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Abstract—In recent years, with the rapid development of the
Internet of Things (IoT), various applications based on IoT have
become more and more popular in industrial and living sectors.
However, the hypertext transfer protocol (HTTP) as a popu-
lar application protocol used in various IoT applications faces a
variety of security vulnerabilities. This article proposes a novel
HTTP anomaly detection framework based on edge intelligence
(EI) for IoT. In this framework, both clustering and classification
methods are used to quickly and accurately detect anomalies in
the HTTP traffic for IoT. Unlike the existing works relying on a
centralized server to perform anomaly detection, with the recent
advances in EI, the proposed framework distributes the entire
detection process to different nodes. Moreover, a data process-
ing method is proposed to divide the detection fields of HTTP
data, which can eliminate redundant data and extract features
from the fields of an HTTP header. Simulation results show that
the proposed framework can significantly improve the speed and
accuracy of HTTP anomaly detection, especially for unknown
anomalies.

Index Terms—Anomaly detection, edge intelligence (EI), hyper-
text transfer protocol (HTTP), Internet of Things (IoT).

I. INTRODUCTION

INCREDIBLE developments in the routine use of network
services and electronic applications have led to massive

advances in communications networks and the emergence of
the concept of the Internet of Things (IoT). IoT is a promising
paradigm consisting of distributed sensor nodes, cloud servers,
and software. Devices connected to IoT can be treated as
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objects or things for real-time sensing and processing, and they
have the ability to sense their environments, connect with each
other, and exchange data over the Internet. Such a network
brings great economic benefits as it improves the efficiency
of data generation and use. In recent years, IoT has made
significant contributions to many areas, such as smart homes,
healthcare, agriculture, transportation, and so on [1]–[3]. The
number of IoT devices is projected to reach 20 billion by 2020,
compared to the world population of over 7 billion.

The increasing number of IoT devices will provide many
opportunities for attackers to compromise them through mali-
cious emails, collusion attacks, and denial of service attacks,
among many other types of attacks [4]. Many IoT devices are
subject to various network attacks that exploit various vulner-
abilities, such as encryption and password security. Intruders
can control smart objects through cyber attacks and affect
entire IoT networks by spreading malicious applications (such
as malware). Thus, cyber security is now emerging as a key
barrier to the more widespread adoption of IoT services.

There are generally two major categories of methods
for detecting abnormal traffic in IoT: 1) signature and
2) anomaly-based detection [4]–[7]. Each category has its own
benefits and limitations. Signature-based detection methods
have very promising detection performance for known anoma-
lies. However, they are challenged by new kinds of attacks, as
the features of these attacks are hard to be identified. Anomaly-
based detection builds a model containing samples of normal
behaviors and considers deviation from the model to identify
suspicious behaviors or attacks. These approaches can detect
new types of attacks, but it may lead to an increase of false
positives, mainly due to the uneven distribution of training
samples.

Although some excellent works have been done on the secu-
rity issues of IoT, most existing works focus on the security
issues at the networking layers, such as authentication, encryp-
tion, key management, data consistency, etc. Consequently,
application layer security has been largely ignored in the exist-
ing works. Particularly, the hypertext transfer protocol (HTTP)
as a universal protocol has been widely used in IoT appli-
cations. However, due to the openness and diversity of IoT
application protocols, it is easy to involve security vulnera-
bilities in the stages of design and deployment. HTTP can
be exploited by attackers, which will seriously threaten users’
personal information privacy and property in IoT. For example,
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malicious query codes can be embedded into URLs to launch
HTTP attacks and obtain access to permission information [8].

In this article, with the recent advances in edge intel-
ligence (EI) [9], [10], we study HTTP anomaly detection
for IoT. The contributions of this article are summarized as
follows.

1) A novel HTTP anomaly detection framework is designed
to sequentially use both clustering and classification
methods, which can quickly and accurately detect
anomalies in the HTTP traffic for IoT.

2) Unlike the existing works relying on a centralized server
to perform anomaly detection, with recent advances in
EI and considering resource utilization efficiency, the
proposed framework distributes the entire detection pro-
cess to different nodes. This framework can efficiently
relieve network congestion and computing pressures of
centralized servers, as well as releasing the potential of
EI in IoT.

3) A novel data processing method is proposed to divide
the detection fields of HTTP data, which can eliminate
redundant data and extract features from the fields of an
HTTP header. In addition, a one-class HYBIRD clas-
sifier is presented to enhance the performance of the
anomaly detection framework.

4) The simulation results are presented to show that the
proposed framework can significantly improve the speed
and accuracy of HTTP anomaly detection, especially for
unknown anomalies.

The remainder of this article is structured as follows.
Some related works of anomaly detection are briefly reviewed
in Section II. Section III gives some preliminaries for the
proposed framework while Section IV introduces the proposed
framework in detail. The simulation results are presented in
Section V. Finally, conclusions are presented in Section VI
with future work.

II. RELATED WORKS

In this section, some related works about anomaly detection
for HTTP traffic and EI are introduced.

A. Detection Methods

In the early studies, feature matching methods are mostly
used to detect abnormal HTTP traffic. This kind of methods
is simple and efficient but can only detect anomalies with
known attacking features [6]. In order to detect some unknown
anomalies, most of the related works use statistical methods
or machining learning methods for anomaly detection, which
are, respectively, introduced as follows.

1) Statistical Methods: Statistical methods detect anoma-
lies mainly dependent on the predefined threshold, mean
and standard deviation, and probabilities [11]. In [12], fea-
ture analysis is performed on the URL sample parameters
to extract six characteristics of the request URL from the
HTTP traffic, which is used to detect unknown behaviors.
However, this approach can only detect a little of unknown
anomalies. In [13], each Web session is divided into some sub-
sessions with fixed length, on which the Bayesian estimation

method is run to detect Web anomaly. In [14], a generalized-
likelihood ratio test is designed to find out anomalies in
network traffic, which exploits a nonrestricted α-stable first-
order model and statistical hypothesis testing. In [15], data
processing is first run on the HTTP traffic by using natural
language processing and dimensionality reduction, and then a
Gaussian model trained by normal data is adopted for anomaly
detection. Although these approaches can achieve promising
performance on detecting unknown anomalies, they have some
evident shortcomings, such as high false positive rate and
heavy computational cost.

