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ABSTRACT

In this paper, we consider optimal scheduling algorithms for scientific workflows with two

typical structures, fork&join and tree, on a set of provisioned (virtual) machines under
budget and deadline constraints in cloud computing. First, given a total budget B, by

leveraging a bi-step dynamic programming technique, we propose optimal algorithms in
pseudo-polynomial time for both workflows with minimum scheduling length as a goal.
Our algorithms are efficient if the total budget B is polynomially bounded by the number

of jobs in respective workflows, which is usually the common case in practice. Second, we
consider the dual of this optimization problem to minimize the cost when the deadline

of the computation D is fixed. We change this problem into the standard multiple-choice

knapsack problem via a parallel transformation.

Keywords: workflow scheduling; budget and deadline constraints; optimal scheduling

algorithm; dynamic programming; cloud

1. Introduction

The cloud, as a new computing platform with abundant on-demand compute re-

sources and elastic charging models, has been emerging as a promising approach
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to the high performance workflow computation [10, 12, 13, 8]. Although this new

platform removes the up-front fee and long-term commitment of installing and main-

taining hardware and software infrastructure while providing HPC applications with

a scalable runtime environment, it still imposes some challenges that have not seen

before. One of these challenges is cost-effective utilization of the cloud resources.

With the advances of more commercial cloud systems penetrating into the sci-

entific computation market, research on this aspect has been provoking great in-

terest [26, 5, 28]. Yu et al. [26] discussed this problem in the context of Service

Grids where a QoS-based workflow scheduling method is present to minimize the

execution cost and yet meet the time constraints imposed by the user. In contrast,

Zeng et al. [28] considered the executions of large scale many-task workflows in

the cloud with budget constraints. To effectively balances the execution time-and-

monetary costs, they proposed ScaleStar, a budget-conscious scheduling algorithm,

which assigns the selected task to a virtual machine with a higher comparative ad-

vantage. Almost at the same time, Caron et al. [5] studied the same problem for

non-deterministic workflows. They presented a way of transforming the initial prob-

lem into a set of addressed sub-problems thereby proposing two new allocation algo-

rithms for resource allocations under budget constraints. All of these studies focus

on the scheduling of scientific workflows with a deterministic or non-deterministic

DAG (directed acyclic graph) shape. In general, the optimization of this problem

either with QoS- or budget-based constraints is NP-complete. Therefore, a variety

of heuristics have been proposed for sub-optimal solutions, such as those aforemen-

tioned efforts. However, the existing research with interest in the efficient solutions

to the optimal scheduling of certain types of workflows under QoS- or budget con-

straints is still few and far between. Some people may attribute this phenomenon

to the complex of scientific workflows in terms of the data- or control-dependencies.

However, in reality, this explanation is not always convincing. Some well-structured

workflows are commonplace, and efficient optimal scheduling of these workflows

exists. With optimal solutions, we can obtain insights into many facets of this op-

timization problem and by which to evaluate other heuristics.

In this paper, we consider the scheduling of two well-structured, yet often-

used workflows, fork&join and tree, in the cloud with budget and deadline con-

straints. The fork&join workflow is a very common form of parallel scientific com-

puting processes and represents a large class of problems with a pipeline of paral-

lel phases [23, 2, 1]. It is typically characterized by multiple synchronized stages,

namely, one stage cannot start until its immediately preceding stage is finished.

Each stage consists of a collection of sequential or parallel jobs. A typical fork&join

workflow in practice is those iterative MapReduce jobs that implement graph-based

algorithms [16, 4, 9, 29, 14].

The tree structure is another commonplace workflow pattern, which is usually

characterized by the average fan-out factor of each job in the workflow. As a hier-

archical workflow model, tree structure is often used to capture several hierarchy
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Fig. 1. Examples of studied workflows: fork&join and tree.

levels of a workflow in one model [3], and thus it is often found in recursive com-

putation [21]. A real-live example is the elemination-tree workflow that is devel-

oped to represent the storage requirements, and computational dependencies in the

Cholesky and LU factorization of sparse matrices [20, 11].

