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a b s t r a c t

Human motion can be carried out with a variety of different affects or styles such as happy, sad,
energetic, and tired among many others. Modeling and classifying these styles, and more importantly,
translating them from one sequence onto another has become a popular problem in the fields of
graphics, multimedia, and human computer interaction. In this paper, radial basis functions (RBF) are
used to model and extract stylistic and affective features from motion data. We demonstrate that using
only a few basis functions per degree of freedom, successful modeling of styles in cycles of human walk
can be achieved. Furthermore, we employ an ensemble of RBF neural networks to learn the affective/
stylistic features following time warping and principal component analysis. The system learns the
components and classifies stylistic motion sequences into distinct affective and stylistic classes. The
system also utilizes the ensemble of neural networks to learn motion affects and styles such that it can
translate them onto neutral input sequences. Experimental results along with both numerical and
perceptual validations confirm the highly accurate and effective performance of the system.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Generally, human motion consists of a hierarchy of themes, each
of which is composed of a different set of spatiotemporal features [1].
While the primary themes are related to specific actions like walking
or running, the secondary themes relate to the style in which those
actions are performed. They contain variations caused by individual
characteristics of the actor such as gender, age, emotions, energy,
mood, health, and even inherited characteristics. These stylistic
variations, or secondary features, are constantly present in motion
data. However, they are extremely difficult for machine learning
approaches to extract and analyze due to their personalized nature,
small spatiotemporal significance, and often, lack of sufficient and
consistent training data.

Recently, as a direct result of developments in computational
capacities, animation of human motion has received significant
amount of attention, and along with it, the study of stylistic variations
has become subject to extensive research [2,3]. A state of the art
problem in this field is style translation (conversion), or in other
words, the capability to computationally alter the secondary features
of a motion sequence to achieve different secondary themes. A robust
translation system can eventually be employed for synthesizing
stylistic animation of characters from base sequences. For example,

given one base walk sequence, a vast variety of different walks can be
created which can be employed for different characters. Such systems
can widely be utilized in various multimedia and human–computer
interaction (HCI) applications [10], as well as human–robot interaction
purposes (HRI) [11,12]. More specifically, virtual worlds and digital
games can employ such systems to synthesize a variety of character
animations, eliminating the need for large databases. For example,
given a neutral motion sequence (a sequence not showing any
particular secondary feature), a variety of stylistic sequences can be
synthesized. These synthesized sequences can range from feminine,
masculine, energetic, tired, young, old, healthy, and wounded, styles to
more complex ones such as limping. Robotics, and robot motion in
particular, is another realmwhich cam employ motion style synthesis.
Using automated systems, robot motion can be generated and con-
trolled without the need for predefined motion trajectories. Overall,
such systems will eventually enable significant data re-use for digital
and physical applications. Another field where motion style translation
can be utilized is physiology and psychology studies. These systems
will enable researchers to better understand the processes that our
bodies and minds employ to generate and perceive different types of
motion [13].

In this paper, we tackle the problem of modeling motion style
features extracted from human motion data. We demonstrate that
radial basis functions (RBFs) are powerful means for this purpose.
We then employ this concept and train an ensemble of Gaussian
RBF neural networks. Training is carried out in two different
modes: the first mode acts as a classifier while the second one is
utilized for translating the style features from one class onto
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another. For example, given an input neutral walk, a tired walk
sequence is achieved. The motion data, prior to application in the
system, require two critical pre-processing steps: time warping
and dimensionality reduction. These modules are described in
detail. Finally, multiple experimental results with high classifica-
tion and style translation accuracy, as well as significant general-
ization capability, demonstrate the effectiveness of our approach
towards modeling stylistic features.

2. Related work

Here we review the different methods used for recognition and
translation of motion styles. Generally, on the topic of action
recognition, there has been significant amount of work done such
as [14–16], among many others. While these processes focus on
classification of the actions rather than actor attributes (which is the
goal of this research), they can be applied if modified or trained
differently. We then review some of the literature focused on style
recognition. Finally, works on style translation are reviewed.

K-nearest neighbor (KNN) classifiers have been employed, suc-
cessive to dimensionality reduction [17], other pre-processing tech-
niques [18], or using the raw data [19]. Through such approaches, a
distance measure of the test action sequence with respect to the
training set is often computed and minimized. Support vector
machines (SVM) have shown to be another effective method [20].
Through these method, the feature space is divided to classify the
different action classes using a vector or plane supported by a
number of vectors. Relevance vector machines (RVM), which are a
modified probabilistic version of SVM, have also been successfully
utilized for this purpose [21]. Hidden Markov models (HMM) and
other probabilistic means have been widely used to model and
classify actions. Hidden states are used in HMMs to model different
states of the motion sequence. As an example, [22] is one of the
works that have utilized these models for action classification. Finally,
artificial neural networks (ANN) have been largely ignored for action
classification. In one of the few approaches using ANNs, in [23] a self-
organizing neural model is employed. In [24], optical flow-based
motion history maps were utilized to train a back-propagation
multilayer perceptron (MLP) for action classification.

