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ABSTRACT 
 
 
This paper addresses the automatic generation of persuasive content to influence 

users’ attitude and behaviour. Our research extends current approaches by 

leveraging individuals’ social media profiles and activity to personalize the 

persuasive content. Unlike most other implemented persuasive technology, our 

system is generic and can be adapted to any domain where collections of electronic 

text are available. Using the Yale Attitude Change approach, we describe: the 

multi-layered Pyramid of Individualization model; the design, development, and 

validation of integrated software that can generate individualized persuasive 

content based on a user’s social media profile and activity. Results indicate the 

proposed system can create personalized information that (a) matches readers’ 

interests, (b) is tailored to their ability to understand the information, and (c) is 

supported by trustable sources. 

 
 

INTRODUCTION 

 
Persuasion has been defined as a purposeful attempt to change attitudes and/or 

behaviors (Fogg, 2003) and is an essential part of education, marketing, sales, and 

political communication where content consumers should be convinced that a 

certain product, skill, or approach is suitable and desirable for them. Given 

persuasive content is meant to influence opinions, beliefs, attitudes, or behaviours 

of intended audiences it can also critically affect individual, group and 

organizational decision-making.  

The use of information and communications technology (ICT) in persuasion is 

advantageous as ICT is ubiquitous, can deal with huge amounts of data, and it can 
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scale effectively (Fogg, 2003). It enables the collection and management of massive 

repositories of electronic data and information about global and cultural issues that 

can form the basis of content that can then be pushed out to potential recipients.  In 

addition, persuasive opportunities can be amplified by using the Internet and its 

associated technologies as enormous numbers of potential content consumers can 

be easily reached (Oinas-Kukkonen & Harjumaa, 2009). This reality has resulted 

in leveraging the use of digital documents for persuasion purposes.  However, since 

individuals possess different respective interests, characteristics, and abilities, these 

shared digital artefacts will not be equally persuasive to all users. 

To provide persuasive communication, users are often categorized according to 

characteristics like age, marital status, education, and occupation and provided with 

content specific to their characteristics. For example, television/online 

advertisements will target a program/website’s viewers, or financial institutions 

provide different promotional material targeting different demographics based on 

their perceived common needs. Although categorization can improve the 

persuasiveness of the content, it assumes individuals within a category are similar, 

which is not necessarily true. Individuals may have different points of view on a 

topic because of respective personal experiences, epistemic beliefs (Kardash & 

Scholes, 1996; Mason et al., 2006), or even dispositions toward knowledge 

(Crowson & DeBacker, 2008). More effective persuasion can be achieved through 

personalization, where the content is tailored for a specific person rather than to a 

category of people. For example, customized online ads based on browsing history 

and social media newsfeeds based on existing connections and recent activities 

target an individual user. Despite such initial attempts, there is a lack of a systematic 

approach to personalizing documents derived from electronic repositories for 

persuasion purposes.  

Existing research on persuasive software systems has focused mainly on changing 

behaviour, leaving attitude  a relatively under-addressed construct in systems 

research (Oinas-Kukkonen & Harjumaa, 2009; Torning & Oinas-Kukkonen, 2009). 

As attitude represents long term patterns of behaviours based on opinions and 

beliefs, it is a critical construct that needs attention to move research in persuasive 

systems forward. In addition, most existing persuasive systems have not been 

designed to work in multiple domains.  For example, a system designed to assist in 

weight loss is not easily adaptable to persuade people about energy conservation.  

To our knowledge, there is currently no systematic software solution for domain-

independent Persuasive Content Generation (PCG) that provides personalized 

persuasive content based on electronic text repositories to influence attitude.  

Past difficulties in designing such tools include the lack of personal data and 

associated computational models capable of manipulating content to facilitate 

persuasion. While it is acknowledged in the literature that ICT can amplify 

persuasion by allowing customized and individualized content (Slattery et al., 
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2020), the pervasive use of social media has created new opportunities to learn 

about individuals’ preferences, connections and trustable sources through mining 

their social media profiles and content that can be used to personalize content  

This paper addresses the problem of generating personalized persuasive content. 

The authors have previously proposed a general idea for personalized PCG (Khataei 

& Arya, 2015). Building on this initial work, we report on the full design and 

evaluation of our software framework and custom components that enable 

automatic generation of persuasive content based on: (1) the content consumer's 

social media profiles and activity; and (2) the original persuader’s objectives. The 

persuader’s involvement includes providing a database of source material and a set 

of rules that manage the content generation. We relied on Twitter data as a source 

of personal information, and the Yale Attitude Change (YAC) (Hovland et al., 

1953) as the main theoretical model as its focus is on the under-addressed construct 

of attitude. We propose a software framework and implementation that is not 

domain specific with three layers corresponding to YAC’s persuasive factors. 

These layers are the foundation for personalized and persuasive content that we 

believe will be retained.  

This paper is organized as follows. First, a brief review of the most relevant 

persuasion and persuasive technologies literature is presented. This is followed by 

a description of the design of our PCG system with its reusable modular web-based 

structure. A mixed-method experiment used to validate the system is then reported. 

Finally, limitations and future research are discussed. 

 

PERSUASION AND PERSUASIVE TECHNOLOGIES 

One of the early works in the field of persuasion is the Yale Attitude Change (YAC) 

approach (Hovland et al., 1953). According to YAC, effective persuasion of an 

audience consists of four steps: gaining the audience’s attention, adjusting the 

message’s comprehension level to a level the intended user can consume, ensuring 

argument acceptance, and finally ensuring the message will be remembered. YAC 

has shaped marketing and advertising (Aronson et al., 2009) strategies and is 

influential because of its simplicity. Most well-known theories of persuasion 

(Oinas-Kukkonen & Harjumaa, 2008; Ajzen, 1991; Cacioppo et al., 1986) are either 

inspired by YAC or share common elements with it. Furthermore, the YAC 

approach and its dissection of how a system persuades are used in notable 

Persuasive Systems Design (PSD) models. Oinas-Kukkonen and Harjumaa (2009) 

have emphasized how PSD leveraged YAC on human persuasion through rational 

processing of arguments. One of the main PSD design principles is articulating how 

the credibility of a system makes it more persuasive. System credibility consists of 

seven principles and aligns with YAC’s acceptance step. As highlighted in Oinas-
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Kukkonen and Harjumaa’s study, one-time or permanent behavior change is 

achieved more easily than attitude change (2009).  