In cloud platforms the constituent jobs in the workflow can be scheduled on

different machines for parallel executions. Each types of machine, depending on

the performance or the configuration, has different service rates. Fig. 1 shows two

examples of the studied workflows. One is a two-round MapReduce job which is

represented by a 4-stage fork&join workflow, each having 6, 2, 4, and 1 jobs (tasks

in MapReduce jargon), and the other is a tree-based workflow, consisting of 13 jobs.

Since the resources of cloud computing are on-demand provisioned according

to a typical “pay-as-you-go” model, the cost-effective selection and utilization of

the resources used to compute their workloads are thus the major concerns of cloud

users. In this paper, we try to address this problem by proposing optimal scheduling

algorithms for such workflows on a set of (virtual) machines in the cloud, each with

different performance and service rates. More specifically, we consider the following

two optimization problems:

(1) Given a fixed budget B, how to efficiently select the machine from a candidate

set for each job so that the total scheduling length of the workflow is minimal

within the allotted budget;

(2) Given a fixed deadline D, how to efficiently select the machine from a candidate

set for each job so that the total cost of the workflow is minimal within the

allotted time;

At first glance, both problems are primary-dual to each other, and thus they have

highly inter-dependent solutions, solving one is sufficient to solve the other. However,

we will show that there are still some asymmetries in their solutions.

In this paper, we focus squarely on the first problem, and briefly discuss the sec-



May 22, 2015 7:50 WSPC/INSTRUCTION FILE ppl-r2

4 Parallel Processing Letters

ond one. To address the first problem, we develop a bi-step dynamic programming

algorithm for the fork&join workflow where a stage-wise optimal solution to com-

pute the minimum execution time with given budget for each stage can be obtained

in parallel at the first step, and then a global optimal solution can be achieved at

the second step. We then take advantages of these results and design the optimal

algorithm for the tree workflow. As for the second problem, it is relatively straight-

forward for both workflows as for the fork&join, we can change it into the standard

multiple-choice knapsack (MCKS) problem [22, 19] via a parallel transformation

while for the tree, we can simply give a recursive algorithm based on the problem

formulation.

The remainder of this paper is structured as follows. In the next section, we

overview some related work to compare ours with others, and then in Section 3

furmulate the budget and deadline-constrained problem as an optimization problem

for both fork&join and tree workflows. Then we describe our proposed algorithms for

both workflows in Section 4, and give a numerical example in Section 5 to illustrate

our algorithms. Finally, we conclude the paper in the last section.

2. RELATED WORK

Several grid workflow management systems with scheduling algorithms have been

developed: Condor DAGMan [6], Pegasus [7], Kepler [15] and a Cloudbus workflow

engine presented in [17]. Pegasus uses DAGMan to run the executable workflow.

Kepler provides support for Web-service-based workflows. An actor-oriented design

approach is used for executing and composing scientific application workflows. The

computational components are called actors, and they are linked together to form

a workflow. The Cloudbus workflow engine presented in [17] is a step closer toward

scaling workflow applications on clouds using market-oriented computing.

In [27], Yu and Buyya provide a comprehensive taxonomy of workflow manage-

ment systems based on workflow design, workflow scheduling, fault management,

and data movement. They characterize and classify different approaches for build-

ing and executing workflows on Grids. Existing grid workflow systems highlighting

key features and differences are also studied in the same paper.

In [24, 26] the authors presented a QoS-based workflow management system that

uses a QoS-based workflow scheduling algorithm that minimizes the cost of execu-

tion while meeting the deadline. A Markov Decision Process approach to sched-

ule sequential workflow task execution is used. Typical parameters that drive the

scheduling decisions in such a QoS-based scenario include deadline (time) and bud-

get (cost) [24, 18].

For instance, if the user requires to execute a given task at hand at a minimum

execution cost, rather than using high-end but more expensive cloud resources, a

policy for scheduling an application workflow that utilize local resources and then

augment them with cheaper cloud resources should be in place. On the contrary, in

order to achieve minimum execution time, a policy for scheduling workflows should
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be used to always use high-end cluster and cloud resources, irrespective of costs.

