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nizations are faced with the conflicting goals of a) releasing this data and b) pro-
tecting the privacy of the individuals to whom the data pertains. Especially, there
is a conflict between the need to release precise geographic information (which is
essential to many health care research fields such as spatial epidemiology) and the
requirement to censor or generalize the same information for the sake of privacy
protection. Ultimately, the challenge is to anonymize data in order to comply with
government privacy policies while reducing the loss in geographic information as
much as possible. In this paper, we present novel component approaches used to
configure the Voronoi-Based Aggregation System (VBAS) as well as an in-depth
comparison of their effectiveness. VBAS is a system which protects privacy by
enforcing k-anonymity via the aggregation of regions of fine granularity into larger
regions. We additionally discuss heuristics rooted in linear programming which we
have also integrated in our system. Based on extensive comparisons, we highlight
the strengths and weaknesses of the different approaches we tested. This enables
us to make recommendations on how to satisfy user requirements via the selection
of specific combinations of such approaches.
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1 Background

1.1 Introduction

Relevant and detailed data sets are critical for effective population-based research.
As such, they are in high demand. However, since this data is of a sensitive nature,
the privacy of individuals must be protected when data is released (Arzberger et al,
2004; Benitez and Malin, 2010; Emam et al, 2013; Lowrance, 2006; Samarati,
2001). Government policies place restrictions on how data can be released in order
to ensure that privacy will be maintained. Thus, in order for a data set to be
released, it must undergo a process of anonymization that brings it to a state in
which the risk of disclosure of sensitive information is sufficiently low.

Although any directly identifying information can be trivially stripped from a
data set, there is still a susceptibility to re-identification through techniques such
as cross-referencing (Emam et al, 2013). Moreover, there will always be a trade-
off between the level of protection that can be achieved on a data set and the
resultant utility of the data (Gionis and Tassa, 2008). Furthermore, although it is
desirable to minimize the loss of any type of information in the data set, in some
cases the preservation of geographic information may be of particular importance.
For example, studies concerned with the propagation of diseases across geographic
areas require a high level of precision in the geographic information of the data
set (Lyseen et al, 2014). In fact, any form of location-critical research such as
spatial epidemiology requires high precision geographic information in order to be
carried out (Rezaeian et al, 2007; Vora et al, 2008). Similarly, studies based on
socioeconomic characteristics of areas may also call for regions of finer precision
than those given by standard administrative boundaries. For example, some studies
require regions at the neighborhood or community level (Thomas et al, 2008). More
generally, in some cases, research questions require customizable boundaries for
regions (Young et al, 2009). This can be problematic as the level of customizability
may already be limited by the granularity of the geographic information in the
original data set: either the user must take on the undesirable burden of defining
all regional boundaries or the anonymization process must in some way handle
this. In the absence of an anonymization process which can do this, an alternative
is to provide finely grained regions.

The release of precise geographic details, however, greatly increases the risk
of disclosure of sensitive information due to higher levels of distinctness in the
records of the data set. This risk creates a barrier in the disclosure of essential
geographic information. There is, therefore, a need for the careful consideration
of the geographic information in a data set during anonymization if a high level
of precision is to be retained. Since losses in geographic information may have
negative effects on the ability to effectively analyze a data set (Olson et al, 2002),
we postulate it is desirable to preserve as much geographic information as possible
while maintaining an appropriate level of anonymity.

We present a set of approaches which can be supplied as different strategies
for the components of the Voronoi-Based Aggregation System (VBAS) in order
to provide different system configurations. VBAS is a system which anonymizes
a data set through the application of geographic partitioning guided by the use
of Voronoi diagrams (Aurenhammer and Klein, 2000). This system achieves a re-
quired level of anonymity (as specified by user input) in a data set through the
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generalization (i.e., coarsening of the level of precision) of geographic attributes
and the suppression of outlying records (i.e., records that violate the required level
of anonymity). By aggregating regions, we avoid the need for the suppression of
small regions that do not meet a required population size. This is desirable as the
suppression of complete regions can lead to heavily censored data sets (Emam et al,
2009; Hawala, 2001). Furthermore, this form of aggregation enables us to main-
tain a higher degree of geographic precision than other methods such as cropping
(Jung, H.-W. and Emam, K. E., 2014).

In a companion paper (Croft et al, 2016), we have selected a particular con-
figuration of VBAS and have conducted a comparison of it with another system
of geographic anonymization, GeoLeader, to show that VBAS is able to perform
well in comparison to other systems in this field. Here, we study a number of
different approaches that can be applied within VBAS in order to compare their
performance with respect to the preservation of geographic precision, reduction
of suppression and reduction of information loss. Through the use of appropri-
ate approaches (to be discussed later in this paper), VBAS is able to provide a
means to aggregate small regions of fine granularity that are geographically close
to each other into larger regions that satisfy criteria for achieving a sufficient level
of anonymity while maintaining a low level of geographic information loss. This
technique may be used in combination with the generalization of other attributes
(such as age and ethnicity) in order to trade off precision in other, less important
attributes for an even higher level of geographic precision. In this work, we focus
our efforts solely on the generalization of the geographic attribute.

1.2 Literature Review

In order to protect the privacy of the individuals in data sets, the data must
often be de-identified before it can be considered safe for release. This process
of de-identification is intended to protect against the risk of the data being re-
identified and revealing sensitive information about specific individuals (Benitez
and Malin, 2010; Emam et al, 2013; Lowrance, 2006; Samarati, 2001). Methods
of de-identification generally involve the creation of equivalence classes with suf-
ficient cardinalities in order to protect against re-identification. An equivalence
class is a group of records which are indistinguishable from each other based on
their quasi-identifiers (i.e., demographic-type attributes). Since a malicious party
attempting re-identification will need this demographic information to perform
cross-referencing, raising equivalence class cardinalities has the effect of lowering
the malicious party’s chances at making successful inferences (Benitez and Malin,
2010; Emam et al, 2013; Samarati, 2001).