The study of persuasive technologies first emerged in the late 1990s (Fogg, 1998). 

Fogg defines persuasive technologies as technology designed to change attitudes 

or behaviors of users through persuasion and social influence but not through 

coercion (Fogg, 2002). How researchers individuate persuasive strategies varies. 

Cialdini developed six principles(Cialdini, 2004). Fogg described forty approaches 

under a general definition of persuasion (Fogg, 2002), and others have listed over 

100 distinct tactics (Rhoads, 2007). Scholarly writing on these technologies began 

increasing in 2005 (Torning & Oinas-Kukkonen, 2009). More recently, Kaptein et 

al. studied how persuasive technologies can dynamically adapt to how users are 

persuaded (Kaptein et al., 2015). While these technologies all aim to directly 

change user behaviour, altering behaviour by first changing attitude has not 

received enough attention. According to Torning and Oinas Kukkonen (2009), five 

out of six persuasion-related studies address behavioural change and not attitude 

change. While behaviour involves the expression of feelings or action, attitude 

involves the mind’s predisposition to ideas, values, or people. Attitude structures 

can be described in terms of three components: 

 

• The affective component, involving a person’s emotions about the attitude 

object (e.g., “I am scared of spiders”). 

• The behavioural (or conative) component, involving how attitude influences 

how individuals act or behave (e.g., “I will avoid spiders and scream if I see 

one”); 

• The cognitive component, involving a person’s belief and knowledge about an 

attitude object (e.g., “I believe spiders are dangerous”) 

 

The ABC attitude model uses the above three components (Ellis, 1962) and 

assumes the link between attitudes and behaviour: that people are rational, that they 

always attempt to behave rationally, and that a person’s behaviour should be 

consistent with their attitude(s). While this principle may be sound, people do not 

always follow it and sometimes behave in seemingly illogical ways, such as by 

smoking cigarettes while knowing that smoking causes lung cancer and heart 

disease. LaPiere shows that the cognitive and affective components of attitude do 

not always match behaviour(LaPiere, 1934). YAC, on the other hand, is more 

suitable in PCG systems as it is designed explicitly for influencing attitude which 

will then causes behaviour changes.  

Torning and Oinas-Kukkonen (2009) and, later, Hamari et al.(2014) provide 

overviews of the history of applications in persuasive-systems design. According 

to Hamari et al.’s comprehensive literature review, the two most prevalent foci of 

persuasion-related studies are health and/or exercise (47.4%) and ecology (21.1%), 
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which included technologies aimed at conserving energy. Most of the above studies, 

some of which have resulted in commercial products or services, base behaviour 

persuasion on control sensors. Fit4Life, for example, combines the input of a 

number of sensors to help users achieve their weight-loss goals (Purpura et al., 

2011).  

The model tracks individual progress and generates actionable items by tracking 

sensor data and comparing that data against user goals. While these applications are 

intended to persuade users by controlling the behaviour, they are not designed to 

influence user attitude. That is, in the absence of the application, it is not guaranteed 

that the user follows the regular exercise to achieve the weight-loss goals. 

Busch and Patil used personalized content generated through surveys and 

gamification to train people to follow cyber-security best practices (Busch et al., 

2016). Gamification uses game concepts and mechanisms, such as competition and 

leader boards, in nonentertainment applications (McGonigal, 2012; Hunter, 2011). 

In Busch and Patil’s study, users started with reading personalized content, then 

they were presented with a quiz, a challenge, and a score. To encourage individuals 

to compete, the system posted scores on a board. While gamification can be used 

to increase engagement and potentially persuasion, the personalization in existing 

work is primarily in the form of categorization of users based on age, gender, or 

personality/gamer type rather than unique individual features(Busch et al. 2016; 

Orji et al., 2014).  

Personalization, as an alternative to one-size-fits-all approaches, has been 

investigated in some recommender and persuasive applications(Orji & Moffatt, 

2018), but they have been mostly focused on personalized experience such as in 

educational and persuasive games or recommended physical activities(Dharia et al., 

2018; Hagen et al., 2016; Macvean & Robertson, 2013; Orji et al., 2013).  

Less attention has been paid to personalization of content, particularly persuasive 

and educational text. 

In our literature review, we did not encounter a model that translated persuasion 

theories to a software that automatically generate persuasive, custom-made, 

personalized content. As briefly reviewed in this section, the following 

characteristics are collectively or partially missing in the existing research on 

persuasive systems: 

 

• Reliance on a comprehensive theoretical model Attention to attitude vs. 

behaviour 

• Personalization based on individual features as opposed to simple categories 

• Focus on educational text as content 
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While existing content generation methods may suffer from these shortcomings, 

there are existing components that we can use and/or improve in a new 

comprehensive and integrated system.  

 

 

SYSTEM DESIGN AND DESCRIPTION 

 
Our proposed system is based on a YAC-aligned layered model of 

individualization, social media data to create a user profile, and a flexible authoring 

structure as described in the following sections. While the approach can use any 

social network, on the initial system focuses on Twitter. We generally followed the 

rapid application development methodology (Martin, 1991) which includes 

requirements analysis; emphasizes reusable code and components; and the 

generation of prototypes in a build, demonstrate and refine cycle.  

 

YAC Layers and Pyramid of Individualization 

 

A large population can be divided into smaller population segments based on 

common characteristics, interests, and needs. While these factors allow people to 

be grouped, within each group, individuals can be differentiated by personal 

characteristics like experiences, friends and family, and opinions. We modeled 

these distinguishing factors as a multilayered pyramid that uses the general 

population for its base and narrows to a specific individual through layers of 

distinguishing characteristics.  

Figure 1 shows how we divided an individual’s basic characteristics into four main 

layers of the Pyramid of Individualization (PoI): segmentation (demographic 

characteristics such as age and gender), comprehension, personality traits, and 

person-specific individualization. The first three layers are usually shared amongst 

a large group of people. In contrast, the individualization layer includes personal 

features—like family history or personal opinions—that are shared within smaller 

crowds and can be truly individual (mutually exclusive). We represent these 

intimate features and final individualization at the pyramid’s tip.  

 



Design, Development and Validation of a Persuasive Content Generator     Khataei – Hine- Arya 

   
   

©International Information Management Association, Inc. 2020  52         ISSN: 1941-6679-On-line Copy 

. 