Deelman et al. [8] presented a simulation-based study on the costs involved when

executing scientific application workflows using cloud services. They studied the cost

performance trade-offs of different execution and resource provisioning plans. Yu and

Buyya [25] also presented a budget constraint based workflow scheduling approach

that minimizes the execution time while meeting a specified budget. A new type of

genetic algorithm has also been developed, as the crossover and mutation operations

of existing genetic algorithms focused on homogeneous and non reservation-enabled

multiprocessor systems and therefore cannot be applied to the problem directly.

The fitness function is developed to encourage the formation of the solutions to

achieve the budget constraint and time minimization.

3. Problem Formulation

To uniformly formulate the problem for both workflows, we use double subscripts

to denote each job in the workflow. For example, in the fork&join workflow, job Ji j
represents the jth job at stage i while in the tree workflow, Ji j refers to the jth

child job of job i for easy identification, which, of course, also has its own job number

in the workflow. Note that in our notation, for the sake of consistent presentation

we always use 0th child job to refer to the job itself.

3.1. Job Model

In our model, each job is associated with a set of machines, virtual or physical, that

are provided by cloud service providers to execute this job. Each of these machines,

depending on its performance or configuration, has independent (maybe different

from each other) charge rates. The relationship between the performance and charge

rate could be any function. In our case, we assume for job Ji j (0 ≤ l ≤ ni), the

available machines and the corresponding prices are defined as follows:

Table 1. Time-price table of job Ji j

Ji j =

[
t1i j t

2
i j ... t

mi j
i j

p1i j p
2
j ... p

mi j
i j

]
(1)

.

Here, tu, 1 ≤ u ≤ mi j , represents the time to run job Ji j on machine Mu

whereas pu represents the corresponding price for using that machine, and mi j is

the total number of the machines that can run Ji j (see Table 2 for more frequently

used notations). Without loss of generality, we assume that the times are sorted in

increasing order and the prices are in decreasing order. It is obvious that given two

machines with the same run time for a job, no one will select the expensive one.

Similarly, for two machines with the same price, no one will select the slow machine

to run the job.
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Let Bi j denote the budget for job Ji j and Ti j(Bi j) denote the shortest time

to execute job Ji j . Ti j(Bi j) is defined as

Ti j(Bi j) = tui j pu+1
i j < Bi j < pu−1i j . (2)

Obviously, if Bi j < p
mi j
i j , Ti j(Bi j) = +∞.

Similarly, given Di j as the deadline for job Ji j , we compute Ci j(Di j), which

denotes the lowest cost to execute job Ji j , as

Ci j(Di j) = pui j tui j ≤ Di j < tu+1
i j . (3)

Note that we require t1i j ≤ Di j ≤ t
mi j
i j . Otherwise Ci j(Di j) = +∞.

3.2. Fork&Join Workflow

Suppose a fork&join workflow consists of κ stages, each stage i (0 ≤ i ≤ κ) having

a collection of independent jobs, denoted as Ji 1, Ji 2, ..., Ji ni , ni is the job size

of stage i, we formulate the problem based on budget and deadline constraints as

follows:

3.2.1. Budget Constraints

The time to complete stage i with budget (monetary) Bi, denoted as Ti(Bi), is

defined as the time that allows the slowest job in that stage to be finished by using

the given budget,

Ti(Bi) = max∑
j∈[0,ni]

Bi j=Bi
{Ti j(Bi j)} (4)

For fork&join, one stage cannot start until its immediately preceding stage has

been finished, thus the total makespan with budget B to complete the workflow is

defined as the sum of all stages’ time, our goal is to minimize the time within the

given budget B.

T (B) = min∑
i∈[0,κ) Bi=B

∑
i∈[0,κ)

Ti(Bi) (5)

3.2.2. Deadline Constraints

Given a deadline Di for stage i, the minimum cost (monetary) to finish stage i is

Ci(Di) =
∑

l∈[0,ni]

Ci j(Di) (6)

where Ci j(Di) is the minimum cost to finish Ji j in stage i within Di. Again, we

require t1i j ≤ Di ≤ t
mi j
i j . Otherwise Ci j(Di) = +∞. Finally, our optimization

problem can be written as

C(D) = min∑
i∈[1,k]Di= D

∑
i∈[0,κ]