Generalization and suppression are techniques which are commonly employed
to raise equivalence class cardinalities. Generalization coarsens the response cate-
gories of the quasi-identifiers in order to cause more records to fall into the same
equivalence classes (Mohammed et al, 2009; Sweeney, 2002). Suppression com-
pletely removes records from the data set. This is done in order to avoid produc-
ing data sets with outlying records leading to the need for severe generalization
in order to reach sufficient equivalence class cardinalities (Mohammed et al, 2009;
Sweeney, 2002). Through the combination of these two techniques, a guarantee can
be provided on the resultant data set in the form of k-anonymity (Mohammed et al,
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2009; Sweeney, 2002). Given a user specified value for k as input, k-anonymity is
the guarantee that every resultant equivalence class has a cardinality of at least
k. By selecting an appropriate k value and ensuring that all equivalence classes
meet this requirement, it becomes much more difficult for a party to re-identify
the data as each record has a small group of other records from which they are
indistinguishable.

Within the context of data with geographic information, an alternative to
generalization and suppression is perturbation-based geomasking. This involves
the application of geographic perturbations in order to produce a data set with
the geographic information modified such that it can no longer be effectively used
for re-identification (Armstrong et al, 1999; Bridwell, 2007; Clifton and Gehrke,
2013). While such geomasking approaches have been shown to produce data sets
with high levels of utility for spatial analysis (Armstrong et al, 1999), they do
not allow for the consideration of other non-geographic attributes and cannot be
used with the traditional equivalence class-based measurement of k-anonymity. We
therefore investigate alternative geographic-based methods for anonymity.

One strategy that can be applied to anonymize a data set is to focus on the
population sizes of the geographic regions into which the data records are grouped.
Since the reduction of distinctness is one method that can be used to protect
privacy, records can be grouped together into larger regions in order to achieve
this. When the set of geographic attributes (hereafter referred to as the geographic
identifier) of a data set is fine-grained, records will be grouped into very small
regions, preventing the creation of equivalence classes of high cardinalities since
the geographic identifier is part of the quasi-identifiers. The coarsening of this
geographic granularity therefore enables the cardinalities to become higher. This
is essentially a form of generalization applied only to the geographic identifier.

The main difficulties with generalization of the geographic identifier are de-
termining what an appropriate population size is and determining where region
borders should be placed in order to produce an appropriate regionalization. In
addition to the geographic identifier being two-dimensional, the distribution of the
demographic population density across the geographic space is non-homogeneous.
The creation of regions which will lead to appropriate equivalence classes is there-
fore not a simple task. Some basic approaches involving the use of existing region-
alizations and static population cut-offs sizes have been proposed (Hawala, 2001;
Greenberg and Voshell, 1990; Jung, H.-W. and Emam, K. E., 2014), however these
approaches do not sufficiently address these issues and thus result in a greater loss
of geographic precision than necessary (Boulos et al, 2006; Emam et al, 2009).

For a more complete review and discussion of these topics, we refer to the
literature review in our companion paper (Croft et al, 2016).

With respect to determining an appropriate population size for the regions,
a method of dynamically computing this value based on the input data set has
been proposed (Emam et al, 2009). By analyzing the quasi-identifiers in the input
data set, an approximation of a desirable population cut-off size is computed, thus
reducing the loss of geographic precision that occurs when a static cut-off size
which is larger than necessary is employed.

For the issue of determining the borders of the regions, once possible approach
is to use linear programming to determine regions which should be aggregated.
If the goal is to create regions which have a population above a certain level,
this can be enforced through constraints. Various heuristics exist for this type of
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problem such as the “location-allocation” heuristic (Goodchild and Massam, 1969)
and the “transportation-location” heuristic (Cooper, 1972). In this problem, the
input is a set of fixed destination locations, each with supply requirements, and
a number of facilities, each with supply levels, to be placed. The goal is to select
locations for the facilities and determine an allocation of supplies from facilities
to destinations such that all constraints are satisfied (namely, each destination
receives its required amount of supplies and each facility does not ship out more
than its supply level) while an objective function related to transportation costs
is minimized. This problem can be seen as a generalization of the transportation
problem (Ford and Fulkerson, 1956) in which the facility locations are already
determined. We will discuss those alternative heuristics in some detail (see Section
2.3.2) and analyze/compare them with our methods.

1.3 Problem Statement

The problem of anonymization of data can be seen as a problem with one or more
hard constraints and various objective functions to be optimized. The constraints
correspond to any desired guarantees with respect to anonymity. In our work, we
employ a constraint that ensures that the resultant data set is k-anonymous. The
objective functions correspond to the desirable traits of the anonymized data. In a
typical setting for anonymization, these usually correspond to functions that mea-
sure levels of suppression and information loss. In our work, geographic precision
is also an important factor, thus we consider as well an objective function that
measures the compactness of aggregated regions.

When faced with multiple objective functions, one must find a way to address
all of them. Possible strategies to achieve this include multi-objective optimization
(e.g., as described in (Zhou et al, 2011)) or the amalgamation of these objective
functions into a single function (e.g., via a weighted sum). Interdependencies be-
tween these functions and thus trade-offs are unavoidable. Such trade-offs are even
more complex to understand if the importance of each objective is user-specific.
Consequently, trying to obtain a solution akin to a Nash equilibrium for such ob-
jective functions is extremely challenging. Instead, in this paper, we study different
approaches of anonymization in order to compare their performance with respect
to various objectives. Though our main concern is the compactness of regions, we
also consider the suppression of records, information loss and running time. The
comparison of these approaches may guide a user in selecting the most suitable
approach for their individual requirements. Furthermore, observations made on
the relationships between the objectives can provide insight for further studies
into methods to effectively optimize the various objectives according to the user
requirements.

1.4 Contributions

In this paper, we present a number of new approaches for the components of
VBAS. The anonymization strategy supported by VBAS consists of a sequence of
4 tasks, as explained in the next section, each task corresponding to one of the 4
main system components. In order to achieve each of the first 3 of these tasks, the
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user chooses from several available approaches, each supported by a distinct actual
module (which is easily substitutable with any of the other modules realizing this
task). A domain expert may also easily develop, integrate and test new approaches
for each of these tasks. Thus, different configurations of actual modules for the
components of VBAS can be readily explored. Such configurability allows the end-
user to fine-tune aggregation towards their requirements. It also enables domain
experts to compare the advantages and limitations not only of different approaches
to a task, but also of different sets of approaches supporting the anonymization
strategy of VBAS.

Additionally, we have adapted linear programming algorithms to compare with
two of our system components. We have implemented VBAS as a desktop applica-
tion along with all algorithms discussed in this paper in order to test and compare
all combinations of the proposed approaches.

