
0-7803-7724-9/03/$17.00 2003 IEEE 500

FIX: Feature-based Image Transformations
for Face Animation

Ali Arya, Babak Hamidzadeh

Dept. of Electrical & Computer Engineering, University of British Columbia,
2356 Main Mall, Vancouver, BC, Canada V6T 1Z4, Phone: (604)822-9181, Fax: (604)822-5949

Email: {alia,babak}@ece.ubc.ca

Abstract

This paper proposes a simple yet effective 2D image
transformation method for face animation. Instead of using
complicated 3D models or a large database of 2D images, a set of
transformations are learned to create different visual effects in a
given image, including talking, changing facial expressions, and
head movement. This approach enables creation of realistic
images with minimum input data and efficient computation.
Scaling and mapping these transformations into different head
orientations is discussed. The ShowFace system, a modular
streaming framework for face animation, is also introduced
which uses the proposed technique.

Keywords – Face Animation, Image Transformation, Talking
Head, Multimedia, Streaming

1. Introduction

Face animation is a challenging area of computer graphics and
multimedia systems research. Realistic and personalized face
animation can be used in many application including video
conferencing, online training and customer service, visual effects
in movies, and interactive games. The ability to generate new and
realistic multimedia data for a specific character is of particular
importance in such cases where pre-recorded footage may not be
available, hard/expensive to generate, or simply too limited due
to interactive nature of the application.

Different methods have been proposed for computer face
animation [4,8,9,10] that although have their own advantages,
usually need a complicated 3D model of the head or a relatively
large database of 2D images. Capability of being “personalized”
to a character without recreating the model or database is also
another missing feature in some the proposed approaches.

Recent development in multimedia systems and standards
(like MPEG-4 [3] and SMIL [5]) have directly or indirectly
imposed another requirement on face animation techniques (and
systems in general). This new requirement is compatibility with
new technologies and standards. Such compatibility issues can be
seen at algorithm or system levels, and examples are MPEG-4
Face Animation Parameters (FAPs) and streaming structure.

Facial Action Coding System (FACS) [7] was an early effort
to represent individual facial movements through use of a set of
codes. MPEG-4 FAPs have formalized this approach and
combined them with Face Description Parameters (FDPs) to
represent feature points of the face and their respective
movements for important facial actions. In this paper we discuss
the Feature-based Image Transformations (FIX) method for

creating face animation. This technique is based on the idea of
learning a set of 2D image transformations that can map facial
feature points and lines to new locations to create the effect of
certain facial actions (as in FACS and FAPs). Proper
interpolation then will be used to map other facial points. The
main advantages of FIX are realistic output, personalization
(based on the ability to apply the transformations to any image),
and limited required input data (no complicated 3D model or
extensive 2D image database).

Considering other requirements of a general face animation
system, we analyze FIX in the context of ShowFace, a
comprehensive face animation framework consisting of necessary
modules for receiving animation description in a specifically
designed language, creating audio and video data, and playing
back the multimedia stream. In the next section, we review some
related works in face animation. The FIX approach is discussed
in Section 3. A brief review of ShowFace system and some
concluding remarks are presented in Sections 4 and 5,
respectively.

2. Related Work

3D head models have long been used for facial animation [10].
Such models provide a powerful means of head reconstruction in
different views and situations, but they usually lack the realistic
appearance and need expensive hardware and complicated
algorithms that may not be suitable for applications like video
phones. Recent approaches have shown successful results in
creating 3D models from 2D images, e.g. a limited number of 2D
photographs [10].

2D image-based methods are another alternative to face
construction. Image morphing is an early mechanism for
generating new images based on existing ones [8,9]. The most
difficult task in morphing is finding control points, which is
usually done manually. MikeTalk is an image-based system,
which uses optical flow to solve the correspondence problem [8].
It performs automated morphing and creates visual speech based
on pre-recorded visemes. The main issues are the limited ability
in creating different facial images (e.g. moves and expressions),
non-effectiveness of optical flow in detecting corresponding
facial features specially in movements, and also required image
database for each person.

Bregler, et al [4], combine a new image with parts of
existing footage (mouth and jaw) to create new talking views.
This method is also limited to a certain view where the
recordings have been made. No transformation is proposed to
make a talking view after some new movements of the head. In a
more recent work, Graf, et al [9], propose recording of all

 501

visemes in a range of possible views, so after detecting the view
(pose) proper visemes will be used. This way talking heads in
different views can be animated but the method requires a
considerably large database.

TalkingFace [1] combines optical flow and facial feature
detection to overcome these issues. It can learn certain image
transformations needed for talking (and to some degrees,
expressions and head movements) and apply them to any given
image. Tiddeman, et al [11], show how such image
transformations can be extended to include even facial texture.

