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Abstract

Small variations in biological motion responsible for perception of characteristics, styles, or
affects of the person performing the actions, are referred to as secondary features. This paper
presents a novel method for separating and extracting spatiotemporal sets of secondary fea-
tures from human motion data. The technique employs a dataset of sequences and identifies
a corresponding neutral sequence through maximizing a similarity index based on correlation.
Specific control points or temporal cues are then distributed through the input sequence. Dis-
tribution is carried out with the goal of maximizing an objective function successive to time
warping. The optimized set of cues are used to reconstruct the neutral component of the signal
using cubic splines. Accordingly, both spatial (movement and posture) and temporal secondary
features are extracted from the stylistic input sequence. To illustrate one of the possible appli-
cations of the proposed technique, style translation is carried out. We illustrate that our pro-
posed system can be used to extract various classes of secondary features from different
actions such as walking, jumping, and running.
ª 2013 Elsevier B.V. All rights reserved.
Introduction

Recently, computational human motion studies have drawn
much deserved attention. This is in part due to advance-
ments in computing capabilities, which in turn have resulted
in a growth in applications such as animation, interactive
games, and virtual worlds.

Analysis of style and affect in human motion is often
aimed at extracting, classifying, interpreting, and synthesiz-
ing affective and stylistic features. These features can be
used in a wide range of applications especially in the field
of human–computer interaction (HCI), ranging from games
and animation (Ma et al., 2010) to biomedical engineering
(Picard, 2009). The complex nature of humanmotion, as well
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as the wide range of stylistic features including actor attri-
butes and characteristics such as gender, age, energy, mood,
emotion, health, and inherited traits, all add to the difficulty
of the task. Furthermore, behavior and cognition depend on a
variety of parameters (Kleinsmith, De Silva, & Bianchi-Bert-
houze, 2006), making the task even more difficult.

Previously, a model was proposed for describing the rela-
tionship between basic action classes and styles (Etemad &
Arya, 2010). In this model, inspired by the work of Laban
(Guest, 2005), the main action and related styles were
named primary themes and secondary themes respectively.
Accordingly, we name the stylistic features of human motion
signals, secondary features (SF). These features have shown
to exist in the form of spatiotemporal add-ons (Rose, Cohen,
& Bodenheimer, 1998; Unuma, Anjyo, & Takeuchi, 1995) and
appear in three different forms, namely movement, posture,
and temporal variations (Amaya, Bruderlin, & Calvert, 1996;
Normoyle, Liu, Kapadia, Badler, & Jörg, 2013; Thrasher, Van
der Zwaag, Bianchi-Berthouze, & Westerink, 2011; Troje,
2002; Troje, Cord, & Lavrov, 2005). Psychophysics experi-
ments and statistical analysis of recorded motion data are
often used to characterize these features (Blake & Shiffrar,
2007) while computational techniques are developed for mo-
tion control (Coros, Beaudoin, & van de Panne, 2010) and
style translation (Hsu, Pulli, & Popovic, 2005). These compu-
tational approaches, some of which are reviewed in Related
work section, all provide effective and valuable solutions for
the problem. However, we believe it is essential to be able
to systematically extract the SF sets in spatiotemporal do-
main. This will allow researchers in both psychology andmul-
timedia fields to employ the features for related studies.
This paper provides a solution for this problem.

In this paper, we propose a technique for separating and
extracting secondary features from primary actions. This
approach is valuable as the extracted features can be ana-
lyzed towards behavioral and perceptual studies or directly
used in animation and multimedia systems. Our proposed
system utilizes a dataset of motion sequences and through
maximizing a similarity index, selects a neutral sequence
that best corresponds to the inputs stylistic motion. Corre-
lation optimized time warping (CoTW) (Etemad & Arya,
2013; Nielsen, Carstensen, & Smedsgaard, 1998) is used in
the process as the sequences need to be accurately aligned.
A set of temporal cues are then distributed through the se-
quence while maximizing a correlation-based objective
function. Spatiotemporal cubic splines are used to approxi-
mate the neutral component of the input. Movement and
posture feature components are subsequently computed
and extracted. The temporal feature is calculated as the
third component of the SF set. The proposed algorithm is
tested on various examples and the results are provided.
As an application of the algorithm, style translation is car-
ried out, through which, the SF set of stylistic inputs are
transferred onto neutral ones. The overall schematic of
the system is illustrated in Fig. 1.
Uniform Temporal Features

