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Abstract—In this paper, we study the problem of co-migrating a set of service replicas residing on one or more redundant virtual

servers in clouds in order to satisfy a sequence of mobile batch-request demands in a cost effective way. With such a migration, we can

not only reduce the service access latency for end users but also minimize the network costs for service providers. The co-migration

can be achieved at the cost of bulk-data transfer and increases the overall monetary costs for the service providers. To gain the benefits

of service migration while minimizing the overall costs, we propose a co-migration algorithm Migk for multiple servers, each hosting a

service replicas. Migk is a randomized algorithm with a competitive cost of O( γ log n

min{ 1
κ
,

µ
λ+µ

}
) to migrate κ services in a static n-node

network where γ is the maximal ratio of the migration costs between any pair of neighbor nodes in the network, and where λ and µ

represent the maximum wired transmission cost and the wireless link cost respectively. For comparison, we also study this problem in

its static off-line form by proposing a parallel dynamic programming (hereafter DP) based algorithm that integrates the branch&bound

strategy with sampling techniques in order to approximate the optimal DP results. We validate the advantage of the proposed algorithms

via extensive simulation studies using various requests patterns and cloud network topologies. Our simulation results show that the

proposed algorithms can effectively adapt to mobile access patterns to satisfy the service request sequences in a cost-effective way.

Index Terms—VM co-migration; service migration; mobile access; branch and bound algorithm

✦

1 INTRODUCTION

C
LOUD-based services for the mobile world leverage the

advantages of both cloud platforms and mobile devices

in order to fulfill user requests with enhanced quality of

service (QoS) regardless of time and location. As a direct

consequence of this advantageous integration, the cloud-based

mobile service market presents a continuous growth rate over

the past years. For example, as of the end of 2013, the

increased use of small-scale clouds and mobile devices has

led more than 88% of enterprises to participate in bring your

own device (BYOD) programs [1]. That is, most businesses

have employees accessing their clouds using mobile devices

while working at remote and/or off-site locations.

Cloud platforms allow the cloud service providers (CSPs)

to utilize their provisioned computing resources in a cost-

effective way while mobile devices offer convenient and

powerful tools to communicate with services over wireless

networks. Although this combination is promising, the design

of mobile services is still a great challenge when considering

the characteristics of mobile access patterns and the use

of clouds. For example, batches of requests stemming from

mobile devices require access to services residing in clouds.

But the positional origin of such requests frequently changes

over time. This complicates the delivery of the requested
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Fig. 1. An example of stream service accesses and mi-

gration. The service has two replicas hosted by respective
virtual server. One of the servers is migrated from Site A

to Site C via Site B to adapt to the changing locations of

the dominant access loads at different time frames from
7:30am to 18:15pm.

services (especially when aiming to achieve enhanced QoS

and cost effectiveness), which is particularly true in the case

of real-time services, that is, services with constraints on

their response time. Consequently, a mobile user’s dynamic

behavior patterns may be associated with temporal access

patterns [2]. In contrast, cloud resources are provisioned on

demand and are usually charged based on a pay-as-you-go

model. As such, providing cloud services without considering

these characteristics may significantly decrease the service

quality and compromise the user experience. Moreover, an

inappropriate solution may also impose a large amount of

access traffic on the network, which is very likely to entail
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budget loss for the service providers. To address this problem,

migrating the service on-demand to some vantage locations

in the network that are close to the users could be a viable

solution if the cost of migration is less than the reaped benefits

to both end users and CSPs after the migration. A highly

visible example to illustrate the migration benefits is a mobile

stream service (see Fig. 1) which could be accessed by a crowd

of devoted people on their way to work in the morning, in

leisure spaces at lunch time, and as well in certain preferred

sites after getting off work. Thus, depending on the changing

locations of the dominant access loads, the stream server may

migrate from Site A to Site B and finally to Site C

(may be in different datacenters) at different time frames (from

7:30am to 18:15pm). This kind of service has been used as a

test case in [3] based on their network virutalization prototype,

and thus could be the next disruptive innovation for some

entertainment media companies like Netflix [4] and Lions

Gate [5].

Traditionally, achieving such benefits usually requires hu-

man intervention to manually move the residing server(s) of

the requested services over a wide-area network. This is very

hard and error prone, if not impossible. Conversely, virtualiza-

tion technologies in the cloud make it possible to encapsulate a

service in a virtual machine (VM) as a virtual appliance1 and

move it around in the same or across different datacenters.

The movement allows a VM to be dynamically transferred

across different physical servers at runtime without needing

the hosted services to perceive the environment changes. We

refer such a procedure to live or hot migration [7], [8],

as opposed to the costly stop-and-copy or cold migration.2

Such migration is achieved at the cost of bulk-data transfer

(e.g., VM memory image and associated data files), which

could incur service disruption and higher network traffic.