Figure 1. Pyramid of Individualization (PoI)

Personality Traits

Segmentation

Comprehension

Individualization

YAC Factor

Acceptance

Comprehension

Attention

 

 

Although we identified personality traits as a PoI layer, it is outside the scope of the 

current version of our software framework and the implemented PCG system. 

Future phases of this research will aim at incorporating that layer. 

Our multi-layer PoI model aligns with YAC and intentionally reflects its stages of 

persuasion. Segmentation makes sure that the topic is of general interest to the 

target group of people to attract their initial attention. The comprehension layer 

focuses on making the content understandable. Personality traits, once 

implemented, will help with these two YAC steps. The individualization layer is 

designed to make the content more acceptable. While none of PoI layers directly 

focuses on the YAC retention step, we hypothesize that together they will make the 

content more personalized and as such more memorable. 

YAC identifies recipient-attention attainment as the first step towards persuasion 

success. “Interesting,” “relevant,” and “enjoyable” are parameters that increase the 

likelihood of gaining reader attention (Vesanen, 2007). With respect to this study, 

our approach to segmentation focuses on determining a persuadee’s general areas 

of interest by categorization and mining social media feeds. 

YAC suggests that audience acceptance and retention first require that an audience 

comprehends the presented message. For example, through three experiments, 

Eagly demonstrated how lowering comprehensibility lessened message acceptance 

(Eagly, 1974). This directly relates to classical (manually tuned) readability indices 

like the Flesch-Kincaid Index (Kincaid et al., 1975), the Gunning Fog Index 

(Gunning, 1952), and the Coleman-Liau Index (Coleman & Liau, 1975). Moreover, 

the criteria “easy to follow,” “less complex,” and “easy to understand” have been 

identified by researchers as a means to assess content comprehensibility(Collins-

Thompson, 2014; Van der Sluis et al., 2014). Our approach involves assessing the 

comprehensibility level of online content that has been linked to through 
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persuadee’s social media posts and then ensuring that the persuasive content aligns 

with that comprehensibility level. 

Creating trust and credibility is a persuasiveness strategy that directly relates to the 

YAC acceptance stage. To be more granular, parameters like “trustworthy,” 

“accurate,” “authentic,” and “believable” have been commonly accepted as a means 

to increase the likelihood of reader acceptance of content (Appelman & Sundar, 

2016; Ravikumar et al., 2012).  This study relies on the definition of ‘trust’ by Cho 

et al.(2015). They define trust as, “The willingness of the trustor (evaluator) to take 

risk based on a subjective belief that a trustee (evaluatee) will exhibit reliable 

behavior to maximize the trustor’s interest under uncertainty (e.g., ambiguity due 

to conflicting evidence and/or ignorance caused by complete lack of evidence) of a 

given situation, based on the cognitive assessment of past experience with the 

trustee”. This definition is particularly helpful because it provides clear reference 

to the relationship between two parties, the trustor’s interest as the key goal, and 

the trustee’s past actions as a key factor. In the context of SNS and Twitter, trustee’s 

past actions are operationalized as tweets that are exchanged between trustor and 

trustee. 

Our approach to individualization involves using our proposed User Trust Graph 

(UTG) (Arya et al., 2018) built from the persuadee’s Twitter follower/followee 

structure to identify credible sources from which additional content can be 

appended to the persuasive content. 

 

PCG System Overview 

 

Our PCG system is shown in Figure 2. It is a collaboration between the following 

actors: 

 

• System: the personalization system that assembles and prepares the 

content. 

• Author (persuader): the content designer who creates the document 

templates and rule files that determine the main content topics and 

desired content sentiment. Content could convey a positive, neutral or 

negative sentiment.  

• Reader (persuadee): the intended receiver of personalized content who 

logs into the system with proper authentication through their social-

network account. 

• Support: a trustable source (for example, a close friend, family member, 

public figure or organization) who has published material the system 

can use as supporting opinion 

 



Design, Development and Validation of a Persuasive Content Generator     Khataei – Hine- Arya 

   
   

©International Information Management Association, Inc. 2020  54         ISSN: 1941-6679-On-line Copy 

. 

Figure 2. PCG detailed overview 

 
 
The PCG system has two major parts: 

 

• User Interaction that includes components to process data related to the 

Author and Reader. 

 

o The author provides the inputs by storing the document template, 

content rules and knowledge repository path in a designated 

directory that is accessible by the system. 

o The reader signs in and authorizes the system to access his/her 

Twitter account and build the persuasive content through a web 

browser.  

 

• PoI Layers that receive the users’ data and create the content 

 

Author-related components are: 

 

• Document template: The document contains the template for the persuasive 

content. The locations that require personalization by the system are 

identified with a unique ID in this template. It allows the aggregation of 

content from multiple sources. 

• Content rules: the core logic prepared by the persuader and fed to the system 

to collect and summarize content.   

• Knowledge repository: a collection of author-provided articles and 

documents.  
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The profile builder uses the collected data from the persuadee’s social network 

account to assemble the user profile. The data from the user profile is later used to 

predict the user’s comprehension and interest score. 

The PoI layer components include the: 

 

• Segmentation layer: the component where the system selects and assembles 

the initial content 

• Comprehension layer: this ensures that persuasive content is worded at an 

appropriate level of complexity for the persuadee. The main engine that 

facilitates this result is the complexity assessment module for unstructured 

data in the user profiling subsystem. 

• Individualization layer: the component where the system collects and 

appends related content (opinion) from users’ credible sources as supporting 

information. 

 

 

Rules Definition 

 

Content rules are the essential core logic prepared by the persuader in XML format 

and fed to the personalization engine to collect, analyze, and personalize content. 

The rules are defined as XML elements that contain the two mandatory attributes 

called topic_id and polarity, as shown in Figure 3. The topic_id attribute uniquely 

identifies the rule, and the polarity attribute indicates the sentiment of the content 

that will be retrieved from the knowledge repository and ultimately displayed to the 

persuadee. The polarity attribute reflects author’s (persuader’s) expected attitude or 

emotion towards the content (text), i.e., whether it is positive, negative or neutral.  
Within each rule, there can be many content elements. Each content element 

contains two attributes (segment, and weight), and a list of values. Segment 

indicates an area of interest within the given topic.  For example, in Figure 4 , we 

see the overall topic being about solutions on fighting back climate change, and 

there are five content elements with cost management, cultural revolution, 

technology development, environmental education and resource contamination 

listed as segments. The weight attribute is used to boost the query clause. 