Such an extensive evaluation leads to the identification and better understand-
ing of trade-offs between different objectives. In turn, this allows us to recommend
which approach to use for each of the first 3 of tasks of VBAS given a set of
user requirements. Ultimately, by considering the most promising combinations
of approaches, we can further assist the user by making recommendations as to
which complete system configuration (i.e., set of approaches) to use given a set
of user requirements. Drawing on these recommendations, we believe even a user
with minimal knowledge of the anonymization process will be able to use VBAS
in an effective manner.

2 Methods

VBAS is designed to anonymize a data set by performing aggregation on an ini-
tial regionalization of fine granularity such that the aggregated regions will have
sufficient levels of anonymity. To group the initial regions, we construct a Voronoi
diagram on top of them. The initial regions are then grouped together based on
the Voronoi regions in which they fall. Due to the nature of this grouping process,
initial regions of roughly globular or non-elongated shape will be the most ben-
eficial in the creation of aggregated regions of high compactness and geographic
precision. This process avoids the need for suppression of small regions and does
not require any type of predefined generalization hierarchy. A series of screenshots
depicting the process run by VBAS can be seen in Appendix A - Figures 1-4.
For a complete description of the VBAS aggregation methodology, we refer to the
companion paper (Croft et al, 2016). Here, we focus on the individual approaches
used within VBAS to achieve the overall process.

In order for the groupings of initial regions to produce an aggregated regional-
ization of desirable qualities, it is essential to carefully select the number of sites for
the Voronoi diagram, as well as their locations. The complete process is therefore
broken up into four main components:

– Approximation of the number of sites
– Selection of the site locations
– Aggregation of the regions
– Evaluation of the aggregation
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Each component may be supplied with any approach that is able to complete
the component’s task. The system is set up in this way to allow for an ease of
configuration through the selection of different component approaches. This serves
as a benefit both when selecting appropriate approaches for anonymization in
practice as well as for testing different approaches and their combinations. In the
following subsections, we provide a detailed description of the proposed approaches
which can be adopted for the components.

2.1 Site Number Approximation

The task of the first component is to select an appropriate number of sites to be
used for the Voronoi diagram. Since each site will produce a single Voronoi region,
the number of sites can be thought of as the number of aggregated regions that will
be created. This number must be carefully selected. An approximation that is too
high will result in a large number of aggregated regions, leaving the records spread
too thin and resulting in levels of anonymity that remain too low. Alternatively, if
the approximation is too low, there will be very few aggregated regions and their
levels of anonymity will be greater than necessary, resulting in a greater loss of
geographic precision than necessary.

We present here two different approaches for the site number approximation,
both of which are derived from different models for an approximation of a dynamic
Geographic Area Population Size (GAPS) cutoff (Emam et al, 2009) for the input
data set. The dynamic GAPS cutoff models are intended to serve as a method to
compute the required population cutoff size for any given data set based on its
quasi-identifiers. This avoids the need to study each data set individually in order
to manually determine the cutoff size.

The dynamic GAPS method has one model to compute the cutoff size based
on the entropy of the data set and an alternative model to compute the cutoff
size based on a max combinations value calculated from the quasi-identifiers (as
explained below). The models used here are shown in Table 1.

Table 1 Regional GAPS Cutoff Models (Emam et al, 2009)

Region Entropy Model MaxCombs Model

Western Canada 1588(Entropy0.42) 1588(MaxCombs0.42)

Central Canada 1436(Entropy0.43) 1436(MaxCombs0.43)

Eastern Canada 1978(Entropy0.304) 1978(MaxCombs0.304)

The entries show the formulae used for each of the GAPS models for the 3 regions of Canada that were studied.

We have adapted the two dynamic GAPS cutoff models into site number ap-
proximation approaches by using the cutoff size as an approximation of a desirable
average population for the aggregated regions. By dividing the total population of
the data set by the cutoff size, we are able to make an approximation of the num-
ber of aggregated regions needed to achieve this cutoff as the average population.
Since the number of aggregated regions is equal to the number of Voronoi sites,
this serves as the approximation for the number of sites to place.

Entropy Approach The entropy model requires the entropy of the input data set to
first be computed using the calculation shown in Equation 1. This value can then
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be plugged into the entropy model as shown in Equation 2 in order to compute
the cutoff size. Finally, we use this value to approximate the number of Voronoi
sites in Equation 3.

Let: L be the size of the largest equivalence class
tk be the number of equivalence classes of size k
N be the total number of records in the data set

Entropy = −
L∑
k=1

tk

(
k

N

)(
log

k

N

)
(1)

Cutoff = eB0
(
EntropyB1

)
(2)

Sites =
N

Cutoff
(3)

Max Combinations Approach The approach using the max combinations model is
very similar to that of the entropy model; the only difference is in the computation
of the max combinations value. This value is the total number of equivalence
classes in the data set and is calculated as the product of the numbers of response
categories for each quasi-identifier as shown in Equation 4. Once this value is
calculated, it can be used to approximate the number of sites with Equations 2
and 3 by substituting the entropy value with the max combinations value.

Let: Q be the set of quasi-identifiers in the data set
|q| be the number of response categories in a quasi-identifier q

MaxCombs =
∏
q∈Q

|q| (4)

2.2 Site Location Selection

Once the number of Voronoi sites has been selected, the next task is to select
the locations at which to place them. The selection of these locations also has a
large influence on the levels of anonymity in the aggregated regions as well as the
amount of information that is lost during aggregation. It is easy to see that a dense
cluster of sites placed in a region of very low population density would result in
aggregated regions with very low populations, causing very low levels of anonymity.
Additionally, the locations of the sites with respect to each other determine the
shape and size of the Voronoi regions. These properties of the regions determine
the level of precision in the geographic information that is released.

For this component, we provide two different approaches that can be applied.

2.2.1 Balanced Density

The goal of the balanced density approach is to divide the plane into a set of cells
such that the number of cells is equal to the number of sites to be placed and each
cell has roughly the same population within it. Each cell will then be assigned a
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single site to be placed at the median of the initial region points that fall within
the cell. For ease of organization, the cells are grouped together into rows such
that all cells in a row have the same upper and lower boundaries (those of the row)
and occupy the entire space covered by the row. The cells are given roughly the
same populations in order to make the distribution of the Voronoi sites similar to
the distribution of the population.