Different architectures are also proposed to perform facial
animation, specially as an MPEG-4 decoder/player [2]. Although
they try to use platform-independent and/or standard technologies
(e.g. Java and VRML), they are usually limited to certain face
models and lack a component-based and extensible structure, and
do not propose any content description mechanism more than
standard MPEG-4 parameters. Few content description and
synchronization languages proposed recently, are usually limited
macros [10] or not customized for face animation [6].

3. Facial Feature-based Image Transformations

3.1. Basic Concepts

View Morphing has been a useful technique for generating new
images based on some existing ones and algorithms like optical
flow can be used to automate the detection of control points
required for morphing [8]. Arya and Hamidzadeh [1] have shown
that using facial features can enhance the performance of optical
flow-based view generation methods.

On the other hand, as experienced by FACS and MPEG-4
FAPs, knowing the movements of some important feature points
and lines can be enough for generating new images (like talking
and facial expressions) at some satisfactory level of quality. This
means that instead of storing mapping information for all facial
points, we can only learn and save such mapping vectors for
limited features. When applied to an image, these vectors can be
scaled according to size and orientation of the new image and
then the mapping vector for other non-feature points can be
interpolated. Making the method more flexible and decreasing
the amount of required data. If I1 and I2 are images corresponding
to two states of a face, the optical flow-based approach defines
the translation function T12 as mapping vectors that take each
point in I1 to its best match in I2:

I2 = T12 (I1) (1)

Here T12 has to be stored with all the mapping vectors for
each pixel and due to its “blind” nature, can not be scaled or
processed to handle a new image other than I1 . The feature-based
method, on the other hand, performs a manual or automated
feature detection and forms a feature set Fi for each image Ii. The
translation function will now be applied to these new data
structures:

F2 = Tf,12 (F1) (2)

With availability of geometrical information of the face, the
Feature Translation Function Tf can now be processed to handle
scaling, rotation, and even change of orientation, and it needs less
data to be stored. Assuming that the related movements of

head/face are very simple, the translation function can even be
used for new characters. This idea is illustrated in Figure 1.

Figure 1. The Feature Translation Function learned between
Images 1 and 3 is applied to features of Image 2 to create a

feature set for Image 4.

The Feature-based Image Transformation for Face
Animation mainly (FIX) consists of:
• Learning Feature Translation Function (FTF) between

different facial states,
• Applying those function to the feature points of a source

image
• Proper interpolation to find mapping vectors for non-feature

points,
• View morphing to generate any number of intermediate

images
• Filling newly appeared regions of face (after head

movements).

3.2. Facial States and Features

Facial activities are transitions between certain face “states” like
a viseme or expression. In a training phase, a set of feature
translation functions is learned by the system, which can map
between these face states. Translation functions are found by
tracking facial features when the model is performing the related
transitions. A library of these functions is created based on
following facial states:
• Visemes in full-view
• Facial expressions in full-view
• Head movements

For group 1 and 2, mappings for all the transitions between a
non-talking neutral face and any group member are stored. In
group 3, this is done for transitions between any two
neighbouring states (30-degree steps from right profile to left).

Each transformation is defined in the form of T=(F,M)
where T is the transformation, F is the feature set in the source
image, and M is the mapping values for features. Source image

 502

information is saved to enable scaling and calibration, explained
later. The feature set for each image includes face boundary, eyes
and eye-brows, nose, ears, and lips. These feature lines, and the
facial regions created by them are shown in Figure 2.

 (a) (b)

Figure 2. Facial Regions are defined as areas surrounded by two
facial feature lines, e.g. inside eyes or between lower lip and jaw.

Some face patches are removed from (b) for simplicity.

The solid lines are feature lines surrounding feature regions,
while dashed lines define face patches . The patches are defined
in order to allow different areas of the face to be treated
differently. Covisibility is the main concern when defining these
face patches. Points in each patch will be mapped to points in the
corresponding patch of the target image, if visible.

3.3. Using Feature Translation Function

The transformations are done by first applying the FTF to the
source feature points. This is shown in Figure 1. Simple
transformations are those which have already been learned, e.g.
T12 and T13 (assuming we only have Image-1) Combined
transformations are necessary in cases when the target image is
required to have the effect of two facial state transitions at the
same time, e.g. creating Image-4 from Image-1 using T14.

Before applying any FTF to a new set of features, the
mapping vectors have to be scaled based on the difference
between source image in T=(F,M) and the new image features.
Multiple transformations can then applied as linear combinations.
Due to non-orthographic nature of some head movements,
combined transformations involving 3D head rotation can not be
considered a linear combination of some known transformations.
Feature mapping vectors for talking and expressions (which are
learned from frontal view images) need to be modified when
applied to “moved” heads.