Knowledge repository contents matching this clause will have their score multiplied 

by the weight attribute. 

For each segment, there is a list of values which reflect sub-areas of interest for the 

given segment. The values are separated with semicolons as demonstrated in a 

generic rule example figure. After user profiles are built from social media 

accounts, they are matched against the rule file.  If a match occurs, a query clause 

is built, and content is pulled from the knowledge repository. If more than one 
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segment matches a user profile, then the weight attribute is used to determine the 

relative importance of each of the different segments.  

 

Figure 3. Fighting climate change. A generic rule example 

 

 
 

As highlighted above, polarity (positive or negative sentiment) is a mandatory rule 

element attribute.  When the system collects supporting opinion, it ensures that the 

sentiment associated to the opinion is aligned with the retrieved information from 

the knowledge repository. This way, the system avoids a contradiction between a 

supporting opinion and the original information.  

The rule workflow is demonstrated in Figure 4. Besides creating normal (generic) 

rules, the author can add manual rules to overwrite the contents that have been 

retrieved by generic rules and identify specific content to be added. Doing so allows 

the author to prepare content and directly insert it into the final document. 

 

Figure 4. Rule Workflow Overview 

 

 
 

User Profiling 

 

Before collecting content for the personalized document, the system needs to 

identify the target reader. The building of user profiles is shown in Figure 5 . The 
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primary data source for user-profile creation is the user’s social media account. We 

used Twitter accounts because of their public-access flexibility using REST API. 

Our system creates user profiles from three information sources: 

 

• Structured data: Twitter-profile information; 

• Unstructured data: user tweets; and 

• Persuadee direct input: additional information directly provided by the 

persuadee 

 

Figure 5. User-profiling overview 

 
 

 

 

Structured Data 

 

Personal user information, such as name, age, location, and a summary of interests, 

is available in most social network and microblog services for researchers.  

Through open API, this information is easy to collect, and since the data is 

preorganized, it can be stored as is; however, data can be incomplete (a user may 

choose not to post bio details) or misleading. Furthermore, other relevant user 

attributes, such as explicit and implicit interests or political preferences, are usually 

missing. Cheng et al. (2010) estimated that only 26% of users report a specific 
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location, while the rest provide either general locations (e.g., states/provinces, 

countries) or nonexistent places. Pennacchiotti and Popescu (2011) conducted a 

pilot study of a similar nature to assess direct use of public profile information, such 

as gender and ethnicity, from Twitter. In a corpus of 14M active users in April 2010, 

they found 48% of users provided a short bio and 80% a location. Therefore, we 

decided not to rely solely on extracted data from user profiles.  

 

Unstructured Data 

 

Users’ tweets are a good example of unstructured data and cover insights on 

personal attitudes toward different topics (e.g., political orientation or ethnicity). 

To extract the information, the system relies on features like typical n-grams 

models, simple sociolinguistic features (e.g., presence of emotions), and 

communication behaviour (e.g., frequently retweeted content). After extracting a 

keyword from the tweet (first module), the system runs the domain-classification 

(categorization), and complexity-assessment modules.  

 

Keyword Extraction 

 

Well-known Term Frequency–Inverse Document Frequency (TF-IDF) (Sammut & 

Webb, 2010) and TextRank (Mihalcea & Tarau, 2004) are two of the most practical 

and conventional techniques for keyword extraction. Both techniques can extract 

user interests from a collection of tweets with great precision (Vu & Perez, 2013). 

They are not, however, appropriate for a single tweet since most terms in a tweet 

are used only once. We, therefore, used the default MAUI (Medelyan et al., 2010) 

toolkit as a baseline for automated keyword collection. MAUI enables the 

extraction of a list of potential keywords from a document and trains a decision tree 

using features like TF-IDF. 

 

Domain Classification 

 

Keywords on their own can be vague, ambiguous, and polymorphic. For example, 

a word like bond can have a variety of meanings in various contexts. Classifying 

keywords by domains helps identify keyword hyponymies and hypernyms: word X 

is a hyponym of word Y if X is a subtype or instance of Y. For example, bond in 

the finance domain is a hyponym of debt; at the same time, it is a hypernym of a 

broad range of asset types, such as government bonds, municipal bonds, and 

corporate bonds. Defining such a hierarchy for keywords can help predict user 

preferences. For instance, if a user prefers content about Java, C++, and Javascript, 

the person would likely be interested in other programming languages.  
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We used a Word-Class Lattice (WCL) supervised model to identify textual 

definitions and extract hypernyms from those definitions (Faralli & Navigli, 2013). 

After evaluating WCL with a dataset of 1000 first-paragraph sentences randomly 

sampled from Wikipedia, we found the tool adequately rates precision, recall, and 

accuracy of definition and hypernym extraction.  

 

Complexity Assessment 

 

Our personalization process assesses user comprehension via a user-document-

keyword-complexity evaluation that ensures that the complexity of generated 

content matches user preference. The simplest way to perform a comprehensibility-

based ranking for a given topic is to build a classifier that assigns a 

comprehensibility score. Inspired by Tan et al.’s approach (2012), we trained a 

logistic-regression classifier by using comprehensibility indices to extract pages 

from Simple English Wikipedia and English Wikipedia. This allowed us to have 

two versions of a text: normal and simplified. The maximum number of characters 

per tweet is 280. Since the above method relies on word length and sentence length, 

and since 280 characters are insufficient for calculating comprehension score, we 

only assessed the comprehension score for tweets that contained URLs to other 

documents. The PCG system then ensures that the persuasive content 

comprehensibility is consistent with the generated comprehensibility score. 

