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Abstract: In recent years, location privacy concerns that arise when using the nearest neighbor
query services have gained increasing attention, as such services have become pervasive in mobile
social networks devices and the IoT environments. State-of-the-art privacy preservation schemes
focus on the obfuscation of the location information, which has suffered from various privacy
attacks and the tradeoff of the quality of service. By noticing the fact that the user’s location
could be replaced by their surrounding wireless sensor infrastructures in proximity, in this paper,
we propose a wireless sensor access point-based scheme for the nearest neighbor query, without using
the location of the user. Then, a noise-addition-based method that preserves user’s location
privacy was proposed. To further strengthen the adaptability of the approach to real-world
environments, several performance-enhancing methods are introduced, including an R-tree-based
Noise-Data Retrieval Algorithm (RNR), and a nearest neighbor query method based on our research.
Both performance and security evaluations are conducted to validate our approach. The results show
the effectiveness and the practicality of our work.

Keywords: location privacy; nearest neighbor query; noise addition; R-tree; wireless sensor localization;
Internet of Things

1. Introduction

Geolocation information of both people and devices is becoming increasingly significant. On one
hand, people can use their locations to receive various services (such as the nearest neighbor query in
mobile social networks) that enhance their daily activities. On the other hand, advancements in the
wireless sensor localization have enabled the development of applications to obtain Points of Interest
(POI) with the smartphone; thus, people can acquire the location of nearly anything by allowing the
devices to perceive its surrounding wireless sensors and hence to know their current geolocations,
and various applications will be available, such like the IoT performance appraisal [1] and the mobile
entertainment [2].

In the view of the positioning procedure, the third-party geolocation services have been adopted
in most real world scenarios in which location is required. A geolocation service (LS) is a centralized
third-party information service through which users retrieve their geolocations by sending information
concerning nearby wireless sensor to the geolocation service provider (LP) such as Google, Skyhook,
Baidu and so on. Compared to some other wireless sensor localization technologies (such like the
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RFID identification method proposed in [3]), the more ubiquitous of these services are the Wi-Fi-based
fingerprint localization services, and this kind of service can be called as the basic level fuction in
nearly every smartphone. The providers of such LSs are often gigantic companies such as Google
and Apple. On the other hand, the nearest neighbor query services (NNQ) are offered from the other
side of the phase, a NNQ provider (NP) receives user’s location and then performs the NNQ services.
Figure 1 shows an example of these two phases, when Alice needs to know the nearest restaurant in
proximity, she first requests her geolocation from the Google location service (Google acts as the LP)
during the LS phase, then during the NNQ phase, she sends the geolocation and the query criteria
to Yelp (Yelp acts as the NP) to exchange the information she needs. In such a process, both LP and
NP will know Alice’s geolocation, obviously, as does any third-party information service, these LSs
and NNQs raise privacy concerns due to their very nature. This privacy issue is serious and needs
to be solved.

Alice
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query result

Google Location 
Service (LP) AAAAA
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Figure 1. An example of LS and NNQ.

Unfortunately, the efforts prior studies have devoted to preserving location privacy in NNQ phase
are unsuitable for solving the location privacy problem in LS phase because the protected information
involved in the two phases is totally different. Consider the approaches that add noise as an example;
in which at the most basic level, users can mix some completely random “dummy” coordinates with
their real locations. Researchers have tried every means possible to improve the obfuscation (as well
as other privacy aspects) of the dummy locations. However, in an LS phase, the noise data must instead
consist of signal space vectors, which demands stricter patterns than that of geolocation-based approaches.

Many works have been devoted to preserving location privacy in the NNQ phase. In contrast,
few studies have focused on the LS phase. This indicates that the location privacy must be protected
by two different schemes that work on both the LS and NNQ phase independently, this situation
goes against the entire issue of location privacy, especially when the LP and NP are the same entity,
the efforts on both sides will be in vain.