T14 = a T12 + b T’13 (3)
T’13 = fp(T12, , T13) = T24 (4)

where fp is Perspective Calibration Function (PCF), and a and b
are coefficients between 0 and 1 to control transition progress.
PCF mainly involves moving F1 and F3 using T12, and then re-
calculating the FTF.

When the input picture is something like Image-2 in Figure
1, i.e. the new image does not have the same orientation as the
ones used in learning (Image-1 and Image-3), the required
transformation (e.g. for talking) is T24 which still needs
scaling/perspective calibration based on T12 and T13.

3.4. Facial Regions

The stored transformations only show the mapping vectors for
feature lines. Non-feature points are mapped by interpolating the
mapping values for the feature lines surrounding their regions.
This is done based on the face region to which a point belongs.

Face regions are grouped into two different categories:
• Feature islands, surrounded by one or two “inner” feature

lines
• Face patches, covering the rest of the face as shown in

Figure 2-b.
• New Regions, which appear as the result of head movement

or talking (inside mouth)

The mapping vector for each point inside a group-1 region is
found using the following formula:

dr,c = (abs(u-r)xdu,c + abs(r-l)xdl,c)/(u-l) (5)

For the sake of simplicity, the mapping vector of each point is
considered to be only a function (weighted average) of mapping
vectors for two feature points directly above and below (du,c and
dl,c), r and c are row and column in image for the given point, u
and l are the row number for top and bottom feature points, and d
is the mapping vector.

Face patches are defined based on covisibility, i.e. their
points are most likely to be seen together. Defining the patches is
necessary in order to preserve the geometric validity of the
transformation. The mapping vector of each point in a patch is
the weighted average of mapping of all the patch corners.

Filling the newly appeared regions is the only task that can
not be done with a single input image. Here we use a second
image (e.g. a profile) that has the required region, map it to the
target state, and use the data for that specific region.

3.5. Experimental Results

Figure 3 shows some sample images created by FIX method.
Images in each row are generated using the transformations
applied to the image at the left side. In case of second row, no
profile (side) image was available so recreation of the side of the
head has not been possible. In all talking images, a generic
inside-mouth data is used to fill the newly appeared regions. This
can be improved by using real data for the character in image if
available (as in image c).

4. ShowFace System

4.1. Basic Structure

The basic structure of ShowFace system [2] is illustrated in
Figure 4. Five major parts of this system are:
• Script Reader, to receive an FML script from a disk file, an

Internet address, or any text stream provider.
• Script Parser, to interpret the FML script and create separate

intermediate audio and video descriptions (e.g. words and
viseme identifiers)

• Video Kernel, to generate the required image frames
• Audio Kernel, to generate the required speech
• Multimedia Mixer, to synchronize audio and video streams

 503

 (a) (b) (c) (d)

 (e) (f) (g) (h)
Figure 3. Transformed Faces, mapped from images at left (a,e): frown (b,f), viseme for sound “a” in “talk” (c,g), and rotate

to right (d,h; image h does not have side information from a secondary image)

ShowFace relies on the underlying multimedia technology
for audio and video display. The system components interact with
each other using ShowFace Application Programming Interface,
SF-API, a set of interfaces exposed by the components and utility
functions provided by ShowFace run-time environment. User
applications can access system components through SF-API, or
use a wrapper object called ShowFacePlayer , which exposes the
main functionality of the system, and hides programming details.

ShowFace system is designed and implemented with the
concept of openness in mind. By that we mean the ability to use
and connect to existing standard components and also
independent upgrade of the system modules. To make most use
of existing technologies, ShowFace components are implemented
as Microsoft DirectShow filters. DirectShow will be installed as
part of many application programs like browsers and games, and
comes with a set of filters like audio and video decoders and
renderers. This allows ShowFace objects to access these filters
easily and rely on multimedia streaming services provided by
DirectShow, e.g. receiving data from a URL reader or MPEG-4
decoder and sending data to a video player or file writer.

Video Kernel uses FIX technique to create the desired
images. Audio Kernel uses a Text -To-Speech (TTS) engine and a
set of pre-recorded diphones to generate the required audio data.
The ShowFacePlayer wrapper object is implemented as an
ActiveX control, which can be easily used in web pages and other
client applications. An off-line tool, ShowFace Studio, is also
developed to assist in detecting the features, creating the maps,
and recording scripts.

4.2. Face Modeling Language

The main input format to the ShowFace system is content
description using Face Modeling Language (FML). Based on
extensible Markup Language (XML) and ideas from

Synchronized Multimedia Integration Language (SMIL), FML is
a description and modeling language specifically designed for
face animation. FML allows a hierarchical description of
animation from high level stories to low level head moves and
MPEG-4 FAPs. A sample FML document is shown in Figure 5.

Figure 4. Component-based ShowFace System Structure
Each FML module has two main parts: model and story.