Classification of styles using motion capture data has not been
widely addressed in the literature. This may be in part due to such
data being scarce and expensive to record or purchase compared to
video motion data. The CMU dataset (http://mocap.cs.cmu.edu/) does
contain many motion capture sequences, and it has been used for
classification of actions. However, motion capture datasets that
contain many repeated takes of stylistic actions, which can be used
for classification of style and affect, are not widely and readily
available. As a result, to the best of our knowledge, there are not
many studies of style using publically available datasets to which we
can compare our results. Table 1 presents some recent studies on
style/affect using motion capture data. These studies do not use
publicly available datasets. In [26,27], the utilized method based on
PCA and linear discriminant functions (LDF), performs gender
classification with an accuracy of 92.7%. Venture [45] uses inverse

kinematics (IK) and similarity criteria to categorize neutrality, joy,
anger, and sadness. Karg et al. [46,47] employ linear discriminant
analysis (LDA), PCA, and KPCA for feature extraction prior to
classifying neutral, angry, sad, and happy walks using KNN, Naive
Bayes, and SVM. Based on the feature extraction method and
classifier used, a wide range of accuracies from 40% to 100% is
achieved. Livne et al. [48], use transfer learning and linear regression
to classify gender and weight from motion capture data and video
pose tracking successive to PCA and Fourier transform (FT). In this
study, an accuracy of up to 98% is acquired.

Most methods proposed for style synthesis and translation result in
a particular set of style features being transferred from an origin
sequence onto a destination sequence. This approach often involves
relative editing of sequences using linear operations in the form of
interpolation and extrapolation [4], successive to proper temporal
alignment of critical features, which is usually achieved through
dynamic time warping (DTW) [5]. DTW maximizes the alignment
between two trajectories, minimizing a relative distance function. This
will ensure that style features are extracted from and added to the
correct postures of the sequence. More advanced methods such as
probabilistic models [6], system identification processes [7], and
database methods [8] have also been introduced and implemented
for style translation and synthesis. Signal processing techniques, such
as [9], on the other hand, provide us with a better understanding of
how affective/stylistic features are added onto regular motion signals.
For example, in [28] we proposed a technique which employs
frequency minimization of temporal cues for reconstructing the
neutral component of stylistic motion trajectories with spatiotemporal
cubic splines. This work was based on the assumption that stylistic
features appear as high frequency add-ons. Other frequency-based
techniques have also been utilized in the past. In [9], Bruderlin and
Williams conclude that when filtering motion trajectories, lower
frequency gains are manifested as decreases in intensity of performed
actions. They show that middle band frequency gains result in
exaggerated movements and finally by increasing higher frequencies,
nervous twitches are synthesized. In [29] it was shown that the high-
frequency components can depend on low-frequency ones. Pullen and
Bregler [30], later used motion capture data to add texture to
keyframed animation. The model utilizes correlations among separate
body parts. Furthermore, their proposed technique adds mid and
high-level frequency alterations to keyframed or synthesized signals
through texturing. Finally, learning-based methods have also been
utilized for style translation. For example, Grochow et al. [49] use
Gaussian processes and Liu et al. [50] utilize inverse optimization as
tools for learning motion styles.

In style translation, a common characteristic among the afore-
mentioned techniques, despite their high accuracy and practical-
ity, is high dependence on the training data with little or often no
generalization. For example, when interpolating/extrapolating
sequences, the extracted features are extremely reliant on the
source and target sequences. In other words, when using traditional
techniques, the features translated onto the neutral sequences are
directly those of the stylistic sequence used in the process. Similar
arguments are true for most other available style synthesis and
translation systems where the inability to dynamically synthesize

Table 1
Studies focusing on classification of style using motion capture data.

Authors and reference Classified feature Method

Troje, [26,27] Gender LDF (þPCA, FT)
Venture [45] Affect IK similarity
Karg et al. [46,47] Affect KNN, Naive Bayes, SVM (þPCA, KPCA, LDA)
Livne et al. [48] Gender, weight Transfer learning and linear regression (þPCA, FT)
Our method Affect, age, energy KNN, SVM, RBFNN (þPCA)
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the style features has so far been one of the shortcomings.
Additionally, lack of a single reliable tool capable of performing
both classification and synthesis of styles, is evidently a problem yet
to be solved.