Ci(Di) (7)
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Table 2. Notation frequently used in model and algorithm descriptions

Symbol Meaning

κ the number of stages

ni the number of jobs in stage i (0 < i ≤ κ)

B the total budget for all jobs of κ stages

Ji j the jth job in stage i

tui j the time to run job Ji j on machine Mu

pui j the cost rate for using Mu

mi j the total number of the machines that can run Ji j
Bi j the budget used by Ji j
T (B) the shortest time to finish the workflow given B

Ti(Bi) the total time to finish stage i with budget Bi
Ti j(Bi j) the time to finish Ji j with budget Bi j
Ti 0(Bi 0) the time to finish job i when allocating budget Bi 0 (tree)

Di the deadline to stage i

Ci j(Di) the minimum cost to finish job Ji j in stage i

within deadline Di

C(D) the minimum cost to finish the workflow within D

Ci 0(Di 0) the minimum cost to finish job i within deadline Di 0 (tree)

3.3. Tree Workflow

Given a rooted tree workflow, we formulate the problem based on budget and dead-

line constraints as follows:

3.3.1. Budget Constraints

The time to complete a sub-tree rooted at job node i with budget (monetary) Bi,

denoted as Ti(Bi), is defined as the time that allows the slowest branch in that

sub-tree to be finished by using the given budget,

Ti(Bi) = Ti 0(Bi 0) + max∑
j∈Out(i) Bi j=Bi−Bi 0

{Ti j(Bi j)} (8)

where Out(i) is job i’s child job set. Again, Ti 0(Bi 0) represents the completion time

of job i (not the sub-tree rooted at job i) when allocating budget Bi 0. Then the

total makespan with budget B to complete the workflow can be simply computed

by T (B) = T0(B) here job 0 is the rooted job in the tree workflow.
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3.3.2. Deadline Constraints

Given a deadline Di for a sub-tree rooted at job node i, the minimum cost (mone-

tary) to finish this sub-tree is

Ci(Di) = Ci 0(Di 0) +
∑

j∈Out(i)

Cj(Di −Di 0) (9)

where Ci j(Di−Di 0) is the minimum cost to finish the sub-tree rooted at Ji j within

Di−Di 0. By following the same arguments to Eq. (8), we have C(D) = C0(D) for

a tree workflow rooted at job 0.

4. Optimal Scheduling Algorithms with Constraints

In this section, we present our optimal algorithms for both workflows under the

budget and deadline constraints.

4.1. Algorithms for Fork&Join

4.1.1. Optimization under Budget Constraints

The proposed algorithm should have the capability of distributing the budget among

the stages, and in each stage distributing the assigned budget to each constitute job

in an optimal way. To this end, we design the algorithm in two steps:

(1) Given budget Bi for stage i, distribute the budget to all constitute jobs in such

a way that Ti(Bi) is minimum, that is

Ti(Bi) = min max∑
j∈[0,ni]

Bi j=Bi
{Ti j(Bi j)} (10)

Clearly, this computation is stage-wise and independent each other. Therefore

they can be computed in parallel using κ machines.

(2) Given budget B for the workflow and the results in Eq. (10), optimize our goal

Eq. (5).

For the first step, the ni jobs in stage i are randomly associated with a label that

forms a non-repetitive consecutive sequence of numbers starting from 1. Suppose

the current budget is b, we use Ti[j, b] to represent the minimum time to complete

jobs indexed from j to nj given budget b. To compute Ti[j, b], we assign q units to

the first job and the remaining b − q units to the remaining jobs from j + 1 to ni.

Then for 0 ≤ i < κ, 0 ≤ l ≤ ni, and 0 < b ≤ Bi, we have the following recursions:{
Ti[j, b] = min

0<q≤b
{max{Ti j [q], Ti[j + 1, b− q]}}

Ti[ni, Bi ni ] = Ti ni(Bi ni) Bi ni ≤ Bi
(11)

where the optimal solution to stage i can be found in Ti[0, Bi].

Theorem 1. Given budget Bi for stage i having ni jobs, Recursion (11) yields an

optimal solution to the distribution of the budget Bi to all the ni jobs in that stage

within time O(niB
2
i ).
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Proof. We prove this by induction on the number of jobs. Let the number of

jobs, ni = 1. Clearly, given budget b, the optimal solution is obtained by Ti[ni, b].

