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Abstract

Clustering and routing in WSNs are two well-known optimization problems that are classified as Non-deterministic Polynomial
(NP)-hard. In this paper, we propose a single multi-objective problem formulation tackling these two problems simultaneously
with the aim of finding the optimal network configuration. The proposed formulation takes into consideration the number of
Cluster Heads (CHs), the number of clustered nodes, the link quality between the Cluster Members (CMs) and CHs and the link
quality of the constructed routing tree. To select the best multi-objective optimization method, the formulated problem is solved by
two state-of-the-art Multi-Objective Evolutionary Algorithms (MOEAs), and their performance is compared using two well-known
quality indicators: the hypervolume indicator and the Epsilon indicator. Based on the proposed problem formulation and the best
multi-objective optimization method, we also propose an energy efficient, reliable and scalable routing protocol. The proposed
protocol is developed and tested under a realistic communication model and a realistic energy consumption model that is based
on the characteristics of the Chipcon CC2420 radio transceiver data sheet. Simulation results show that the proposed protocol
outperforms the other competent protocols in terms of the average consumed energy per node, number of clustered nodes, the
throughput at the BS and execution time.

Keywords: WSN, Clustering, Multi-hop routing, Pareto optimization, RSSI, CC2420

1. Introduction

Wireless Sensor Networks (WSNs) have emerged as a key
technology in realizing many applications in a wide range of
contexts including military operations, environmental monitor-
ing, surveillance systems, healthcare, environmental monitor-
ing and public safety. In order to realize the existing and po-
tential applications for WSNs, sophisticated and extremely effi-
cient routing protocols are needed. However, it is a challenging
task to select or propose a new routing protocol for a specific
WSN application due to the inherent properties of the individual
sensor nodes such as the limited power supply and the limited
transmission range [1].

Cluster-based routing (clustering) protocols can solve some
of those challenges due to their scalability, energy-efficiency,
and data delivery reliability [2, 3]. In a clustering protocol, the
network operating time is divided into rounds and each round is
usually divided into three phases: Cluster Head (CH) selection,
cluster formation, and data transmission. The CH selection al-
gorithm is responsible for selecting the optimal set of CHs ac-
cording to some predefined objectives. After selecting the op-
timal set of CHs, the clusters are usually formed by associat-
ing each regular node to its nearest CH. The data transmission
phase can either be intra-cluster or inter-cluster. Intra-cluster
communication comprises the data transmission between the
member nodes and their respective CH while Inter-cluster com-
munication includes transmission of data between the CHs or

between a CH and the Base Station (BS).

Data delivery reliability is considered a key requirement in
WSNs [4]. In order to realize this requirement, clustering pro-
tocols should adopt a multi-hop inter-cluster communication
model as it is considered a more realistic approach due to the
limited transmission range of the sensor nodes. On the other
hand, using a single-hop inter-cluster communication model, in
which the CHs send the data directly to the BS, can adversely
affect the network performance due to collisions and communi-
cation interference [5]. Therefore, clustering protocols should
ensure high-quality links between the cluster members and their
associated CHs.

Several link quality-based clustering protocols proposed so
far use the distance between two nodes as a metric of their link’s
quality. However, several studies have shown that distance is
not necessarily correlated with link quality as it ignores the link
asymmetry characteristic of WSNs [6]. Two other prominent
link-quality metrics are the received signal strength indicator
(RSSI) and link quality indicator (LQI). These two metrics are
provided by most of the wireless sensor chips [7]. The RSSI
is a parameter that represents the signal strength observed at
the receiver at the moment of reception of the packet. The LQI
is described as the characterization of the strength and quality
of the received packets. Several studies prove that RSSI can
provide a quick and accurate estimate of whether a link is of
very good quality [8].
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Another main problem in most of the proposed clustering
protocols is the use of the first order radio model [9] to model
the energy consumption of the sensor nodes. This model as-
sumes that all the sensor nodes can communicate regardless of
the distance between them. Moreover, it ignores the energy
consumption due to the different states of the sensors especially
the listening energy consumption, which is known to be the
largest contributor to expended energy in WSNs. Therefore,
this energy model is considered an ideal [10] and is fundamen-
tally flawed for modeling the energy consumption in sensor net-
works. A discrete radio model should be used for more accu-
rate and realistic calculation of the power consumption and to
determine which links between sensor nodes are available for
transmission.

Both the problems of selecting the optimal set of CHs and
finding the optimal inter-cluster routing tree have been proved
to be Non-deterministic Polynomial (NP)-hard optimization
problems [11]. Moreover, they consist of multiple conflicting
objectives that need to be optimized simultaneously. Pareto-
based optimization techniques can be used to solve the CHs
selection problem especially when the number of CHs is not
fixed. For example, clustering can provide an energy-efficient
solution if only a small number of CHs is involved in doing the
main operations in the network such as routing, management,
and data aggregation. However, minimizing the number of CHs
may lead to a reduced number of clustered nodes and hence hin-
dering the clustering protocol scalability. Another objective to
consider concurrently is the inter-cluster communication cost
which greatly affects the data delivery reliability.

1.1. Contributions
In this paper, we adopt a centralized Pareto optimization-

based approach to design and develop an energy-efficient, scal-
able and reliable clustering and routing protocol. The objec-
tive of the proposed approach is to assign each network node to
its respective CH and to find the optimal routing tree that con-
nects the CHs to the BS. The novelty of the proposed protocol
lies in proposing a new individual encoding scheme that allows
for the mutual optimization of both the problems of clustering
and routing in WSNs. Moreover, The protocol is designed and
tested under realistic network settings, in terms of both the en-
ergy consumption model and the communication model. The
main contributions of this paper include:

• Formulating jointly the clustering and routing problems in
WSNs as a multi-objective minimization problem rather
than dealing with them as two separate problems. The pro-
posed formulation uses a non-predefined number of CHs
and aims at determining an energy efficient, reliable and
scalable clustering and routing protocol. In order to real-
ize such formulation, a new individual encoding scheme
that represents a joint solution for both the clustering and
routing problems in WSNs is proposed. Moreover, a re-
pair function is proposed to correct any invalid routing tree
and to guide the search towards the optimal routing tree.
In order to choose the best multi-objective optimization
method, the formulated problem has been solved by two

state-of-the-art Multi-Objective Evolutionary Algorithms
(MOEA), and their performance has been compared using
some quality indicators.

• Developing the protocol under realistic network settings.
No assumptions are made about the location awareness or
transmission range capabilities of the sensor nodes. In this
paper, the RSSI value for the link between any two nodes
is used to assess the quality of that link. The protocols are
also tested using a realistic discrete energy consumption
model that is based on the characteristics of the Chipcon
CC2420 radio transceiver’s data sheet.

According to the initial energy of the sensors, we consider
two types of networks: homogeneous and heterogeneous net-
works. Extensive simulations on 25 homogeneous as well as 25
heterogeneous WSN networks are conducted. Results are eval-
uated and compared against several well-known clustering pro-
tocols. Simulation results show that the proposed protocol out-
performs the other competent protocols in terms of average con-
sumed energy per node, number of clustered nodes, throughput
at the BS and execution time.