Fig. 1 Overall process of the proposed system for extraction
of SF. CoTW is carried out and similarity index is maximized
followed by optimization of temporal cues and extraction of
the three components of the SF set.
Related work

Inverse kinematics (IK) and control-based methods are pop-
ular approaches for modeling motion and stylistic varia-
tions. Grochow, Martin, Hertzmann, and Popovic (2004)
used IK for synthesizing natural and stylistic human motion.
Coros et al. (2010) employed controllers for synthesizing
stylistic gait sequences. Liu, Yin, van de Panne, and Guo
(2012) used linear feedback control to learn a variety of mo-
tion skills through dynamic simulation. Inverted pendulum-
based models have also been explored in this area (Tsai,
Lin, Cheng, Lee, & Lee, 2010).

Dimensionality reduction is a common tool for mapping
motion sequences (De La Torre & Black, 2001). Shapiro,
Cao, and Faloutsos (2006) employed independent compo-
nent analysis for extracting motion style features. Learn-
ing-based techniques have also been proposed and
utilized. Brand and Hertzmann (2000) employed probabilis-
tic models for interpolation and extrapolation of different
styles for synthesis of new stylistic dance sequences using
a cross-entropy optimization structure which enables their
style machine to learn from various style examples. A neural
network setting was used in (Etemad & Arya, 2009) which
learned neutral-to-stylistic mappings and used it for style
translation. Hsu et al. (2005) proposed LTI system identifica-
tion for style translation successive to a novel time and
space warp technique. Finally, Ma et al. (2010) used Bayes-
ian networks along with kriging for modeling style and vari-
ation in animation of human motion. Kriging process uses a
set of control points, similar to the approach proposed in
this paper.

Relative modeling or editing of motion signals are an-
other popular approach. In one of the earlier works in the
field, Amaya et al. (1996) developed a method to alter
speed and range of motion to achieve emotional actions
from neutral ones. Interpolation/extrapolation systems
are common among relative editing techniques. Rose
et al. (1998) used this type of editing to blend motion styles
successive to time warping. Bruderlin and Williams (1995)
employed several methods for altering motion data. These
methods included blending through interpolation (succes-
sive to alignment), waveshaping, displacement mapping,
and filtering. The authors concluded that when filtering is
employed, the increase in lower frequency gains are visual-
ized as decreases in intensity of performed actions; an in-
crease in middle band frequencies results in exaggerated
movements; and finally by increasing higher frequencies,
nervous twitches will be produced. Pullen and Bregler
(2002) used motion capture data to add texture to
keyframed animation. Their proposed model utilizes
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correlations between distinct body parts and adds mid and
high-level frequency alterations to keyframed or synthe-
sized signals through a process referred to as texturing. Suc-
cessful outcome of interpolation/extrapolation methods
and filtering/frequency-based techniques presented in
these works, confirm that stylistic features are most likely
in the form of add-ons that contain frequency differences
with respect to the main action. These properties form
the basis of our proposed approach.

Linear model and data

Linear model

It has been illustrated that human motion sequences can be
represented by:

Y ¼ Pþ
Xr
i¼1

wi � Si þ e ð1Þ

where Y is the action as perceived, P and S are the primary
and secondary themes (or features) respectively, r repre-
sents the number of secondary themes, w is the weight
associated with each secondary theme, and e is the noise
present in the data (Etemad & Arya, 2010).

In order to simplify the problem, it is often assumed that
r = 1, and therefore combinational secondary themes such
as young-tired or energetic–feminine are not taken into
consideration. Therefore Eq. (1) can be re-written as
Y = P + w � S + e. Having only one secondary theme in the
motion reduces the need for a weight factor in the model
which is mostly for relative emphasis on particular SFs.
Thus, we can conclude Y = P + S + e. The main goal of this
research is to extract S from Y as precisely as possible,
and without affecting P. Doing so will facilitate the study
of spatiotemporal properties of actor characteristics,
styles, and affects, regardless of the actions being per-
formed. It will also allow the creation of new sequences
with the same primary and different secondary themes
(style translation).