Suppose there are ni jobs, we consider jobs j and j+1. As an induction hypothesis,

let Ti[j+1, p] be an optimal solution to jobs from j+1 to ni given budget p. We will

show that Ti[j, b] is an optimal solution to jobs from j to ni under budget constraint

b ≥ p. In order to find the optimal distribution of the budget b among ni − j + 1

jobs, we need to consider all the possibilities. To this end, we assign q units to the

first job j and the remaining b − q units to the remaining jobs from j + 1 to ni,

and allow q to be varied in the range of (0, b]. Clearly, the recursion chooses the

minimum of all these, thus serving all the jobs from j to ni with a minimum time.

Finally, at stage 1, since there are no more previous stages, the recursion (12)

yields the optimal result Ti[0, Bi] for the workflow. Since there are O(niBi) elements

in the DP matrix (12). For each element, the computation complexity is at most

O(Bi) when Ti j [q], 0 < q ≤ b can be obtained in constant time (Table 1). Therefore,

the total time complexity is O(niB
2
i ). Hence, the proof.

Since all the κ stages can be computed in parallel, the total time complexity for

the parallel pre-computation is O( max
i∈[0,κ)

{niB2
i }).

Now we consider the second step. In this step, p1i j , p
2
i j , ..., p

mi j
i j are used to

denote the prices to run job j on stage i on machine 1, 2, ...,mi j . Suppose Ti[ni, Bi],
ni∑
j=0

p
mi j
i j ≤ Bi ≤

ni∑
j=0

p1i j are pre-computed, and there are a total of

κ−1∑
i=0

ni∑
j=0

(p1i j −

p
mi j
i j ) elements. Of course, instead of using the unit step width for q in Eq. (11), we

can optimize the computation of the dynamic programming recursion by leveraging

the discrete values of p1i j , p
2
i j , ..., p

mi j
i j , which for all κ stages can totally reduce

the number of elements to

κ−1∑
i=0

ni∑
j=0

mi j . All of these pre-computed elements can be

buffered for future use.

Given the results of Eq. (11) for all the κ stages, we try to obtain a dynamic

programming recursion to compute the global optimal result. To this end, we use

T [i, b] to represent the minimum total time to complete stages indexed from i to κ

when budget b is available, and have the following recursions (0 < i ≤ κ, 0 < b ≤ B):

T [i, b] =

{
min

0<q≤b
{Ti[0, q] + T [i+ 1, b− q]} if i < κ

Ti[ni, b] if i = κ
(12)

where the optimal solution can be found in T (1, B). The scheduling scheme can be

reconstructed from T (1, B) by recursively backtracking the DP matrix in (12) up

to the initial budget distribution at stage κ which can phase by phase steer to the

final optimal result. To this end, in addition to the time value, we can only store

the budget q and the index of the previous stage (i.e., T [i + 1, b − q]) in each cell

of the matrix since given the budget for each stage, we can simply use Eq. (11) to
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recompute the budget distribution.

Theorem 2. Given budget B for a κ-stage fork&join, each stage j having nj jobs,

Recursion (12) yields an optimal solution to the distribution of the budget B to all

the κ stages within the pseudo-polynomial time complexity of O(κB2).

Proof. We can reason about the correctness of this recursion by following the same

arguments in Theorem 1. As such, the algorithm is pseudo-polynomial.

Given the pseudo-polynomial time algorithm, we can see that if the bugdet is a

small number, i.e., B is polynomially bounded in κ, then we would have a regular

polynomial time

4.1.2. Optimization under Deadline Constraints

We partition the total deadline D into κ parts, denoted by D0, D1, ..., Dκ−1 such

that
∑

0≤i<κDi ≤ D. For a given Di to stage i, we must ensure that all jobs in

this stage can be finished within Di, and to minimize the cost, we need to select

the machine for each job on which the execution time of the job is the closest

to Di. Formally Ci j(Di) = pui j , t
u−1
i j < Di < tu+1

i j . Obviously, Ci j(Di) is the

minimum cost to finish stage i within Di. If stage i cannot be finished within Di,

Ci j(Di) = +∞. We then can compute Eq. (6).