In this paper, we proposed a wireless access point based scheme to preserve location privacy in
NNQ services. We formally modelized the spatial features of an access point (AP) and demonstrated
what types of APs can be used as noise data. Based on this model, we used the combination of APs
surrounding the users directly as the query criteria, no location information is needed in our approach,
and this greatly strengthen the location privacy.

The major contributions of this paper are summarized as follows:

1. From a theoretical point of view, we proposed a formal model for the spatial distribution of APs
that can be used to verify whether a set of APs qualifies for use as noise data in LS phase.

2. We proposed an R-tree-based Noise Data Retrieving Algorithm (RNR) to generate the noise data
set for a specified real location. RNR generates a high-quality noise data set and simultaneously
optimizes the performance, making our approach suitable for mobile and IoT devices.
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3. We proposed a NNQ method based on the APs information, NP can use the APs as the query
criteria directly to search the nearest neighbor.

4. A comprehensive evaluation of both, solution performance and security aspects, show the
effectiveness and the practicality of our work.

The rest of this paper is organized as follows. Section 2 briefly reviews the related work,
and Section 3 outlines the model used to determine the noise data. We describe the design details of
our approach in Section 4. Sections 5 and 6 provide theoretical analyses and experimental evaluations,
respectively. Finally, Section 7 concludes the paper and suggests future work.

2. Related Works

Much attention to location privacy has been paid to the phase of NNQ over the past decade.
The approaches are comprehensively surveyed in [4–6]. The threat models of these approaches are
similar: they prefer to treat the Location Based Service (LBS) providers as untrusted adversaries
with extensive background knowledge. Based on this framework, their primary purpose is to
prevent the LBS providers from knowing the users’ accurate locations while at the same time
retaining as much of the LBS functionality and service quality as possible. Researches based on
obstruction [7–9], clique region [10], encryption [11] and obfuscation [12] are widely adopted for the
detail of their implementations.

Few efforts have been made to preserve privacy from the other side of this problem: the location
privacy in LS phase, which is equally important. Reference [13] clearly described this privacy
issue in the third party wireless sensor localization service, but offered no computational solution,
and reference [14] introduced a detection method of privacy attack against the NNQ. In [15], the authors
described a location privacy threat called a location spoofing attack, in which the attackers counterfeit
a smartphone’s original wireless sensor information and imitate the real user to request the user’s
location from the LP. Then, the method proposes a reliability determination algorithm to cope with this
threat. However, their threat model regarded the LP as trusted, which is unrealistic in the real world.
The encryption-based approach was proposed in [16,17] to cope with privacy threats in Wi-Fi-based
LSs. However, the encryption procedure is considered to be time-consuming for mobile devices;
moreover, it is designed for Wi-Fi-based localization only, which limits its widespread adoption.

Finally, from the view of the system architecture model, the trusted third party (TTP) broker is
widely adopted in some literature. TTP is needed in some location privacy researches often because
their preservation scheme needs the information that beyond the user’s ability, or the algorithm is
too time-consuming for the normal devices. However, the TTP broker is considered to be lack of
practicality, since it is unrealistic in the real world, the absolutely trusted role is hard to define in the
real world threat model.

3. Preliminaries

In this section, we first describe the wireless localization technologies in brief, then we discuss the
spatial distribution features of APs and introduce the graph structure to model it. Finally, we present
the system model our system adopts.

3.1. Wireless Localization Technology

Wireless localization is widely used in mobile environments and IoT scenarios, and fingerprint
localization is one of these technologies, it was first designed as an indoor localization scheme but
was subsequently shown to perform reasonably well in outdoor environments. In both application
scenarios, the underlying techniques tend to be the same. Generally, fingerprint localization approaches
transform signal space vectors into Euclidean space vectors by performing a two-step procedure.
The offline step is conducted by the LP and generates a localization database that includes the signal
space beacons (commonly termed “fingerprint”) in specified areas. Depending on the technological
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details, this database may contain either the geolocation of each AP or only the fingerprint database.
During the online step, the LP estimates a device’s geolocation by searching the database using
fingerprint vectors acquired from a user’s device. In the current environment, the APs massively exist
in the city areas.