 

Persuadee Direct Input 

 

Insufficient tweets, or ambiguity and a lack of consistency in collected tweets is a 

major challenge for automated systems and can introduce misrepresentative data to 

user profiles. To address these issues, we built a survey-generator module. The 

system uses the survey-generator module when it fails to identify a user preference 

on a topic. We designed the survey to enable sufficient data collection to tune a 

predicted user-interest-and-comprehension score. Once the system accesses 

persuadee’s tweets and determines the need for additional data collection, the 

persuadee’s web browser is redirected to the system generated survey. The 

workflow is illustrated in Figure 6. 
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Figure 6. Collecting user data through PCG survey-generator module 

 
 

The system generates two types of questions: segregation preference and 

comprehension preference:  

 

• Segregation-preference questions are generated based on the segment attribute 

in the generic-rule file (e.g., in Figure 7, the questionnaire asks for the user’s 

income level) and help the system segregate users and assemble persuasive 

content; 

• Comprehension-preference questions ensure users have the adequate 

background knowledge to comprehend the persuasive content. For instance, 

a well-known professor might possess advanced knowledge of computer 

science but be an intermediate mechanic; thus, he prefers easy-to-

understand mechanical repair instructions. As Figure 7  shows, the system 

asked readers to rank their expertise level (from 1 to 5) of a given topic. 

This information is necessary for the system to adjust the level of presented 

background knowledge in the final personalized document. 
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Figure 7. RRSP Benefit document template, rule template, and survey layout 

 

Document Template 

 

Rule Template 

 

Persuadee Direct Input  

 

 

 

 

 

Information Assembler: Segmentation 

 

Once an adequate user profile has been built the system will start to assemble 

content through the segmentation layer. It initiates by building a query to retrieve 

documents from a knowledge repository. The current implementation’s knowledge 

repository is a Solr Apache Lucene collection that contains articles for a specific 

topic (articles are indexed according to title and author-assigned keywords). The 

author gives the system the knowledge-repository URL. The Solr query to retrieve 

documents consists of two rule factors that are ordered according to priority: 
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When the system executes a given query by an author, it applies the sentiment-

analysis module from the polarization of user-profile keywords compare the 

extracted content sentiment with the assigned sentiment value given in the rule. 

This ensures the contents sentiment polarity is consistent with the author’s intent. 

In addition, building the query means a user does not necessarily fall into a single 

category. For example, because a user may relate to multiple domains (rule topic), 

the query will expand to include all categories.  

Solr returns a list of relevant documents which are summarized using an 

unsupervised technique using TextRank algorithm. TextRank is easy to adapt and 

ranks all sentences in a text. It consists of similar tasks like building graphs for 

texts, where the graph vertices represent the units to be ranked (Mihalcea & Tarau, 

2004).  

Our system includes a modified TF-IDF weighting system (a common numerical 

statistic used in TextRank) (Salton & Mcgill, 1986) wherein TF-ISF (Allan et al., 

2003) weights are computed instead. TF-ISF is a more suitable weighting system, 

since it ranks sentences instead of words. TFi,j is the term frequency of ith index 

term in the jth sentence, and ISFi is the inverse-sentence frequency of ith index term.  

 

Like the TF-IDF model, the corresponding weight for a sentence is computed as: 

 
𝑤𝑠𝑖𝑗=𝑡𝑓𝑖𝑗 . 𝑖𝑠𝑓𝑖 (1)    

Due to the effectiveness of cosine similarity, we have used it to measure the 

similarity weight between the two sentences (sa and sb). 

 

𝑤𝑠𝑖𝑚(𝑠𝑎 , 𝑠𝑏) =
∑𝑤𝑠𝑖,𝑎 . 𝑤𝑠𝑖,𝑏

√∑𝑤𝑠𝑖,𝑎
2 . √∑𝑤𝑠𝑖,𝑏

2

 
(2) 

To preserve content coherence, the system retrieves and reorders the top n sentences 

according to the source document’s original order. If the system fails to retrieve 

• Rule content specialization within the content’s domain (e.g., 

retirement fund in Figure 7) 

• Rule segment User criteria required for content segregation (e.g., 

middle-class income in Figure 7 ) 
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relevant content from the knowledge repository, it relies on author-given default 

content in the presentation template. 

 

Opinion Mining: Individualization 

 

To individualize the content, the system identifies trustworthy sources and pulls 

their relevant content to augment and individualize the overall content presented to 

the reader. Highly trustworthy communicators inspire positive attitudes toward the 

positions they advocate (Sternthal et al., 1978). Collecting supporting opinion from 

a trustable source requires multiple subprocesses (as Figure 8 illustrates).  

 

 
Figure 8. Overview of individualization layer 

 
 

 

Identifying the Individualization Topic 

 

Domain classification of content is the prerequisite for mining supporting 

arguments (opinions). As discussed earlier, the system collects content via user 

profiling and by applying author-driven content rules. Each rule element contains a 

polarity attribute that indicates an author’s perspective toward a content element. 

To avoid contradiction between a supporting opinion and the content, the system 

first conducts a sentiment analysis on the content to identify content polarity. For 

instance, the following sentence implies a negative opinion about investing: While 

stocks have historically performed well over the long term, there's no guarantee 

you'll make money on a stock at any given time, and you could lose all your 

principal. Thus, the following would not make a good supporting opinion because 

it expresses the opposite perspective: Just made a $3,000 investment in stock last 

year, and it turned into a $25,000 fortune within a couple years. 
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Sentiment Analysis 

 

Negative user preferences should be segregated from positive user preferences. The 

polarity of a sentiment is the point on the evaluation scale that corresponds to how 

positive or negative a sentiment is. Here we leverage from sentiment analysis on 

extracted keywords to determine whether user preference is negative, neutral or 

positive. Besides, by comparing the polarity of user sentiment toward the extracted 

keywords and the polarity of the presented content, we ensured user sentiment 

aligns with author-selected polarity. We performed sentiment analysis in the 

following cases: 

 

• User keywords to determine user preferences 

• Collecting opinionative information that is aligned with author selected rule 

polarity 

• Collecting contents that is aligned with author selected rule polarity 

• Evaluating trust between two users 

 

To conduct the analysis, the sentiment-analysis module from the polarization of 

user-profile keywords relied on uClassify sentiment-analysis toolkit 

(https://www.uclassify.com/). uClassify treats sentiments as non-binary, and in this 

study, sentiments were classified using common categories like positive, negative, 

and neutral. Though, conducting sentiment analysis on user preference is not the 

only place where we leverage from uClassify. The next section further discusses 

how the system leverages from sentiment analysis on other related processes to 

create a persuasive content. 

 

Searching for the Trustable Source 

 

Online reputation and expertise are built through consistent and repeated 

contributions to online communities. We observe this in blogging communities and 

online review sites, among others where there isn’t a strict limit on content creation.  