Given Y1 = P1 + S1 + e1, Y2 = P2 + S2 + e2, and P1 = P2, we
have DY = (S2 � S1) + (e2 � e1). By selecting one of the se-
quences to be stylistically neutral (S1 = B) and minimizing
the noise in the data, the SF set of the second sequence
can be extracted. This forms the basis for separating the
stylistic features from the primary actions using the pro-
posed method. The notion of S1 = B is revisited and further
discussed in the following sections.

Data

Motion capture data can be represented by a number of
consecutive multidimensional postures variable with time.
This model represents each posture with a finite number
of markers corresponding to different regions or joints of
the body. The motion matrix can be characterized using
time series of joint locations or joint angles. Accordingly,
the motion matrix D can be represented by
D ¼ ½R1 R2 � � � Rn� where Rj ¼ fRi

j; i ¼ 1 � � �m; R 2 Rg repre-
sents the jth DOF (also referred to as trajectory or signal) of
the motion sequence for m frames or time instances.
The Carnegie Mellon motion capture dataset (http://mo-
cap.cs.cmu.edu/) and a dataset that we recorded using a
Vicon MX40 motion capture system (located at the School
of Information Technology, Carleton University) are the
two different resources used in this research. The CMU mo-
tion capture data have a 96 DOF structure while ours have
60 DOFs. The extra DOFs in the CMU data mostly belong to
minor limbs such as fingers and toes, which are often not
studied in gait sequences. Also, both models contain zero-
columns (DOFs which are constant with respect to their par-
ent DOF) which we remove prior to use in our experiments.
Ethics approval is secured for our data and experiments.
More details regarding the exact number and classes of ac-
tions and SF are provided in Result and discussion section.

The proposed technique and dataset include stylistically
neutral actions. While it is almost impossible to perform and
capture perfectly neutral actions, we asked the actors to
display minimal stylistic behavior. The notion of neutral ac-
tions has also been employed in other literature such as
(Amaya et al., 1996; Heloir, Courty, Gibet, & Multon,
2006; Hsu et al., 2005). Furthermore, the confusion matrix
presented in the results section indicates that in general,
people have a correct understanding of a neutral action
sequence.

Correspondence

Many of the proposed techniques for feature extraction and
editing, or synthesis of motion sequences are dependent on
examples or datasets. For example, (Arikan & Forsyth, 2002;
Arikan, Forsyth, & O’brien, 2003; Kovar, Schreiner, & Glei-
cher, 2002; Ma et al., 2010; Pullen & Bregler, 2002; Wu,
Tournier, & Reveret, 2011) are all as such. Similarly, the
method proposed in this paper utilizes a dataset of motion
sequences. To extract the SF from a stylistic input se-
quence, a neutral sequence that best corresponds to the in-
put needs to be selected. Therefore, the input is compared
to the neutral sequences in our dataset(s) successive to
time warping, and the neutral sequence that maximizes a
similarity index is selected. Sequences under investigation
must be aligned to achieve more reliable results. Therefore,
we apply time warping prior to calculation of the similarity
index. A warped signal is basically the same signal after non-
linear stretching and compressions at different intervals to
maximize alignment with another signal. Here, we first de-
scribe the utilized time warping technique followed by the
similarity index.

Correlation optimized time warping

Corresponding motion signals, even for similar actions per-
formed by the same actor, contain temporal misalignments.
Processing the signals to achieve correct alignment is there-
fore a vital step towards motion editing. Especially for con-
tent-based methods, warping is often a critical step which
ensures that correct posture mapping is accomplished. Many
have studied and proposed different techniques for spatio-
temporal alignment of signals, among which (Hsu, da Silva,
& Popović, 2007; Hsu et al., 2005; Sakoe & Chiba, 1978; Wit-
kin & Popovic, 1995; Zhou & Torre, 2009) can be mentioned.

http://www.mocap.cs.cmu.edu/
http://www.mocap.cs.cmu.edu/
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In this paper, we use CoTW (Etemad & Arya, 2013; Nielsen
et al., 1998).

CoTW warps an input sequence with respect to a refer-
ence with the objective of maximizing a weighted sum of
Pearson’s correlation coefficient for different DOFs as a rep-
resentation of similarity between the two sequences. The
correlation coefficient in general is defined by:

qðx; yÞ ¼
Pm

i¼1ðxi � lxÞðyi � lyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1ðxi � lxÞ

2Pm
i¼1ðyi � lyÞ

2
q ð2Þ

where x and y are the two signals for which the coefficient is
being calculated, m represents the temporal length of the
signals, and l denotes the mean.