Besides fingerprint technology, the triangulation localization technologies are also proposed.
The basic principle of triangulation method is: If the geographical coordinates of three reference
wireless nodes are known, the location of the user can be calculated by using either the distance or the
direction by performing the trigonometric calculation. Based on the geometric properties of triangles,
different methods can be used to calculate the location, for example, the angle of arrival (AoA) and the
time of arrival (ToA).

Although the state-of-the-art of localization technologies use different estimation methods,
these differences have little effect on the user side, which is convenient for designing a universal
location privacy preserving algorithm in LS phase.

3.2. Spatial Distribution Model of AP

The basic principle in state-of-the-art wireless localization technologies requires the device to sense
signal space features in its proximity, collect them, and send this so-called “fingerprint” information
to the LP through the network. Then, the LP estimates a specific geolocation associated with the
received fingerprint and sends it back to the device. From the device viewpoint, the details of the
type of localization technology (for example, AoA, ToA and fingerprint) the LP is using are irrelevant;
the device always performs almost the same tasks, which are, sense and record the information of its
surrounding APs and then send them to the LP.

The key requirement of noise addition is that the spatial distribution of a noise data set should
accurately mimic the real world fingerprint which is sensed by the device. In this paper, we use an
undigraph to model the spatial distribution of APs. As shown in Figure 2a,b, if we define a vertex as
an AP and the edge between two vertexes as the “overlapping” relation of each AP’s signal cover area,
then a “fingerprint” cluster-like feature can be modeled as a complete subgraph of the entire graph.

Formally, given the real “fingerprint” data set F in the undigraph G(V, E), which v ∈ V represents
the AP, and e ∈ E represents the overlapping relation between two vertexes, we wish to find noise
data that is similar to the real data set, that is, to find a series of vertexes Vnoise: v11 · · · v1n

...
. . .

...
vk1 · · · vkn


in which

1. {vi1, · · · , vin} (along with the edges between them) consists a complete subgraph in G,
2. Vnoise ∩ F = ∅, and
3. n = |F|.

The second limitation is not a necessary condition for the noise data set, it is defined mainly for the
privacy concerns. Utilizing this model, the noise generation problem in LS phase can be transformed
into a clique-finding problem in an undigraph, and we can use the clique of APs directly to represent
the location information of a user, an then use it directly to perform the NNQ.

It is important to note that the brute-force algorithm for finding a clique in an undigraph
requires exponential time [18]; thus, this noise generation method limits the utilization potential
due to device limitations (processing power, delay and energy constraints), especially in mobile and
IoT environments. To address this problem, we design the RNR algorithm, which is discussed in
Section 4.2.2.
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Figure 2. The basic idea of our approach. (a) AP spatial distribution and their signal coverage area;
(b) undigraph G; (c) R-tree T of the clique snippets.

3.3. System Model

In this study, we consider the NP as an honest-but-curious attacker who provides NNQ honestly
but will infer and collect client locations. The NP knows all the NNQ requests as well as the details
of the privacy preserving technology used by the devices. Beyond that, we consider both the device
and the network to be trusted because other security issues are out of the scope of our discussion,
and could be satisfied by utilizing the corresponding privacy preservation schemes such like [19,20].

The graph model of APs (denoted as G) of the whole area is possessed by the NQ, and the user
holds a partial of the G, he will sense and collect the historical AP data and use them as the candidate
of noise generation. We use the direct communication model to perform our approach and no third
party broker are needed to perform the preservation for the user in our scheme.

4. Our Proposed Schemes

To address the privacy issue and the implementation quandaries described above, in this paper,
we first propose a noise addition approach that can preserve the location privacy of users from
third-party geolocation services. Then, the AP-based NNQ query method will be introduced. In this
section, we detail the design of our work.