3. Background and data

According to [1], a sequence of human motion can be represented
by a sum of a primary action, weighted sum of secondary features
(SF), and random noise. This model, therefore, can be denoted by:

Y¼ Pþ ∑
r

i ¼ 1
wi � Siþe ; ð1Þ

where P represents the primary action (main action class) and S is
the set of SFs, W is the set of weights r members, and e represents
random noise in the data. For simplification purposes, in the course
of this study, we assume that S andw only have one member (r¼ 1)
and therefore combinational styles such as young-tired or energetic-
feminine are not taken into account. Subsequently w will equal to
1 after normalization of the weight. Accordingly, from Eq. (1), we
have Y ¼ PþSþe.

Assuming sequence 1 with Y1 ¼ P1þS1þe1, sequence 2 with
Y2 ¼ P2þS2þe2, and the two primary action classes being iden-
tical ðP1 ¼ P2Þ, we can conclude ΔY¼ ðS2�S1Þþðe2�e1Þ. By select-
ing one of the sequences to be stylistically neutral (S1 ¼ 0) and
through minimizing the noise in the data, the SF set of the second
sequence can be extracted. Adding this to a different neutral (or
even stylistic sequence) will result in style translation. Similarly,
interpolation of two sequences with similar primary actions
and different secondary themes gives ð1�αÞY1þαY2 ¼ P1þ
ð1�αÞY1þαY2þð1�αÞe1þαe2. By minimizing the noise, we have
blended the secondary themes.

We used a Vicon MX40 motion capture system to record some
of the data. The motion capture system tracks the exact locations
of light-reflecting markers placed on a special suit using high
spatiotemporal infrared cameras. Multiple walking sequences
were performed by 5 different actors and in different styles
(secondary themes). Actors were first asked to perform (act) young
and old style walks. Additionally, energetic sequences were
captured at the beginning of each session. Successive to all the
walking performances as well as additional exercise, tired walks
were performed and recorded. As illustrated in Fig. 1, the system
then generates a model for the corresponding actor and outputs
the motion matrix. The model illustrated in this figure is visualized
using the WX Motion Viewer (http://cgg.mff.cuni.cz/�semancik/
research/wxmv/). In addition to our own recorded data, we used
the HDM05 [44] dataset (http://www.mpi-inf.mpg.de/resources/
HDM05/) to test our system. Similar to our dataset, this HDM05
contains many motion capture data recorded using a marker-based
motion capture system. It contains multiple actions performed by

5 actors. Each actor has performed several regular, happy, and sad
walk cycles, each containing four or more steps, among other walks
such as sideways, left/right turns, and etc.

Motion capture data can be represented by a number of
consecutive postures variable with time. We represent each
posture with a finite number of markers corresponding to differ-
ent regions of the body. The motion matrix can either be
characterized through the location of markers at each frame or
instance of time, joint angles, or through other means. In other
words,

D¼ ½p1 p2⋯pm�T ; ð2Þ
where D is the motion matrix. Accordingly, p represents each
posture with pAℝ3l where l is the number of markers represent-
ing each posture in three dimensions (lAℕ). m is the number of
frames and mAℕ. The ith posture Di can be represented by
pi ¼ ½θi1;x θi1;y θi1;z… θil;x θil;y θil;z�, where θ is the joint angle,
with θAℝ and 0rθo360. The trajectory of the jth degree of
freedom (DOF) is described by θj ¼ ½θ1j θ2j ⋯ θmj �T . Also, a displace-

ment vector d is defined where dAℝ3, to indicate the center mass
of the actor in 3-dimensional Cartesian space at each time step.
We can hereby conclude that a motion sequence with l markers
can be represented by 3lþ3 trajectories or DOFs.

The HDM05 dataset contains excess DOFs with respect to our
data, which belong to fingers, toes, and other insignificant joints.
We first remove these extra joints from the model and data. We
then segment the sequences containing regular forward walks in
different styles. The segmentation is very influential in the process,
as they will affect training of the ANNs. Segments are carefully
selected such that they start and end in similar postures. A total of
48 segmented sequences are achieved in neutral, happy, and sad
themes (16 in each class).