2) Machine Learning Methods: Alongside the development
of machine learning, many researchers use machine learn-
ing algorithms for anomaly based methods. Machine learning
algorithms can be categorized into the following main cat-
egories, i.e., supervised learning, semisupervised learning,
unsupervised learning, and reinforcement learning. It can learn
the general features of the training traffic data. Based on
the learned features, the input traffic data will be detected
correctly. This generalized learning mode allows machine
learning algorithms to process data that have never appeared
before [16].

For supervised learning, it can be divided into classifica-
tion problems and regression problems. People usually use
classification algorithms to predict the category to which the
data belong, and it needs labeled data to train the classifier.
The most typical algorithms are the K-nearest neighbor (KNN)
algorithm and the support vector machine (SVM) algorithm.
In [17], a natural language processing method is used to extract
features from the HTTP traffic, and then the SVM classifica-
tion algorithm is adopted to train the detection model, which
aims to detect malicious applications in Android devices.
In [18], an artificial neural network and SVM classifier are
combined through the classical data fusion method based on
the conditional probability, which can reduce the error rate.

For semisupervised learning, it uses both a large amount of
unlabeled data and a small amount of labeled data for pat-
tern recognition. In [19], a detection model is constructed by
using the modified Mahalanobis distance based on the prin-
cipal component analysis (PCA), which is effective to detect
anomalies in traffic. Similarly, a semisupervised classification
method is presented in [20] by using density models based on
the deep generative models and variational inference theory.

For unsupervised learning, clustering algorithms are exten-
sively used for anomaly detection, which does not need to
know the classification labels or the grouping of data cate-
gories. In [21], a clustering detection method based on seed
extension is proposed to classify malicious traffic into different
attacking phases so that anomalies can be identified in different
environments. It first preprocesses the networks’ traffic, includ-
ing constructing the network flow, changing continuous-valued
attributes into nominal attributes by adopting the discretization
method, and further turning into binary features. Then, based
on these features, it computes a weight for each flow and iter-
atively selects seeds to expand until all flows are divided into
clusters. In [22], a graph clustering algorithm is used to detect
attacks in network traffic. The numbers and weights of clus-
ters are, respectively, calculated for the normal and malicious
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network traffic graphs, and then their differences can be used
to detect attacks. In [23], Android malware can be detected
by clustering the HTTP traffic, which extracts features from
the HTTP traffic and then adopts a fuzzy C-means clustering
algorithm to give a good detection performance.

For reinforcement learning, it is through interaction with the
environment to continuously improve behavior to maximize
the concept of cumulative rewards. In [24], a novel reinforce-
ment learning-based intrusion detection scheme was proposed
to detect network traffic, and the detection model would
become more accurate over time. Reinforcement learning for
adaptive network defense is proposed in [25], which can avoid
a certain pattern of attack and identify the pattern of attack
from the cyber outlaw.

B. Edge Intelligence

With the popularity of IoT, a large number of devices are
connected to the Internet, generating massive data at the edge
of the network. In order to solve the computing and service
pressures of the cloud data center and fully release the poten-
tial of big data at the edge, EI is beginning to be widely
used. EI aims at coordinating a multitude of collaborative edge
devices and serves to process the generated data in proxim-
ity [8]. It pushes computing tasks and services from the core
of the network to the edge of the network, alleviating the pres-
sure on the core of the network, and overcoming the problems
of high monetary costs and high transmission delays that may
occur when moving large amounts of data over a wide area
network (WAN). Compared to the data center, edge servers are
in closer proximity to people, data source, and servers. EI can
bring a lot of benefits, including low latency, energy efficiency,
privacy protection, reduced bandwidth consumption, etc. It has
been applied in intrusion detection of IoT networks. In [26],
a method for intrusion detection that combines distributed
agents on Industrial IoT (IIoT) edge devices with central-
ized logging is proposed, which can improve the detection
performance of the detection system. In [9], a new anomaly
detection architecture for IIoT based on EI is proposed. It
uses a new machine learning algorithm called LightGBM and
traditional deep learning algorithms for detection.

C. One-Class Classification

In fact, in some scenarios, such as network intrusion detec-
tion, fault diagnosis, and fraud detection, normal data are far
larger than anomaly data. As revealed in [7], the imbalance in
training data has a significant impact on the results of anomaly
detection. In this case, the one-class classification algorithm
can be used to only identify one particular class by primar-
ily learning from a training set containing only the objects of
this class. In [27], a one-class SVM (OC-SVM) algorithm is
proposed as the single classification problem. It is extended to
detect the application layer DDoS attack in [28], which first
extracts seven features from sessions of normal users and then
models the browsing behavior of normal users by OC-SVM. A
fusion of multiple one-class classifiers is presented in [29] to
detect Web-based attacks. This approach uses a novel binary
artificial bee colony algorithm to prune the initial ensemble of

Fig. 1. Example of HTTP data.

OC-SVM classifiers, which can find a near-optimal subensem-
ble. Moreover, an improved OC-SVM method is designed
in [30] with privileged information as the training data for mal-
ware detection, which performs better than the model using the
training data without privileged information. In [31], a support
vector data description (SVDD) classification algorithm [32]
is also extended for detecting network anomalies by modeling
the normal data.

III. PRELIMINARIES

Inspired by the one-class classification methods and most
clustering algorithms used for anomaly detection, this article
proposes a novel anomaly detection framework with sequen-
tial clustering and classification, which can well solve the
data uneven problem when detecting malicious behaviors in
IoT applications from the HTTP traffic. At the same time,
we exploit the advantages of EI to design this detection
framework, which is beneficial to relieve network congestion
and computing pressures of centralized servers. As supported
by the simulations in Section V, the proposed framework is
very effective to improve the detection accuracy of unknown
anomalies while keeping the low false positive rate. Before
the presentation of our framework, the format of input data,
i.e., the HTTP traffic, is first described. Then, we, respec-
tively, introduce the clustering algorithm and the classification
algorithm used in this article.