Twitter poses different challenges as a tweet has a length restriction, and we thus 

focus on the number of likes, re-tweets of posts, and our polarity analysis of the 

tweet content and responses. We use these interactions and analyses to build trust 

graphs that evaluate the trust between two people.  

Neither a social graph nor structured data (such as total likes or retweets) are 

sufficient to measure user trustworthiness in a given social Twitter group. The 

sentiment associated with tweets shared between two parties is important. Existing 

approaches only use structured data to consider relationships among users.  

To measure user trustworthiness in a given social Twitter group, we introduced the 

User-Trust Graph (UTG) (Arya et al., 2018) to estimate relationship-trust strength 
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from interactions (e.g., communication, tagging) and common interests. This graph 

is based on trust-score calculation as a function of time and tweet sentiment. As 

reported in (Arya et al., 2018), the UTG and has been pilot tested and initially 

validated.  

The graph consists of nodes (corresponding to user accounts and tweets) and edges 

(corresponding to follow and retweet relationships). Unlike the Twitter social 

graph, which is relatively static, the user-trust graph is dynamic and reconstructed 

when: one user mentions the other in a tweet, both users share a retweet or hashtag, 

one user likes a tweet by the other. 

We modelled interactions between two Twitter users through a trust graph with 

multiple links. In this user-trust graph, each node represents a user. There are two 

types of edges in this graph: directed and undirected. A directed edge between two 

nodes—A and B—exists if User A mentions User B in at least one tweet or likes a 

tweet from User B or retweets at least one of User B’s tweets. When two users share 

a common hashtag or retweet, there is an undirected edge between two nodes (as 

Figure 9 illustrates).  

 

Figure 9. User-trust graph 

 
 

The system performs sentiment analysis on interactions between users and assigns 

respective positive, neutral, or negative scores. Despite the sentiment of a tweet’s 

content, when a user retweets another person’s tweet, the interaction is considered 

to have a positive score. But a retweet with a negative comment is considered to 

have a negative score. Intuitively, sum of interaction scores (sentiment) between 

two users is interpreted as trust strength between them.  

Several PCG prototypes were built, demonstrated and refined. The following 

section describes the validation of the final system. 
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EVALUATION 

Evaluation Overview 

 

To evaluate the system, we employed a between-subjects experimental design 

where subjects were randomly assigned to a PCG condition (n=23)_ or a generic 

condition (n=25). Subjects in the PCG condition received fully personalized 

persuasive content generated by the PCG system while subjects in the generic 

condition received directly from a popular press source. Questionnaires related to 

persuasion were administered before the participation, right after the participation, 

and two weeks later.  Climate change was chosen as a suitable domain to evaluate 

the system since many studies have attempted to persuade people to take action 

against climate change as it remains one of the largest problems we face globally. 

Changing people’s attitudes about socio-scientific issues like climate change has 

unique challenges(Mason et al., 2006)(Lombardi & Sinatra, 2012): according to 

Sakamoto and Goldstone, “it is complex, multidimensional, and requires systems 

thinking, that is, the ability to think and reason abstractly about systems to 

appreciate their interactive nature” (Goldstone & Sakamoto, 2003). The choice of 

climate change is also consistent with Oinas-Kukkonen’s stated requirement 

persuasive systems address global and cultural issues (Oinas-Kukkonen, 2013). 

Participants in the generic group were presented persuasive content from National 

Geographic1. 

The generic content was 598 words in length and had a Flesch-Kincaid readability 

score of 10.5 reflecting that the content is easy to read and easily understood by an 

average eleven-year-old student. The generic text was structured to demonstrate 

solid evidence for global climate change and to support that humans are 

contributing to the trend.  

 

Hypotheses 

 

As YAC was the model that informed the design of the PCG, we used the YAC 

factors attention, comprehension, acceptance, and retention as assessment 

mechanisms to evaluate the persuasiveness of the presented content. According to 

YAC (Hovland et al., 1953), to maximize the chance of persuading a user to take 

action or change opinion, first, their attention must be gained and the content’s 

comprehension level must be adjusted so the user can read and understand the 

message.  

As Vesanen and, later, Zhou et al. state, “Interesting,” “relevant,” and “enjoyable” 

are parameters that increase the likelihood of gaining reader attention (Zhou et al., 

 
1https://www.nationalgeographic.com/environment/global-warming/global-warming-solutions/ 
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2012; Vesanen, 2007); we, therefore, proposed the following attention related 

hypotheses: 

 

H1: The readers find the PCG content significantly more interesting than the 

generic content. 

 

H2: The readers find the PCG content significantly more enjoyable than the 

generic content. 

 

H3: The readers find the PCG content significantly more relevant than the 

generic content. 

 

The criteria “easy to follow,” “less complex,” and “easy to understand” have been 

identified by researchers as a means to assess content comprehensibility (Collins-

Thompson, 2014; Van der Sluis et al., 2014) therefore, we proposed the following 

comprehension related hypotheses: 

 

H4: The readers find the PCG content significantly easier to follow than the 

generic content. 

 

H5: The readers find the PCG content significantly less complex than the 

generic content. 

 

H6: The readers find the PCG content significantly easier to understand than the 

generic content. 

 

YAC defines the persuasion cycle as complete when the persuadee accepts and 

retains the presented information. Parameters like “trustworthy,” “accurate,” 

“authentic,” and “believable” have been commonly accepted as a means to increase 

the likelihood of reader acceptance of a content (Appelman & Sundar, 2016) we, 

therefore, defined the following acceptance related hypotheses: 

 

H7: The readers find the PCG content significantly more trustworthy than the 

generic content. 

 

H8: The readers find the PCG content significantly more accurate than the generic 

content. 

 

H9: The readers find the PCG content significantly more authentic than the 

generic content. 
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H10: The readers find the PCG content significantly more believable than the 

generic content. 

 

In the context of our study, retention refers to remembering the effect of the 

treatment. Some scholars define it as the persistence to perform (take action) a 

learned knowledge or behavior (Rubin & Wenzel, 1996; Ausubel, 1963). While 

individuals may remember the content due to factors other than the persuasiveness 

of content (such as their personality traits and memory), the overall statistical result 

can be a measure of persuasiveness as it includes a random set of participants. Prior 

research has used a two-week delay (Liebowitz & Frank, 2010)) to assess retention 

of a message. 