1.2. Paper Organization

The remainder of this paper is organized as follows. In
Section 2, we review the related work about clustering pro-
tocols. A brief introduction of the concept of Pareto-based
multi-objective optimization is given in Section 3. Section 4
presents the system model and the problem formulation. Sec-
tion 5 gives a detailed description of the newly proposed encod-
ing scheme. A detailed comparative evaluation of the proposed
protocol against other works is reported in Section 6. Finally,
Section 7 concludes this research work and highlights few fu-
ture directions.

2. Related Work

Clustering techniques have been studied extensively in the
literature to improve the performance of WSNs [2].

The Low Energy Adaptive Clustering Hierarchy (LEACH)
protocol [12, 9] is the first and one of the most common cluster-
based routing protocols for WSNs. LEACH is a completely dis-
tributed protocol where each node decides whether to become
a CH for the current round based on its local information. In
order to take this decision, each sensor node uses a probabilis-
tic calculation which is based on the suggested percentage of
CHs for the network and the number of times the node has been
a CH so far. This is done to equalize the energy load distribu-
tion among the CHs. The basic idea of LEACH has been an
inspiration for many subsequent clustering protocols [13] that
are designed for heterogeneous networks such as the Energy
Efficient Heterogeneous Clustered (EEHC) scheme [14], the
Enhanced Heterogeneous LEACH Protocol for Lifetime En-
hancement (EHE-LEACH) [15], and the Single-hop and Multi-
hop Energy-Efficient Clustering Protocols (S-EECP) and (M-
EECP) [16]. The Energy Efficient and Dynamic Clustering
(EEDC) protocol [17] is a distributed protocol. In EEDC, each
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sensor estimates the number of active nodes in the network
by monitoring the received signal power from its neighbor-
ing. Based on that estimation, each sensor computes its optimal
probability of becoming a CH. In addition to that, an Energy Ef-
ficient and Power-Aware (EEPA) routing protocol is proposed
to connect the CHs to the BS. In EEPA, each CH uses flood-
ing to request a route to the BS. The BS then computes many
candidate routes and uses flooding to send these routes to the
CH. The CH then chooses one of these routes based on its cur-
rent battery level. All these protocols adopt a probabilistic ap-
proach for electing the CHs and yield a different number of CHs
each round. However, in these protocols, each sensor decides
whether it will become a CH based on its local information.
This, in turn, does not guarantee the selection of the optimal set
of CHs [18], mainly due to the lack of global knowledge about
the network.

The literature is also rich with studies that propose EA-based
clustering protocols to achieve the optimal set of CHs. In such
protocols, the BS utilizes an EA algorithm and its global knowl-
edge of the network to select the optimal set of CHs, based on
a set of predefined objective functions.

A centralized version of LEACH (LEACH-C) is proposed
in [9]. LEACH-C employs a Simulated Annealing (SA) ap-
proach to find a predetermined number of CHs and to configure
the network into clusters. The objective function is defined to
minimize the amount of energy for the non-CH nodes to trans-
mit their data to the CH, by minimizing the total sum of squared
distances between all the non-CH and the closest CH.

A centralized Particle Swarm Optimization (PSO)-based
clustering protocol (PSO-C) is proposed in [19]. The objec-
tive function is defined to minimize both the maximum average
Euclidean distance of nodes to their associated CHs and the ra-
tio of the total initial energy of all nodes to the total energy
of the CH candidates. PSO-C assumes that the CHs can com-
municate with the BS directly and takes into consideration the
cost of both the inter-cluster communication and the network’s
energy efficiency. However, the sub-objectives of PSO-C are
not scaled, hence it is hard to determine the optimal weight
coefficient for each sub-objective. This may lead the optimal
solution to be biased toward one of the sub-objectives than the
other. The Genetic Algorithm (GA)-based clustering protocol
(GA-C) [20] is similar to PSO-C in terms of the objective func-
tion. However, GA-C adopts a GA approach to find the optimal
set of CHs.

Particle Swarm Optimization Protocol for Cluster Heads
(PSO-CH) protocol [10] is another centralized PSO-based pro-
tocol that is used to find the optimal set of CHs. The PSO-
CH protocol considers the following properties: the network’s
energy efficiency, data transmission reliability, and the proto-
col’s scalability. The objective function used to evaluate each
individual particle is defined as the weighted sum of three sub-
objectives, each of which is related to the aforementioned prop-
erties. After calculating the sub-objectives, they are scaled to
avoid any bias. PSO-CH is designed and implemented un-
der realistic networks settings and realistic energy consumption
model. No assumptions are made about the nodes’ location
awareness or transmission range capabilities. However, PSO-

CH does not solve the inter-cluster communication problem.
Two-tier Particle Swarm Optimization for Clustering and

Routing (TPSO-CR) protocol [21] is a PSO-inspired protocol
proposed mainly to solve the routing tree construction problem
for clustered WSNs. The protocol runs in two tiers: the first
tier finds the best CHs and their associative clusters using the
PSO-CH protocol [10] while the second tier solves the prob-
lem of the inter-cluster communication by finding the optimal
routing tree. To achieve an energy-efficient routing tree, two
sub-objectives need to be met: the first one minimizes the to-
tal number of active nodes including both the CHs and relay
nodes while the second one favors the nodes with higher resid-
ual energy to act as relay nodes. To maximize the PDR, the
protocol maximizes the link quality between the relay nodes in
the routing tree. TPSO-CR is a centralized weighted-sum PSO-
based protocol that is proposed mainly for finding the optimal
inter-cluster routing tree. This protocol is appropriate when the
CHs are predetermined in advance. It uses a particle encoding
scheme and defines an objective function to find the optimal
routing tree. The objective function is used to build the trade-
off between the energy-efficiency and data delivery reliability
of the constructed tree.

Improved Cuckoo Search and Harmony Search (iCSHS) [22]
is an integrated clustering and routing protocol for WSN. Sim-
ilar to TPSO-CR, the iCSHS protocol runs in two tiers. The
first tier uses a cuckoo search-based optimization algorithm to
find the optimal set of CHs. This algorithm uses an objective
function that considers the following parameters: the sensor:
remaining energy, the number of neighbors, the intra-cluster
distance and the number of unclustered sensors. In the sec-
ond tier, an improved harmony search based routing algorithm
is proposed to find the optimal inter-cluster routing tree.

Many of the aforementioned distance-based protocols as-
sume that the sensor nodes are aware of their position. How-
ever, to find the distance between two nodes, each node should
be equipped with self-locating hardware such as a global po-
sitioning system (GPS). The resulting cost of attaching a GPS
to each node renders such a solution inefficient and unrealis-
tic [23]. In addition to the previously mentioned problems, and
to the best of our knowledge, most of the clustering protocols
that are proposed so far use the first order radio model [9] to
calculate the energy consumption of the sensor nodes. How-
ever, this energy model is very idealized [10, 24, 25]. It assumes
that all the sensor nodes communicate regardless of the distance
between them. Moreover, it ignores the listening energy con-
sumption, which is known to be the largest contributor to the
overall energy consumption in WSNs. A discrete radio model
should be used for more accurate and realistic calculation of
the power consumption and to determine which links between
sensor nodes are available for transmission [24, 25, 26].