By following the same arguments in Section 4.1.1, we can derive the optimal

solution. However, this strategy is not efficient since in the previous case, the amount

of allocated budget to each stage as well as its optimal distribution inside each stage

cannot be computed in a simple way, which is different from the current case.

Alternatively, we can transform this problem into the standard MCKS problem

by constructing κ classes in parallel, each corresponding to a stage in the workflow.

The class i consists of a set of tuples (Di j , Ci j) where 1 ≤ j ≤
∑
l∈[0,ni] p

l
i j ,

representing the total minimum cost Ci j for stage i under the given Di j . They are

computed as follows,

(1) for each job Ji j in stage i, gather its execution time on the candidate machines

and put into set S;

(2) sort S in ascending order;

(3) for each element tj in S, Di j ← tj and then compute Ci j(Di j) for each job j

in stage i (this step can be further parallelized based on tj);

The aim of the problem then becomes to picking up exactly one tuple from each

class in order to minimize the total cost value of the pick, subject to the deadline

constraint, which is a standard multiple-choice knapsack problem equivalent to Eq.

(7). To optimize the computation, we can remove the tuple (Di j , Ci j) from the

class if Ci j = +∞.
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Fig. 2. A subtree and its transformed graph.

4.2. Algorithms for Tree

4.2.1. Optimization Under Budget Constraints

Our algorithm is directly derived from Eq. (8). Given budget Bi for a sub-tree rooted

at job node i, our goal is to minimize the value of Ti(Bi) when Bi 0 is changed from

pmi 0
i 0 to p1i 0.

To this end, given budget b, we use T [u, b] to represent the minimum time to

complete the sub-tree rooted at node u. Then, for 0 < b ≤ B, we have

T [u, b] = min
0<q≤b

{Tu 0(q) + max∑
v∈Out(u) bv=b−q

T [v, bv]} (13)

To solve recursion (13), by leveraging the idea in fork&join, we transform a

general tree graph into a binary form by adding two dummy nodes u′ and u”, as

shown in Fig. 2(a) and Fig. 2(b). Based on the transformed graph, we rewrite the

recursion as follows,T [u, b] = min
0<q≤b

{Tu 0(q) + S[u′, b− q]}

S[u′, b− q] = min
0<p≤b−q

{T [v, p] + S[u′′, b− q − p]} (14)

whereby, v is u’s (also u′’s) left most child job in the tree workflow. S[u′, b − q] is

the shortest time to compute all the subtrees of node u with the remaining budget

of b− q. First, the left-most child of u is assigned budget p, and then all its sibling

subtrees which are hung on a dummy node use the remaining budget b − q − p.
Dummy nodes are added to only ease the algorithm presentation; they are not

budget consumers. This is the similar idea to use recursion (12) to compute T (B)

in Eq. (5) for the fork&join workflow. Therefore, the correctness of recursion (14)

is not difficult to understand.

By following the arguments in Theorem 1, the time complexity of this algorithm

is O(nB3) where n is the tree size given 0 < b ≤ B. As such, the algorithm is

pseudo-polynomial.
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---------------------------------

Stage: 0 has 3 jobs Max: 57.50(m)

---------------------------------

Job00: 4 machines

0: 12.50(m) 0.45($)

1: 37.50(m) 0.36($)

2: 45.00(m) 0.29($)

3: 48.75(m) 0.21($) *

Job01: 4 machines

0: 16.25(m) 0.47($)

1: 22.50(m) 0.36($)

2: 57.50(m) 0.15($) *

3: 61.25(m) 0.14($)

Job02: 4 machines

0: 20.00(m) 0.46($)

1: 36.25(m) 0.39($)

2: 38.75(m) 0.15($)

3: 50.0 (m) 0.14($) *

---------------------------------

Stage: 1 has 2 jobs Max: 45.00(m)

---------------------------------

Job10: 1 machines

0: 15.0 (m) 0.15($)

Job11: 4 machines

0: 18.75(m) 0.43($)

1: 41.25(m) 0.37($)

2: 45.00(m) 0.30($) *

3: 61.25(m) 0.17($)