Through CoTW, the input sequence is first divided into a
number of segments, k, each of which is permitted to line-
arly warp using uniform time warping (UTW) (Fu, Keogh,
Lau, Ratanamahatana, & Wong, 2008) in either temporal
direction. The room to warp for each segment is called slack
and denoted by r. The optimum k and r are calculated
using dynamic programming and subsequently used to warp
the input sequence while maintaining maximum signal to
noise ratio for minimizing the distortion caused by the warp-
ing procedure.

CoTW shows several advantages over other warping tech-
niques such as (Hsu et al., 2005; Sakoe & Chiba, 1978; Zhou
& Torre, 2009) in terms of alignment, distortion, and
smooth warping of signals. Moreover, compared to typically
used distance-based cost functions, correlation shows bet-
ter performance in characterizing similarity between mo-
tion sequences (Etemad & Arya, 2013; Nielsen et al., 1998).

Similarity index

In order to select a neutral sequence that best corresponds
to the input we define the objective function:

G ¼
Xn
i¼1

ui � qðDinput;i; eDneutral;iÞ ð3Þ

where D represents the motion data, n is the number of
DOFs, and u is a set of weights used in the process. The �
sign denotes the sequence after warping. Subsequently,
the neutral sequence that maximizes G is selected as the
corresponding sequence.

In motion, each joint or limb has a different impact and
contribution towards execution and perception of a dis-
played sequence. For example, in (Etemad, Arya, & Parush,
2011), it was illustrated that legs possess the most weight in
perception of energy-related features (tired walk vs. ener-
getic walk). Therefore, in Eq. (3), different weights are as-
signed to different DOFs. The weights may vary for different
action classes (for example walk vs. jump). Ad-hoc means
are employed for assigning this parameter. For regular gait
sequences, the weight of the shoulder and thigh joints are
set to almost twice the weight of hand and foot joints.
The weights for fingers and toes can be set to zero due to
their insignificance. As mentioned earlier, the CoTW process
also utilizes a weight set based on which the significance of
different DOFs in the warping process is decided. We assign
the warping weight set and u to be equal since the aim of
both parameters is to customize the processes based on
the relative importance of different joints.
Extraction of features

Several key components have been identified for features
that compose SF in human motion (Amaya et al., 1996; Nor-
moyle et al., 2013; Thrasher et al., 2011; Troje, 2002; Troje
et al., 2005). These features relate to: (a) posture (also re-
ferred to as structure), (b) movement (also referred to as
dynamics), and (c) timing (also referred to as speed or
uniform temporal features). Posture features are those that
often stay unchanged through the sequence. Rather, they
are changes to the initial pose of the body with which the
motion is carried out. Movement features are the changes
to the motion signals and vary throughout the sequence.
The uniform temporal feature relates to the speed with
which the sequence is performed. This feature is often cor-
related with the secondary theme in the sequence, meaning
different styles are displayed with different speeds (Mather
& Murdoch, 1994).

Based on the above, given a stylistic (input) sequence
and a selected corresponding neutral sequence, we first
model a neutral version of the stylistic action over the in-
put. By subtracting the modeled approximation from the in-
put, movement SFs are extracted. Subsequently, we utilize
the modeled approximation and the corresponding neutral
sequence to extract the posture SFs. Finally, the input and
the corresponding neutral sequence are used to calculate
the uniform temporal feature.

Movement features

We employ spatiotemporal cubic splines for modeling the
neutral component of the input sequence. The non-linear
nature and controllability of splines make them very suit-
able means for many applications where complex data are
being modeled. Cubic splines are piecewise third-order
polynomials that pass through a number of control points.
The control points when projected onto human motion tra-
jectories can be seen as temporal cues for segments of the
motion sequence. These models have been widely used in
geometric modeling, computer graphics, and other such
applications (Bartels, Beatty, & Barsky, 1998; Etemad &
Arya, 2011). Generally, a spline function is in the form of:

FðiÞ ¼

f1ðiÞ if t1 6 i < t2

f2ðiÞ if t2 6 i < t3

..