Although the TPSO-CR protocol does not suffer from these
problems, the process of finding the optimal set of CHs and the
routing tree takes a long time because it is divided into two tiers.
Moreover, the inter-cluster communication is not limited to the
CHs only. Other relay nodes may be added to the inter-cluster
routing tree which may lead to more energy consumption as the
number of active node increases. In this paper, we improve the
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TPSO-CR protocol by jointly finding the optimal set of CHs
and the optimal inter-cluster routing tree in one tier instead of
two tiers to minimize the execution time. Moreover, in order
to minimize the energy consumption, we limit the inter-cluster
communication to the CHs only.

Table 1 provides a comparison of the clustering protocols
mentioned above with respect to different clustering properties.

3. Pareto-based Multi-objective Optimization

Assuming a minimization problem for convenience, a Multi-
objective Optimization Problem (MOP) with n decision vari-
ables and M objective functions can be expressed as follows:
given an n-dimensional decision variable vector x = {x1, ..., xn}

in the solution space X find a vector x∗ which yields the op-
timum value for a given set of M objective functions z(x∗) =

{z1(x∗), ..., zM(x∗)} where M ≥ 2.
However, due to the conflicting nature of the objective func-

tions, it is rare that the global optimum for all of the individual
objective functions occurs simultaneously at one single point
of the search space. Instead, we are interested in finding a set
of trade-off solutions. The most commonly adopted notion of
optimality is the so-called Pareto optimality.

A feasible solution x is said to dominate another feasible so-
lution y if and only if the following two conditions are true:

• Solution x is no worse than a solution y in all objectives.

• Solution x is strictly better than a solution y in at least one
objective.

If any of the conditions mentioned above is false, then solution
x does not dominate solution y. If solution x dominates solution
y, then solution x is better than solution y.

Solution x∗ is a Pareto optimal solution if there exists no fea-
sible vector of decision variables x ∈ X, which would decrease
some objective value without causing a simultaneous increase
in at least one other objective value. There are no superior so-
lutions to the problem than x∗, although there may be other
equally good solutions. The set of solutions that satisfies this
condition is known as the Pareto optimal set. A Pareto opti-
mal set is a set of solutions that are non-dominated with re-
spect to each other. The vector corresponding to the solutions
included in the Pareto optimal set is called non-dominated vec-
tor. The plot of the objective functions whose non-dominated
solutions are in the Pareto optimal set is called the Pareto op-
timal front [27] which corresponds to the trade-off surface in
objective space.

The literature hosts several interesting approaches for tack-
ling MOPs, with multi-objective evolutionary algorithms, pos-
ing all the desired characteristics for obtaining a set of non-
dominated solutions, in a single run. These approaches work
with two main goals:

• Convergence: find a set of Pareto-optimal solutions, and

• Diversity: find a set of diverse solutions in order to pre-
vent premature convergence and achieve a well-distributed
trade-off Pareto front.

The first goal guides the solutions towards the Pareto-optimal
region and the second goal guides along the Pareto-optimal
front.

In this paper, two different types of MOEAs are considered
as the optimization tools to solve the joint problem of clustering
and routing in WSNs:

• The Non-dominated Sorting Genetic Algorithm II
(NSGA-II) and

• Speed-constrained Multi-objective Particle Swarm Opti-
mization (SMPSO)

There are extensive applications of these two algorithms in
different fields of WSNs [28]. They provide the most to the
needs of practical optimization problems known to date [29].
These algorithms are popular also because of their ease of hard-
ware implementation [29].

3.1. Non-dominated Sorting Genetic Algorithm II

NSGA-II [30] is a popular non-domination-based genetic al-
gorithm for multi-objective optimization. It starts with pro-
ducing a population that consists of random solutions (chro-
mosomes). In each generation, the population in NSGA-II is
sorted into several non-dominated fronts using a ranking algo-
rithm first (non-dominated sorting). Then, individual solutions
are selected from these non-dominated fronts by calculating the
crowding distance. The crowding distance measures the dis-
tance between the individual solutions and the rest of the solu-
tions in the population. If two individual solutions are in the
same non-dominated front, the solution with a higher value of
crowding distance will be selected. The crowding distance cal-
culation is used to preserve the diversity among non-dominated
solutions in the later stage of the run in order to obtain a good
spread of solutions. After that, the algorithm applies the stan-
dard crossover and polynomial operators to combine the current
population and its offspring generated as next generation. At
last, the best individuals in terms of non-dominance and diver-
sity are selected as solutions.

3.2. Speed-constrained Multi-objective Particle Swarm Opti-
mization

Recently, Particle Swarm Optimization (PSO) is playing a
very important role in MOPs because of its convergence speed
and simple operators. The SMPSO algorithm [31] is based on
the PSO theory.

An experimental comparison is conducted in [32] to assess
the performance of SMPSO against six of the state of the art
Pareto-based MOPSO representatives. Experimental results
prove that SMPSO outperforms the other protocols in terms of
the quality of results. Furthermore, SMPSO shows a remark-
able performance in terms of other different assessment crite-
ria [33]: convergence towards the optimum solutions [34], and
scalability with the problem size [35].

Similar to NSGA-II, SMPSO selects best solutions by calcu-
lating crowding distance and also stores the selected individual
solutions in an archive. SMPSO applies a polynomial mutation
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Table 1: Comparison of clustering protocols with respect to clustering attributes
Clustering Clustering Clustering Location Number of Connectivity Energy Link Quality Network Protocol’s Objectives

Protocol Method Approach Awareness Cluster Heads to the BS Model Metric Type EE DDR SC

LEACH [9] Distributed Prob./Random No Variable One-hop First Order None Homogeneous 3 7 7

EEHC [14] Distributed Prob./Energy No Variable One-hop First Order None Homogeneous/ Heterogeneous 3 7 7

EHE-LEACH [15] Distributed Prob./Energy No Variable One-hop First Order None Homogeneous/ Heterogeneous 3 7 7

S-EEP [16] Distributed Prob./Energy No Variable One-hop First Order None Heterogeneous 3 7 7

M-EEP [16] Centralized Greedy Yes Variable One-hop/ Multi-hop First Order Distance Homogeneous/ Heterogeneous 3 3 7

LEACH-C [9] Centralized SA Yes Fixed One-hop First Order Distance Homogeneous 3 7 7

PSO-C [19] Centralized PSO Yes Fixed One-hop First Order Distance Homogeneous 3 7 7

GA-C [20] Centralized GA Yes Fixed One-hop First Order Distance Homogeneous 3 7 7

PSO-CH [10] Centralized PSO No Fixed One-hop Discrete (CC2420) RSSI Homogeneous/ Heterogeneous 3 3 3

TPSO-CR [21] Centralized PSO No Fixed Multi-hop Discrete (CC2420) RSSI Homogeneous/ Heterogeneous X 3 3

operator [36] to 15% of the population to accelerate the speed
of convergence. In addition, SMPSO incorporates a velocity
constriction procedure [37] to produce new effective particle
positions in those cases in which the velocity becomes too high
and hence avoid the swarm explosion problem [37].