---------------------------------

Stage: 2 has 2 jobs Max: 58.75(m)

---------------------------------

Job20: 4 machines

0: 13.75(m) 0.45($)

1: 17.50(m) 0.44($)

2: 38.75(m) 0.39($)

3: 58.75(m) 0.10($) *

Job21: 4 machines

0: 18.75(m) 0.44($)

1: 36.25(m) 0.20($)

2: 48.75(m) 0.13($)

3: 57.5 (m) 0.11($) *

---------------------------------

Fig. 3. A 3-stage fork&join workflow. For each job, there is a set of candidate machines
that can run the job, and their time-price information is shown, the left column is the exe-
cution time, and the right column is the corresponding service cost. ’*’ marks a scheduling
scheme.

4.2.2. Optimization Under Deadline Constraints

By comparing Eq. (9) with Eq. (8), we can find the optimization under deadline

constraints is relatively easy as the deadline time is not necessarily distributed

among the subtrees of the rooted job node. Instead, all the substrees share the same

deadline Di − Di 0 if Di 0 is assigned to the root node. Given this consideration,

we have the following algorithm,

Ci(Di) = min
t1i 0≤Di 0≤t

mi 0
i 0

{Ci 0(Di 0) +
∑

j∈Out(i)

Cj(Di −Di 0)}, (15)

and the opitmal cost of scheduling the tree workflow with deadline D can be found

at C0(D).

5. Numerical Examples

To illustrate the proposed algorithms, we implemented them in Java and applied

it to an example shown in Fig. 3 where a 3-stage fork&join workflow, each with 3

or 2 jobs, is scheduled in a cloud platform. We select a fork&join workflow as the

example because the optimal scheduling of this workflow contains the core algorithm

(i.e., Eq. (12)) in this paper, which has been leveraged by the solutions to both the

studied workflows. Thus, for illustration purposes, examining the algorithm for the

fork&join workflow is sufficient.
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In our fork&join example, for each job in a stage, there is a set of candidate

machines that can run the job with different service rates and performance. The

time-price information is also summarized in Fig. 3.

Table 3. DP matrix of the optimal budget distribution for Fig. 3.

The first row is the budget while others are execution times.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

stage0 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ 177.5 161.25

stage1 +∞ +∞ +∞ +∞ +∞ +∞ 120.0 103.75 77.5 77.5 76.25 57.5 55.0

stage2 +∞ +∞ 58.75 58.75 57.5 38.75 36.25 36.25 18.75 18.75 18.75 18.75 18.75

Given budget $1.3, we can compute the DP matrix of Recursion (12) by using

the results in (11). The matrix is shown in Table 3 where the optimal computation

time is 161.25(m), and +∞ indicates that the budget is insufficient for the compu-

tation. The scheduling scheme can be reconstructed by backtracking the DP matrix

of Recursion (12) when more bookkeeping information is stored during the compu-

tation in each cell of the matrix. With such information, we can obtain a schedule

with length of 161.25(m) that is also marked by ′∗′ in Fig. 3. For instance, Job00 is

allocated to Machine3 by paying $0.21 for completion within 48.75(m). Note that

the rate of increase in the DP computation is $0.1, which is higher than the rate

of increase using a real service rates model. This mismatch would lead to the loss

of optimality in the final result. A major reason that we adopt this increase rate in

this example is to reduce the size of the otherwise large DP matrix. On the other

hand, changing the rate of increase makes a trade-off between the optimality of the

results and computation overhead, which is also very important, especially when

the budget and workflow size are large. Obviously, when the rate of the increase

matches the real service rate increase, Recursion (12) returns the optimal results.

6. Conclusions

In this paper, we studied two practical constraints: budget and deadline, in optimal

scheduling of two well-structured workflows in scientific computation, fork&join and

tree, on a set of (virtual) machines in the cloud. Each of the two proposed problems

has its own scheduling goal. We presented optimal algorithms for both workflows

based on dynamic programming techniques to address each respective problem with

pseudo-polynomial time complexities whereby we can conduct further research to

find the possible PTAS, or even FPTAS (say using scaling technique) which could

be more practical for the problems.
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