4.1. System Overview

Our approach is based on the fundamentals of the localization technologies; therefore, we do not
need to make any assumptions concerning infrastructure or application scenarios to apply our system.
Additionally, our approach requires no cooperation from the LP, which is important in practical privacy
preservation schemes.

Figure 3 shows an overview of the system architecture, which contains two main modules: a noise
library containing the identifying information of APs and their spatial distribution topology model.
In our work, the noise library is owned by the user. The NNQ requester module first utilizes real data
to request the noise data set from the noise library; then, it requests an NNQ from the NP using all
these “fingerprints”. Finally it selects the real query result and sends that to higher-level applications.

To describe our approach, we first introduce our noise-screening strategy and the RNR algorithm.
Then, we describe the AP-based NNQ service.

4.2. Noise Generation Scheme

We first introduce the modified noise data retrieval method which can greatly shorten the
preservation time. Then, on the basis of the proposed method, we further take the privacy concerns
into consideration. Finally, we introduce our noise generation scheme.
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Figure 3. System architecture.

4.2.1. Modified Noise Data Retrieval

As illustrated in the preliminaries, we model the APs spatial topology as the undigraph and
transform the noise data set retrieval into the clique search problem. However, this approach is too
time consuming when the undigraph is large. To address this problem, we first locate and mark the
“dense areas” of the undigraph; then, we cut the undigraph into snippets.

Given the undigraph G which is defined in Section 3.2, We use the clustering coefficient of each
vertex vi

ci =
|{ejk : vj, vk∈Ni, ejk∈E}|

ki(ki − 1)

to represent how likely this vertex and all its neighbor are to compose a complete subgraph, here ejk
denotes the edge between the vertex vj and vk, ki is the number of the neighbours of vi, and Ni is the
neighbours of vi. According to the definition, this coefficient of the three red vertexes a, b and c in
Figure 2b should be 1, 0.58 and 0.67, respectively. In particular, we can assert that a complete subgraph
exists when this coefficient is 1. Given the global undigraph of APs (denoted as G), we first define the
clustering coefficient c as the weight of each vertex. Then, using G and the threshold c, we divide G
into snippets in which each snippet is a clique with several vertexes. The value of c can be adjusted
to control the noise library’s size; when c is 1, all the noise sets in the noise library will be perfect
candidates for our approach.

When the number of snippets is large, to further improve the retrieval of the noise data set, we use
an R-tree-based data structure to construct the noise data set and facilitate retrieval. As Figure 2c shows,
the R-tree T was built over the entire area to store the AP snippets. In our work, we actually focus
on the distribution feature of the APs, it is not necessary to store every AP geolocation; consequently,
the leaf nodes in each snippet contain only one geolocation for each snippet, which represents one
vertex of that snippet.

Based on the constructed snippets of T, our approach can retrieve a noise data set that is both
localizable and efficient. Next, we discuss further privacy issues involving noise data.

4.2.2. Enhancing Privacy in Query Probability

In our work, we choose those noise data sets that can induce NP to generate “dummy” locations
for the device. Moreover, to further enhance the privacy level of our approach, we consider the
situation that the NP may perform the collusion attack with LP, and they could locate user by the
positioning technologies. To conquer this threat, the dummy location should have a “query probability”
sufficiently similar to the real location. In a grid-divided area, the query probability (denoted as q) of
each grid cell is the probability of that cell being queried, which is proportional to the number of times
the location was queried in the past:

qij =
|LSij|
|LSglobal |
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Figure 4 shows the characteristics that our noise data should satisfy. In the figure, similar cell
color depths represent similar q values. Here, device in cell c13 should choose a noise data set that
can induce LP from localizing into cells c15 and c44. In our work, benefitting from the R-tree snippet
noise library, we can achieve noise data set optimization easily by simply using the grid cell area as the
query criteria to the R-tree snippet library. Based on the q-matrix (denoted as Mq), we select those cells
whose query probability is similar to qreal when searching the snippets in T. As a result, we obtain
a noise data set that will localize a geolocation similar to the real location (i.e., representing a higher
privacy level).