3.3. Determining Best Compromise Individual

MOEAs provide a set of Pareto optimal solutions. Therefore,
a mechanism is needed to determine the best compromise solu-
tion among those solutions. Due to the imprecise nature of the
decision maker’s judgement, it is assumed that there is fuzzi-
ness in the goal for each objective. This fuzziness is defined by
membership functions that represent the degree of fuzziness of
some fuzzy sets using values in the range [0, 1].

The fuzzy mechanism looks at the way the solutions are con-
tributing to each objective and assigns a fuzzy variable. It shows
a possible way of finding a compromise solution in case solu-
tions are very close to each other. In this paper, a fuzzy-based
mechanism [38] is used to find out a compromise solution on
the Pareto front. This mechanism has been successfully used in
numerous applications of MOEAs [29].

In the fuzzy-based mechanism, a membership value for ith

objective of jth solution in the Pareto-front is calculated using
the membership function as:

µ
j
i =


1 if Fi ≤ Fmin

i .
Fmax

i −Fi

Fmax
i −Fmin

i
if Fmin

i < Fi < Fmax
i

0 if Fi ≥ Fmax
i .

(1)

µ
j
i indicates how well the jth solution in the Pareto optimal

set can satisfy the ith objective. The sum of membership values
for all objectives of the jth solution suggests how well it satisfies
all the objectives.

Given N solutions in the Pareto-optimal set and M objec-
tive functions for each solution, the achievement of each non-
dominated solution with respect to all non-dominated solutions

can be calculated using:

µ j =

M∑
i=1

µ
j
i

N∑
j=1

M∑
i=1

µ
j
i

(2)

The solution with the maximum value of µ j is a compromise
solution that can be accepted by the decision maker.

In this paper, we employ a fuzzy-based mechanism to find
the best compromise solution.

3.4. Performance Assessment of Different MOEAs

With the existence of different MOEAs, it is necessary to
quantify the performance of each algorithm. A number of qual-
ity indicators are proposed in the literature for measuring both
the convergence and the diversity of the obtained set of non-
dominated solutions. The quality indicator method is the dom-
inant method in the literature to assess the performance of dif-
ferent MOEAs [39]. It maps each Pareto set approximation to a
number and performs statistics on the resulting distributions of
numbers [39]. Some quality indicators require the knowledge
of the true Pareto-optimal front that is unknown in this applica-
tion. Instead, an approximation set to the optimal Pareto-front
of the problem is computed. Taking this into account, the hy-
pervolume indicator and the Epsilon indicator are adapted to
access the performance of SMPSO and NSGA-II in this paper.

The Hypervolume Indicator. The hypervolume (HV) indicator
is introduced in [40]. It has gained increasing interest in recent
years and has become a popular indicator of the performance of
different MOEAs [41, 42]. If solutions are considered as points
in objective space, hypervolume is the n-dimensional space that
is contained within a solution set, i.e. the n-dimensional vol-
ume of the set relative to some reference point, usually the anti-
optimal point or worst possible point for the space. In other
words, the hypervolume of a set is the total size of the space
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dominated by the solutions in the set. A set with a larger hyper-
volume is likely to represent a better set of trade-offs than sets
with lower hypervolume. Algorithms with larger values of HV
are desirable [43]. The hypervolume indicator measures both
the convergence and diversity of the obtained Pareto-optimal
front solutions simultaneously [44, 45].

The Epsilon Indicator. The Epsilon indicator is proposed
in [46]. Given two sets of non-dominated solutions A and B,
this indicator computes the minimum factor by which objec-
tives of solutions in B can be multiplied so that the transformed
set of non-dominated solutions is still weakly dominated by
A. For the Epsilon indicator, the lower the value the better the
computed fronts [45]. The Epsilon indicator takes into account
measuring the convergence properties of the obtained Pareto-
optimal front [45].

4. System Model and Problem Formulation

4.1. System Model
We consider a WSN with N sensor nodes, K CHs and one

BS. Each sensor node has a unique ID and the BS ID is 0. We
assume that all nodes are stationary after deployment and the
locations of both sensor nodes and CHs are unknown.

A realistic energy consumption model which is based on the
characteristics of the Chipcon CC2420 radio transceiver data
sheet [47] is used. The total energy consumed by sensor S with
ID n, E(S n), is calculated as follows [48]:

E(S n) =
∑
state j

Pstate j × tstate j +
∑

tr

E(transitions) (3)

The index state j refers to the energy states of the sensor:
sleep, reception, or transmission. Pstate j is the power consumed
in each state j, tstate j is the time spent in the corresponding state,
and tr is the number of transitions for nd. The energy spent in
transitions between states, Etransitions, is also added to the node’s
total energy consumption. The different values of Pstate j and
Etransitions can be found in [47].

4.2. Problem Formulation
The main goal of the protocol is to find the optimal set of CHs

such that the following objectives are achieved concurrently:

• Maximize the protocol’s energy efficiency by minimizing
the average consumed energy per node which in turn max-
imizes the network lifetime.

• Maximize the protocol’s scalability by maximizing the
number of clustered nodes.

• Maximize the protocol’s data delivery reliability by maxi-
mizing the network throughput.

The joint clustering and routing problem is formulated as a
multi-objective minimization problem. The objective functions
are constructed to simultaneously evaluate each candidate so-
lution, based on the following objective functions. The main
notations used in this problem formulation are presented in Ta-
ble 2.

Table 2: Table of Notations

Notation Description

CHk CH number k
S n Sensor number n
K Total number of elected CHs
NextHopCHk Next hop for CHk

E(CHk) Remaining energy of CHk

V The vector containing the elected CHs
N Total number of sensors in the network
cmm,k Cluster member number m of cluster k
NCHT HR Number of CHs threshold
RS S T HR Link quality threshold based on the RSSI value
ws→d Weight of the link from the sender sensor s to the destination sensor d
Ck The vector containing the cluster members in the cluster that corresponds to CHk

4.2.1. Energy Efficiency
To save more energy, fewer sensor nodes need to be active

during each round. Our main approach to achieving that is to
minimize the number of elected CHs, given by Eq. 4.

K = |V | (4)

Constraint 5 ensures that the total number of CHs should not
exceed a prespecified threshold, NCHT HR. In our experiments,
we set NCHT HR = 10% of the total number of sensors in the
network.

K < NCHT HR (5)

Furthermore, a sensor node with a higher level of energy is
a better CH candidate to both aggregate the data and to act as
a relay node towards another CH or BS. This is achieved by
minimizing Eq. 6.

K
/ |V |∑

k=1

E(CHk) (6)

Constraint 7 ensures that only the sensors with sufficient re-
maining energy are selected as CHs.