4. Modeling secondary features using Gaussian RBFs

A radial function ϕ : ℝs-ℝ is defined by ϕðtÞ ¼ φðrÞ where
r¼ ‖t‖ given φ : 0;½ 1Þ-ℝ is a univariate function and ‖U‖ is a
norm operator such as the Euclidean norm. Accordingly we define
a Gaussian radial kernel φ : ℝs � ℝs-ℝ, by

φðt; μ; s2Þ ¼ ϕð‖t�μ‖Þ ¼ exp
�‖t�μ‖2

2s2

� �
; ð3Þ

where μ and s2 denote the mean variance respectively. Hence, the
kth dimension of the SF set, can be approximated by:

∑
M

j ¼ 0
αk;jφjðt; μj; s2j Þ; ð4Þ

where α is the amplitude of each RBF used to model each DOF and
M is the number of RBFs used for each DOF. Fig. 2 illustrates SF

Fig. 1. A motion capture session is presented where a 3D model is created using the system.
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trajectories of the 2nd, 12th, 27th, DOF of an energetic walk,
modeled with a weighted sum of 5 Gaussian RBFs (M ¼ 5). The
linear least squares method has been used to decompose the
trajectories into the basis functions. We extracted the SF set using
linear subtraction of an energetic walk from a neutral walk
successive to time warping. The warping details are presented in
Section 5.1.

By assigning different values for M, we can control the preci-
sion of the approximated trajectory and the amount of residues.
Fig. 3 illustrates the average RMSE/DOF vs. number of RBFs used to
approximate the SF sets of 15 happy, sad, young, old, energetic,
and tired walking sequences. We have employed 1 to 8 RBFs to
model the SF sets. This approximation can extend well beyond
8 and as expected the residues decrease as more RBFs are used and
approximations become more accurate. Perceptually, however,
increasing the number of RBFs beyond a certain point is of little
significance. To perceptually evaluate the notion of modeling SFs
using RBFs, we extracted and modeled the SF sets of 6 stylistic
walks usingM¼ 1; 3; 5; 7f g RBFs. The modeled SFs are then added
back onto the neutral portion of the original sequences. Each
sequence was animated for of 5 human subjects. Table 2 presents
the percentage of the audience who were able to correctly identify
the secondary themes of the re-synthesized sequences when
compared to the original sequences. Based on the results, only a
few RBFs, as little as M ¼ 3, is sufficient for approximating SFs. The
perception error rate, however, significantly increases when only
1 RBF/DOF is employed. When M ¼ 7 there is no perceived
variation with respect to the original sequences, indicating that
it is not required to extend the computations beyond M ¼ 7.

When approximating trajectories using RBFs, some methods
may result in sub-optimal models. In Fig. 2 (middle), for example,
2 RBFs are used to model the middle peak which occurs around
frame 80. One of these RBFs, however, could have successfully
modeled that portion of the trajectory, leaving the other RBF to
model and eliminate some of the residues. Proper constraints and
approach towards this type of approximation, however, can
optimize the outcome such that ð∂RMSE=∂MÞr0 would always
hold true. Even in cases where a trajectory is already perfectly
modeled (RMSE¼ 0), adding a new RBF should not increase the
RMSE since s2 ¼ 0 or α¼ 0 can be selected.

5. Classification and translation system overview

Successive to illustrating that RBFs can accurately model SF
sets, through the following sections, we focus on employing RBFs
for classification and translation of SFs. We utilize RBF neural
networks (RBFNN) for this purpose. In order to modify and adapt
the data for use in two different systems with the aim of
classification and style translation, pre-processing is required.
Two pre-processing steps are often carried out when dealing with
motion data: time warping [7] and principal component analysis
(PCA) [25]. The former is performed to temporally align the
sequences while the latter is carried out for dimensionality
reduction. Through the following sub-sections, we describe these
two steps and their influence on the data. Fig. 4 presents the
overall schematic of the classification/translation system.

5.1. Correlation optimized time warping

For both classification and translation, the training and test
data need to be temporally warped. The goal of this process is to
align corresponding features of the data. Usually, the practical and
simple DTW method [31] is employed for this purpose. Several
other warping techniques, such as [32–34] among others, have
been presented and explored which can be employed based on the
application at hand. In the case of this study, we utilize correlation
optimized time warping (CoTW) [35,37]. This technique has
previously illustrated good performance in different aspects such
as peak shape and area preservation [36]. In addition, distance
measures used in DTW and most other warping methods seem to
be improper means for finding the similarities between motion
trajectories. Alternative methods, such as Pearson's correlation
coefficient (PCC), have shown to be more appropriate for motion
sequences [37] and make more contextual sense, since the overall
shapes of motion sequences captured using PCC are of more
importance compared to distance measurements.
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Fig. 2. Three different SF trajectories of an energetic walk approximated using 5 RBFs.
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CoTW operates by first selecting a reference trajectory. Then,
for two trajectories u and v, each with a length of n, objective
function:

ρðu; vÞ ¼ ∑n
i ¼ 1ðui�μuÞðvi�μvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i ¼ 1ðui�μuÞ2∑n

i ¼ 1ðvi�μvÞ2
q ; ð5Þ

is calculated and maximized. This is done through segmenting the
non-reference trajectory (or trajectories) and linearly stretching/
compressing each segment by a constraint parameter. In cases
where compression is required, uniform temporal down-sampling
is carried out, while for stretching, linear interpolation achieves
the desired temporal length. The entire process is carried out using
dynamic programming [35].