The approach works by making an initial approximation for an appropriate
number of rows which can later be adjusted if necessary. The boundaries of the
rows are then determined based on the global population distribution in order to
produce rows which each have roughly the same population size. Based on the
number of rows, an approximation of the required number of cells per row is then
made in order to produce a total number of cells equal to the number of Voronoi
sites. Since the number of Voronoi sites over the number of rows is unlikely to be
an integer, rows are not required to each have the same number of cells. Some
rows may have one less cell or one more cell than the approximated number. As
this approach was applied in the companion paper (Croft et al, 2016), we refer to
that paper for the fully detailed description.

2.2.2 Anonymity-Driven Clustering

The Anonymity-Driven Clustering (ADC) approach selects site locations as the
resultant locations of cluster centers after running a process of iterative cluster
optimization based on the framework of the k-means algorithm. In order to adapt
this to create clusters that suit our needs, it was necessary to design clustering
criteria based on levels of anonymity. As such, the following modifications were
made to the algorithm:

1. An objective function that measures levels of anonymity is employed.
2. The optimization step has been redesigned to improve anonymity.
3. The convergence criteria has been modified to accommodate these changes.

The initial region points are provided as the input point set for the algorithm.
The Voronoi site locations taken as the output of the algorithm are determined
by the locations of the cluster centers at the time of convergence. The clusters,
as determined by k-means membership (where each point belongs to the nearest
cluster center), are particularly useful in this context as membership is determined
by the Voronoi diagram in the same way. This means that when providing the final
cluster centers as sites to the Voronoi diagram algorithm, the points in each cluster
are exactly the points that will be grouped together by the Voronoi region that
pertains to the site that was the center of the cluster. In other words, each cluster
of points accurately represents an aggregated region. This fact allows for the ability
to evaluate at any time the quality of the aggregation represented by the current
clusters.

It should be noted that the selection of the initial cluster centers has an impact
on the quality of the results produced. While the clustering can be run by select-
ing the initial centers at random, it is recommended to use another site location
approach as a seeding method for the initial centers.

Anonymity-Based Objective Function
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The objective function must evaluate the quality of the aggregation in order
to improve it during the clustering process. To do this, we consider the levels of
anonymity in each cluster as well as the equivalence classes sitting at the lowest
level of anonymity.

Although the global anonymity is determined by the lowest anonymity across
these regions, an increase in local anonymity can still reduce the amount of sup-
pression that is later needed. By taking the sum of the local levels of anonymity,
we have a function that changes monotonically as the levels of anonymity improve.

This sum can be used as the dominating factor for the objective function,
however most moves are not likely to improve the level of anonymity of a whole
region. They are more likely to improve the anonymity of one or more equivalence
classes. Furthermore, some moves may decrease the anonymity of other equivalence
classes. We need to be able to track these changes as well. To do this, we use
an objective function which is dominated by local levels of anonymity but is also
influenced by the ratio of equivalence classes sitting at the lowest level of anonymity
as shown in Equation 5.

Let: A be the set of aggregated regions
aa be the level of anonymity of an aggregated region a
E be the set of all equivalence classes

Eα be the set of all equivalence classes at the lowest level of anonymity∑
a∈A

aa +

(
1−
|Eα|
|E|

)
(5)

Optimization Step

The goal of the optimization step is to improve levels of anonymity by adjusting
cluster centers. Since the lowest cardinality equivalence classes are a bottleneck
to the overall anonymity, we only relocate the cluster centers sitting at the lowest
level of anonymity.

The cardinality of an equivalence class must be increased by taking members
from its neighboring regions. To do this, we search a neighborhood, defined as the
set of adjacent aggregated regions. The site location of each neighbor is paired
with the squared number of equivalence class members within that neighbor. We
also pair the site location of the region to be improved with a weight of 10. The
site of the region will then be adjusted to the median of the locations weighted
by their paired values. The squared weights ensure a stronger pull towards areas
of higher density and the weight of 10 is used to ensure that the center does not
stray overly far from its original location.

Prior to committing the change for the new cluster center location, a check is
performed to verify that the objective function value will actually increase. This
is done in order to provide the guarantee that each step of optimization that is
committed will improve the objective function value.

Convergence

The final consideration for the algorithm is its convergence criteria. There are
two scenarios in which optimization will cease. The first occurs if all clusters have
reached a sufficient level of anonymity (the user specified value for k-anonymity).
The other scenario occurs if the optimization has reached a round where the ob-
jective function value no longer increases. If this occurs, the configuration will be
reverted to that of the previous round and the process will end.
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2.3 Construction of Geographic Aggregation

2.3.1 Basic Voronoi Aggregation

The basic approach to the construction of the aggregation is the approach that
was originally used in VBAS. This simply consists in taking the site locations, as
determined by the previous component, and providing them as the input sites to
construct a Voronoi diagram (Aurenhammer and Klein, 2000). With the diagram
constructed, each initial region point must be categorized based on the Voronoi
region in which it falls. Point location can be run efficiently for these points since
the Voronoi diagram is a planar subdivision. The resultant Voronoi groupings of
initial region points represent the initial regions that will be aggregated together.

Since the aggregation of the regions is driven by approximations of desirable
populations in the aggregated regions based on the quasi-identifiers of the data
set, it is not guaranteed that the resultant regions will be k-anonymous. In or-
der to verify the anonymity of the aggregated regions, we must determine their
equivalence classes. These equivalence classes are based on the members of the
equivalence classes in the initial regions being merged together. In order to ensure
k-anonymity at this point, any resultant equivalence classes that do not have a
cardinality greater than or equal to k will have all of their records suppressed.

2.3.2 Iterative Voronoi Aggregation

We can make an iterative version of our basic Voronoi approach by using a loop
in which the groupings of initial regions are created according to the Voronoi
partitioning and then each Voronoi site is adjusted to the median of the initial
regions in its Voronoi region. This process is repeated until no site shifts to a new
location. This is, in fact, the k-means algorithm using the initial Voronoi sites as
the seeds for the cluster centers. The benefit of using this iterative approach is that
the sum of the distances between initial regions and Voronoi sites can be further
reduced, leading to more compact aggregated regions.

2.3.3 Site Optimization

Taking the idea of optimization further, we can allow for other types of moves to
be made. One way to do this is to allow for these moves to modify the number
of sites that are being used. A simple way to improve the level of compactness
is to add more sites. Since all initial regions are allocated to the nearest site, it
is easy to see that any initial regions allocated to a newly added site must be
nearer to that site than the site of their prior allocation. However, the addition
of new sites also has the effect of spreading the population more thinly across
the aggregated regions which will lead to higher levels of suppression. The site
optimization approach both adds new sites and removes other sites in an attempt
to balance these levels.