Fortunately, advances in virtualization technologies make it

feasible to migrate one or more virtual server(s) (including

relevant requested services) over a wide-area network (WAN)

with minimum overhead [9]–[11]. Some well-designed VM

migration systems (e.g., VMFlock [12], CloudNet [13], and

Shrinker [14]) have demonstrated the feasibility even effi-

ciency of such an approach in practice. Thus, from a technical

viewpoint, co-migration over a WAN is never a prohibitively

expensive operation. This enables the provision of cloud-based

services that can adapt to the relevant mobile access patterns

in a timely fashion.

In this paper, our focus is not on technical solutions to

efficiently move a collection of VMs across datacenters. In-

stead, we concentrate on the monetary trade-off that exists

between the benefits and the costs of such a service migration

in the cloud environments. More specifically, we consider

migrating a service that is realized with up to κ redundant

servers, each hosting a service replica, in clouds to satisfy

a sequence of online or off-line batch-request demands with

1. A virtual appliance (VA) is “a virtual machine (VM) image file con-
sisting of a pre-configured operating system (OS) environment and a single
application.” quoted from [6].

2. In a live migration, a target VM is first stopped, then the relevant memory
pages and file system blocks are copied to the destination. Finally the new
VM containing the requested service(s) starts.

minimum service costs. Multiple redundant servers render the

service to be not only fault tolerant but also load sharing or

balancing. Given these features as the basis, the co-migration

problem is particularly important for end users to enhance

the user experience and cloud service providers (CSPs) to

maximize the profits as well. However, to the best of our

knowledge, this problem is barely studied in the literature. We

notice that the most recent work in this area is [3] where the

virtual service migration in a wide-area network is studied in

a competitive analysis approach. However, the work is only a

comprehensive extension to the authors’ previous results with

the single server migration as the focus. They showed that for

the service migration problem (single server), there does not

exist any online algorithm whose competitive ratio is smaller

than Ω(logn/ log logn) [3], [15]. But they did not further

improve the bound for multiple server co-migration in their

previous results in [16].

Our goal in this paper is to propose co-migration algorithms

for multiple servers that adapt to the user demands with

reduced total service cost (under the assumption that VM

migration over a WAN is already available at minimum cost).

These algorithms work in a centralized manner to co-migrate

service replicas residing on a group of virtual servers (VMs)

between datacenters. As such, they can be easily integrated

with any cloud service management systems [17], especially

well-fitted with the infrastructure of the software defined

network (SDN) [18].

We propose both online and off-line algorithms based

respectively on local search and on sampling-based DP tech-

niques. Our studies differ from previous ones (e.g., [3], [19]–

[21]) that deal with single server migration using distributed

approaches. In particular, because we rely on centralized con-

trol, not only can we decide to migrate (or not) the requested

service (encapsulated in one or more virtual servers), but also

we can offer fast system health diagnostics based on the easy

tracking of the location of each server that is under migration.

For our online algorithm, we let the migration of each set of

requested severs be triggered by each single mobile batch re-

quest. We tailor the network model presented in [19] to define

the neighbor set for κ virtual servers and propose a randomized

online co-migration algorithm Migk with a competitive cost

of O( γ log n

min{ 1
κ
,

µ
λ+µ

}
) under the oblivious adversary model for a

n-node network. Here, λ is the maximum inter-node (wired)

cost, µ is the wireless link cost, and γ is the maximal ratio

of the migration costs between any pair of neighbor nodes in

the network. The algorithm is efficient in the sense that it can

make a migration (for serving a batch request) in linear time

on average with respect to κ and n (i.e., O(κn)). This result

in certain cases improves the one introduced in [16], which

is O(γκ2 logn)-competitive with a O(
(

n
κ

)

) configuration time

on average.

To thoroughly study this problem and for comparison pur-

poses, we also develop an off-line co-migration algorithm. The

fundamental assumption of this algorithm is that the sequences

of requests are a priori known. Our off-line algorithm is based

on dynamic programming techniques where the state of the

system is defined to be the configuration of the κ virtual
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servers in network G(V,E) where κ ≤ O( logn
log(1+∆max)

). In

order to maintain a low configuration time, we adopt multi-

round sampling techniques in the algorithm to exploit a certain

subset of configurations whereby a parallelized branch&bound

algorithm is designed to consistently decrease the total service

time cost, while progressively updating the corresponding

migration decision policies at the same time.

We validate our findings by conducting extensive simula-

tions whose empirical results show that the proposed algo-

rithms can adapt well to changes in mobile access patterns in

order to efficiently satisfy service requests in a cost-effective

way.

The remaining paper is organized as follows: we first

introduce some background knowledge regarding the service

migration (VM live migration in particular) before we intro-

duce the related work in Section 2. We then describe our

service migration model, together with the assumptions in

Section 3. Based on this model, we propose the online co-

migration algorithm in Section 4 and the off-line algorithm

in Section 5, respectively. We present our empirical studies

involving extensive simulations in Section 6, and and finally

conclude the paper with a brief summary of our findings in

the last section.