 

H11: There is no significant change in PCG-group-participant intention to take 

action toward climate change between their post-treatment response to their 

two-weeks post-treatment response. 

 

Finally, we assess the impact of the treatment on influencing participants’ attitude 

and potential action towards climate change.  

 

H12: There is a positive significant change in PCG-group-participant attitudes 

toward climate change from the pre-treatment to post-treatment responses. 

 

H13: The readers of the PCG content are significantly more likely to have the 

intention to take action against climate change than the readers of the generic 

content. 

 

Methodology 

 

The content of the XML rule files followed Norwegian psychologist Espen 

Stoknes’s advice on how to prepare persuasive contents (Stoknes, 2015) for 

climate change. Stoknes identified localized content with positive sentiment as an 

appropriate strategy to fight climate change. He argues against talking about global 

effects and says targeting messages to local perceptions will more effectively 

communicate the dangers of climate change. For instance, after Hurricane Sandy, 

New Yorkers understood sea-level rise; similarly, Californians now understand 

long-term drought. We downloaded 100 articles related to climate-change problems 

and solutions from Yale Environment 360, an online magazine published by Yale 

School of Forestry & Environmental Studies and Yale University. Each article 

contained 1000 to 2000 words and provided opinion, analysis, reporting, and debate 

on global environmental issues and features original articles by scientists, 

journalists, environmentalists, and academics.  
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In addition, we connected the PCG to The Guardian API so that the PCG could 

collect articles without having to download and host them separately.  

Participants had to be 18+ years old, have a valid twitter account and be a fluent 

English speaker. They were recruited through a variety of postings on online 

channels at a major Canadian university.  Once a potential participant visited the 

experiment website, they were randomly assigned to either the PCG or generic 

groups.  

We designed three questionnaires to measure participants’ opinions and feedback 

at three different points in time (Appendix I).  Participants in both groups received 

all questionnaires. The pre-treatment questionnaire contained three questions 

answered before reading any content assessing participants’ current views on 

climate change, and their ability to control environmental quality. The post-

treatment questionnaire contained questions that are answered immediately after 

reading persuasive content. It includes a repeat of the three pre-treatment questions; 

an additional question about the subject’s intention to take action against climate 

change; and a series of questions assessing attention, comprehension, and 

acceptance. The two-weeks post-treatment questionnaire was given two weeks after 

reading persuasive content, repeating the question assessing subjects’ intention to 

take action against climate change (used in assessing retention).  Two-week 

intervals have been used in other similar projects (Liebowitz & Frank, 2010) to 

assess retention of a message. 

As we obtained results from Likert-scale data (ranges 1-5), with a limited number 

of responses, we could not assume our data were parametric, leading us to analyze 

them via nonparametric statistical methods.  We used the Mann-Whitney test to 

assess whether two sets of data were significantly different from each other across 

and within treatments.  

After submitting the questionnaire, participants were asked to log into the main 

system using their Twitter account. For those participants in the PCG treatment, the 

system-built user profiles by collecting the first 500 recent tweets from each Twitter 

account. The data processing task consists of extracting keywords and identifying 

the keywords’ hyponymy (domain). Keywords given in user profiles demonstrated 

users’ respective topic-relation factors. When the system was building the query, it 

looked for matching rule segments in the user profile`s keyword collection. The 

segment with the highest ratio match was picked for the query. If the segment failed 

to match any of the user’s keywords, the system looked for matching rule segment 

in the user profile as a fallback. Once the query was completed, the system passed 

the query to Solr so that the most relevant documents from the knowledge 

repository could be retrieved.  

To identity a quote on climate change from a trustable source, the system first 

generated a user-trust graph. We relied on users’ Twitter interactions (likes, 

mentions, and retweets) to build trust graphs.  
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The system sorted graph results using a descending trust value; the system used the 

first fifty trustable sources to generate a list. As a fallback method, we created a 

second list from all the profiles that the user followed. The system passed both lists 

to Solr so Solr could retrieve the most relevant quotes from the knowledge 

repository. Based on the above, the PCG system presented the user with 

personalized content on climate change. Participants in the generic treatment 

received the National Geographic content as previously described.  

After reading the content, the system asked the participants to complete the second 

questionnaire. The process of completing Questionnaire 1, reading the climate 

change content, and answering Questionnaire 2 was designed to take approximately 

fifteen minutes. However, we enforced no hard limit on how long participants spent 

on the experiment. Participants were also asked to respond to a follow-up 

questionnaire two weeks from the date of the study.  

 

Results 

 

The results for the attention questions are presented in Table 1. For the “Interesting” 

and the “Relevant” questions, the computed p-values are significant. In the 

“relevant” category, the PCG mean value is higher than the generic mean value. 

However, for the “interesting” question, the mean value for the Generic group is 

higher than that of the PCG group, which is the opposite of what was hypothesized.  

 

Table 1. Attention-related results 

**significant at .01 
 PCG Generic Mann-Whitney U 

Question Mean Variance Mean Variance U p-value 

Interesting 4.045 0.426 4.167 0.667 297 < 

0.0001** 

Enjoyable 3.545 1.117 4.000 0.870 332 0.133 

Relevant 4.364 0.433 2.917 1.036 68 < 

0.0001** 

 

 

Based on these results, we accept H3 and reject H1 and H2. Overall, there was 

partial support that the PCG content attracts more reader’s attention than the generic 

persuasion content. 

Results for the comprehension questions are shown in Table 2 below. As shown the 

computed p-value is significant for the “Easy to follow” question.  
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Other results were not significant.  We therefore accept H4 and reject H5 and H6. 

Overall, there was partial support for the PCG generated content being more 

comprehensible than the generic persuasion content. 

 

Table 2. Comprehension-related results 

**significant at .01 

 

 PCG Generic Mann-Whitney U  

Question Mean Variance Mean Variance U p-value 

Easy to Follow 4.545 0.450 3.792 1.129 152 0.002** 

Complex 2.455 1.212 2.958 1.259 327 0.146 

Understandability 4.227 0.755 3.792 1.303 208 0.124 

 

 

Results for the ‘acceptance’ questions are show in Table 3 below. As shown the 

computed p-value is significant for two questions. Mean responses for both the 

“accurate” and “believable” questions are significantly higher for PCG than the 

generic group. Thus, by accepting H8 and H10 and rejecting H7 and H9, we found 

partial support for PCG content as being more acceptable than generic content.  