1 2 3 4 5
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5

q1 ... q2 ... q2

... q3 ... ... ...

... ... q1 ... ...

q3 ... ... q2 ...

... q1 q3 ... ...
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device

Figure 4. Noise data set concerning the query probability.

Combining the above-mentioned designs, the design of the RNR algorithm is shown in
Algorithm 1. The RNR algorithm takes the Mq and the query probability of the real data set as
the input and retrieves k noise data sets as the output. In detail, we use a random method to filter
out surplus noise candidates that satisfy our need, which includes selecting random k cells among
all the candidate cells with similar q values, and randomly choosing vertexes in a snippet when
the number of vertexes in this snippet is greater than the number of vertexes in the real data set.
In contrast, when fewer than k noise data sets satisfy the conditions, the algorithm iterates over the
process, adjusting the q value in each iteration to extend the search scope.

Algorithm 1 RNR algorithm

Require:

Mq;

qreal ;
Ensure:

k noise data sets N1, · · · , Nk;
1: SNIPPETS = searchTree(qreal);
2: if sizeo f (SNIPPETS)≥k then

3: for each snippet in SNIPPETS do

4: if vertex number of snippeti is larger than vertex number of real data then

5: NoiseSeti = random_vertex(snippeti);
6: end if
7: end for
8: randomly choose N1, · · · , Nk from NioseSet;
9: return N1, · · · , Nk;

10: else

11: reduce q and repeat from line 1;
12: end if
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4.2.3. The AP-Based NNQ

As G contains only the distribution of APs, it cannot be used directly to perform the NNQ. In our
work, we further enhanced G by enable it to estimate the distance between each vertex. To realize
this front, we estimate the distance between two overlapped APs by performing the signal strength
distance conversion. In this paper, the pervasive function of this conversion was adopted, which can
be formally described as:

d = 10
|rssi|−A

10×n

Here rssi is the received signal strength of AP in some location of the overlap area, A is
absolute value of signal strength at one meter distance to the source sender and n indicates the
path loss attenuation factor. Both of these parameters in this equation can be obtained by measuring
(e.g., the rssi) or inherit (e.g., the A and n) from the background knowledge. Then, the estimation of the
distance between APs (denoted as dAP) can be calculated out by the trigonometric function calculation.
We further use this distance as the weight of edges of G, the NP can use G to estimate the distance
between the users and all its neighbors. The specific procedure of the AP-based NNQ is as follow:

step 1: Select the vertex with the largest c in the query criteria as the anchor AP, denoted as va.
step 2: Choose those vertexes from the neighbor of va in G which are combined with the POIs,

denoted as vc, if no vertex in neighbor of va is combined, repeat this step to all the neighbors of
va’s neighborhood.

step 3: Calculate the estimated distance between va and each vertex in vc and return the POI of
the nearest vertex.

In our work, we use this AP-based NNQ method to replace the traditional NNQ. Benefit from
this method, NNQ could be carried out without the use of location of user, hence, it enhances the
location privacy to a large extend. Further evaluation is shown in the following section to verify
this improvement.

5. Analysis

In this section, we discuss the performance and the security aspects of our work. For the ease of
presentation, we list in Table 1 the symbols and abbreviations used in this paper.

Table 1. Glossary of Symbols and Abbreviations.

Symbols and Abbreviations Full Term

c Clustering coefficient of a vertex in G
G Undigraph model of APs
T R-tree of the AP snippets
q Query probability of the grid cell
Mq The Matrix of query probabilities of the grid cells
C{D1, · · · , Dk, Lreal} Geolocation set that contains k dummies and 1 real location
Q{q1, · · · , qk, qreal} Query probabilities of each cell that covers the geolocation in C

5.1. Performance

As our method is carried out on the mobile device, we mainly considered two types of important
system overhead of a mobile device: the time complexity and the memory overhead.