A. Data Description

The scenario studied in this article is malicious traffic detec-
tion in IoT applications. These applications request access to
the Internet or transmit information via the HTTP protocol.
Therefore, the format of the traffic data is the format of the
HTTP data. In this section, the format of HTTP traffic is intro-
duced in detail and some common attacks on the HTTP traffic
are presented.

The HTTP request includes three components, i.e., request
line, request header, and request body. The request line begins
with a method token, followed by the request-URI and the
protocol version, and ends with CRLF. The request header
encoded by ASCII characters is comprised of structured fields.
The request body can be encoded by different encoding types,
which are determined by the specific content it carries [33].
The format of the HTTP data is illustrated in Fig. 1.

The request header contains different fields, such as accept-
language and referer, in which intrusion attacks can be
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TABLE I
INTRUSION ATTACK EXAMPLES

inserted. Several examples of intrusion attacks are listed in
Table I. In this table, three typical attacks are introduced that
occur in different fields of the request header. The first one
is the directory traversal attack that occurs in the user-agent
field. It utilizes insufficient security validation of users’ input
file names, which contain “/.” In this case, malicious users
can achieve directory jump, which can traverse to the parent
directory on the server. This attack can grant an application
the access to the files that are not allowed by the default
privilege. In general, as a common file in Unix, the path
“/etc/passwd” contains the password to demonstrate directory
traversal. In order to detect this vulnerability, the URL that
contains substrings like “../” or its escape character “x5c./” has
to be restructured [34]. The second attack, i.e., SQL injection,
can extract customer and order information from ecommerce
databases or can bypass security mechanisms. The attacks
simply inject operations that always result in true or false state-
ments, by altering the predefined logical expressions within a
predefined query. Typically, this injection can work through a
Web form and an associated CGI script without appropriate
input validation. These injections are not restricted to charac-
ter fields. Similar alterations to the “where” and “having” SQL
clauses have been exposed if the application does not limit
numeric data for numeric fields [35]. The last one is the XSS
attack as a very common application layer hacking technique,
which will occur in the referer field. It allows an attacker to
embed malicious JavaScript, VBScript, ActiveX, HTML, or
Flash into a vulnerable dynamic page, which can cheat the user
and execute the script on his/her machine in order to gather
data [36]. The most common approach of stealing cookies or
hijacking session is to embed a JavaScript encoded with the
browser supported HTML encoding technique.

B. Birch Clustering Algorithm

In this article, we used a hierarchical clustering method
called the Birch algorithm, which does not need to set any
initial class or initial centroid. Based on the cluster feature
tree (CF tree), it has high speed for clustering, especially for
very large data sets. This advantage can fully meet the tim-
ing requirement of clustering the HTTP traffic data. The Birch
clustering algorithm is briefly introduced as follows.

{
−→
Xi } represents N-dimensional data points in a cluster,

where i = 1, 2, . . . , N. Then, the clustering feature (CF) entry
of the cluster is defined as a triple: CF = (N,

−→
LS, SS), where

N is the number of data points in a cluster,
−→
LS is the linear

sum of N data points, i.e.,
∑n

i=1
−→
Xi , and SS is the square sum

Algorithm 1 Birch Clustering
Begin

While i > n (i = 1) do
Select the nearest child node as a data point from the root

to the bottom
After reaching the leaf node
If the nearest tuple CFi can absorb the data point then

Update CFi value
Else

If a new tuple can be added then
Add a new tuple

Else
Split the farthest pair of tuples and take them as

new leaf nodes. Then redistribute other tuples by the distance
from the new leaf nodes

Update tuple information of each non-leaf node
If the node is split then

Insert a new tuple in the parent node
End

of N data points, i.e.,
∑n

i=1
−→
Xi

2 [37]. Assume that two dis-
joint subclusters have the entries CF1 = (N1,

−→
LS1, SS1) and

CF2 = (N2,
−→
LS2, SS2). Then, the two disjoint subclusters are

merged and the CF entry of this new subcluster is

CF1 + CF2 =
(

N1 + N2,
−→
LS1 + −→

LS2, SS1 + SS2

)
. (1)

The workflow of the Birch clustering algorithm is plotted in
Algorithm 1. At the beginning, an initial in-memory CF-tree
using the given amount of memory is built after all data are
scanned. Starting from the root and recursively descending
the CF-tree, choose the closest child node according to the
distance D0 as defined in

D0 =
∣
∣
∣
∣
∣
Xi −

∑n
i=1

−→
Xi

N

∣
∣
∣
∣
∣
. (2)

Upon reaching a leaf node, find the closest leaf entry, say
X1, and then examine whether X1 can “absorb” X2 without
violating the threshold condition. If so, the CF entry for X1
is updated to reflect this. If not, a new entry for X2 is added
to the leaf. If this new entry has space on the leaf to fit in,
the insert operation is done. Otherwise, the leaf node must be
split. The node is split by choosing the farthest pair of entries
as seeds and then redistributing the remaining entries based
on the closest criteria. After X2 is inserted into a leaf, the CF
information is updated for each nonleaf entry on the path to the
leaf. If a split does not occur, it simply involves updating the
existing CF entries to reflect the addition of X2. To describe
the newly created leaf, a leaf split requires inserting a new
nonleaf entry into the parent node. If the parent has space for
this entry, at all higher levels, the CF entries are updated to
reflect the addition of X2. On up to the root, if the root is split,
the height of CF-tree is increased by one [37].

