Networking–Grid of Transportation: 
All organisms, including humans, need matter 
and energy to live. In essence, the main purpose 

of transportation is to move matter from one 
location to another location, which is matter 
networking. There is no doubt that transporta-
tion has played a crucial role in humans’ coop-
eration, including survival, social activity, trade, 
war, and so on. Before inventing any other 
transportation technologies, humans traveled 
on foot, then learned to use boats or animals 
for transportation to move matter. The wheel-
and-axle combination was invented around 
4500 BC, which is often considered to be the 
most important invention of all time, since it 
has had a fundamental impact on transportation 
and humans’ cooperation. Many new transpor-
tation technologies were invented in the 17th 
and 18th centuries, such as bicycles, motor cars, 
trucks, trains, airplanes, and so on. In the 20th 
century, aircrafts, high-speed trains, and space 
ships are some examples of the defining trans-
portation technologies.

Energy Networking–Grid of Energy: Energy is 
a measure of a system’s ability to cause change. 
The First Law of Thermodynamics states that 
energy cannot be created or destroyed. It  can, 
however, be transferred from one location to 
another location and from one form to another 
form. There are two broad categories of energy, 
kinetic energy (the energy of moving objects) and 
potential energy (the energy that is stored). Kinet-
ic energy is expressed as 0.5 m v2 = 0.5 m (d/t)2, 
where m is the mass of an object, v is speed, d
is distance, and t is time. Therefore, kinetic ener-
gy can be thought of as how fast the matter is 
moved in a process.

In addition to the technologies enabling matter 
networking, another major innovation is the tech-
nologies enabling energy networking, which is 
fundamental to not only humans’ survival, but also 
humans’ thriving. With the electric energy grid, 
which is a network of transmission lines, substa-
tions, transformers and more, electric energy can 
be delivered from the power plant to our homes 
and businesses. Now, we can easily get energy to 
light up at night, power our computers, charge 
our phones, and cool our homes, by simply plug-
ging into the electric energy grid.

Information Networking–The Internet: Follow-
ing the grid of transportation and the grid of ener-
gy, the Internet has enabled humans’ cooperation 
to a new level, and is estimated to connect 5.3 
billion users and 29.3 billion devices by 2023. The 
primary purpose of the Internet is to move infor-
mation from one location to another location. It 
is the global system of interconnected comput-
er networks that uses the Internet protocol suite, 
TCP/IP, connecting humans and machines. The 
Internet has become one of the major founda-
tions for our socio-economic systems by enabling 
information networking.

There is a strong connection between informa-
tion and energy. The connection can be explained 
in Maxwell’s “demon” [8], which is a thought 
experiment created by the physicist James Clerk 
Maxwell in 1867. In the thought experiment, the 
demon is able to convert information (i.e., the 
position and velocity of each particle) into ener-
gy, resulting in a decrease of the entropy of the 
system. This thought experiment has provoked 
theoretical work on the relation between thermo-
dynamics and information theory.

FIGURE 1. To facilitate humans’ cooperation in our socio-economic systems, we 
have invented technologies enabling networking for matter (grid of trans-
portation), for energy (grid of energy), and for information (the Internet). 
We envision that the next networking paradigm could be intelligence net-
working (Intelligence-Net).”
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Shannon’s efforts to find a way to quanti-
fy information led him to the entropy formula 
with the same form as that in thermodynamics. 
Thermodynamics entropy measures the sponta-
neous dispersal of energy: how much energy is 
spread out in a process, or how widely spread 
out it becomes, at a specific temperature. dS = 
dQ/T, where dS is the change of entropy, dQ is 
the transferred energy, and T is the temperature.

Thermodynamic entropy and Shannon entro-
py are conceptually equivalent: the number of 
arrangements that are counted by thermody-
namic entropy reflects the amount of Shannon 
information one would need to implement any 
particular arrangement of matter and energy. The 
only salient difference between the thermody-
namic entropy of physics and Shannon’s entro-
py of information is in the units of measure: the 
former is expressed in units of energy divided by 
temperature, the latter in essentially dimensionless 
bits of information.

Artificial Intelligence Evolution
Artificial intelligence (AI) is a discipline that aims 
to imitate the cognitive abilities of humans. Since 
the invention of computers, AI researchers have 
been developing its sciences, theories and tech-
niques, which can let computers perform increas-
ingly complex tasks that could previously only be 
delegated to humans [9]. After more than 70 
years of extensive research and development, 
this automation remains far from human intelli-
gence in the strict sense. AI has gone through 
several stages, which are described in this sub-
section.