.

fn�1ðiÞ if tn�1 6 i < tn

8>>>>>><
>>>>>>:

ð4Þ

where f : ½a; b� ! R and t1,t2, . . . ,tn are the control points,
meaning F(i) must pass through all n cues. In the cubic form,
fj(i), is defined by:

fjðiÞ ¼
X3
k¼0

cj;kði� tjÞk for j ¼ 1; 2; . . . ; n� 1 ð5Þ

Besides the necessity for F to pass through all t (which
entails Eq. (7)), Eqs. (6) and (8) must also hold true to
achieve a continuous and smooth approximation. Moreover,
fj(i) must be continuous for all subintervals of j.
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fjðtjÞ ¼ fjþ1ðtjÞ for j ¼ 1; 2; . . . ; n� 1 ð6Þ
f 0jðtjÞ ¼ f 0jþ1ðtjÞ for j ¼ 1; 2; . . . ; n� 1 ð7Þ
f 0jðtjÞ ¼ f 00jþ1ðtjÞ for j ¼ 1; 2; . . . ; n� 1 ð8Þ

Solving Eqs. (6)–(8) and including the boundary conditions
for the starting and ending points yields n + 1 equations
and n + 1 unknowns which can be solved for acquiring F.

Generally, when modeling a signal (or in the case of this
study, joint angle curve) using cubic splines, using more
control points leads to an approximation which follows the
actual signal more precisely and accurately, reconstructing
the higher frequency curves. Fewer and more widely distrib-
uted control points, on the other hand, result in a more
loose and general approximation of the signal, leaving out
higher frequency components. While the control points
can be distributed non-uniformly, in order to measure a fre-
quency value, uniform and evenly spaced cues are used in
this paper. Henceforth we define a measure for the fre-
quency rate of the temporal cues named x, (Eq. (9)) where
ncues is the number of temporal cues, m is the number of
frames in the sequence, and fs is the original sampling fre-
quency of the signal during recording of the signal. In this
research a constant sampling rate of fs = 60 fps is used.

x ¼ ncuesfs
m

ð9Þ

In order to approximate the neutral component of a
stylistic input sequence, Y, we calculate x with the aim
of maximizing similarity of the approximated sequence,
Yapprox, with respect to the warped version of the corre-
sponding neutral sequence eN. Hence, the objective func-
tion J ¼ qðYapprox; eNÞ. Accordingly x is computed using
argmaxx J. The operator q calculates the correlation
coefficients of corresponding DOFs of the sequence and
the frequency value is calculated with the aim of maxi-
mizing similarity between corresponding joint angle
curves. This approach calculates a separate frequency va-
lue for each DOF of the sequence. Another approach is to
calculate a single frequency for the sequence (as a whole)
through Jseq ¼

Pn
i¼1uiqðYapprox;i; eNiÞ where u is the weight

parameter and i represents the DOF of the sequence.
The same weight vector used for time warping or corre-
spondence measurement can be used. As a result, arg -
maxx Jseq calculates a frequency value that maximizes a
weighted sum of correlations of all DOFs of the two
sequences.

Fig. 2 illustrates the correlation values for several joint
angle curves of a stylistic sequence. It is shown that in all
cases, for maximizing correlation, x < 10 Hz is required.
The correlation values converge towards an asymptote
which implies increasing the number of cues beyond a cer-
tain point does not result in significant changes in the mod-
el. This is because as the number of cues increases, the
modeled approximation tends towards the actual stylistic
signal rather than the neutral one. In other words, the goal
is to stop increasing x as soon as the modeled signal resem-
bles the neutral signal.

Successive to calculating the optimal frequency for the
temporal cues and approximating the neutral component
(Yapprox) of the sequence with splines, a feature set is ex-
tracted using:
Umovement ¼ Y� Yapprox ð10Þ

where Umovement is the movement SF. The reason that this
feature set is associated with movement is its varying nat-
ure throughout the sequence. This reasoning becomes more
clear as we extract the posture feature in the following sec-
tion. Fig. 3 illustrates a signal being modeled with the opti-
mal x value (�3 Hz) and the movement SF set being
extracted. It is observed that the approximated neutral sig-
nal using splines is very similar to the corresponding neutral
signal. However, posture features, in the form of spatial
offsets, remain to be extracted.