C. OC-SVM

OC-SVM is developed based on the traditional SVM. It is
used to solve a specific problem with only one class of samples
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Fig. 2. Proposed HTTP anomaly detection framework.

to train the classification model [27]. Given a training data set
{Xi}n

i=1 with Xi ∈ Rn, there is a nonlinear mapping � from Rn

to a high-dimensional feature space χ such that �(Xi) ∈ χ .
Then, a hyperplane is created in the high-dimensional space
with ω · �(X) − ρ = 0, where ω is the normal vector of
the hyperplane and ρ is the intercept of the hyperplane. It
indicates that the mapped samples are separated from the ori-
gin by the interval ρ. In order to keep the hyperplane away
from the origin, the Euclidean distance ρ/ω between the ori-
gin and the target data is used to find the optimal hyperplane.
Then, to separate the data set from the origin, the following
quadratic programming problem needs to be solved:

min
1

2
ω2 + 1

υn

n∑

i=1

ξi − ρ (3)

subject to (ω · �(Xi)) ≥ ρ − ξi, i = 1, 2, . . . , l, ξi ≥ 0 (4)

where n is the number of data points, ξi is the nonnega-
tive slack variable of Xi, and υ ∈ (0, 1] is a regularization
parameter to control the fraction of outliers. ω and ρ are
the parameters that determine the decision boundary. With the
Lagrange function [27], (3) can be transformed into

f (x) = sign((ω · �(X) − ρ)). (5)

IV. HTTP ANOMALY DETECTION FRAMEWORK

In this article, a novel anomaly detection framework is
proposed based on the above Birch clustering and one-class
classification algorithms, which can quickly and accurately
detect anomalies from the HTTP traffic. Here, the overall
detection framework is provided in Section IV-A. Then, three
main parts in our framework, i.e., data processing, clus-
tering process, and classification process, are, respectively,
introduced in Sections IV-B–IV-D.

A. Proposed Detection Framework

An overview of the proposed detection framework is shown
in Fig. 2. The framework can be divided into two parts: 1) the
cluster detection process and 2) the classification detection
process. The details of each process are further provided in
Fig. 3. Traffic data from IoT devices will go through the first

step of the cluster detection process. Before this process, traf-
fic data and training data need to complete data preprocessing
tasks in the data processing module. The specific description of
the data processing module will be presented in Section IV-B.
Then, we use the Birch cluster algorithm to train a cluster
detection model to detect traffic data. After this step of detect-
ing, some normal data will be successfully detected, and the
remaining data will be divided into N classes, which will be
detected during the classification detection process. During the
classification detection process, we employ a new machine
learning algorithm, one-class HYBIRD, for intrusion detec-
tion of remaining data. This algorithm consists of OC-SVM
and the improved SVDD algorithm, which can improve the
performance of the detection framework. In this process, we
first extract features from each class and then use normal data
detected by the cluster detection process to train the classifier.
Eventually, each class in the remaining data will be detected
by the classifier. Through these two processes, all data will be
detected.

The IoT network can be divided into a central network part
and an edge part. In the IoT network, we regard a central
data center with powerful computing capabilities and suffi-
cient resources as the master node while the equipment of the
edge part (i.e., edge serves) is regarded as an edge node. Due
to limited computing power and resources of edge nodes, in
order to improve energy efficiency, we perform two detection
processes on different nodes, respectively. Cluster detection
is performed on edge nodes, and classification detection is
performed on master nodes.

When the traffic data of IoT applications are transmitted
from the devices to edge nodes through the routers, the edge
servers will perform some data preprocessing work, extract
the relevant features of the traffic, and then apply a clustering
algorithm to detect. The Birch clustering algorithm we used
in this process has the advantages of fast clustering speed and
small memory consumption and is very suitable for running
on edge nodes. So this process does not need to consume too
many computing resources and can be completed quickly. In
the master node, it also needs to perform feature extraction and
train a complex classifier. Nevertheless, since the clustering
detection divides the remaining data into different classes, each
class contains data with similar characteristics. Consequently,
when the master node performs detection, it only needs to
perform feature extraction and detection on a specific class.
This greatly reduces the workload of the master node so that
the master node has sufficient resources to meet the needs of
the training complex classifiers. Moreover, cluster detection on
edge nodes removes some redundant data from the traffic data,
which helps improve the accuracy of classification detection
on the master node. Therefore, the master node can complete
detection tasks accurately and efficiently.

The proposed detection framework fully combines the
advantages of EI to split the entire detection process into
different nodes. Without increasing the detection time, it
effectively relieves the computing pressure of the data cen-
ter. In addition, cluster detection in the framework filters
some normal traffic, which effectively reduces the bandwidth
burden.
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Fig. 3. Two detection processes.

Fig. 4. Example of different fields in HTTP data after segmentation.

B. Data Processing

HTTP data need to be processed before the detection, as
shown in Fig. 3. It is mainly divided into three steps: 1) field
detection; 2) normalization; and 3) vectorization. The details
of each step are described as follows.

1) Field Detection: The HTTP traffic contains information
from many different fields and each field may contain actual
intrusion attacks. In order to better detect attacks and avoid
interference caused by useless information in other fields, we
propose field detection. Because each field of the header is
detected separately, the header needs to be segmented. This
method is good for eliminating redundant data and improving
detection accuracy, and it can also identify the location of an
anomaly in an exact field. Fig. 4 shows an example of different
fields in HTTP data after segmentation.

Since the amount of HTTP data is very large, in order to
ensure that data can be quickly accessed during the detection
process, dictionary structure is used to represent the data. A
dictionary named Dictm is created. It has a series of keys and
each key represents an HTTP header field. Each segment of
the header is stored in Dictm. In this way, in the process of field
detection, a key representing a field can be quickly identified
and the corresponding field can be obtained immediately. The
complete HTTP data are shown in the upper area of Fig. 4.
After segmentation, the data of each field are stored in the
dictionary, which are shown in the lower area of Fig. 4. After
all the data are segmented, each field is detected step by step.