5.1.1. Time Complexity

We focus on the time complexity of RNR algorithm mainly because it leads to runtime delays in
the LS. The RNR involves two computing phases. The first phase is grid cell selection from the Mq.
Here, we choose k cells, which form the search condition of the second phase. The time complexity
of this operation is O(n2). The second phase searches snippets in the R-tree. The average theoretical
time complexity of this operation is O(logM), where M denotes the number of snippets contained in T.
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Therefore, the time complexity of RNR can be described as O(n2) + O(logM), which is considerably
smaller than the time complexity of the brute-force clique discovery algorithm.

5.1.2. Memory Overhead of Device

The memory overhead of our approach depends primarily on the size of AP identifiers in the real
world. Generally, the overall storage cost (M) can be calculated as:

M = (size o f AP identi f ier)× (number o f APs)

In current realistic situations, the most common identifiers LPs used to identify APs are MAC
addresses (and sometimes, IPv6 addresses in an IoT environment). Both MAC addresses (6 byte) and
IPv6 addresses (16 byte) are small relative to current device memory capacity. Therefore, our approach
involves only a small memory overhead for the device. This situation will be shown more clearly in
the evaluation section.

5.2. Deviation

Our method uses the APs as the query criteria of NNQ instead of the location, as the result,
a certain degree of deviation could occur which is caused by the estimation error. However, the average
deviation of the state-of-the-art estimation scheme are 20–50 m in the urban area, such magnitude of
deviation is almost as fair as the estimation deviation of the positioning technologies. Therefore, it could
be considered as equivalent to use the AP-based method and the location-based method.

5.3. Privacy

In Section 3.3, we briefly introduced the threat model used in our approach. In this subsection,
we first introduce the privacy attacks we are concerned with in this paper; then, we show a security
analysis in terms of each attack type.

5.3.1. Direct Observation

In this attack, the NP obtains a device’s location during the NNQ operation. In our approach,
we use the APs as the query criteria of NNQ, no location information is needed in the entire process.
In other words, theoretically, NP cannot know any information about the user’s location, and the
location privacy of the user is under an absolute preservation.

5.3.2. Statistical Inference Attack

In more complex situations, since the collusion attack could be occurred, and the LP knows
the global query possibilities, they may use APs to locate the user’s location and even perform the
statistical inference to narrow the guess range within the set C. In the most fundamental inference
attack with which we are concerned, the LP will always assume that the location with the highest q is
the real location.

Because the k value cannot depict the success rate appropriately under this type of attack,
we instead use the entropy of C as the metric to measure the probability that the LP will successfully
locate the device. Here, we first define pi as the probability of the ith geolocation in C as the real
location, apparently pi =

qi

∑
|C|
i=1 qi

. Then, the entropy can be represented as

H = −
|C|

∑
i=1

pi ∗ log2 pi

Based on the definition of H, a larger H represents a higher privacy level.

Theorem 1. The RNR is resistant to statistical inference attack.
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Proof. From Algorithm 1, because the RNR uses only grid cells with q values similar to the Lreal as the
query criteria, the resulting

{q1, · · · , qk}

will all be similar to the qreal . This causes H to be very close to 1; thus, the LP can make only a wild
guess (falling back to the direct observation attack) which has low reliability.

On the other hand, if the noise library cannot supply a sufficiently high-quality noise data
set (i.e., the RNR returns fewer snippets than needed), H increases, and the privacy level declines.
Nevertheless, in such cases, the RNR can still resist statistical inference attacks due to the long
randomization period. The adoption of the randomization approach causes side-effects to the LP’s
knowledge of the global query possibilities: after a sufficiently long period of system implementation,
the query probability of each cell approaches equality, and the average H will be approximately 1.
This causes LP to lose the advantage of global query probability when performing such an attack.