We can decide when sites should be added or removed based on the population
levels of the current sites. Ideally, each aggregated region should have roughly
the same population level. We can calculate this level as the global population
over the number of sites. If a site in the current allocation has less than half of
this population level, we remove the site altogether. If a site has more than a
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25% surplus in its population level, we split the site in two. This split can be
achieved by removing the original site and placing two new sites on either side of
the original location, infinitesimally close to that point. These moves by themselves
will not achieve balanced population levels, however they can be combined with
the iterative site relocation described in Section 2.3.2 to produce an aggregation
with balanced population levels.

The site optimization algorithm starts by calculating the ideal population level.
Next, we perform site relocation and then enter into an iterative phase consisting
of site removal across all current sites followed by site relocation. This phase ends
when an iteration is reached where no sites are removed. This is done to ensure
that we initially eliminate any regions with very low populations since the next
and final phase converges based on compactness and could have left some of these
regions in existence. Finally, we iteratively perform both site removal and site
splitting across all of the sites followed by site relocation. Since site removal and
site splitting make changes that compete with each other, we use compactness as
the criterion for convergence by stopping when a round no longer improves the
compactness any further. We measure the compactness here as the sum of the
distances between initial regions and the sites to which they are allocated. When
a round is reached where the compactness is found to deteriorate rather than
improve, we revert back to the configuration of the previous iteration and use this
as the final aggregation.

2.4 Linear Programming Heuristics

An alternative for a portion of the aggregation process is a partitioning defined
by a linear programming solution. The use of linear programming heuristics alone
cannot fully address the problem of aggregation in this setting as they do not
handle the approximation of the number of regions or the suppression of records
and they also require the configuration of constraint settings. They can, however,
potentially replace two components of our system: site location selection and aggre-
gation construction. To do this, existing facility-location type linear programming
heuristics can be adapted to this setting through the proper configuration of their
constraint settings. Thus, we include this technique in our testing to compare its
performance as well. The initial regions from our setting correspond to the desti-
nations given as input and the number of facilities is determined by the number
of sites calculated in the first component. By ensuring that each destination is
supplied by exactly one facility, the allocation of destinations to facilities defines
the groups of initial regions which are to be aggregated together.

The objective function of a linear programming heuristic can be specified as
the sum of the distances between destinations and the facilities that are providing
supplies to them. This corresponds to the goal of creating compact aggregated
regions. Constraints can be specified such that the aggregated regions will have
roughly equal populations in order to reduce the level of suppression that will be
required. This can be done by setting the demand of each destination to 1 and
setting the supply level of each facility to the ceiling of the number of destinations
over the number of sites. While a solution can be found in this way, the constraints
may be too restrictive, thus leading to an aggregation of poor quality. By increasing
supply levels, alternate decisions can be made by the heuristic which favour the
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objective function over the consideration of equal population levels. As it is not
clear what an appropriate choice of supply level is, we employ tests under five
different supply level settings: the base level multiplied by factors of 1, 1.2, 2, and
5, and an unconstrained version. These settings were chosen in order to observe
the influence both of constraints which are loosened slightly as well as those which
are loosened significantly.

2.4.1 The Alternating Location-Allocation Heuristic

The alternating location-allocation heuristic (Goodchild and Massam, 1969) works
by alternating between two steps: allocation of supplies and optimization of facil-
ity locations. A transportation problem solver is used to compute an allocation
of supplies from facilities to destinations which minimizes an objective function
under a set of constraints. Facility locations are then optimized by shifting them
to the median of the destinations which they supply to further reduce the ob-
jective function value. Different methods of seeding may be used for the initial
selection of facility locations. We have chosen to employ the seeding method used
for the transportation-location heuristic (Cooper, 1972) which is referred to as
the alternate location-allocation method. Convergence is reached when no facility
locations shift at the end of an iteration. At this point, we can group initial re-
gions (represented by destinations) according to the facility which supplies them
in order to obtain the partitioning for the aggregated regions. Equivalence classes
can then be updated and suppression can be applied in the same fashion as with
the Voronoi-based aggregation.

2.4.2 Transportation-Location Heuristic

There are a number of other heuristics which can be applied to the location-
allocation problem. We chose the transportation-location heuristic as detailed in
(Cooper, 1972). This heuristic involves an initial selection of facility locations
and an unconstrained destination allocation. The allocation is unconstrained with
respect to the facility supply levels. This is followed by an iterative process in which
a destination is re-allocated from an overburdened facility to another facility with
surplus and then a sub-iterative process is executed. In the sub-iterative process,
facility locations are adjusted and destinations are reallocated to facilities to which
they are nearer than their currently allocated facility if there is any surplus of
supply at the nearer facility. A full description of the algorithm can be seen in the
referenced paper (Ibid.).

2.5 Evaluation of Aggregation

Once the regions have been aggregated, we must measure the quality of the ag-
gregation that has been produced. The measures listed here are the same as those
used in the original VBAS paper (Croft et al, 2016). Although the measurements
applied here may be broken up into groups of related measurements in order to
form different approaches for this component, we provide a single approach here
that contains all of the relevant measurements for the comparisons used in this
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paper in order to facilitate the testing. In this section, we briefly describe each of
these measurements.

– Suppression: The measurement of suppression is simply used to observe the
quality of the aggregation based on how many records were suppressed. If a
large number of records were suppressed then it likely indicates a poor aggre-
gation as this means that the equivalence classes of the aggregated regions did
not have sufficient cardinalities. Thus, lower levels of suppression are prefer-
able. To better enable comparison between data sets of varying sizes, we take
this measurement as the percentage of the original records that are suppressed.

– Compactness: The compactness of the final regions can be used as a measure
for the level of geographic precision. More compact regions are desirable as this
would provide greater geographic detail for researchers. This measurement is
taken as the sum of distances between the initial region points and the site of
their aggregated region.

– Discernibility: We employ the discernibility (Bayardo and Agrawa, 2005) in-
formation loss metric in order to determine how much geographic information
has been lost by checking for overburdened equivalence classes. Higher values
indicate a greater amount of lost information, thus, lower values are preferable.