Fig. 5(a) illustrates two sets of walking sequences both plotted
as spatiotemporal trajectories. Blue trajectories belong to sequence
(1) (reference) and the pink ones belong to sequence (2). The
figure also illustrates the correlation map between them (b),
calculated using PCC. In both representations, misalignments are
visible. Fig. 5(c) presents the same two sequences when sequence
2 is warped to be aligned with the other. This increased alignment
can also be realized from the diagonal line in Fig. 5(d) which is the
maximum correlation path.

Warping multiple signals (for example, the trajectories of the
6th DOF from 10 different walking sequences) together with the
aim of reaching global alignment is often a difficult task that
may need iterative alterations between the signals. A more
simple and practical way is to assign a particular trajectory
as the reference and align all other trajectories accordingly.
The reference trajectory could be selected through a variety
of different methods such as random selection, average-based,
or even PCA-based techniques. These methods, however, may not

present the best solution, resulting in the selection of a trajectory
with sub-optimal number of peaks. Therefore, in this paper, we
implement the very effective and simple technique proposed in
[38]. In this method, the trajectory that is the most similar to all
other signals and maintains the most simplicity (less deviation)
is selected as the reference. Similarity is again measured using
Eq. (5).

A very important point to consider is that when aligning
several motion sequences, for trajectory i¼ n, a particular seq-
uence might be selected as the reference, while for trajectory
i¼ n′, a different sequence might be the more suitable reference.
In such cases, aligning the dataset (multiple sequences) will result
in loss of correlation within the different DOFs of each single
sequence (except for the reference sequence). This problem will
manifest itself as artifacts, one of which is commonly known as
footskating [39]. In order to prevent this from happening, we
compute the global similarity values between the sequences.
Though this may cause some particular trajectories to be impro-
perly set as the reference, synchronization is preserved and no
artifacts are introduced.

Using CoTW, the input–output datasets composed of multiple
motion sequences are warped and aligned. Fig. 6 presents all
corresponding trajectories of the 60th DOF of neutral walk
sequences. The set is composed of 14 samples and the red
trajectory is the reference selected using the aforementioned
approach. The figure shows proper alignment of all the trajectories
with respect to the reference.

5.2. PCA

Periodic full-body motion contains a significant amount of
redundancy in its many DOFs. As a result, PCA has shown to be
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Fig. 4. Overview of the classification and style translation system. The original data are first warped. PCA is applied when performing classification. The ensemble of RBF
networks are then trained based on the two modes resulting in either classification or translation of style and affect.

Table 2
Residual error rates and audience identification results for approximated secondary themes.

M¼1 M¼3 M¼5 M¼7

RMSE/DOF Perception RMSE/DOF Perception RMSE/DOF Perception RMSE/DOF Perception

Happy 5.62 0.40 4.35 0.80 4.16 0.80 3.99 0.80
Sad 5.60 0.40 3.94 0.80 3.91 1.00 3.86 1.00
Young 4.11 0.60 3.52 1.0 3.01 1.00 2.92 1.00
Old 5.20 0.40 3.20 0.80 3.14 1.00 3.10 1.00
Energetic 4.91 0.60 3.31 1.0 3.01 1.00 2.65 1.00
Tired 5.09 0.60 4.01 0.80 3.90 0.80 3.75 1.00
Average 5.09 0.50 3.72 0.87 3.52 0.93 3.38 0.97
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a very effective means of reducing dimensionality in this type of
data [25]. In other words, due to high correlation between
different parts of the body, there is no need to utilize the entire
dimensionality of the data. Therefore, we employ PCA and com-
pute the (principal components) PCs for representing the
sequences in the dataset. Thus, lower dimension classifiers can
be used. For style translation, however, PCA will not be used since
the entire sequence needs to be reconstructed and the output PCs
would be difficult to directly interpret and animate.