The former defines initialization, movement ranges, and

behavioural templates. The latter describes the animation

 504

sequence in a hierarchical way. Each story consists of
actions (independent meaningful sets of moves). At the lower
level there are time containers: par, seq, and excl. The first
two construct parallel and sequential moves. excl is used for
decision-making, i.e. taking different paths based on an external
event. The external events used in decision-making can be set
by an interactive user or another program through SF-API. The
ShowFacePlayer object exposes a SetEvent method for other
programs (specially scripts on a web page). The XML-based
nature of this language allows the FML documents to be
embedded in web pages. Normal XML parsers can extract data
and use them as input to an FML-enabled player, through simple
scripting. Such a script can also use XML Document Object
Model (DOM) to modify the FML document, e.g. adding certain
activities based on user input. This compatibility with web
browsing environments, gives another level of interactivity and
dynamic operation to FML-based system.

<fml>
<model> <!-- Model Info -->

<range dir=”0” val=”60” />
<event id=”user” val=”-1” />
<template name=”hello” >
<seq begin=”0”>
<talk begin=”0”>Hello</talk>
<hdmv begin=”0” end=”5”

dir=”0” val=”30” />
</seq>

</template>
</model>
<story> <!-- Story Timeline -->
<action>
<behavior template=”hello” />
<excl ev_id=”user”>
<talk ev_val=”0”>Hi</talk>
<talk ev_val=”1”>Bye</talk>

</excl>
<par begin=”0”>
<talk begin=”1”>Hello

World</talk>
<exp begin=”0” end=”3”

type=”3” val=”50” />
</par>

</action>
</story>

</fml>

Figure 5. Sample FML Document

Another aspect of FML is its compatibility wit h MPEG-4
face definition/animation parameters. This has been achieved by:
• Translation of FML documents to MPEG-4 codes by the

media player.
• Embedded MPEG-4 elements (fap element is considered to

allow direct embedding of FAPs in FML document)
• Integrating FML into XMT framework by FML-to-MPEG

converters.

5. Concluding Remarks

An approach to Feature-based Image Transformation for Face
Animation (FIX) is proposed. The main objective of FIX is to use
normal 2D images rather than complicated 3D models in order to
create realistic personalized face animation. FIX also uses facial
features and their translations for each face activity to minimize
the amount of data required and make scaling and processing the
transformation for new characters possible. Methods for
combining simple transforms into more complicated ones are
discussed.

The main advantage of FIX is its realism, simplicity
compared to 3D geometric models, and minimum amount of
input data compared to 2D image-based methods. The learnt
transformations can be stored in a small database and easily
applied to a given picture to create a personalized new image.

FIX is introduced in the context of ShowFace system which
provides a comprehensive framework for face animation with
streaming capability, structured input description (using FML),
on-demand audio/video generation, and flexible open
architecture.

Better feature detection is a main objective of our future
work, since any error in detecting a feature point can directly
result in a wrong transformation vector. This effect can be seen in
cases like eyebrows where detecting the exact corresponding
points between a pair of learning images is not easy. As a result,
the learned transformation may include additive random errors
which causes non-smooth eyebrow lines in transformed feature
set and image.

References

[1] A. Arya and B. Hamidzadeh, “TalkingFace: Using Facial

Feature Detection and Image Transformations for Visual
Speech,” Proc Int Conf Image Processing (ICIP)¸ 2001.

[2] Ali Arya and Babak Hamidzadeh, "Personalized Face
Animation in ShowFace System," Int. Journal of Image and
Graphics , Special Issue on Virtual Reality and Virtual
Environments, World Scientific Publishing, 2003

[3] S. Battista, et al, “MPEG-4: A Multimedia Standard for the
Third Millennium,” IEEE Multimedia, October 1999.

[4] C. Bregler, et al, "Video Rewrite," ACM Computer
Graphics , 1997

[5] D. Bulterman, “SMIL-2,” IEEE Multimedia, October 2001.
[6] J. Cassell, et al, “BEAT: the Behavior Expression

Animation Toolkit,” Proc ACM SIGGRAPH, 2001.
[7] P. Ekman and W. V. Friesen, Facial Action Coding System ,

Consulting Psychologists Press Inc., 1978.
[8] T. Ezzat and T. Poggio, "MikeTalk: A Talking Facial

Display Based on Morphing Visemes," Proc IEEE Conf
Computer Animation, 1998.

[9] H. P. Graf, et al, "Face Analysis for the Synthesis of Photo-
Realistic Talking Heads," Proc IEEE Conf Automatic Face
and Gesture Recognition, 2000.

[10] W. S. Lee, et al, "MPEG-4 Compatible Faces from
Orthogonal Photos," Proc IEEE Conf Computer Animation,
1999.

[11] B. Tiddeman, et al, “Prototyping and Transforming Facial
Textures for Perception Research,” IEEE CG&A, September
2001.