TABLE II
NORMALIZATION EXAMPLES

2) Normalization: In order to simplify the detection data
and effectively protect the privacy of personal information,
we have normalized the HTTP data. Because each field has
some structural features and structural information, they can be
simplified with some specific characters. Here, “C” is used to
represent the SQL-related keywords in the data (e.g., “select,”
“count,” “from,” and “where”). All the remaining characters
except symbols are replaced by “A.” After normalization, the
fields of an HTTP request header are transformed into sigs.
It does not only simplify the data but also preserve its struc-
tural information. Some examples of normalization are shown
in Table II, where the left-hand side is the fields’ content to
be normalized while the right-hand side is the corresponding
normalized results.

3) Vectorization: In the vectorization phase, a sig is trans-
formed into a vector to facilitate the subsequent clustering and
classification stages. In this process, n-gram analysis is used
to extract meaningful features from the sig. It could also be
taken as a substring with the length n. For example, the string
“ababc” contains four substrings with “ab,” “ba,” “ab,” and
“bc,” which have three unique 2-grams “ab,” “ba,” and “bc.”
The 2-gram “ab” appears twice, with a frequency of 2/4. The
2-gram “ba” and “bc” only appears once, with a frequency of
1/4. A list of text tokens can be represented with a vector con-
sisting of n-gram frequencies. A feature vector describing this
string would be Xababc = [1/2, 1/4, 1/4]. All sigs can be con-
verted to vectors by this method. The normalized sig contains
36 different unique characters. After the n-gram analysis for
these characters, we can get a bag-of-words, with which each
sig can be transformed into a vector [17]. If n = 1 is chosen
for the n-gram analysis, it is easy to lose the correlation among
characters that may lead to poor performance of the detection
framework. However, when n is larger than 2, the dimension of
bag-of-words is increased dramatically. Since the performance
of the detection framework strongly relates to the dimension
of the feature vector, a high dimension of the feature vector
would result in poor performance. Therefore, in this article,
n = 2 is used, which means that the number of dimensions in
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Fig. 5. Bag-of-words from 2-gram analysis.

TABLE III
VECTORIZATION EXAMPLE

the feature vector is 362 = 1296. More simulation evaluations
will be introduced in detail in Section V-G.

Fig. 5 shows the bag-of-words got from the 2-gram analysis.
A vector is produced with the same length of the bag-of-words.
Moreover, each element of the vector represents an occurrence
frequency of the corresponding symbol in the bag-of-words
with the same order. Then, a sig is also processed by the
2-gram analysis, and a 2-gram sequence can be obtained that
represents the sig. The occurrence frequency of each sym-
bol in the 2-gram sequence is calculated and becomes an
element value of the vector whose location represents that
symbol. If a symbol in the bag-of-words does not appear in
the 2-gram sequence, the corresponding element in the vector
is 0. With this method, each sig can be transformed into a
numeric vector with a dimension that is equal to the length
of the bag-of-words. Here, an example is given to show the
transformation for a sig with “A://A.A.A.A.A.” From this sig,
a unique 2-grams sequence can be obtained with “A:,” “:/,”
“//,” “/A,” “A.,” and “.A” for a total of 12 substrings, and
their occurrence frequency is shown in Table III. From this
information and the bag-of-words shown in Fig. 5, a vector
can be obtained with v1 = [0, 4/12, 0, . . . , 0, 1/12, 0, 4/12,

0, . . . , 0, 1/12, 1/12, 0, . . . , 0, 1/12].

C. Clustering Process

In this process, the Birch clustering algorithm is used to
divide the sigs converted from traffic data and training data
into different classes according to their features, as shown in
Fig. 3. For each class, if it contains the training sigs that are
converted from training data, all sigs of this class belong to
normal sigs. Otherwise, they belong to unknown sigs, which
will be further classified in the next classification stage. An
example is given in Fig. 6, where the red dots are training
sigs and the blue dots are sigs, which are transformed from the
HTTP traffic data. Each circle represents a class and all sigs are
divided into 11 classes. There are five classes only containing

Fig. 6. Example of the clustering detection.

TABLE IV
NOTATIONS (ORDERED IN APPEARING SEQUENCE)

the red dots, three classes only containing the blue dots, and
three classes containing both the red and blue dots. For red
circles that include the red dots, their sigs are taken as normal
sigs. Thus, there are eight classes regarded as normal sigs in
Fig. 6. For black circles that only contain the blue points, their
sigs are taken as unknown sigs. The data corresponding to the
normal sigs are taken as normal data while that corresponding
to unknown sigs are taken as remaining data, which will be
further detected in the next process.

D. Classification Process

In the second process of detection shown in Fig. 3, the nor-
mal data are used to train the proposed one-class HYBIRD
classifier and the remaining data are further identified by the
classifier. The stage is divided into two steps, i.e., feature
extraction and the proposed one-class HYBIRD classifica-
tion, which are, respectively, introduced below. Table IV
summarizes the notations used in the following introduction.

1) Feature Extraction: In order to extract features from the
corpus, i.e., both normal sigs and unknown sigs, the doc2vec
algorithm [38] is used. It learns features from the corpus in an
unsupervised manner and then provides a fixed-length feature
vector as output. The corpus consists of a series of normal sigs
and unknown sigs. For sigs S1, S2, S3, . . . , Sn in a corpus, the
following objective function is used to train the corpus:

1

T

T−k∑

i=k

log p(St|St−k, . . . , St+k) (6)

where k is the window size for preserving the contextual
information [38]. Then, using the softmax function, the vector
of each sig can be calculated, as follows:

p(St|St−k, . . . , St+k) = eySt
∑

i eyi
(7)
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Fig. 7. Process of the one-class HYBIRD.

where each yi is the ith output value of a feedforward neural
network computed using [38], as follows:

y = b + Uh(St|St−k, . . . , St+k; W, D) (8)

where b and U are bias and weight matrix between the hid-
den and the output layers, and h is the average of sig vectors
extracted from W, which is embedding matrix of sigs [38].
Each class is assigned a unique ID. D is the matrix of IDs
representing sigs in the corpus, which come from different
classes.