1940–1970–Birth of AI: Technological devel-
opments during the period between 1940 and 
1960 tried to bring together the functions of 
animals and machines. Norbert Wienner pio-
neered cybernetics, aiming to unify the theory 
of control and communication in both animals 
and machines. Warrent McCulloch and Walter 
Pitts developed the mathematical and comput-
er model of the biological neuron in 1943. At 
the beginning of 1950, John Von Neumann and 
Alan Turing developed the architecture of our 
contemporary computers. In 1950, Turing spec-
ulated about the possibility of creating thinking 
machines, which could carry on a conversation 
that is indistinguishable from a conversion with a 
human being. The Turing Test was the first serious 
proposal in the philosophy of AI.

After the 1956 conference at Dartmouth Col-
lege, which is considered to be the founding of 
the AI discipline, the period between 1956 and 
1974 was the golden years for AI: computers 
were able to solve algebra word problems and 
learn to speak human languages. Researchers 
were optimistic that a fully intelligent machine 
would be built in less than 20 years. “Reasoning 
as search” was a popular paradigm, where search-
ing through a maze is used to achieve some AI 
goal. The main difficulty of this paradigm was that 
for many problems, the number of possible paths 
was too astronomical for AI to find a solution.

The period between 1974 and 1980 was the 
first AI winter. AI researchers’ tremendous opti-
mism had raised expectations very high, and when 
the promised results failed to materialize, funding 
and interest for AI disappeared. In particular, the 

field of connectionism (or neural nets) was shut 
down almost completely for 10 years by Marvin 
Minsky’s devastating criticism of perceptrons. 
Another approach, logic and symbolic reason-
ing, which is based on high-level human-readable 
symbolic representations (e.g., If-Then statements) 
of problems, was the dominant paradigm of AI 
research from the mid-1950s until the late 1980s.

1980–1990: Expert Systems: With the advent 
of the first microprocessors at the end of the 
1970s, AI took off again and entered the golden 
age of expert systems. These systems were pro-
grammed to simulate the judgment and behavior 
of a human or an organization that has expert 
knowledge in a particular field. The “inference 
engine” in these systems provides answers of a 
high level of expertise when being asked. Expert 
systems were widely used in industries. A famous 
example is IBM’s Deep Blue, which took down 
chess champion Kasparov in 1997. The Japanese 
government heavily funded expert systems and 
other AI related endeavors in their fifth generation 
computer project (FGCP).

Expert systems work best with static prob-
lems but are not a natural fit for real-time dynam-
ic issues. Development and maintenance thus 
became extremely problematic. An expert system 
can focus on a narrow definition of intelligence 
as abstract reasoning, very far from the capacity 
to model the complexity of the world. In the late 
1990s, the term AI had almost become taboo and 
more modest variations, such as “advanced com-
puting,” were used.

Since 2010–A New Bloom Based on Massive 
Data, Algorithms and Computing Power: As a 
complete paradigm shift from expert systems, 
machine learning has become very popular since 
2010. Machine learning does not need coding 
rules as for expert systems, but rather, letting the 
computer discover them on the basis of massive 
data. Among machine learning techniques, deep 
learning has become the most promising one for 
a number of applications, including voice and 
image recognition. The “deep” in deep learning 
refers to the depth of layers in a neural network. 
A neural network that consists of more than three 
layers, which would be inclusive of the input and 
the output, can be considered a deep learning 
algorithm. Neural networks make up the back-
bone of deep learning algorithms.

Significant public successes have boosted a 
new wave of interest in AI. In 2011, IBM’s Watson 
won the games against two Jeopardy champions. 
In 2016, AlphaGO (Google’s AI specialized in Go 
games) beat the European champion (Fan Hui) 
and the world champion (Lee Sedol), then herself 
(AlphaGo Zero). In 2020, AlphaFold solved one 
of biology’s grand challenges, predicting how pro-
teins curl up from a linear chain of amino acids 
into 3D shapes that allow them to carry out life’s 
tasks.

Many significant research challenges remain 
to be addressed for the deep learning approach. 