6. Experimental Results

In this section, we evaluated the performance of our approach through several experiments
corresponding to overhead and privacy. We used the Wi-Fi-based Google Localization Service to
represent LP, and we implemented our privacy preservation method (including the R-tree maintenance,
noise generation) on an Android 7.0 OS mobile device with a Qualcomm Snapdragon 821 2.15 GHz
CPU and 4 GB of RAM. To use the noise data set when requesting the LS, we overwrote the relevant
system code, allowing us to send custom information to the LP. In our experiments, from a privacy
preservation viewpoint, we do not need to consider how Google performs its localization. We simulated
the NP with the ability of performing the AP-based NNQ procedure on our Lenovo PC.

We used an open Wi-Fi dataset that includes 123,593 Wi-Fi hot spots in Tokyo, Japan along
with their MAC addresses and geolocations. To simplify the spatial distribution of these APs,
we transformed the geometric coordinates (latitude and longitude) into two-dimensional Euclidean
space coordinates through Gauss-Kruger projection.

6.1. Performance

We evaluated the system overhead of our approach from two aspects: CPU time and the size of
the noise library.

6.1.1. CPU Time

When acquiring the CPU time, we focus our attention on RNR due to its runtime delay to NNQ.
We compared RNR to the brute-force clique discovery algorithm. Figure 5 shows the effects of k on the
CPU time of each algorithm as we executed the algorithms on their corresponding global-sized data
structures (the R-tree T and the undigraph G) and increased k from 3 to 20. The brute-force algorithm
takes considerably longer and its CPU time is highly unstable. In contrast, the RNR CPU time is lower
by more than an order of magnitude than that of the brute-force algorithm and the RNR CPU time
increases linearly with k.

6.1.2. Deviation

To investigate the deviation of our scheme, we compared the AP-based NNQ result to the
location-based NNQ result in the same circumstance. By repeating 50 times the simulation on the two
methods in the same geolocation, we counted the total number of times when different NNQ results
happen. After repeating this simulation in 240 different geolocations, the result shows that only 4.54%
out of the total on average did not be the same as the location-based NNQ result, this is a fairly small
and acceptable proportion compared to the total number.
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Figure 5. CPU time of RNR and the brute-force algorithm as k increases from 3 to 20 using a fixed δ of 5.

6.2. Privacy

Considering the collusion attacks, we evaluated how much privacy our approach provides by
performing the privacy attacks described earlier in this paper. The evaluations are carried out on
both a global noise library denoted as T and several smaller noise libraries constructed by user at
incremental scales (T1, T2 and T3 with 10 m2, 20 m2 and 40 m2 respectively). For the input data of the
noise generation scheme introduced in Algorithm 1, both the situations that the real location is in the
cell with high and low query probability are been considered.

6.2.1. Resistance on the Direct Observation Attack

We simulated the fundamentals of this attack in which the LP performs a wild guess concerning
the contents of C. Theoretically, the success rate of identifying the real location is 1

k . Figure 6 shows the
success rate (denoted as x) of this attack working on our method and the influences of each parameter
on x, the success of the attack means that the attacker successfully recognized the real data out from
the noise data.
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Figure 6. Experiment results of resistance to direct observation attack. (a) x vs. k with a fixed δ of 5;
(b) x vs. δ with a fixed k of 10.

In Figure 6a, we increased the number of the noise data set (denoted as k) from 3 to 20 and
visualized the effect of k on the success rate x. We also compared our work to a no-strategy method,
in which we added some (as much as the RNR output) purely random noise data into the real data.
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As shown in Figure 6a, the no-strategy method provides almost no privacy under this type of attack,
because the LP cannot perform normal LS based on the random noise data set. In contrast, the result of
RNR is consistent with the theoretical analysis. The experiment was independently repeated 500 times
for each x, and the average x value decreases from 0.3369 to 0.0624 as k increases from 3 to 20.

Notably, the results for the self-constructed noise libraries (T1, T2 and T3) are almost as good as
the result using the global-library control group. This result verifies a crucial aspect of our approach:
using the R-Tree construction algorithm to enable a device to conduct privacy preservation by itself.