2) One-Class HYBIRD: In this article, we propose a new
machine learning algorithm named one-class HYBIRD, which
is composed of the OC-SVM algorithm and an improved
SVDD algorithm. The detailed process of the one-class
HYBIRD is shown in Fig. 7. First, we use the results from
cluster detection to train the OC-SVM classifier. Then, some
normal sigs will be used to verify the classification effect
of this classifier. At this time, partial normal sigs may be
misjudged as abnormal sigs. Fig. 8 shows a scenario of mis-
judgment of the normal sigs. All points in Fig. 8 are normal
sigs, but the ones below the hyperplane are misjudged as
abnormal sigs by the classifier. If the number of points below
the hyperplane is very large, the performance of the OC-SVM
classifier may be seriously degraded. Therefore, a threshold T
is set and the number of misjudged sigs from the OC-SVM
classifier is compared with T .

If the number of misjudged sigs is larger than threshold T ,
the misjudged sigs are used to train the improved SVDD clas-
sifier. After the training process, the unknown sigs are jointly
detected by both the OC-SVM classifier and the improved
SVDD classifier. The principle of a joint detection is shown
in Fig. 9. In this figure, the red dot represents normal sig
and the black dot represents abnormal sig. The hyperplane is
the border of classification by using the OC-SVM classifier
while hypersphere is the border of classification by using the
improved SVDD classifier. The sigs above the hyperplane are
all taken as normal sigs. For the sigs below the hyperplane, if
they are inside the hypersphere, i.e., the dots inside the circle,
they are also taken as normal sigs, otherwise, they are taken
as abnormal sigs.

If the number of misjudged data is not larger than thresh-
old T , the unknown sigs are only classified by the OC-SVM
classifier. This is because the algorithm may not be able to

Fig. 8. Misjudged sigs by the OC-SVM classifier.

Fig. 9. Joint detection with OC-SVM and improved SVDD classifiers.

train an effective classification model when the number of mis-
judged sigs is too small, which will affect the final detection
result and increase the detection time.

3) Improved SVDD Algorithm: Given training data set
{Xi}n

i=1 with Xi ∈ Rn, the hypersphere of the improved
SVDD algorithm can be obtained by solving the following
optimization problems:

min R2 + C
l∑

i=1

ξi (9)

�(xi) − a2 ≤ R2 + ξi, ξi ≥ 0; i = 1, 2, . . . , l (10)

where parameter a is a linear combination of support vectors
that represents the center of the hypersphere, R represents the
radius, R2 is the volume of hypersphere, and � is a function
that maps data to the high-dimensional space. The distances
of all data points xi and the center should be less than R [32],
and at the same time, a slack variable ξi is constructed with a
penalty coefficient C. First, the distances (disti, i = 1, . . . , m)
are measured between all trained points and a hyperplane. The
hyperplane is found by the OC-SVM classifier. The distance
from each point to the hyperplane is taken as the penalty coef-
ficient for that point. The distance size should be normalized
and its value must be within the range of C (in this article, the
range of C is between 0 and 1). The normalization method is
done as follows:

Ci = disti − distmin

distmax − distmin
. (11)

Then, the Lagrange multiplier method is used to get the
Lagrange function. Thus, the optimization problems can be
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expressed as

L(R, a, α, ξ, γ ) = R2 +
m∑

i=1

Ci

m∑

i=1

ξi

−
m∑

i=1

αi

(
R2 + ξi

(
x(i)T

x(i) − 2aTx(i) + a2
))

−
m∑

i=1

γiξi (12)

where αi and ξi are Lagrange multiplier. The Lagrange func-
tion has a partial derivative to zero for R, a, and ξi. Then, we
have

m∑

i=1

αi = 1

a =
m∑

i=1

αix
(i)

∑m
i=1 Ci

m
− αi − γi = 0. (13)

Finally, the problem to be solved becomes

L(α) =
m∑

i=1

αix
(i)T

x(i) −
m∑

i=1

m∑

j=1

αiαjx
(i)T

x(i) (14)

subject to

0 ≤ αi ≤
∑m

i=1 Ci

m
m∑

i=1

αi = 1, i = 1, 2, . . . , m. (15)

For a new sample point z, if it satisfies the following
formula, it can be taken as an abnormal point

(z − a)T(z − a) > R2. (16)

Different from the traditional SVDD algorithm in which
only the static C is used, the improved SVDD algorithm uses
a dynamic C to replace the static one. In this article, dif-
ferent fields of the HTTP request header are classified by the
improved SVDD algorithm. If the traditional SVDD algorithm
is used, its optimal value of C may be different. For example,
for the URL field, the algorithm achieves the best classifica-
tion when C = 0.5 while for the Cookie field, it gets the best
classification when C = 0.8. If a single value of C is used
for all fields, the algorithm cannot guarantee the best overall
performance. Thus, the improved SVDD algorithm is proposed
with the dynamic C got from (11) directly in this article, which
can get better performance than the traditional one.

V. SIMULATION RESULTS AND DISCUSSIONS

We use Python and a popular machine learning library
Scikit-learn to implement the proposed framework. In this sec-
tion, we first introduce the used data sets. Next, the criteria for
evaluation are introduced. Subsequently, we analyze the num-
ber of training samples for the detection framework to achieve
good detection results. Then, our framework is compared with

TABLE V
DETAILS OF DATA SET

other methods to verify its feasibility. After that, simulations
show that both the proposed data processed by field detection
and one-class HYBIRD can improve the detection accuracy.
Finally, in order to get good performance, the key parameters
T in the framework are also analyzed. Performance and time
results are based on an average of ten measurement runs.

A. Data Sets

The HTTP data set we used in the simulations was collected
from the deployed IoT devices. We used a variety of antivirus
engines to obtain some normal data, and the remaining sus-
picious data were analyzed and filtered by the VirusTotal
tool [39]. We extract the target IP field, domain name, or URL
of each HTTP traffic and upload it to VirusTotal. If the domain
name, target IP, or URL is malicious, the traffic containing
these is considered abnormal traffic. The details of the data
set are shown in Table V.