The only salient difference between the thermodynamic entropy of physics and Shannon’s entropy  
of information is in the units of measure: the former is expressed in units of energy divided by  

temperature, the latter in essentially dimensionless bits of information.
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For example, training data has significant impacts 
on this approach. In principle, given infinite data, 
deep learning systems are powerful enough to 
represent any finite deterministic “mapping” 
between any given set of inputs and a set of 
corresponding outputs. However, in practice, 
high-quality training data may not be available to 
the system designer due to privacy and resource 
constraints [10]. In addition, deep learning has the 
issues of integrating with prior knowledge, inter-
pretability, and explainability.

Motivations of Intelligence Networking
Networking Needs Intelligence: From the 

brief description of networking paradigm evolu-
tion, we can observe that each major networking 
paradigm enables us to move “something” from 
one location to another location, by which we 
can obtain “something” to facilitate our coopera-
tion. Here, the “something” is matter, energy, and 
information in these three networking paradigms, 
respectively. In addition, we can observe the pat-
tern of networking paradigm evolution: a new net-
working paradigm is built upon the existing ones, 
but provides a higher level abstraction. Energy 
measures how fast matter is moved, and informa-
tion measures how much energy is spread.

Intelligence Needs Networking: Current AI 
algorithms involve a large volume of data, and the 
trustworthiness of the data is very important. AI 
algorithms need better sources in the exploration 
of data for training models to solve the problems 
more effectively. However, high-accurate and pri-
vacy-aware data/intelligence sharing is difficult 
via the current Internet of information. Therefore, 
most existing AI works focus on the learning of an 
individual agent, one that relies heavily on massive 
pre-defined datasets with the local environment. 
However, in practice, many interesting systems 
are either too complex to model properly with 
fixed, pre-defined environments, or dynamically 
varied [11]. Furthermore, while this approach can 
be validated from some studies of animal learning 
[12], it is far away from human learning, which 
requires a lot fewer datasets and is much more 
flexible when adapting to new environments.

What is the defining feature of human learn-
ing? According to the Big History Project [6], 
collective learning counts as a defining feature 
of humans. With collective learning, humans can 
preserve intelligence, share it with one another, 
and pass it on to the next generation. In other 
words, collective learning is the ability to share 
intelligence so efficiently that the ideas of indi-
viduals can be stored within the collective mem-
ory of communities and can accumulate through 
generations. Indeed, humans are the only species 
capable of sharing intelligence with such efficien-
cy that cultural change begins to swamp genetic 
change [7]. Collective learning counts as a defin-
ing feature of our species, because it explains our 
astonishing technological precocity and the domi-
nant role we play in the biosphere.

Therefore, we envision that the next net-
working paradigm could be intelligence net-
working, which will enable intelligence to be 
easily obtained, like matter, energy, and informa-
tion. Please note that intelligence is not equiva-
lent to information. Rather, intelligence is a higher 
level abstraction of information.

Scenarios of Intelligence Networking
In this section, we present two scenarios of imple-
menting intelligence networking. One is a prac-
tical scenario for connected and autonomous 
vehicles, and another one is a theoretical scenario 
for collective reinforcement learning.

Intelligence Networking for  
Connected and Autonomous Vehicles

Connected and Autonomous Vehicles: Con-
nected and autonomous vehicles (CAVs) use 
advanced technologies to connect and automate 
vehicles that are capable of sensing their environ-
ments and operating without human input. The 
accuracy and efficiency of AI technologies are 
crucial for the progress of CAVs. A modern CAV 
usually has about 60 to 100 sensors (e.g., radars, 
cameras, and Lidars). The number of sensors is 
expected to double in the near future. Although 
a CAV can obtain a lot of information with these 
sensors, it is still difficult to design a trustworthy, 
cost-effective CAV to make it adapt to different 
environments.

Existing Approaches: To address these issues, 
there are generally two existing approaches, sin-
gle-vehicle intelligence and centralized learning. 
In the single-vehicle intelligence approach, sensor 
data collections, model learning and training, and 
decision-making occur locally in a single vehicle. 
The single-vehicle intelligence approach is popu-
lar among researchers for experiments and tests 
due to its simplicity. However, this approach has 
the following defects: limited on-board sensors, 
limited driving environments, and limited comput-
ing capability.

In the centralized learning approach, model 
learning and training happen in the cloud. This 
approach is used by several manufacturers, 
including Tesla. CAVs use on-board sensors to 
collect data and upload it to the cloud. Machine 
learning is performed in the cloud, and the global 
model is centrally and uniformly updated. During 
autonomous driving, a CAV makes decisions 
based on the real-time data from its sensors and 
the global model downloaded from the cloud. 
CAVs’ over-the-air (OTA) function is used for sen-
sor data uploads and model downloads. Although 
this approach is very popular among manufactur-
ers, there are some concerns: huge data trans-
missions challenge the current network. A CAV 
can generate 40 TB of data per day. Data storage 
for all the CAVs is another challenge. In addition, 
users are also concerned about the privacy and 
security issues related to CAV data.