As mentioned earlier, posture Di of the sequence is described
by pi ¼ ½θi1 θi2⋯ θi3l� and the trajectory of the jth DOF is described by

θj ¼ ½θ1j θ2j ⋯ θmj �T . Accordingly, the average of the jth trajectory is

calculated through θj ¼ ð1=mÞ∑m
i ¼ 1θ

i
j and constructs the mean data

matrix D in which all arrays in each DOF are composed of the
average value corresponding to that marker. Accordingly, each

vector is zero-centered by:
~Di ¼ Di�Di; for i¼ 1 to n ð6Þ

Using the formulation above, we calculate the covariance
matrix by

Γ ¼ 1
3l

∑
3l

i ¼ 1

~D i
~D
T
i ð7Þ

The eigenvalues and eigenvectors of Γ are then computed.
Subsequently, assuming Q ¼ ½q1 q2 ⋯qr � is the set of eigenvectors
which correspond to the r largest eigenvalues, we obtain eigen-
motion features by projecting D onto the eigenmotion space using:

X¼ Q TD; ð8Þ
where the redundancy in the data is significantly eliminated. Fig. 7
illustrates that for the different secondary themes in our dataset,
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around 94% of the sequence can be represented using only 6 PCs.
This rate climbs to over 99% for 15 PCs where regularly 60 vectors
were required to demonstrate the data. However, it is critically
important to note that the joint angle matrix and the 3D
displacement vector are of different nature (degrees and meters).
Therefore, the displacement vector must first be removed and PCA
applied to the remaining joint angle matrix.

In addition to dimensionality reduction, PCA results in features
which are more distinct and easier to classify. In Fig. 8, we
illustrate an energetic and a tired sequence in the PC subspace.
In (a) we illustrate PC 1 vs. PC 2 in which blue and red clusters
have emerged. While for action classification, the first few PCs
would suffice, for style recognition, higher PCs would also be
informative as they contain smaller variations in the data which
most likely correspond to SFs. Fig. 8(b) illustrates PC 1 vs. PC 8 for
the same sequences where the two classes are recognizable in the
subspace.

6. RBF network for classification and translation

In Section 4, we illustrated that the SFs can be accurately
approximated using a weighted sum of only a few RBFs. Comput-

ing the set optimum parameters fα; μ; r2g, however, is a challen-
ging problem. In order to calculate the parameter set and employ
them for classification and synthesis of SFs, RBF networks have
been proposed and utilized [40].

The input–output relation for RBFs can be demonstrated using
the network illustrated in Fig. 9. In this formation, L and K
dimensional input–outputs are assumed and the hidden neuron
activation functions are in the form of φðt; μ; s2Þ with R members.

To train the RBF network, we use the orthogonal least squares
technique [41]. Through this algorithm, the network learns by
iteratively adding RBF neurons, minimizing the sum of output
residues. The weights of the network are calculated by solving:

ΦT ðΦwT �TÞ ¼ 0; ð9Þ

where T is the input set,Φ is the function output set, and the solution
is wT ¼ ðΦTΦÞ�1ΦTT. Here, w corresponds to α in the aforemen-
tioned RBF model. It should also be noted that there are alternative
training methods for RBF networks which can be employed.

In order to train the system for classification and translation of
secondary themes, we construct ensembles of RBF networks. While
entire sequences can be trained using a single network, learning all
DOFs of a sequence, which often contain phase shifts with respect to
one another, is difficult and confusing for ANNs [42]. Therefore, we
design an ensemble of networks, which includes a different and
separate network for each DOF. Each network classifies each DOF to
the best of its ability, and accordingly, a subsystem classifies the
entire motion sequence based on majority vote [43].

For classification, our experiments indicate that it is difficult for a
single ANN, or even an ensemble of ANNs, to learn different themes
of a single primary class of action. For example, when we experi-
mented with an ensemble learning both young and old themes, we
observed high confusion rates. This is because the weights
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corresponding to a young walk cannot accurately represent the old
walk, resulting is high error rates, especially for blind test data. To
overcome this issue, we generate a different ensemble for each
secondary theme: happy, sad, energetic, tired, young, and old. For
classification, coefficients of the PCs are used. Each ensemble learns
the relationship between the coefficients of the first and subsequent
9 PCs of a particular theme. Cτ

1 represents the set of first PC
coefficients of the sequence with theme τ used as the training input
while Cτ

i is the set of the ith PC coefficients of the same sequence
used as output. Using the classifier following the training phase, Cx

1 is
fed to all classifiers of the 6 different thematic ensembles. The
ensemble that outputs Cγ

i satisfying:

arg min
γ

:Cx
i �Cγ

i :2; ð10Þ

for the majority of i¼ f2;…;10g, determines the secondary theme of
the sequence. In this equation γ represents the theme of the
ensemble.