B. Performance Evaluation

The rates of precision, recall, and accuracy have been widely
used to evaluate the performance of intrusion detection. Their
definitions are given as follows:

precision = TP

TP + FP
. (17)

recall = TP

TP + FN
. (18)

accuracy = TP + TN

TP + FP + TN + FN
. (19)

In the above equations, true positives (TP) are the number
of normal events that are correctly classified as normal events.

True negatives (TN) are the number of anomalies that are
correctly classified as anomalies.

False positives (FP) are the number of normal events that
are wrongly classified as anomalies.

False negatives (FN) are the number of anomalies that are
wrongly classified as normal events.

A low precision indicates that the intrusion detection system
has a high false positive rate, which misjudges a large amount
of normal data as abnormal and increases the workload of
security managers. A low recall rate indicates that a large
number of anomalies are not correctly detected, degrading the
overall security performance of the system. Accuracy is the
total number of normal event and anomalies correctly classi-
fied by the total number of data set. It is an indicator of the
overall performance of the measurement model.
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Fig. 10. Performance comparison of different training sample size.

However, the HTTP anomaly detection is actually an
imbalanced classification problem, for imbalanced problems,
precision, recall, and accuracy cannot accurately measure
whether the model is good or bad, so we chose a relatively
fair and better indicator F-measure to understand and compare
the performance of malicious traffic detection when compared
with accuracy. It involves the detection rate and error rate
of identifying malicious samples, which is a combination of
precision and recall, so it can better evaluate the detection
performance. As shown in

Fβ =
(
β2 + 1

)
PR

β2P + R
(20)

where β is a parameter, P is precision, and R is recall.
Usually, β = 1.

We, therefore, utilize the F-measure value as the most
important metric in the following experimental evaluation.
At the same time, using precision, recall, accuracy, and
detection time as auxiliary evaluation parameters makes the
experimental results more convincing.

C. Evaluation of Training Sample Size

In order to determine how many training samples are
required for the detection framework to reliably detect mali-
cious traffic, we designed a simulation experiment. Fig. 10
shows the results of the simulation. In Fig. 10, the abscissa rep-
resents the size of the training sample from 10 000 to 800 000.
The ordinate corresponds to the indicators of precision, recall,
accuracy, and F-measure for different training sample sizes.
As the size of the training set increases, the four indicators
continue to increase, but eventually the trend of increase is
stable.

Specifically, when the training set contains only 10 000 sam-
ples, the detection effect is very poor. When the size of the
training sample increases to 100 000, the detection effect of the
model is greatly improved, the recognition rate of malicious
traffic reaches 77.83% and the accuracy rate reaches 90.38%;
When the training set contains 700 000 samples, the recogni-
tion rate of malicious samples reaches 96.9%, and the accuracy
rate reaches 98.2%; when using all training samples (800 000
samples), the detection rate of the model for malicious traffic
is 97%, and the accuracy is 98.31%. The experimental results
indicate that an accurate and reliable detection framework
model can be trained without many training samples.

Fig. 11. Performance comparison of different methods.

D. Comparison With the Existing Approaches

To evaluate the performance of the proposed framework,
we have chosen two methods that were reported recently
for comparison, i.e., the methods from [15] and [17].
Juvonen et al. [15] proposed a method to detect HTTP traf-
fic data by using PCA to reduce dimensionality and using the
Gaussian model to train the detection model. Wang et al. [17]
presented an intrusion detection method by using natural lan-
guage processing and SVM. Their comparison results are
shown in Fig. 11.

In Fig. 11, the vertical ordinate represents different evalua-
tion indicators, i.e., precision, recall, accuracy, F-measure, and
time (where the basic unit of time is seconds). The abscissa
shows the values of these indicators. The yellow, blue, and red
bars represent the methods in [15] and [17], and the proposed
framework, respectively.

From Fig. 11, we can see that the proposed method has
the highest values for the four indicators, and the detection
time is the shortest, which validates that its performance is
the best. Compared with the methods in [15] and [17], the
proposed algorithm has three major different mechanisms for
this performance improvement. First, the proposed anomaly
detection framework sequentially runs the clustering algorithm
and the classification algorithm in an alternative manner while
the other two methods only use one single detection opera-
tion. Second, the proposed data processing with field detection
is used to reduce redundant fields in HTTP request headers
so that anomalies can be found easier while the other two
methods just use all the HTTP traffic for detection, which
makes them relatively difficult to find anomalies. Although
the method in [17] also uses some technologies to reduce
some redundant data, there are still a lot of redundancies in
the HTTP traffic, which can evidently degrade the detection
performance. Third, the proposed one-class HYBIRD classifier
can reduce the false positive caused by the OC-SVM classifier,
which further improves the detection accuracy.

Although our detection framework uses two machine learn-
ing methods, clustering and classification, our detection time is
still the shortest. This is because the data processing with field
detection used in our framework has removed some redun-
dant fields before the anomaly detection. At the same time,
during the detection process, all fields are normalized, which
further simplifies the detection. Moreover, we have applied
EI technology in the framework so that the process of cluster
detection and classification detection for different fields can be
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Fig. 12. Performance of the field detection method.

synchronized. These methods all help to shorten the detection
time, so the detection time of our framework is the shortest.

E. Evaluation of Data Processing With Field Detection

In order to evaluate the function of data processing with
field detection, experiments are run by comparing the proposed
frameworks with and without data processing with field detec-
tion. Fig. 12 shows the simulation results, where the red
bar indicates the method with the field detection method and
the blue bar indicates the method without the field detection
method. The F-measure indicator as well as the other three
indicators show that the data processing with field detection
can evidently improve the overall performance of the proposed
framework. On the one hand, HTTP traffic always has a large
amount of redundant data, which may affect the detection
accuracy. With the method of field detection, most of the
redundant data can be removed, which helps to improve the
detection accuracy. On the other hand, since the anomalous
characteristics identified in each field are more obvious than
that identified in the entire HTTP traffic, it is easier for the
data processing with field detection to find anomalies existing
in a specific field. Therefore, data processing with field detec-
tion is able to improve the detection results from the above
two aspects. Moreover, using field detection, it can also locate
the field at which attacks occur, which is easier for the firewall
to prevent attacks.