New Approach Based on Intelligence Net-
working: Based on intelligence networking, a new 
approach can be used for CAVs. Figure 2 shows 
this new framework. Compared to the traditional 
approaches, the main distinct feature of this new 
approach is that vehicles, as intelligent identities, 
can learn from data, preserve intelligence, and 
share intelligence with other vehicles. In this sce-

We envision that the next networking paradigm could be intelligence networking, which will enable 
intelligence to be easily obtained, like matter, energy, and information. Please note that intelligence is 

not equivalent to information. Rather, intelligence is a higher level abstraction of information.
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nario, intelligence refers to how to drive the vehi-
cle in diff erent environments. In order to achieve 
intelligence networking, blockchain is used in this 
framework.

The trustworthiness of the shared intelligence 
plays an important role in the Intelligence-Net. 
Blockchain technology can be used to address the 
issue of inefficient management for intelligence 
sharing, which is a key bottleneck of intelligence 
networking. Due to the trust and privacy issues, 
most users are concerned with sharing their data 
and intelligence with others. With the incentive 
mechanisms embedded in blockchain, distribut-
ed parties are encouraged to share intelligence. 
Specifi cally, every transaction on the blockchain is 
verifi ed and stored in the distributed ledger based 
on the one-way cryptographic hash functions. 
These ever executed transactions are non-repu-
diable and irreversible after consensus among 
distributed parties. Figure 3 shows that the good 
features of blockchain  can enable intelligence 
networking, including intelligence sharing, securi-
ty and privacy, decentralized intelligence, collec-
tive learning, and trust issues for decision-making. 
Due to these good features of blockchain, it can 
enable provenance on intelligence networking, 
and significantly improve the trustworthiness of 
intelligence networking.

IntellIgence networkIng for 
collectIve reInforceMent leArnIng

Reinforcement Learning: Machine learning 
can be roughly classified into three categories: 
supervised, unsupervised and reinforcement learn-
ing. Reinforcement learning (RL) is an important 
branch of machine learning, where an agent learns 
to take actions that would yield the most reward 
by interacting with the environment [12]. Deep 
reinforcement learning (DRL) uses deep learning 
and reinforcement learning principles to create 
effi  cient algorithms applied to areas like robotics, 
video games, networks, computer vision, educa-
tion, transportation, fi nance and healthcare [12].

Existing Approaches: In traditional RL algo-

rithms, an agent can optimize the performance 
measure in a previously unknown environment 
via its own experience. In Fig. 4, agent 1 inter-
acts with its local environment 1 modeled by a 
Markov decision process (MDP). Similarly, other 
agents interact with their local environments. To 
this end, the agent needs to manage the trade-off  
between exploitation, where the agent maximizes 
rewards through behaviors known to be success-
ful, and exploration, where the agent experiments 
with new behaviors unknown to be successful. 
The exploitation-exploration dilemma is between 
choosing what the agent has known and getting 
something close to what it expects and choosing 
something the agent has not known and possi-
bly learning more [13]. In more common terms, 
assume that you need to choose a restaurant for 
dinner. If you choose your favorite restaurant, you 
use exploitation; if you choose a new restaurant, 
you use exploration.

FIGURE 2. A connected and autonomous vehicles (CAVs) framework based on intelligence networking 
(Intelligence-Net).”

FIGURE 3. Good features of blockchain that can enable the Intelligence-Net.
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New Approach Based on Intelligence Net-
working: Both exploration and exploitation are 
performed in the local environment, without 
help from other intelligent agents. Consequent-
ly, massive pre-defined datasets with the local 
environment (e.g., state, actions, rewards, and 
transition probability in the RL literature) are 
needed for training. In addition, even after 
extensive training with massive datasets, it is dif-
fi cult for the trained agent to adapt to the new 
environment. In the restaurant example, if a tra-
ditional RL algorithm is used, one would need 
to try all the restaurants in the neighborhood to 
fi nd the best restaurant.