– Non-Uniform Entropy: We also employ the non-uniform entropy (Gionis and
Tassa, 2008; Mohammed et al, 2009) information loss metric to measure the
loss in geographic information based on the probability of correctly guessing
the original geographic region of a record given its aggregated region. As with
discernibility, higher values indicate a greater amount of information loss.

– Running Time: The final measurement is simply a measure of how long the
whole process of aggregation takes from start to finish. This is used to deter-
mine how the use of the various approaches will affect the time taken to achieve
anonymity.

2.6 Summary of Approaches

As a summary for the approaches described throughout this section, we provide a
quick reference to the system components and approaches in Table 2.

3 Comparative Evaluation

In order to test and compare different component approaches, we have generated
test data sets using publicly available data sets from Statistics Canada. With
these testing sets, we have run various scenarios to observe the effectiveness of the
approaches. All tests were run on a machine using 16 GB of RAM and a 4.01 GHz
processor.

Construction of the Voronoi diagram and point location within the Voronoi
diagram are handled by code from CGAL (CGAL, 1995). An open source trans-
portation solver (Morreau, J.-P., 2009) is used for the location-allocation heuristic.
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Table 2 VBA System Components and Evaluation Metrics

VBAS Components (Ci) Approaches (CiAj) or Measurements (CiMk)

(C1) Approximation of the number of sites (C1A1) Entropy

(C1A2) Max Combinations

(C2) Selection of the site locations (C2A1) Balanced Density

(C2A2) Anonymity-Driven Clustering

(C3) Aggregation of the regions (C3A1) Basic Voronoi Aggregation

(C3A2) Iterative Voronoi Aggregation

(C3A3) Site Optimization Aggregation

(C23A4) The Alternating Location-Allocation Heuristic

(C23A5) Transportation-Location Heuristic

(C4) Evaluation of the aggregation (C4M1) Suppression

(C4M2) Compactness

(C4M3) Information Loss - Discernibility

(C4M4) Information Loss - Non-Uniform Entropy

(C4M5) Time

This code employs the “stepping-stone” approach (Charnes and Cooper, 1954).
All other code was written by us in C++. Originally, CGAL was also employed
for nearest and farthest neighbor queries in the transportation-location heuristic,
however preliminary testing revealed that the overhead required for the construc-
tion of the relevant data structures led to longer running times than a linear time
implementation of the queries.

3.1 Generation of Testing Data

The data sets that we have used to generate the testing data are the public use
microdata file from the 2011 National Household Survey (NHS) (Statistics Canada,
2014) and the Canadian dissemination areas data set (Statistics Canada, 2015). As
required by Statistics Canada’s data use regulations, it is stated that the results
or views expressed here are not those of Statistics Canada.

We have used the NHS data set, which contains respondent level information
across a wide range of demographic attributes for a 2.7% sample of the Canadian
population, to make approximations for the distributions of attribute values across
the response categories of a selection of the demographic attributes. Since the NHS
data set has geographic precision at the granularity of provinces and territories, the
approximations were made for each of the selected attributes in each province and
territory. Since a much finer degree of geographic precision is needed to conduct
our tests, we have combined these approximations of the distributions with the
dissemination areas data set to create our testing sets. Each dissemination area
has a population in the range of 400 and 700 (Statistics Canada, 2015). We have
therefore randomly selected a population within this range for each dissemination
area as number of records to generate for the area. Each record generated in this
way is given a value in each of the selected attributes by selecting from among the
response categories of the attribute with a probability of selection in each category
corresponding to the approximated distribution that was made for that attribute
in the province or territory in which the dissemination area exists. Additionally,
each record is given a geographic attribute indicating the dissemination area to
which it pertains. This process of data generation produces a testing set with a
population roughly equal to that of Canada and with a geographic precision at the
level of dissemination areas. In order to produce testing sets for different regions
to work with, this set for all of Canada is broken up into three subsets: Western
Canada, Central Canada, and Eastern Canada. Since the system requires an input
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file with information about the initial regionalization, the dissemination areas data
set is also broken up into three corresponding subsets. With these subsets created,
any pair of respondent data and the matching dissemination areas subset can be
supplied as the input files to VBAS in order to run tests.

3.2 Testing Scenarios

In order to test the component approaches, four different selections of quasi-
identifiers on which to achieve anonymity have been made and these selections
have been run using the Eastern and Western region testing sets for a total of
eight different test scenarios. Scenarios 1-4 represent the quasi-identifier selections
in Eastern Canada and Scenarios 5-8 represent the same selections in Western
Canada. We have employed these selections of quasi-identifiers in different regions
to provide a range of different scenarios and to avoid any bias induced by the
input data in a single scenario configuration. The combinations of quasi-identifiers
that are used can be found in Appendix B. With a range of results from differ-
ent scenarios, we can identify relationships between the different approaches in
order to determine which of them consistently perform well for each measurement.
The results of these tests have been recorded in all measurements indicated in the
evaluation component.

For each scenario, all possible combinations of the component approaches have
been tested. There are 12 possible combinations of our own approaches. Addition-
ally, there are four more combinations which can be formed with the two linear
programming heuristics using the two site number approximation approaches.

4 Results and Discussion

In this section, we discuss the results seen from the comparisons of the different
approaches. Graphs showing these results can be found in Appendices C, D and E.
The raw data from the test runs can be found in Appendices F, G and H. Due to
highly similar findings from the results of both the discernibility and non-uniform
entropy information loss metrics, we simply refer to these measures as information
loss throughout the discussion and show only the discernibility measure in graph
form for conciseness. The raw data for both measures can be found in the appendix.

4.1 Comparison of Site Number Approximation Approaches

When comparing the two site number approximation approaches, the entropy ap-
proach consistently determined a greater number of sites to use than the max
combinations approach. The effects of this are very clear from the results. The
entropy approach caused a greater amount of suppression but produced better
levels of compactness and information loss (Figure 1 a-c and e-g).

These findings are rather intuitive since the number of sites corresponds to the
number of aggregated regions. A greater number of regions implies higher levels
of geographic precision which accounts for the lower values of information loss
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Fig. 1 Approach Combinations Comparison Graphs. Scenarios 1-4 represent the quasi-
identifier selections in Eastern Canada and Scenarios 5-8 represent the same selections in
Western Canada.
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and compactness. Additionally, with a greater number of regions, the records are
spread more thinly across them, causing more suppression.