∀ CHk ∈ V, E(CHk) >
N∑

n=1

E(S n)
/
N (7)

4.2.2. Scalability
To increase the protocol’s scalability, the clustering process

should cluster as many sensor nodes as possible. This, in turn,
will reduce the chance of creating clusters with one node only.
This is achieved by minimizing Eq. 8.

N −
|V |∑

k=1

|Ck | (8)

4.2.3. Data Delivery Reliability
To increase the data delivery reliability, two objectives need

to be considered simultaneously:
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• Minimize the cost of the intra-cluster communication.

• Minimize the cost of the inter-cluster communication.

It should be noted that the cost of the link between any two
nodes is given as link weights in the adjacency matrix, Dt.
The next section gives a detailed description of how Dt is con-
structed. The intra-cluster communication cost is defined as the
total cost of the links between all the cluster members and their
correspondent CHs. The total cost of the constructed tree, the
inter-cluster communication cost, is defined as the sum of the
costs of the links between the CHs forming that tree. Both the
intra-cluster communication cost and the inter-cluster commu-
nication cost are optimized using Eq. 9 and Eq. 10 respectively.

|V |∑
k=1

|Ck |∑
m=1

wcmm,k→CHk (9)

|V |∑
k=1

wCHk→NextHopCHk
(10)

It should be noted that in the case that any two CHs are not
connected, the constructed tree is assigned a high penalty value
to narrow the search to optimal valid tree solutions only.

5. Individuals Encoding/Decoding Scheme

In this section, we present a new individual encod-
ing/decoding scheme to represent a joint solution for both the
clustering and routing problems in WSN.

5.1. CHs Selection and Clusters Formation
The individuals are presented in such a way that each in-

dividual provides the optimal set of CHs and the route from
each CH to the BS. The dimension of an individual is equal
to the number of sensor nodes in the network (i.e., N). Let,
Ii = [Xi,1, Xi,2, Xi,3, ..., Xi,N] be the ith individual of the popula-
tion where each component, Xi,d, 1 ≤ d ≤ N maps the assign-
ment of the sensor node nd to a CH. Each component is initial-
ized with a randomly generated number in the range [0.0, 1.0]
based on a uniform distribution. Let Nbrs(nd) be the list of all
nd neighbours. Then, for individual Ii, the CH of node nd is
encoded as follows: CHnd = d(Xi,d × |Nbrs(nd)|)e

To illustrate how this encoding scheme works, consider a
WSN with 20 sensor nodes, i.e., N = {n0, n2, ..., n19} where n0
is the BS as shown in Figure 1. Therefore, the dimension of
the individual is same as the number of sensor nodes minus the
BS, i.e., 19. The edge u → v indicates that node v is within
communication range of node u hence node u can send to node
v but not necessarily vice versa.

Now, for each Xi,d, 1 ≤ d ≤ 19 of individual Ii , a random
number is generated to initialize it. Let us assume that an indi-
vidual Ii = [1.00, 0.79, 0.20, 0.43, 0.71, 0.62, 0.61, 0.74, 0.11,
0.29, 0.29, 0.33, 0.18, 0.60, 0.46, 0.47, 0.24, 0.57, 0.77] has been
randomly generated as shown in column 4 (i.e., Xi,d ) of Table 3.

BS

n1 n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n15n16
n17

n18

n19

Figure 1: A WSN with 20 sensor nodes

We show that this individual actually represents a candidate so-
lution to both the clustering and routing problems as follows.

Let’s consider the generated random number for the first
component, 1.00, i.e., Xi,1 = 1.00 as shown in row 1 of Table 3.
Hence, d(Xi,1 × |Nbrs(n1)|)e = 7, therefore the 7th neighbour
from Nbrs(n1), i.e., n12 is selected as a CH for n1 as shown in
Table 3. In the same way, each sensor node is assigned to a
CH using the randomly generated particle. Then, the CH can-
didates that result from decoding Ii is Vi = {n12, n15, n8, n0}.
Table 3 summarizes the decoding process for individual Ii.

Table 3: Particle decoding process
ni Nbrs(ni) |Nbrs(ni)| Xi,d d(Xi,d × |Nbrs(ni)|)e CH

n1 {n9, n7, n16, n4, n11, n5, n12} 7 1.00 7 n12
n2 {n19, n8} 2 0.79 2 n8
n3 {Null} 0 0.20 0 None
n4 {n8, n9} 2 0.43 1 n8
n5 {n18, n0, n1} 2 0.71 2 n0
n6 {n12} 1 0.62 1 n12
n7 {n5, n12, n17} 3 0.61 2 n12
n8 {n3, n2, n10, n16, n15, n13} 6 0.74 5 n15
n9 {n8, n1, n4, n5, n18} 5 0.11 1 n8
n10 {n2, n8, n13, n19} 4 0.29 2 n8
n11 {n6, n17, n7, n0} 4 0.92 4 n0
n12 {n1, n0, n17, n6} 4 0.33 2 n0
n13 {n8, n9, n18} 3 0.18 1 n8
n14 {n3, n15} 2 0.60 2 n15
n15 {n14, n8, n4, n12} 4 0.46 2 n8
n16 {n3, n12, n0} 3 0.47 2 n12
n17 {n12} 1 0.24 1 n12
n18 {n13, n9, n8, n5} 4 0.57 3 n8
n19 {n14, n10, n2, n15} 4 0.77 4 n15

The final assignment of each node to its next hop, for indi-
vidual Ii, and the respective clusters are shown in Figure 2.

5.2. Routing Tree Construction
The inter-cluster communication is used to carry data from

the CHs to the BS. In the proposed approach, a multi-hop model
where the CHs form a network among themselves, with each
CH node using a multi-hop route for routing data towards the
BS.

It should be noted that using the proposed individual encod-
ing scheme also results in the routing tree construction by as-
signing each CH to its next hop. However, the constructed rout-
ing tree is considered not valid if any of the following condi-
tions is violated:

• The constructed routing tree is loop-free.
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Figure 2:
The assignment of the nodes to their respective next hop

• Each route from each CH should terminate at the BS.

Otherwise, the constructed routing tree is valid and can be used
for the inter-cluster communication. An example of a non valid
routing tree is illustrated below.

Let’s consider the final nodes assignments shown in Figure 2
and the generated CHs set, Vi = {n12, n15, n8, n0}. We notice that
CH n12 can send to the BS node directly. However, there is no
route from CH n15 to the BS and there is a loop between CH n8
and CH n15. Hence, the constructed routing tree is considered
not valid and should be assigned a high penalty fitness value to
exclude this solution from further consideration.

Now, let’s suppose that the generated random number for n15
is 0.96, i.e. Xi,15 = 0.96 in Table 3, then node n15 will be as-
signed to node n12 instead of n8. In this case, the final valid
nodes assignment to their next hop and the generated clusters
are shown in Figure 3. This assignment will result in the fol-
lowing routes from each CH, n12 → n0, n15 → n12 → n0 and
n8 → n15 → n12 → n0. This routing tree is considered valid
since there are no loops between the CHs and each route from
each CH terminates at the BS. The corresponding routing tree
is illustrated in Figure 3.