We studied the effect of δ on x, where δ indicates the number of APs the LP requires for his service.
As shown in Figure 6b, x increases slowly as δ enlarges from 3 to 15. Because a higher δ denotes more
strict query criteria of the snippets in RNR, it will sometimes return a “wrong” noise data set which
fails to induce the LP to return a location. This increment of x is more pronounced for T1, T2 and T3

than for the global control group, because the smaller noise library is less diversified than the global
library. Overall, the increment was less than 0.2 even in the worst case.

6.2.2. Resistance on the Statistical Inference Attack

In this experiment, the basic statistical inference attack is carried out on privacy, which means
that the LP always assumes the location with the highest q in C is the real location. We divided the
global area into a grid in which each cell represents 1.2 square kilometers. Without loss of authority,
the initial Mq for this area was obtained from the Google Map API, and we simulated the LS requests
with frequent patterns according to the query probability matrix. Figure 7 shows the success rate of this
attack (left side scale), and the corresponding entropy of C that our method offered (right side scale).

Figure 7a shows the effect of k on the success rate x (solid) of this attack. We compared our work
with a noise retrieval scheme that does not consider the query probability; it always uses a random grid
cell as the query criteria for the noise library. Benefitting from the RNR, the entropy H of C remains
satisfactorily high (approximate to 1) in the global case; correspondingly, x remains at quite a low
value. x (and H) are theoretically independent from k ,which is demonstrated well in the global case;
however, k may influence x from another perspective when there are insufficient cells in the query
probability matrix to satisfy the similarity. In this case, RNR relaxes the similarity threshold to obtain
the required number of noise data sets, which leads to the reduction of the H of C and an increase in x.
This influence is more apparent when using T1, T2 and T3 in our experiment.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0

0.2

0.4

0.6

0.8

1.0

en
tro

py
 (H

)

 

su
cc

es
s r

at
e 

(x
)

success rate  entropy
                global
                T1

                T2

                T3

                random

k

0.0

0.2

0.4

0.6

0.8

1.0

 

(a)

2.0k 4.0k 6.0k 8.0k 10.0k 12.0k 14.0k 16.0k 18.0k 20.0k
0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e 

(x
)

 

t

 success rate      entropy
                      T1

                      T2

                      T3

0.0

0.2

0.4

0.6

0.8

1.0

en
tro

py
 (H

) 

(b)

Figure 7. Experiment results of resistance on the statistical inference attack. (a) x and H vs. k with the
initial M; (b) x and H vs. t with the dynamic M.

We further considered the real-world situation of the dynamic matrix owned by the LP. Based on
the initial query probability, the attacker must update Mq with the location of the subsequent LS
request. We studied the effect of the total number of RNR executions on H and x under the statistical
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inference attack. Because the noise data set continuously alters the Mq, it can be observed from
Figure 7b that the x for T1, T2 and T3 gradually declines as t rises from 2× 103 to 2× 104. This result
provides strong evidence of the practicality of the our scheme; thus, we can claim that our approach
defends against statistical inference attack efficiently in both scenarios.

7. Conclusions

In this paper, we investigated a pervasively adopted wireless sensor localization-based NNQ
scheme, which can perform NNQ without the using of location. The noise addition-based location
privacy preservation scheme is then introduced. We presented a formal model to outline the fundamental
effects of adding noise in general localization techniques. Based on this model, we proposed an approach
that allows the device to self-generate noise datasets that are highly confusing to the LP, this approach also
enables the device to use the direct communication architecture, which is more practical for the real world
implement than the TTP architecture. Despite the collusion attack, in the basic threat model, our scheme
can ensure the absolute of privacy since no location is ever mentioned in our AP-based NNQ procedure.
Then, we further took the collusion attack from NP and LP into consideration, and the noise addition
method further ensures the high privacy level. We implemented the privacy preservation method on
the mobile device, and both the performance and the privacy evaluations were performed. The results
of the experiments demonstrate the effectiveness and practicality of our approach.
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