Based on intelligence networking, we pro-
pose a novel approach of collective reinforce-
ment learning (CRL). Unlike traditional RL, a CRL 
agent can not only learn from its own experi-
ence in local environments, but can also pre-
serve the intelligence, and share it with others. 
In the proposed CRL, we introduce extension, 
which is used to enable an agent to proactively 
collaborate with other intelligent agents. Again, 
using the restaurant example, we can explain the 
basic idea behind this extension. Instead of trying 
all the restaurants in the neighborhood to find 
the best restaurant, one can do so by consulting 
with other people’s experiences/opinions. Figure 
4 shows the framework of this concept. Let 
and  be the exploration and extension trade-off  
coeffi  cients, respectively. Let L() be the perfor-
mance measure of policy  and P(st, at) be the 
probability of transitioning at time t, given state 
st and action at. The new optimization problem 
is as follows.
max
π

L(π)
Exploitation
!

+α E
st ,at∼π

DKL(P Pθt )[st ,at ]{ }
Exploration

! "##### $#####

+β E
st ,at∼π

DKL(P "P)[st ,at ]{ }
Extension

! "#### $####

,

(1)
where the exploration incentive is the average 
KL-divergence of P from Pt, which is the model 
that the agent is learning. The extension incentive 
is the average KL-divergence of P from 

∼
P, which is 

the model from another agent.

oPen Issues And reseArch chAllenges
While research about intelligence networking is 
still emerging, many open issues and research 
challenges need to be addressed before intelli-
gence networking is widely deployed. In this 
section, we discuss some of the open issues and 
research challenges.

ModelIng IntellIgence
In each networking paradigm, modeling the “thing” 
networked in the paradigm is crucial. For example, 
modeling information and modeling energy play a 
fundamental role in the Internet and grid of ener-
gy, respectively. In particular, using “entropy” to 
quantify information in Shannon’s information the-
ory has been crucial to the success of the Internet. 
Similarly, how to quantify intelligence will be cru-
cial to the success of intelligence networking. The 
Turing Test was the first serious proposal to test 
a machine’s ability to exhibit intelligent behavior 
equivalent to, or indistinguishable from, that of a 
human. However, there is no quantifi ed measure 
of intelligence in the Turing Test.

From the networking paradigm evolution, we 
can observe that a higher level networking para-
digm provides a higher level abstraction. For exam-
ple, energy can be quantifi ed as how fast matter is 
moved, and information can be quantifi ed as how 
much energy is spread. Similarly, intelligence can 
be defi ned as a sophisticated kind of “before and 
after” yardstick, measuring how much information 
is spread out over time as a result of a learning pro-
cess, or how widely spread out the information is 
after learning happens in comparison with its previ-
ous state. Specifi cally, dL = ∂S/∂R, where dL is the 
change of intelligence, S is the similarity between 
the current order and the expected order, and R
is the parameter in the general sense (e.g., time, 
data volume, and so on). This quantifi ed measure 
of intelligence can be very useful in intelligence 
networking, which needs more research eff ort.

ArchItecture And Protocol desIgns
In the era of information networking, the Internet 
has the successful “thin waist” hourglass architec-
ture, in which the universal network layer (i.e., IP) 

FIGURE 4. Collective reinforcement learning based on intelligence networking (Intelligence-Net).
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is the center. This centered layer implements the 
basic functionality for global information network-
ing. With this architecture, both lower and upper 
layer technologies can evolve independently. This 
“thin waist” hourglass architecture has successful-
ly enabled the explosive growth of information 
networking. Similarly, we envision a “thin-waist” 
hourglass architecture for intelligence networking, 
which needs further research.

Intelligence discovery is another challenge. As 
intelligent identities are distributed across diverse 
geo-locations in the intelligence networking para-
digm, efficient intelligence discovery mechanisms 
are essential to identify and locate intelligence. 
The publish-subscribe mechanism originated from 
information-centric networking (ICN) can provide 
benefits of intelligence discovery.

Security and Privacy
Security and privacy are important issues in intelli-
gence networking. Due to the security and priva-
cy issues, users are concerned with sharing their 
intelligence with others. Although these issues 
exist in the existing networking paradigms, they 
are more important in intelligence networking, 
since an action is usually involved in intelligence. 
An improper action can cause more damage than 
improper information. In this article, we men-
tioned that blockchain can be used to address 
these issues. However, since blockchain was orig-
inally designed mainly for crypto-currencies, in 
order to use it for intelligence networking, a num-
ber of non-trivial issues need to be addressed in 
the current blockchain systems, including interop-
erability, scalability and other performance mea-
sures.