Throughout different experimentation, it is found that, re-
gardless of the network density, the proposed approach results
in a large number of non-valid routing trees due to existing
loops. Hence, there is a need for a repair function to repair
the constructed routing tree.

Repair Function based on Dijkstra Algorithm. In order to
construct a loop-free routing tree, the Dijkstra algorithm is used
to find the shortest path tree (SPT) that connects the CHs to the
BS.

Let’s assume that the network is presented as a weighted di-
rected graph, G = (V, E), where V represents the set of CHs
in addition to the BS and E represents the set of edges between
them. It is assumed that the best link quality between two nodes
represents the shortest path. An edge e from node u to v has
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Figure 3:
Valid assignment of the nodes to their respective next hop

weight wu→v, given by:

wu→v =


RS S Iu→v

worstRS S I if v is neighbor of u.
0 if u=v
INF otherwise

(11)

where RS S Iu→v represents the RS S I for the link from u to v.
worstRS S I represents the worst RS S I value between any to
nodes, and is set to −100. INF represents a very high weight
value.

The link quality for the route R from CH ch to the BS is
calculated as follows:

LQch→BS =


∑
e∈R

we If BS is reachable from ch

INF otherwise
(12)

It should be noted that the link quality from sensor u to sensor
v is different from the link quality from sensor v to sensor u.
Therefore, at iteration t, the BS generates a dynamic adjacency
matrix Dt as follows:

Dt =


0 w1→2 · · · w1→n

w2→1 0 · · · w2→n
...

...
. . .

...
wn→1 wn→2 · · · 0


The Dijkstra algorithm that is used to find the SPT that con-

nects the CHs to the BS is shown in Algorithm 1.

6. Simulation Results

In this section, the results of the simulation that are employed
to evaluate the proposed approach are presented. The goals of
the simulation are to:
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Algorithm 1: The Dijkstra algorithm used to find the SPT
Input: The directed graph G = (V, E) and the positive edge
lengths {we : e ∈ E} given by Dt.

Output: The SPT and its associated cost
// For each the CH, ch ∈ V, lq[ch] is the link

quality for the route from ch to the BS

and calculated by 12. The SPT cost is

calculated using 10.

// Q: Set of unvisited vertices

lq[BS ] = 0
prev[BS ] = null
foreach ch ∈ V do

if ch! = BS then
lq[ch] = ∞

prev[ch] = null
end
add ch to Q

end
while Q is not empty do

u← vertex in Q with minimum rssi(u) value
remove u from Q
foreach neighbour v of u do

alt ← lq[u] + wv→u

if alt < lq[v] then
lq[v]← alt
prev[v]← u

end
end

end
return prev[],

∑
ch∈V

lq[ch]

• Evaluate the performance of applying both NSGA-II and
SMPSO on the formulated joint clustering and routing
problem.

• Evaluate the performance of the proposed protocol against
the well-known clustering protocols LEACH, EHE-
LEACH, EEHC, LEACH-C, PSO-C, and GA-C.

• Evaluate the performance of the proposed protocol against
TPSO-CR. We provide a separate comparison between our
proposed protocol and TPSO-CR because, similar to our
protocol, TPSO-CR is implemented under realistic net-
work settings and both provide a dedicated routing tree to
deliver the data to the BS.

Simulations are carried using the Castalia Simulator. We
test the performance of the proposed protocol for both homo-
geneous and heterogeneous networks. According to the initial
energy of the sensors, the simulations are performed on two
groups of WSNs, WS Ns#1 and WS Ns#2, each with 25 dif-
ferent playground topologies. The first case assumes homoge-
neous sensor networks referred to as WS Ns#1 while the sec-
ond experiments referred to as WS Ns#2 assume heterogeneous
sensor networks. There are three types of nodes in WS Ns#2:
a normal node in which the initial energy is set to 6240 joules,

a super node in which the initial energy is set to 12480 joules,
and an advanced node in which the initial energy is set to 18720
joules. WS Ns#2 consists of 10% advanced nodes, 10% super
nodes and the rest of the nodes are normal nodes. Each WSNs
group consists of 5 different network sizes ranging from 100
to 500 sensor nodes. Overall, the simulation results presented
here are the average over five simulation runs for each network
size, for a total of 50 different networks. The sensor nodes are
deployed randomly in a sensor field of 100m × 100m. The BS
is located at the field’s corner at position (0, 0). TMAC that is
known for its energy efficiency is used as a medium access con-
trol because it adopts a variable sleep schedule that increases
the battery utilization [49].

6.1. Performance Evaluation of NSGA-II and SMPSO
In this subsection, the performance results of applying both

NSGA-II and SMPSO, on the formulated joint clustering and
routing problem, are compared. To evaluate the performance of
both algorithms, fifty independent runs using different random
seeds are performed for a random round of WS Ns#2. The pa-
rameters setting of NSGA-II and SMPSO is given in Table 4.

Table 4: Parameters setting of NSGA-II and SMPSO

Parameter Value
Problem dimension NetworkS ize − 1
NSGA-II Parameters Settings
Population size 100
Number of iterations 250
Crossover probability 0.9
Crossover distribution index 20
Mutation probability 1.0/Problem dimension
Mutation distribution index 20
SMPSO Parameters Settings
Swarm Size 100
Archive Size 100
Number of iterations 250
Mutation probability 1.0/Problem dimension
Mutation distribution index 20

It is necessary to increase the population’s size and to run
additional iterations when we want to solve the same problem
with an increased dimension. However, it is rather difficult to
predict the population’s size and the number of evaluations re-
quired to solve a problem of known dimension [50]. Besides, it
is of minor importance to tune this parameter based on the prob-
lem at hand [51]. Full analysis and determination of the optimal
population size are beyond the scope of this paper. The afore-
mentioned parameters are the default parameters which are pro-
vided by the adopted multi-objective framework (the JMetal
Framework).

The capability of NSGA-II and SMPSO in comparison to
each other is measured using two quality indicators, namely,
the hypervolume indicator and the Epsilon indicator, explained
in Section 3.4. Tables 5 and 6 show the comparisons of the
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hypervolume and Epsilon indicators respectively, for different
network sizes. The results are in the form MeanS tandardDeviation.
It can be observed that SMPSO clearly outperforms NSGA-
II, in terms of the hypervolume and Epsilon indicators, for all
network sizes. Hence, it is concluded that SMPSO outper-
forms NSGA-II in terms of the diversity of the non-dominated
solutions and the convergence towards the true approximated
Pareto-front.