In terms of running time, both approaches had very similar times except for
when ADC was employed for site location selection (Figure 1 d and h). As ADC
is more sensitive to the number of sites than other approaches, when entropy site
number approximation is used, the running time became much higher than what
was observed with the max combinations approach.

If a user should prioritize reduction of suppression over reduction of geographic
information loss then the max combinations approach is preferable. For a user that
prioritizes the reduction of the geographic information loss, the entropy approach
is the preferable choice.

4.2 Comparison of Site Location Selection Approaches

While the balanced density approach aims to create regions with roughly equal
populations levels, ADC prioritizes the reduction in suppression. This is most no-
ticeable in cases where the entropy site number approximation was used as this
causes a greater number of sites to be given as input. Similar to the differences
noted in the site number approximation comparison, the reduction in suppres-
sion achieved by ADC generally led to a degradation in terms of compactness
and information loss (Fig. 1a–c, e–g). These effects are quite prominent with the
entropy site number approximation approach but much less so with the max com-
binations approach. In fact, in a few cases the opposite was observed, albeit by a
very small margin. These outlying cases were mostly observed when the site op-
timization aggregation construction approach was employed. This is because the
site optimization approach has the ability to modify the number of sites and thus
counteracts some of the changes made by ADC.

For the comparison of running times, the balanced density approach was typ-
ically faster than ADC (Figure 1 d and h). This is because ADC performs an
iterative optimization over the sites unlike the balanced density which immedi-
ately selects the final location for each site. It is also for this reason that the gap
between the running times was much larger when the entropy site number approx-
imation was used since this increased the number of rounds of optimization that
ADC executed as well as the time spent on each round. Once again, when site opti-
mization was employed for the aggregation construction, outlying cases were seen
where ADC caused the running time to drop in comparison to balanced density,
this time, typically when using the max combination site number approximation.
This is due to the fact that the moves already made by ADC cause a reduction in
the number of rounds needed by the site optimization.

We conclude that balanced density is preferable when the user prioritizes com-
pactness and reduction of information loss, as well as faster running time. If a user
wishes to reduce the level of suppression then ADC is a preferable choice.

4.3 Comparison of Aggregation Construction Approaches

When comparing the levels of suppression produced by the aggregation construc-
tion approaches (Figure 1 a and e), all three produce very similar results when
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using the max combinations site number approximation approach. With the en-
tropy approach, the site optimization has higher levels of suppression than the
other two although this gap is reduced slightly when they are used with ADC for
the site location selection.

In general, site optimization had the best performance for the level of com-
pactness, followed by the iterative Voronoi approach and then the basic Voronoi
approach (Figure 1 b and f). However, in a few of the cases when using max com-
binations, the iterative Voronoi approach did better in compactness by a small
margin. In terms of information loss, the opposite trend can be seen with max
combinations (Figure 1 e and g); The basic Voronoi approach performs the best,
followed by the iterative Voronoi approach and then the site optimization. Since
the iterative Voronoi and site optimization approaches make moves of optimiza-
tion which prioritize compactness, it follows that they would show better levels
of compactness and worse levels of information loss than the basic Voronoi ap-
proach. When using the entropy site number approximation, the same trend is
seen with compactness, however, for information loss, the basic Voronoi and iter-
ative Voronoi approaches produce very similar results while the site optimization
performs better than them. It is likely that the site optimization approach was
able to make better moves of optimization in the presence of a larger number of
sites.

In terms of the running time (Figure 1 d and h), the basic Voronoi approach is
consistently the fastest as it does not make any moves of optimization. The iter-
ative Voronoi takes only slightly longer. The site optimization takes significantly
longer as it has more room to make moves of optimization and considers more
criteria than the iterative Voronoi approach.

If the user prioritizes compactness, the site optimization approach would be the
best choice. The iterative Voronoi approach, however, may also be a good choice
if the user wants faster running times while still achieving a good level of com-
pactness. Performance in the other measurements between these two approaches
varies depending on which approaches the user selects for the other components.

4.4 Comparison of Linear Programming Heuristics

Here, we compare all combinations of the two linear programming heuristics with
each other under their five different constraint settings using the two site num-
ber approximation approaches. Tests for the location-allocation heuristic under
constraint settings 1, 1.2, 2 and 5 with the entropy site number approximation
approach in Western Canada have been omitted as each of these test runs took
over 10 hours to complete.

First, as a general comparison between the two different heuristics, it can be
seen that they are both very similar in terms of their measurements of suppression
and information loss (Figure 2 a, c, e and g). The two approaches, under the same
constraint setting, produce nearly identical results for these measurements. How-
ever, significant differences are seen when observing compactness and running time
(Figure 2 b, d, f and h). With respect to compactness, the transportation-location
heuristic produces worse levels of compactness than those of the location-allocation
heuristic when the constraints are very tight (lower multipliers). Yet, as the con-
straints are loosened, the two approaches produce values that are nearer together
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Fig. 2 Linear Programming Comparison Graphs.

The DNF tag indicates cases where the test did not finish within 10 hours

and at multipliers of 2 and up, they are almost the same. In terms of running time,
the location-allocation heuristic is many times slower than the transportation-
location heuristic under all constraint settings except for when they are uncon-
strained.

Next, we consider the effects of the constraint selection for these approaches.
Though we hypothesized that tighter constraints should produce lower levels of
suppression, this was not always the case (Figure 2 a and e). This may be due
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to the fact that there is not a direct relationship between population level and
the level of suppression. The relationship between the constraint settings and the
levels of compactness is fairly clear (Figure 2 b and f). As expected, in most cases,
loosening the constraints caused the level of compactness to improve. This is due to
the fact that the algorithms have a greater ability to make moves of optimization
for the objective function since they are not as restricted in the required population
levels. The levels of information loss increase as the constraint settings are loosened
(Figure 2 c and g). This is to be expected as less balanced population levels will
lead to a higher degree of information loss. In terms of the running times, it
seems to be the case that there is a peak in the times near the middle of the
constraint settings (Figure 2 d and h). This is likely due to two competing factors.
At tighter constraint settings, there may be a need for more rounds of optimization
in order to satisfy these settings and minimize the objective function. On the other
hand, loosening the constraint settings has the effect of allowing for more moves of
optimization to be made which could also lead to a greater number of iterations.