 

Table 3. Acceptance-related results **significant at .01 

 
 PCG Generic Mann-Whitney U 

Question Mean Variance Mean Variance U p-value 

Trustworthy 
4.136 0.790 4.208 0.694 

273.5 0.075 

Accurate 
4.273 0.684 4.042 0.650 

221 0.002** 

Authentic 
3.955 0.807 3.875 0.984 

251 0.893 

Believable 
4.545 0.355 3.625 1.201 

137.5 0.001** 

 

 

To test retention of the PCG system we assessed the ‘Intention to act’ responses 

from immediately after reading the content with responses two weeks later. Results 

are shown in Table 4. As shown, there was a significant decrease in the responses 

to the ‘intention to act’ question indicating that the initial impact of the system’s 

content was not retained over time. We thus reject H11.  
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Table 4. Retention Results for “Intention to Act against climate change” 

*significant at .05 

 

 T2 T3 Mann-Whitney U 

Group Mean SD Mean SD U p-value 

PCG 4.364 0.790 3.636 1.049 338 0.01* 

Generic 3.958 0.908 3.708 0.908 336 0.259* 

 

 

To test H12, we evaluated responses to the attitude towards climate change 

questions for the PCG subjects across T1 and T2. Results are shown in Table 5 

below.  As shown, the only significant change was in responses to ‘environmental 

problems being exaggerated’ which were reduced after reading the PCG content.  

There was thus partial support for H12.  

 

Table 5. Results attitude towards climate change 

**significant at .01 

 

 T1 T2 Mann-Whitney U 

Question Mean SD Mean SD U p-value 

Evidence of Climate Change 4.500 0.598 4.636 0.492 216 0.717 

Effect on Quality of Environment 2.318 1.211 2.182 1.006 249.5 0.871 

Environmental Problems Exaggerated 3.182 0.733 2.591 0.590 346 0.009** 

 

 

To test H13, we evaluated the responses to the ‘Intention to act against climate 

change’ question taken immediately after reading the persuasive content across 

the two treatments.  As shown below in Table 6, responses from the PCG subject 

were significantly higher than those assigned to the generic treatment thus 

supporting H13.  

 

Table 6. Results of Intention to Act Against Climate Change 

**significant at .01 

 
 PCG Generic Mann-Whitney U 

Question Mean Variance Mean Variance U p-value 

Intention to Act 
4.364 0.790 3.958 0.908 

197 <0.0001** 
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While the results are mixed, there is evidence that the PCG system can outperform 

generic persuasive content. Overall, there was partial support for each of the 

attention (H1, H2, and H3), comprehension (H4, H5, and H6), and acceptance (H7, 

H8, H9, and H10) evaluation hypotheses. Subjects in the PCG treatment found their 

content significantly more relevant, but significantly less interesting than those 

subjects in the generic treatment. Due to the PCG-segmentation components, PCG 

content had a higher relevancy mean value than the generic content. Subjects in the 

PCG treatment found their content significantly easier to follow, but not 

significantly less complex or easier to understand than the subjects in the generic 

treatment. Subjects in the PCG treatment found their content significantly more 

accurate and believable but not significantly more authentic or trustworthy than 

those subjects in the generic treatment. One of the PCG-content sections was 

dedicated to the latest personalized news related to climate change. Typically, 

during this phase of personalization, the PCG system looked for news articles 

within the participants’ respective geolocations. Thus, participants were likely 

personally connected to the news-article content rather than scientific facts in the 

generic content. We also documented that enhancing the PCG content with news 

articles from reputable news agencies improved the content’s believability. The 

PCG system was very effective in significantly increasing subjects’ intention to 

take action against climate change (H13) but unfortunately said the impact was not 

retained when subjects were evaluated two weeks later (H11).   

Finally, after exposure to the PCG content, subjects significantly reduced the degree 

to which they thought environmental problems are exaggerated. However, there 

was no significant change in subjects’ thoughts about evidence of climate change 

or the degree to which they feel they can affect the quality of the environment.  

Results could be because climate change was already well-known among 

participants as subjects were like to belong to a moderate-to-highly educated group 

of people.  

While the results are encouraging there are several limitations to the evaluation that 

may have contributed to the mixed results. First, the sample size is small and thus 

the results should be interpreted with caution. Also, the sampling is from a limited 

population as recruitment was done within a university environment.  This resulted 

in a relatively highly educated set of participants who may already be 

knowledgeable about the impacts of climate change and thus persuading them may 

have limited possibilities. Finally, the measures used to assess attention, 

comprehension, acceptance, and retention were primarily indirect. 
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CONCLUSION AND FUTURE RESEARCH 

This paper addresses the problem of delivering personalized persuasive content 

through a semi-automated system. The primary research goal was to provide a 

computational model, design and develop a system based on that model, and 

perform a preliminary evaluation to determine whether the system can improve the 

persuasiveness of content compared to generic persuasive text written by an expert. 

Unlike most other persuasion system efforts, the PCG can be used in multiple 

domains and is informed by a model (YAC) that is focused on attitude change.  

The contributions of this paper are many. It introduces the PoI as a new model and 

basis for creating persuasive content. The new model extends the YAC factors into 

the context of persuasive text by defining different layers of personalization. In 

addition, a pluggable software framework that integrates newly designed re-usable 

software components with existing ones is presented.  

These new components include: a rule-based component to create and control 

personalized content by the author (persuader); a User (persuadee) profile builder 

based on extracting information from social media data; and a user trust graph and 

related algorithms for selecting trustworthy supportive information. Overall, initial 

results indicate evidence of the PCG content being more persuasive than generic 

content.  

Future work will include identifying partnerships with industry who typically rely 

on text for persuasive purposes. We will initially focus on public health institutions 

who have large portfolios on diverse topics where text is often used for educational 

purposes. This will require an investigation into privacy concerns. Additional work 

on the PCG system itself will include using other social media and aggregating 

different sources of data.  This could include incorporating relevant personal tweets 

and opinions into the PCG content rather than relying on BrainyQuote or similar 

repositories. As the system evolves, we plan to validate an integrated persuasion 

scale incorporating the YAC factors of attention, comprehension, acceptance, and 

retention. Finally, we hope to expand the system to include the personality traits 

layer of the PoI model. 
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