Simulation Results and Discussions
In this section, the performance of the pro-
posed intelligence networking paradigm is eval-
uated by computer simulations. We consider 
the connected and autonomous vehicles sce-
nario, in which the intelligence is how to drive 
a vehicle automatically. The observable state 
of a vehicle includes its location, direction and 
speed, as well as the distances from obstacles, 
traffic signs/lights, and the center of the lane. In 
order to make the simulations more realistic, a 
Gaussian distribution is used to model the sens-
ing errors. The action of a vehicle includes the 
angle of the steering wheel and the degrees of 
throttle and brake. There are multiple vehicles 
performing collective learning, and they can 
share intelligence using the vDLT blockchain 
platform [14].

For an individual vehicle, an actor-critic algo-
rithm is employed to learn the decision-making 
solution locally. The actor is responsible for map-
ping states to actions using a parameterized policy 
network, and the critic is responsible for mapping 
state-action pairs to system reward with a parame-
terized critic network. In addition to the tradition-
al action controlling the vehicle, an “extension” 
action is used by the vehicle to obtain the intelli-
gence from other vehicles. For performance com-
parison, we consider an exiting scheme [15], in 
which deep reinforcement learning is used in the 
decision-making of individual vehicles, but intelli-
gence networking is not used.

Figure 5 shows the convergence performance 

of different schemes. The blue curve represents 
the proposed scheme with intelligence net-
working of seven vehicles, the green curve rep-
resents the proposed scheme with intelligence 
networking of three vehicles, and the red curve 
represents the existing scheme. The shaded 
area represents the standard error of the mean. 
We can observe from Fig. 6 that the proposed 
scheme with intelligence networking converg-
es much faster than the existing scheme. This is 
because the vehicles in our scheme can coop-
erate with other vehicles in collective reinforce-
ment learning using intelligent networking. In 
more common terms, a vehicle in our scheme 
can consult other vehicles to acquire the intelli-
gence of how to drive in a specific environment, 
which enables it to converge to the optimal per-
formance faster than learning how to drive by 
its own trial-and-error experience. Moreover, we 
can also observe that consulting more vehicles 
can make the convergence faster in Fig. 6. Nev-
ertheless, involving more intelligence agents in 
collective learning can result in more overhead 
of networking and computing, which will be 
reported in our future research due to the limita-
tions of this article.

Figure 6 shows the success rate of vehicles 
in different schemes. The success of a vehicle is 
defined as successfully finishing the trip without 
any collision. We consider two weather condi-
tions, good weather and severe weather condi-
tions. In good weather conditions, the noise from 
sensors is small, whereas the noise is large in 
severe weather conditions. We can observe from 
Fig. 6 that our proposed scheme has the highest 
success rate in finishing the trip in both weather 
conditions. As shown in the figure, severe weath-
er conditions have effects on the success rate, 
since higher noise from the sensors causes the 
vehicle to make wrong decisions. Nevertheless, 
the proposed scheme can still have a higher suc-
cess rate when compared to the existing scheme. 
In addition, more vehicles in intelligence network-
ing can improve the success rate performance, as 
shown in Fig. 6.

FIGURE 5. Convergence comparison of different schemes.
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Conclusion and Future Work
In this article, we reviewed the networking par-
adigm evolution and the artificial intelligence 
evolution. The networking paradigm evolution 
motivated us to look at humans’ cooperation in 
a larger time scale. Three major networking tech-
nologies that facilitate humans’ cooperation were 
discussed, including “grid of transportation,” “grid 
of energy,” and “the Internet.” We observed that 
each of these networking paradigms enables us 
to move “something” to facilitate our coopera-
tion. In addition, we observed that a new network-
ing paradigm is built upon the existing ones, but 
provides a higher level of abstraction. In addition, 
the AI evolution motivated us to look at the net-
working aspects of intelligence. Based on these 
observations, we envisioned that the next network-
ing paradigm could be intelligence networking 
(Intelligence-Net), where intelligence can be eas-
ily obtained like matter, energy, and information. 
Then, we presented two use case scenarios, con-
nected and autonomous vehicles and collective 
reinforcement learning. Moreover, we discussed 
some open issues and research challenges of 
intelligence networking. Finally, some simulation 
results were presented to show the effectiveness 
of the proposed intelligence networking paradigm. 
Future work is in progress to  address the open 
issues and research challenges of this exciting area.
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FIGURE 6. Success rate comparison of different schemes.
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