We recommend the selection of the transportation-location heuristic over the
location-allocation heuristic due to its much shorter running times. Similarly, the
very high running times of the transportation-location heuristic at tight constraint
settings make the selection of a low constraint multiplier undesirable. As seen from
the great increase in time from the Eastern to Western Canada scenarios, it is clear
that the heuristic does not scale well at tight constraint settings. The findings here
suggest that since the use of constraints does not seem very beneficial, the use of
linear programming heuristics may not be very appropriate when applied in this
manner. The unconstrained versions of these heuristics essentially amount to an
approach which consists of seeding followed by iterative optimization. If a user
prioritizes low information loss then they may select a linear programming heuristic
at tight constraint setting, however the disadvantages in the other measurements
do not make this a very judicious choice.

4.5 Comparison of Recommended Combinations

To provide a summary of some of the results from the previous comparisons, we
have listed the best approaches for each of the measures in Table 3. Next, we
present specific combinations of approaches that we have selected as user recom-
mendations. The selected combinations are listed in Table 4. Note that in the
cell for information loss on the aggregation construction component, there are
three approaches listed. The two linear programming heuristics were tied with
each other when kept at a factor of 1 for the constraint setting. When using the
max combinations site number approximation, the linear programming heuristics
performed best, however, when using the entropy site number approximation, the
site optimization approach produced better results.

For ease of reading, each combination will henceforth be referred to by its ID
as specified in the table. Combination 1 provides the best level of suppression in all
but one of the scenarios, however its margin of superiority is quite small (Figure
3 a and e). As a result, Combinations 2 and 3 are strong contenders even when a
user prioritizes suppression. Depending on the scenario, they both display slight to
moderate improvements over Combination 1 in terms of compactness, information
loss and running time (Figure 3 b-d and f-h). Between these two, Combination
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Table 3 Summary of the approaches that performed the best in each of the measures.

Suppression Compactness Information Loss Running Time

Site Number
Approximation

Max Com-
binations

Entropy Entropy Max Combinations

Site Location
Selection

ADC Balanced Density Balanced Density Balanced Density

Aggregation
Construction

Inconclusive Site Optimization Location-Allocation (1) /
Transportation-Location (1) /
Site Optimization

Basic Voronoi

Table 4 Recommended combinations and their motivation.

ID Site Number Site Lo-
cation

Aggregation Reason

1 Max Combi-
nations

ADC Iterative Voronoi Favours suppression

2 Max Combi-
nations

Balanced
Density

Iterative Voronoi Minor trade-off of suppression for minor improve-
ments in other measures (compared to #1)

3 Max Combi-
nations

Transportation-Location
(Unconstrained)

Minor trade-off of suppression for minor improve-
ments in other measures (compared to #1)

4 Entropy Balanced
Density

Basic Voronoi Favours running time and balances other measures

5 Entropy Balanced
Density

Site Optimization Favours compactness and information loss

6 Entropy ADC Site Optimization Significant improvement in suppression at the cost of
significant deterioration in all other measures (com-
pared to #2)

7 Entropy Transportation-Location
(Unconstrained)

Moderate improvement in suppression at the cost of
slight to moderate deterioration in all other measures
(compared to #2)

2 more often had a slight advantage in compactness and Combination 3 more
often had a slight advantage in discernibility. Our recommendation is for a user to
select one of these two. Combination 5 consistently had the best performance in
compactness and in information loss (Figure 3 b, c, f and g). However, it produces
high levels of suppression and has long running times (Figure 3 a, d, e and h).
These aspects are very noticeable in contrast to the alternatives that use max
combinations. However, for a user who prioritizes compactness or information
loss, it is preferable to use entropy for the site number approximation. When
comparing Combination 5 to the other combinations which employ entropy site
number approximation, the differences in suppression are not as severe and the
gains in compactness and information loss are certainly enough to warrant the
selection of this combination.

For a user who prioritizes compactness and information loss but is willing to
trade some quality in these measurements for better levels of suppression, Com-
bination 6 offers a significant improvement in suppression (Figure 3 a and e).
However, in addition to degradation in compactness and information loss, this
combination has longer running times. For a less severe trade-off, Combinations
4 and 7 offer a good compromise (Figure 3 a-h). Of these two, Combination 4 is
typically slightly superior in levels of suppression and in running time by a slight
margin as well. In fact, Combination 4 is consistently the fastest out of all of the
combinations. In terms of compactness, Combination 4 performed better in all sce-
narios in Western Canada while Combination 7 performed better in all scenarios
in Eastern Canada exposing a potential dependence upon the input data in one
or both of these combinations. The two combinations are roughly tied in terms of
levels of information loss. Thus, as Combination 4 is superior in suppression and
running time, it would be our recommendation here.
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Fig. 3 Recommended Combinations Comparison Graphs.

5 Conclusions

In this paper, we have focused on the problem of geographic-based anonymization
with special emphasis on geographic precision. VBAS, the system we introduced
to address this problem, is designed in a modular fashion to allow for different ap-
proaches to be supplied for its components. This provides the ability to easily test
the effectiveness of various approaches and combinations of such approaches. We
have developed a working implementation of the system which we use for testing
and that includes implementations of different approaches that can be used in the
system components. We have also adapted and included existing linear program-
ming heuristics which can be used to create aggregated regions with roughly equal
population levels.
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We have run a series of tests using synthetic data sets which we have generated.
Through these tests, we are able to clearly demonstrate the trade-offs between dif-
ferent objectives that are inherent in the process of anonymization. Furthermore,
we have shown that while the linear programming heuristics can be applied to
this problem, they are, for the most part, only useful in an unconstrained setting,
indicating that the constraints used in this way are not very effective. Based on
the results of the comparisons of all approaches, we have made recommendations
to users about which approaches are appropriate based on the user’s require-
ments. Additionally, we recommended combinations of approaches to choose from
based on user requirements. With these recommendations, a user with minimal
background knowledge of how to anonymize data can use VBAS in an effective
manner.

The use of VBAS along with these recommendations provides an easy-to-use
process for generating anonymized data with high precision geographic informa-
tion, as is often required in various data analytics research. With this work com-
pleted, it is of interest to expand our comparison of VBAS with other systems of
geographic-based anonymization. In particular, we now plan to compare VBAS
to systems using perturbation-based anonymization. As these systems use a fun-
damentally different approach to protect privacy, the same data utility metrics
cannot be applied. We will therefore employ a comparison of data utility with
regards to spatial analysis.
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