F. Evaluation of One-Class HYBIRD

In order to study the effectiveness of one-class HYBRID,
we compare the detection results of the OC-SVM classifier
and SVDD classifier. At the same time, in order to make
the simulation results more convincing, in addition to con-
ducting simulation under the data set we collected, we also
introduced the CSIC data set to further evaluate the one-class
HYBRID algorithm. This data set contains tens of thousands
of automatically generated Web requests produced by the
Spanish Research Council Information Security Institute [40].
However, because the data set is made by hand, it does not
meet the actual situation. Therefore, we only use this data set
to evaluate the performance of the classifier, but not to eval-
uate the performance of the detection framework. Table VI
shows the comparison results on the CSIC and our data sets.

For two data sets, the one-class HYBIRD classifier is better
regarding the precision, accuracy, and F-measure indicators.

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT CLASSIFIERS

IN DIFFERENT DATA SETS

In terms of precision, it means that the one-class HYBIRD
classifier has a much lower false positive rate than the other
classifiers. Although the recall value obtained by the one-
class HYBIRD classifier is slightly lower than other classifiers,
it does not affect the better performance of the one-class
HYBIRD, as its higher F-measure value can reflect the better
overall performance, which is more important than the recall
indicator.

Due to the problem of false positives caused by the
OC-SVM classifier, some normal data may be misjudged as
abnormal ones, which will lead to lower detection accuracy.
After using the one-class HYBIRD classifier, we can further
detect the misjudged data to improve the detection accuracy.
For a classifier, if the precision indicator is improved, the
recall indicator may be affected. However, for the overall
performance of the classifier, the improvement on the precision
indicator is more important and more meaningful than the
impact on the recall indicator. Therefore, the F-measure value
of the one-class HYBIRD classifier is larger than that of the
OC-SVM classifier. In other words, when compared to the OC-
SVM classifier, the proposed one-class HYBIRD classifier is
better to improve the overall detection performance. Similarly,
the one-class HYBIRD classifier also has better performance
than using only the SVDD classifier.

In the case of uneven sample distribution, a one-class clas-
sification algorithm usually brings better detection results. In
the detection of IoT anomalies, normal HTTP traffic is often
easier to obtain than abnormal traffic, so the use of one-class
classification detection also greatly reduces the difficulty of
collecting training data.

G. Different N-Gram Methods

The final detection result of the detection framework is
affected by different N-gram methods. Table VII shows the
F-measure values, recall, and detection times for different
N values. Recall represents the detection rate, and detection
time represents the computation cost. The longer the time,
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TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT N VALUES

IN N-GRAM ANALYSIS

Fig. 13. Simulation results of different thresholds of T .

the higher the computation cost. As shown in the table, when
N = 1, the number of features is only 36, and the detec-
tion time is the shortest, but the detection effect is very poor.
The detection rate is only 2.3%, and the F-measure value is
only 0.044. When N = 2, the number of features increases to
1296, the detection rate increases to 97%, the F-measure value
increases to 0.9611, and the detection time does not rise much,
which is 3761. When N = 3, the number of features becomes
very large, which is 46 656. The detection rate is reduced
to 95.2%, and the F-measure value is slightly increased to
0.9665. However, the price of a larger F-measure value is the
increase in computation cost. At this time, the detection time
is 51 647, which is an increase of almost 14 times compared
with that when N = 2. When N becomes larger, the compu-
tation cost will increase more, and the detection rate will also
decrease. Therefore, considering the overall detection effect
and computation cost of the framework, we choose N = 2 as
the value.

H. Impact of Threshold T

The final detection result of the one-class HYBIRD clas-
sifier is affected by the threshold T . In order to optimize
the detection performance, it is necessary to find the optimal
value for the threshold T . Fig. 13 shows the simulation results
obtained by our method with different values of T . It can be
seen from the figure that when T is increased from 0 to 20,
the recall, accuracy, and F-measure values have a significant
increase while the precision value has a slight drop. When T
is further increased, these four indicators are kept in a high
level. After exceeding a certain point of T (i.e., T = 300),
the values of precision, accuracy, and F-measure are declined
while the recall value is increased.

This is because when T is too small, all unknown sigs will
be jointly detected by the OC-SVM classifier and the improved
SVDD classifier. Although this process may slightly improve
the precision value, it may degrade other indicators due to the

increased false negatives. After the value of T exceeds a cer-
tain point (i.e., T = 100), too many fields are only detected
by the OC-SVM classifier, which also degrades all indica-
tors. Therefore, it is suggested to set 20 < T < 100. Within
this range, the detection framework can get the best detection
results. Of course, this is only the best T value obtained under
our data set. In actual applications, relevant personnel can fine
tune the T value through testing.

VI. CONCLUSION

The continuous evolution of cyber attacks and the massive
use of IoT applications has brought new challenges to anomaly
detection in IoT. To address these challenges, a novel anomaly
detection framework based on recent advances in EI has been
proposed by running sequential clustering and classification on
the HTTP traffic, which can effectively and efficiently discover
unknown network intrusions. Furthermore, we have presented
a data processing method with field detection to eliminate
redundant data, which divides the header of HTTP traffic data
into multiple fields for detection. This process can accelerate
the detection speed and improve the detection performance, as
some redundant data are removed for detection. In compari-
son with two recently proposed anomaly detection methods,
the proposed framework has better performance in terms of
precision, recall, accuracy, and F-measure, as well as the
detection speed. At the same time, the proposed framework
can efficiently relieve network congestion and computing pres-
sures of centralized servers, as well as releasing the potential
of EI in IoT. Future work is in progress to consider protection-
based security schemes, such as continuous authentication, in
the proposed framework.
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