Translation of styles is carried out using a different ensemble of
RBFNNs. Similar to the classifier module, we train this set of networks
as 6 different non-connected anticipators, one for each secondary
theme. The networks do not use the PC vectors, but rather the warped
motion data. Each anticipator is composed of one individual neural
network per DOF. The ensembles learn the relationship between a
DOF of a neural set and the corresponding DOF of a stylistic set. As a
result, the networks learn how a neutral sequence can be transformed
to a stylistic sequence, hence style translation. When it is desired for a

neutral walk to take on a specific theme, for example energetic, the
neutral sequence is fed to the set of networks that are trained with
energetic walks as their outputs.

7. Results and discussion

As mentioned earlier, two datasets of multiple walking sequences
recorded using motion capture systems are utilized. For our own
dataset, several actors were asked to perform neutral and stylistic
walking sequences. Ethics approvals for data acquisition as well as
perceptual studies were secured. 75 walking sequences, 15 in each of
the 5 neutral, young, old, tired, and energetic categories, make up our
dataset. Additionally, 48 segmented sequences, 16 in each of the
3 neutral, happy, and sad categories from the HDM05 dataset are
employed. The HDM05 skeleton model is modified as described in
Section 3.

Other motion capture data such as those available in the Carnegie
Mellon University dataset (http://mocap.cs.cmu.edu/) are publically
available and accessible. However, in order for such data to be readily
usable for ANN purposes, the data need to be very consistent. Ideally,
the sequences need to be controlled cycles with similar model
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Fig. 11. A sample style translation output with different network parameters.

Table 3
Successful classification percentages for the KNN classifier with 4 different distance measures and the SVM classifier with 4 different kernels compared to RBFNN both with
and without PCA.

Classifier Type Happy Sad Young Old Energetic Tired Average

KNN KNN-E 100.0 100.0 93.3 100.0 100.0 100.0 98.9
KNN-C1 100.0 100.0 100.0 100.0 93.3 100.0 98.9
KNN-C2 93.8 93.8 100.0 100.0 93.3 100.0 96.8
KNN-C3 93.8 87.5 100.0 93.3 100.0 100.0 95.8
PCAþKNN-E 75.0 81.2 86.7 93.3 93.3 93.3 87.1
PCAþKNN-C1 68.7 75.0 93.3 86.6 93.3 100.0 86.1
PCAþKNN-C2 68.7 75.0 86.7 93.3 86.7 93.3 83.9
PCAþKNN-C3 68.7 75.0 86.7 93.3 93.3 100.0 86.2

SVM SVM-L 93.8 100.0 100.0 100.0 93.3 93.3 96.7
SVM-Q 100.0 100.0 86.7 93.3 100.0 93.3 95.5
SVM-C 100.0 100.0 86.7 100.0 100.0 93.3 96.7
SVM-R 56.2 87.5 93.3 86.7 100.0 60.0 80.6
PCAþSVM-L 62.5 62.5 93.3 80.0 86.7 86.7 78.6
PCAþSVM-Q 68.7 75.0 86.7 100.0 93.3 86.7 85.1
PCAþSVM-C 68.7 68.7 80.0 100.0 80.0 80.0 79.6
PCAþSVM-R 56.2 50.0 80.0 60.0 60.0 60.0 61.0

RBFNN RBFNN 68.7 81.2 93.3 60.0 86.7 60.0 75.0
PCAþRBFNN 87.5 93.8 93.3 93.3 100.0 93.3 93.5
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structures but performed multiple times. Furthermore, for the goal
put forth in this research, i.e. classification/translation of SF, they
need to be carried out with different SF types. To the best of our
knowledge, at the time that we conducted this research, there were
no publically available datasets from which multiple repeated and
controlled affective/stylistic sequences (such as those described in
the above paragraph) could be derived. Hence, we used segments
from the HDM05 and also recorded our own data.

The ANN ensembles are generated and trained in MATLAB as
described in Section 6. In general, the ensembles train well and
expected learning curves are achieved. Fig. 10 presents a sample
learning curve from the system.

When classification is carried out, 15-fold and 16-fold cross
validations are used for our dataset and the HDM05 dataset
respectively. Naturally, styles such as happy, energetic, and young
are often confused with one another even when observed by
human subjects. Similarly, confusion rates for sad, tired, and old
are quite high. It is therefore fair to expect for ANNs to show high
error rates should a 6-class system be used. Therefore, we use
binary-classes for evaluation of the outputs and do not mix the
affect, energy, and age related themes.

We evaluate the RBFNN by comparing its performance with
KNN and SVM classifiers. For KNN, 4 different distance measures,
namely, Euclidean (E), city-block (C1), cosine (C2), and correlation
(C3) are used. For SVM, we used 4 different kernel functions,
namely, linear (L), quadratic (Q), cubic (C), and RBF (R).