Posture features

It was illustrated in Fig. 3 that the temporal cues used to
approximate the neutral component are spatiotemporally
located on the stylistic input signal. Therefore, the ex-
tracted movement SF set is always positioned on the input
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and excludes any spatial offsets with respect to the corre-
sponding neutral sequence. However, as illustrated in
Fig. 3, spatial offsets do exist as segments of the approxi-
mated signal need to be vertically shifted in order to fall
on top of the neutral signal. Due to its unvarying nature, this
spatial difference between the modeled sequence and the
neutral sequence is highly resembling of the posture
features described earlier. In other words, when put in
arg min
Uposture;approx

r
X
i

bikUi
posture;approx �Ui

posture;segmentk
2 þ ð1� rÞ

X
i

ci
D2Ui

posture;approx

Di2

�����
�����
2

8<
:

9=
; ð13Þ
the context, this feature set describes how the body struc-
ture of the neutral sequence should be spatially modified to
become similar to the stylistic body structure. Subse-
quently, this feature set can be calculated by:

Uposture;avg ¼
1

m

Xm
i¼1
ðYi

approx � eNiÞ ð11Þ

which results in a constant average posture feature. Here,
m represents the length of the sequence. Fig. 4 illustrates
the average posture feature extracted for the joint angle
curve used in Fig. 3.

This feature can also be modeled and extracted using the
same calculated set of temporal cues, increasing the resolu-
tion of this component of the SF. While this modification
may seem to contradict the very definition of posture
features, it makes computational sense and improves the
results. Accordingly, for each segment p (the segment of
the signal between two consecutive cues), the mean shift
is calculated using:

Uposture;segment ¼
1

mp

Xmp

i¼1
ðYi

approx � eNijpÞ for p¼ 1 : ncues � 1

ð12Þ
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Fig. 4 Extraction of posture SF from the input signal.
Smoothing splines are used to approximate the feature.
where mp represents the number of frames in that segment.
A sample extracted posture set is illustrated in Fig. 4. This
quantized version of the posture feature will cause discon-
tinuities in the SF and any signal to use the feature. To rem-
edy this, we approximate the piece-wise feature using cubic
smoothing splines. The smoothed Uposture,approx for the
quantized signal Uposture,segment, is calculated through Eq.
(13) based on (De Boor, 1978):
Here, c is the roughness measure, for our application set to
1, r e [0,1] is the smoothing parameter, for our application
set to 0.01, and b is the weight equal to 1. Fig. 4 illustrates
the extraction and approximation process for the posture SF
set. It is important to note that the posture features should
be extracted only successive to extraction of the movement
features.

Uniform temporal feature

When different segments of a motion sequence are per-
formed with different speeds, the temporal changes are
manifested as spatiotemporal curves. However, there are
instances where the timing and speed of the entire se-
quence is one of the influential components of the SF set
(Amaya et al., 1996). Consequently, in addition to move-
ment and posture SFs, we introduce a separate SF compo-
nent, Utemporal, which describes the relationship between
the temporal lengths of stylistic sequences with respect to
neutral ones. We calculate this feature using:

Utemporal ¼
mY

mN
ð14Þ

where mY is the temporal length of the input and mN is the
length of the corresponding neutral sequence. An important
0 20 40 60 80 100 120 140
−30

−25

−20

−15

−10

−5

0

5

10

frame (time)

Φtemporal < 1
original
Φtemporal > 1

Fig. 5 Utemporal for versions of the signal with different
speeds.



Table 1 The actions and datasets used in this study.

CMU dataset Carleton dataset

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Action Walk Walk Walk Walk Walk Walk Walk Walk Jump Jump Jump Run Run Run
SF type Neutral Sad Macho Drunk Lavish Neutral Tired Energetic Neutral Tired Energetic Neutral Tired Energetic
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point to consider is that for this SF, mY and mN need to cor-
respond to sequences that contain similar actions (primary
themes). For example, if Y is a walking sequence with two
strides, N must similarly contain walking with only two
strides. This feature can also be characterized or described
by the speed with which a particular stylistic action in per-
formed with respect to the neutral version of that action.

Successive to calculating Utemporal, UTW can be used to
speed-match a neutral sequence with the stylistic input,
hence transferring this feature. UTW is basically a linear
stretching and compressing technique that uses interpola-
tions for uniformly changing the temporal length of a signal
or sequence. If Utemporal = 1, the neutral sequence requires
no temporal modification as it is equal in length to the sty-
listic sequence. For Utemporal < 1, the neutral sequence
needs to be compressed, and when Utemporal > 1, it needs
to be stretched. Examples of Utemporal are illustrated in
Fig. 5.