Table 5: Mean and standard deviation for the HV indicator
Network Size NSGA-II SMPSO

100 4.92e − 023.4e−01 2.41e + 029.3e+02
200 1.18e − 025.0e−02 1.71e + 015.2e+00
300 1.80e − 029.1e−02 2.08e + 011.1e+01
400 3.07e − 033.4e−04 2.07e + 011.2e+01
500 1.58e − 029.4e−02 2.56e + 011.5e+01

Table 6: Mean and standard deviation for the Epsilon indicator
Network Size NSGA-II SMPSO

100 9.27e + 012.5e+00 6.65e + 002.7e+00
200 2.04e + 024.0e+00 7.67e + 002.6e+00
300 3.16e + 024.6e+00 5.34e + 001.7e+00
400 4.32e + 025.7e+00 6.20e + 002.0e+00
500 5.47e + 026.0e+00 6.02e + 001.8e+00

The number of non-dominated solutions (NNDS) is another
widely used performance metric with larger value represent-
ing better performance [52]. Table 7 shows the average num-
ber of non-dominated solutions per run for both NSGA-II and
SMPSO. The computational results show that for the NNDS
metric, the SMPSO algorithm significantly outperforms the
NSGA-II algorithm.

Table 7: The average number of non-dominated solutions per run
Network Size NSGA-II SMPSO

100 24.22 95.76
200 26.26 94.5
300 25.52 85.1
400 24.52 93.62
500 25.56 94.26

Table 8 illustrates the minimum values, among all the sim-
ulation runs, for the different objective functions. It is clearly
shown that SMPSO obtains the best values for all the objec-
tive functions. Both algorithms are able to cluster all the sensor
nodes.

Table 8: Minimum objective functions values for NSGA-II and SMPSO

Network Size NSGA-II SMPSO

CH SC LQ EE TC CH SC LQ EE TC

100 50 0 0.853 2.438 109.71 10 0 0.843 1.652 24.11
200 107 0 0.861 2.521 218.36 15 0 0.851 1.672 34.55
300 167 0 0.858 2.545 341.03 18 0 0.854 1.797 42.69
400 227 0 0.861 2.544 458.91 21 0 0.856 1.674 43.54
500 285 0 0.862 2.562 571.815 23 0 0.855 1.813 48.89

6.2. Performance Evaluation of the Proposed Protocol against
well-known Clustering Protocols

In the previous subsection, it is shown that SMPSO per-
forms better than NSGA-II. Therefore, we adopt the SMPSO
algorithm in our proposed protocol. The proposed protocol
is named SMPSO-CR, from the initials of the words SMPSO
for Clustering and Routing. SMPSO-CR is evaluated and
compared to the well-known protocols LEACH, EHE-LEACH,
EEHC, LEACH-C, PSO-C, and GA-C. To execute SMPSO-
CR, an initial population of 100 particles is considered, and
they evolve for 250 iterations. The values of the other SMPSO
parameters are the same as in Table 4.

The results in Table 9 record the average number of CHs
per round for WS Ns#1, for different network sizes. It can
be observed that as the network density increases, SMPSO-CR
achieves a lower number of CHs per round. LEACH-C, GA-C,
and PSO-C always use a fixed number of CHs (which is equal
to 5% of the network size) regardless of the network density.
Similar results are also observed for WS Ns#2.

Table 9: Average number of cluster heads per round for WS Ns#1
Network Size EEHC EHE-LEACH LEACH LEACH-C GA-C PSO-C SMPSO-CR

100 18.4 17.22 4.84 5 5 5 5.6
200 28.08 28.56 9.6 10 10 10 9.72
300 36.72 35.8 15.3 15 15 15 14.58
400 42.14 41.18 20.08 20 20 20 19.16
500 48.86 46.02 24.46 25 25 25 24.06

Next, the protocols are compared in terms of their scalabil-
ity by varying the number of sensor nodes from 100 to 500 on
both of the network scenarios, WS Ns#1 and WS Ns#2. The
produced results represent the average of 5 different runs, for
each network size, with a confidence level of 0.99. Figure 4
shows the comparison of SMPSO-CR against the other com-
petent protocols in terms of the number of unclustered nodes
per round in WS Ns#2. It can be observed that SMPSO-CR has
better scalability than the other competent protocols, especially
in the case of densely deployed networks. This result is due to
the clustering phase of SMPSO which takes care of minimizing
the number of unclustered nodes, whereas the other protocols
do not deal with that problem. Similar results are also observed
for WS Ns#1.
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Figure 4: Average number of unclustered nodes per round for WS Ns#2
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In order to judge the energy efficiency of SMPSO-CR, Ta-
ble 10 records the mean and standard deviation for the aver-
age consumed energy per node for WS Ns#1, for different net-
work sizes. It is noted that as the network density increases,
SMPSO-CR generally records lower energy consumption. This
is because it also used less number of CHs (and hence less
number of active nodes), as illustrated in Table 9. It is also
noted that SMPSO-CR shows minor improvement (about 3%
lower energy consumption) in terms of the average consumed
energy, compared to other EA-based competent protocols. On
the other side, the LEACH, EHE-LEACH, and EEHC protocols
show around 50% higher levels of energy consumption because
there are many unclustered nodes that are left unattended with-
out any sleeping schedule. Although, PSO-C have the worst
performance in terms of the number of unclustered nodes; it
shows lower energy consumption in comparison to LEACH,
EHE-LEACH and EEHC protocols. This is because PSO-C
virtually clusters all the network nodes and hence gives each
node a sleeping schedule. Similar results are also observed for
WS Ns#2.

Table 10: Mean and standard deviation for the average consumed energy per
node for WS Ns#1

Protocols 100 Sensor nodes 200 Sensor nodes 300 Sensor nodes 400 Sensor nodes 500 Sensor nodes

Mean SD Mean SD Mean SD Mean SD Mean SD

LEACH 271.87 5.425 140.56 5.933 122.35 3.914 124.19 5.747 120.66 3.748
EHE-LEACH 176.87 7.484 160.15 2.556 146.38 3.725 139.68 1.602 138.01 2.764
EEHC 179.05 7.393 160.98 2.654 148.19 3.240 141.45 1.490 141.55 2.660
PSO-C 71.492 0.131 71.469 0.085 71.509 0.038 71.394 0.083 71.460 0.045
GA-C 74.499 0.074 72.660 0.305 71.824 0.304 71.602 0.121 71.336 0.386
LEACH-C 74.554 0.008 73.056 0.005 72.558 0.002 72.309 0.004 72.161 0.002
SMPSO-CR 76.478 3.921 71.521 0.337 71.026 0.519 70.398 0.348 70.386 0.330

Figure 5 shows the comparison of SMPSO-CR and other
protocols, in term of the network throughput, for WS Ns#1.
Throughput is defined here as the number of data packets suc-
cessfully received at the BS during the simulation time. Using
the number of aggregated packets delivered to the BS is not ac-
curate, since many packets result from the aggregation process
of many raw packets collected from the cluster members. In
this paper, the number of raw packets is used to calculate the
throughput at the BS. The produced results represent the aver-
age of 5 different runs, for each network size, with a confidence
level of 0.99. It can be observed that SMPSO-CR outperforms
the other competent protocols in terms of network throughput.
This is mainly due to using a dedicated routing tree for the inter-
cluster communication. Similar results are also observed for
WS Ns#2.