For the 3 classifiers, both PC coefficient vectors and raw data are
used, successive to time warping. Table 3 presents the results where

several trends are observed. For KNN and SVM, the raw data are
better features compared to PCs with an average of 97.6% and 92.4%
vs. 85.8% and 76.1% respectively. Also, KNN generally outperforms
SVM. For KNN, the distance measure doesn't show a significant effect.
For SVM, on the other hand, the RBF kernel performs with the least
classification accuracy. Compared to the other classifiers, the raw and
warped data are not classified accurately with the RBFNN. When
trained with PC coefficients, on the other hand, the results are highly
accurate and almost on par with the other classifiers. Meanwhile,
different style classes do not show any particular effect and no
particular theme is easier to classify compared to others. Finally
compared to other methods from the literature, discussed in Section
2 (Table 1), the performance of our approach is relatively high and
acceptable.

Style translation is carried out using the ensemble of RBFNNs
trained with neutral sequences as inputs and stylistic ones as
outputs. The different parameters of the system do not significantly
affect the translation process. A sample trajectory transformed from
neutral to energetic with different training termination rates (η¼ 0
and η¼ 10), number of RBFs (M ¼ 15 and M ¼ 2), and different RBF
spreads (ρ¼ 5 and ρ¼ 15), show comparable results. This is shown in
Fig. 11 where the differences in the output trajectories are only a few
degrees and thus insignificant. Similarly, other DOFs of the input data
show reasonable resilience towards the mentioned parameters.
Nevertheless, the different number of RBF neurons affects the
translation performance for blind data (not been used in the training
process). When many RBFs (more than 15) are utilized, over-fitting
occurs. This issue manifests itself as unnatural motion in the output

Fig. 12. Inputs and style translation outputs obtained using the RBFNN system. Top row shows happy, neutral, and sad; middle row shows young, neutral, and old; and the
bottom row illustrates energetic, neutral, and tired walks. In all three cases, the neutral walks were used as the network inputs and the illustrated affective/stylistic walks
were obtained as outputs.
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sequences. Our experiments show that 5 to 10 RBFs are sufficient for
proper generalization of the problem.

The neutral input and transformed outputs are animated using
WX Motion Viewer and illustrated in Fig. 12. Stylistic postures are
evident in the outcome. Top row shows neutral, happy, and sad
sequences. The middle row presents neutral, young, and old walks,
and the bottom row illustrates the neutral, energetic, and tired
sequences. Raised and increased sway in the arm motion as well as
longer steps are demonstrative of the successful style synthesis for
happy, young, and energetic styles. In the sad walk, the head is
tilted downwards, the arms are lowered, and motion is slowed
down. An accompanying video submitted with this manuscript,
animated using blender (http://www.blender.org/), better illus-
trates the outcome. No post processing is carried out on the output
data. Very little footskating indicates the accurate performance of
our method. Table 4 presents the confusion matrix for the outputs
perceived by 10 human participants. The table shows very low
confusion rates, denoting successful style translation. Further
investigations show that even when actions outside the initial
learning input class (neutral) are fed to the ensembles, style
translation is carried out with adequate accuracy. For example,
when an old walk is used as the input of a neutral-to-young
ensemble, the output is transformed to the young style. Artifacts,
however, are observed in some joints. Considering the pre-
existence of un-related types of SF in these input sequences, the
relatively high quality outputs are very promising.

According to the results presented in this paper, the classifica-
tion mode of our proposed system is on par with KNN and SVM.
While KNN shows slightly better performance, our method ben-
efits from higher generalization. Moreover, when trained without
the full dimensionality (without PCA), our method is capable
of style translation, which is itself a complicated and important
problem in the field.

8. Conclusions

In this paper we demonstrate that RBFs are effective tools for
modeling affective/stylistic features in motion capture data. It was
illustrated that few RBF/DOF can accurately model the SF sets and the
remaining spatiotemporal residues were perceptually and numeri-
cally insignificant. Subsequently, we presented a novel method using
an ensemble of RBFNNs for classification of style classes successive to
time warping and PCA. The method performed with high accuracy
when compared to other classifiers such as KNN and SVM with
different distance measures and kernels. We then trained a separate
ensemble which learned stylistic features and added them onto
neutral sequences. This approach was used for the process called
style translation. High quality animation was generated. Sufficient
spatiotemporal quality as well as perceptually sound translation of
styles, demonstrated the effectiveness of the proposed system. A
major advantage of the proposed method is that it benefits from
generalization capabilities of neural networks for both classification
and style translation. Finally, our approach is one of the few
techniques that uses a single tool, i.e. RBFNN, for both classification
and translation of affective/stylistic features in human motion.
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