Generally, the temporal features and properties of the
input and corresponding neutral sequence might not be uni-
formly distributed. In other words, it is not simple to distin-
guish whether Utemporal has resulted from a uniformly
faster/slower sequence in all segments or whether the
sequence is only performed faster in some segments
and slower in others. As an example, it is possible that
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Fig. 6 Average x measured for different input sequences.
Error bars represent standard errors over DOFs.

Table 2 Uniform temporal features for the test data.

Index 1 2 3 4 5 6 7
Utemporal 1.00 1.23 1.19 1.65 0.98 1.00 1.
Utemporal = 1, with the first half of the input being faster
than neutral, followed by a slower second half, resulting
in equal overall lengths, and thus Utemporal = 1. In such
cases, the non-uniformities in the sequence is manifested
as spatiotemporal features and are most likely extracted
as movement or posture features, even though the source
is temporal variations. It is therefore, not necessary to
extract non-uniform temporal features. Moreover, it can
be argued that one of the significant roles of CoTW is to
warp the sequences non-uniformly, thus resolving the issue
of non-uniform temporal features and allowing them to be
extracted as movement and posture SFs.
Results and discussion

As described earlier, we utilize the CMU dataset as well as
our own recorded data. From the CMU dataset, sad, macho,
drunk, and lavish walks are employed. Also, 5 neutral walks
are used from which the best corresponding sequence is se-
lected for each stylistic input walk. From our own dataset,
tired and energetic walks, jumps, and runs are used as in-
puts, along with 5 neutral walks, 5 neutral jumps, and 5
neutral runs. An actor from the School of Information Tech-
nology, Carleton University, with prior motion capture
experience was asked to perform the actions. Initially, at
a time when the actor indicated an energetic state, ener-
getic sequences were recorded. After few minutes of walk-
ing around the capture room and indication of neutral
energy by the actor, the neutral actions were recorded. Fi-
nally, after 10 more minutes of exercise in the capture room
and confirmation of fatigue by the actor, tired actions were
recorded. They were also asked to exaggerate in displaying
the energy levels. Table 1 presents the types of primary ac-
tions and SFs used in this study. The 5 neutral actions are
represented only once in the table. Following, the move-
ment, posture, and uniform temporal features are ex-
tracted in the presented order. Furthermore, to illustrate
the performance of the proposed method, style translation
is carried out.

Extraction of features

Fig. 6 presents the average and standard errors of x over
DOFs of the sequences presented in Table 1. One-way anal-
ysis of variances, ANOVA, for the effect of different DOFs on
8 9 10 11 12 13 14
09 0.75 1.00 1.02 0.95 1.00 1.05 0.84



Fig. 7 Snapshots from style translation outputs. The complete sequences are available in the accompanying video submitted with
this manuscript.
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Fig. 8 Confusion matrix for style translation outputs.
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the calculated x, shows no significant effect at the p < 0.05
level despite the existing variations. Specifically, for the
CMU samples, F(75,228) = 1.2, p = 0.158 and for Carleton
samples, F(51,260) = 1.31, p = 0.091. One-way ANOVA for
the effect of actions on calculated x shows significance with
F(3,300) = 19.6, p < 0.0001 for the CMU samples and
F(5,306) = 9.49, p < 0.0001 for Carleton samples. This can
be clearly observed in Fig. 6 where, for example, energetic
jump requires a significantly higher average x compared to
tired jump. This analysis indicates that while within a par-
ticular action, the DOF does not significantly impact x,
the action from which the features are being extracted,
and the feature types themselves, do have a significant
influence on the optimum frequency values.

Table 2 presents the results for the calculated Utemporal

values. Energetic sequences along with lavish walk, which
are shorter (faster) than neutral, have resulted in Utempo-

ral < 1. For the rest of the samples, Utemporal > 1, indicating
longer lengths (slower) with respect to neutral. Generally,
Utemporal is quite intuitive and simple to speculate without
computation. Sequences that have SFs associated with low
energy are often longer than neutral, thus Utemporal > 1,
while those attributed to higher energy are faster, and so
Utemporal < 1. However, for instances where exact ratios
are required, Eq. (14) is utilized.