6.3. Performance Evaluation of the Proposed Protocol against
TPSO-CR

In addition to the previous experiments, a comparison be-
tween SMPSO-CR and TPSO-CR is conducted, in terms of
their execution time, the number of active sensors, average en-
ergy consumed per node, throughput and average number of
unclustered nodes per round. All the produced results represent
the average of 5 different runs, for each network size, with a
confidence level of 0.99.

Table 11 records the execution time in seconds, for one round
of operation for WS Ns#2, for different network sizes. We
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Figure 5: Throughput for WS Ns#1

measure the execution time for the network configuration step.
These results clearly show that SMPSO-CR has significantly
lower execution time than TPSO-CR. In TPSO-CR, the network
configuration is done over two tiers. For each tier, a set of par-
ticles evolve to find the optimal configuration. On the contrary,
SMPSO-CR configures the network in one tier only which leads
to much lower execution time. Similar results are also observed
for WS Ns#1.

Table 11: Execution time, in secs, for WS Ns#2

Network Size TPSO-CR SMPSO-CR

100 0.78143 0.0021
200 3.51217 0.00206
300 8.82514 0.00218
400 16.86192 0.0022
500 32.22664 0.00238

Table 12 record the number of active nodes, for one round
of operation for WS Ns#2, for different network sizes. These
results clearly show that SMPSO-CR always achieves a lower
number of active nodes. In TPSO-CR, active nodes consist of
both CHs and relay nodes. In SMPSO-CR, there are no relay
nodes because the inter-cluster communication is limited to the
CHs only. Similar results are also observed for WS Ns#1.

Table 12: Number of active nodes for WS Ns#2
Network Size TPSO-CR SMPSO-CR

100 6.8 5.8
200 12 9.7
300 17.6 14.6
400 22.4 19.14
500 27.8 24.24

Figure 6 shows the average energy consumed per node and
their 99% confidence intervals, for WS Ns#2. It is clearly
shown that SMPSO-CR has lower energy consumption than
TPSO-CR. This is because SMPSO-CR uses a smaller num-
ber of active node per round and it limits the inter-cluster com-
munication to the CHs only. While in TPSO-CR, extra relay
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nodes can be added in addition to the CHs in order to con-
struct the inter-cluster communication tree. These results are
also confirmed by Table 12. Similar results are also observed
for WS Ns#1.
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Figure 6: Average consumed energy per node for, WS Ns#2

Figure 7 shows the average network throughput and the
99% confidence interval for these results, for WS Ns#2. While
SMPSO-CR has a higher throughput average for 60% of the
cases, the confidence intervals show that these results are not
statistically significant. Similar results are also observed for
WS Ns#1.
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Figure 8 shows the average number of unclustered nodes per
round for WS Ns#2, for different network sizes. The results
show that TPSO-CR outperformed SMPSO-CR for most of the
cases. TPSO-CR showed better scalability in more than 90%
of the networks under test. This is because TPSO-CR uses a
larger number of CHs that are able to cover the whole network.
Similar results are also observed for WS Ns#1.
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Figure 8: Average number of unclustered nodes per round, for WS Ns#2

7. Conclusions and Future work

7.1. Conclusions

In this paper, a centralized multi-objective Pareto optimiza-
tion approach is adapted to find a joint solution for both the
clustering and routing problems in WSNs. A new individual
encoding scheme that represents a complete solution for this
joint problem is proposed. The problem is formulated as a sin-
gle multi-objective minimization problem aiming at determin-
ing an energy efficient, reliable and scalable clustering and rout-
ing scheme. Moreover, a repair function is proposed to correct
any invalid routing tree and to guide the search towards the op-
timal routing tree. The proposed protocol is designed and tested
under realistic network settings.

Two different types of MOEAs are used to solve the formu-
lated problem: SMPSO and NSGA-II. Simulation results show
that SMPSO outperforms NSGA-II in terms of the number of
non-dominated solutions, the objective functions values, the
convergence toward the true Pareto-front and the diversity of
the obtained solutions.

Furthermore, the performance of the SMPSO-based ap-
proach (SMPSO-CR) is evaluated and compared to the fol-
lowing well-known protocols: LEACH, EHE-LEACH, EEHC,
LEACH-C, PSO-C, and GA-C. Simulation results show that the
SMPSO-CR protocol outperforms the other protocols in terms
of the average consumed energy per node, number of clustered
nodes and the throughput at the BS. Simulation results also con-
firm that using a smaller number of active nodes (CHs) and re-
stricting the inter-cluster communication to the CHs only en-
hances the energy efficiency of WSNs. Moreover, using a dedi-
cated routing tree enhances the data delivery reliability by max-
imizing the throughput at the BS.

In addition, the performance of the proposed protocol is eval-
uated and compared to TPSO-CR. Performance results show
that TPSO-CR has better scalability than SMPSO-CR because
TPSO-CR uses a larger number of CHs (5% of the network
size). However, SMPSO-CR shows better performance in terms
of the execution time. Moreover, SMPSO-CR outperforms
TPSO-CR in terms of the energy efficiency property because
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SMPSO-CR tends to minimize the number of CHs per round,
and it limits the inter-cluster communication to the CHs only.
However, in TPSO-CR, more nodes in addition to the CHs may
be added to construct the routing tree. As for the throughput,
SMPSO-CR has a higher average throughput for almost 60% of
the cases. However, statistical analysis shows no significance in
the obtained throughput results.

In summary, it has been demonstrated that the number of ac-
tive nodes has a great impact on the network’s energy efficiency.
Minimizing the number of active CHs leads to minimizing the
average of energy consumed per node and in turn maximizing
the network’s energy efficiency. However, increasing the num-
ber of CHs and taking link quality measures into consideration
could result in more compact clusters and hence increase the
PDR. Clustering protocols that ignore minimizing the number
of un-clustered nodes lead to leaving those nodes unattended,
and hence deplete their energy quickly. A sleep scheduling
mechanism should be employed to minimize the energy con-
sumption of such nodes. We also showed that using a dedicated
routing tree results in higher network throughput and hence en-
hances the network’s data delivery reliability. Moreover, limit-
ing the inter-cluster communication to the CHs results in fewer
active nodes, and this minimizes the average consumed energy
per node and hence enhances the network’s energy efficiency.

7.2. Future Work

A method to significantly reduce the energy consumption
in WSNs is to apply Transmission Power Control (TPC) tech-
niques to adjust the transmission power dynamically. In the pro-
tocol proposed in this paper, a node always transmits packets at
the same power level, that is, normally the maximum possible
power level. When a node transmits packets at a high power
level, it may generate too much interference in the network and
consume more energy than necessary. In the case of two nodes
that are close to each other, low transmission power is enough
to communicate with each other. Therefore, the power level
should be high enough to guarantee the transmission, but should
be as low as possible to save energy. As a future research di-
rection, a cross-layer clustering protocol can be proposed such
that it takes into consideration finding the optimal transmission
power for each sensor node while clustering.
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