Style translation

Once the three SF components have been extracted from a
stylistic input sequence, the features can be applied to a
neutral sequence to produce a stylistic theme and change
the action from neutral to stylistic. This process is called
style translation (Hsu et al., 2005). Here, we utilize style
translation to visualize the features extracted using our
approach.

When manipulating motion data, synchronization is often
lost (Hsu et al., 2005). As a result, out of tune motion of the
feet causes an artifact in which the character seems to be
skating rather than taking firm and solid steps. This is re-
ferred to as footskating (Lyard & Magnenat-Thalmann,
2007). By using Jseq which results in a constant x for all
DOFs, footskating can be reduced. This approach, however,
introduces a trade-off as sub-optimal frequencies are uti-
lized for some DOFs. As a result, some extracted SFs will
be inaccurate. In this paper, for style translation, we use
the individually calculated x values for each DOF. Footskat-
ing can be remedied through post-processing, for example,
by using footplant-based techniques (Kovar et al., 2002). In
this paper, we first map the joint angle curves of the
outputs onto the Cartesian space. Subsequently, the skate
trajectory of the stance foot is calculated for the duration
of that particular foot-stance, and subtracted from the mo-
tion, eliminating the skating artifact.

The accompanying video submitted with this manuscript
shows the style translation results, where successful conver-
sion of neutral to designated SFs point to the accuracy of
our method for extraction of style features. Snapshots of
the results are shown in Fig. 7, where the neutral actions
are the inputs and the stylistic ones are the translation outputs.

To further evaluate the outputs, 10 participants, were
asked to watch and provide feedback on the SFs that are
perceived from the outputs. The average age of participants
was 31.3, the standard deviation was 11.5, 6 were males,
and 4 were females. A force choice questionnaire was used
for this purpose. Sequences from the two datasets were pre-
sented separately and choices were divided based on the
dataset. This was done for two reasons: (a) the skeleton
structure for the two datasets was different which could
influence the results had they been investigated together,
(b) sad (from the CMU dataset) and tired (from the Carleton
dataset) actions are very prone to misperception by partic-
ipants. Such sequences are difficult to distinguish in real life
as both contain features such as slower motion, decreased
sway, and downward tilt in shoulders and head. Fig. 8 pre-
sents the confusion matrix where most sequences have been
correctly perceived for the translated SFs.

In general, our style translation outputs are in par with
methods such as (Hsu et al., 2005) or (Rose et al., 1998)
where high quality stylistic sequences were generated.
Our system performs well for different actions such as walk-
ing, jumping and running and a variety of styles such as sad,
macho, drunk, lavish, tired, and energetic. However,
compared to linear interpolation/extrapolation approaches
such as (Rose et al., 1998), our method illustrates higher
generalization capabilities where using a frequency range
of x = 2–8 Hz for temporal cues, we can extract the move-
ment SFs without a neutral reference. To extract the pos-
ture features, however, our system also needs a neutral
reference. In addition, the uniform temporal feature can
be speculated.

Unlike most existing techniques for stylistic motion
control which are purely computational, our proposed
method draws inspiration from the way biological motion
is executed and perceived. In reality, variations in biological
motion originate from the same three sources which our sys-
tem successfully differentiates and separately extracts. As a
result, we believe our system can be used to study biological
style features and contribute to psychophysics. The system
can also be used for multimedia and HCI applications such as
animation and gesture-based interaction systems.
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Conclusion

In this paper, the problem of extracting stylistic features
from motion sequences was investigated. Inspired by the
way in which different actions are physically performed,
three types of spatiotemporal features were defined: move-
ment, posture, and temporal. For a stylistic input sequence,
a correlation-based similarity index was calculated with re-
spect to a dataset of neutral sequences. Correlation opti-
mized time warping (CoTW) was carried out to align the
training and input motion sequences. Temporal cues were
optimally distributed throughout the stylistic input se-
quence and cubic splines were used to model the neutral
component of the sequence. Movement features were then
extracted followed by posture features, which were
smoothed to prevent discontinuities when employed. Final-
ly, uniform temporal features were calculated. Style trans-
lation was carried out on samples from two different
datasets to show the performance of the method. The sam-
ples consisted of different actions such as walking, running,
and jumping as well as different styles such as sad, macho,
drunk, lavish, tired, and energetic. The style translation
videos and subjective evaluations illustrated the accuracy
and significance of the proposed technique.
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