2 BACKGROUND AND RELATED WORK

Live service migration, due to its merits and potentials in a

variety of application contexts, has been arousing significant

interest in both industry and academia since the seminal

work of Clark et al. [7] in 2005. The research ranges across

a wide spectrum, from practical viewpoint to minimize the

migration overhead [7], [8], [11], [12], [14], [22]–[27] to the

theoretical perspective that leverages the migration mechanism

as a substrate to develop various migration strategies for

different research goals [19]–[21], [28]–[32].

Most early efforts and only some recent ones focus on

the VM live migration within a local network and exploit

it as a typical technology to maintain the quality of cloud-

based services by optimizing certain system-centric criteria

such as load balancing [30], [33], fault tolerance [28], [29],

resource utilization [32], [34], [35], high availability and good

performance [36], and so on. Given the simplicity of the

implementation, the VM live migration within a local network

is relatively mature, and thus it has been supported by almost

all the mainstream VMs (e.g., Xen [7] and KVM [37]) and also

integrated into some major cloud management frameworks in-

cluding OpenStack [38], CloudStack [39] and Eucalyptus [40],

to quote a few.

However, the research landscape is quite different from that

of the VM live migration over WANs where the overhead

of the long-distance migration including the file-system data

is the subject of the major concern as it is a prerequisite for

building up advanced strategies that leverage the live migration

to achieve different goals. As a result, most of current works

concentrate on improving the migration efficiency over the

long distance by developing some advanced technologies to

take advantages of the features inherent to the migration.

R. Bradford et al. [9] show that when combining a block-

level solution with pre-copying and write throttling strategies,

an entire running web server, including its local file system,

can be migrated with a minimal disruption of 3 seconds in a

LAN and 68 seconds in a WAN. Later, H. Liu et al. [10] report

that by adopting checkpointing/recovery and trace/replay tech-

nologies, a transparent VM migration for both LAN and WAN

environments can be achieved in a very efficient way where

the downtime for a variety of workloads (including static and

dynamic web applications) could be reduced to only 200 ms

(with a small standard deviation), Additionally, there are also

some prototyped systems developed to further demonstrate the

feasibility of migrating a single or multiple VMs in practice in

Clouds [12]–[14], [41], each of them can be used as a substrate

to support our migration algorithms.

A variety of migration models for diverse network contexts

have been proposed in literature [19], [20], [42]. An early

work from the model point of view is to consider using the

service migration3 in autonomic network environments [43] as

a self-managing mechanism to overcome the rapidly growing

complexity of the networks. Oikomomou et al. [20] propose

a scalable algorithm to service migration in autonomic net-

works by observing the differential demand traffics on each

link between the node hosting the service and its opposite

neighbor. Although this algorithm has certain merits in service

migration, it suffers from the slow convergence due to its in-

efficient one-hop migration per step. Pantazopoulos et al. [21]

overcome this downside in their most recent centrality-driven

migration algorithm, named cDSMA. However, this algorithm

only targets at a single server, and lacks notion of the migration

cost.

In contrast, Bienkowski et al. [19] consider the migration

problem in the context of virtual networks (VNet) [44] to

minimize the access latency. To this end, they present a

randomized online algorithm to migrate a single server in

an n-node network. and advocate the competitive analysis

on the worst case of the algorithm instead of its general

performance, which is also our pragmatic concern. A follow-

up research to this result is from Arora et al. [45] who remove

the randomness from the algorithm and propose a deterministic

online algorithm with the same competitive ratio of O(log n)
for a single server migration. In the meantime, by extending

the techniques used in [19], they also obtain an O(γκ2 logn)-
competitive algorithm at the cost of a combinatorial complex-

ity of O(
(

n
κ

)

) to migrate κ servers for a batch request, where

γ follows the previous definition [16]. Most recently, they

summarized their previous results into [3], but fail to further

improve the competitive bound with respect to the multi-server

migration.

In this paper, we adopt the model in [19] and fit it to

the cloud environments whereby the co-migration problem

is studied. We extend the results in [19] and achieve an

efficient O( γ logn

min{ 1
κ
,

µ
λ+µ

}
)-competitive randomized algorithm

within O(κn) time to migrate κ servers to serve a batch

request. Our algorithm is an improvement to the result in [16]

which suffers from the configuration complexity of O(
(

n
κ

)

) in

3. In the following discussion we use the term service migration to refer
to the VM live migration together with its hosted service at abstract design
level instead of the underneath implementation technologies.
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average time, rendering our algorithm to be more practical.

Unlike the aforementioned studies which are not directly

conducted in the context of Clouds, Goudarzi and Pedram [46]

implement load balancing across geographically distributed

datacernters for online service applications in order to meet

the service level agreements (SLAs) or service deadlines for

VMs/tasks and in the meantime to decrease the operational

cost of the cloud system as well. In spite of leveraging the

same idea, we address a different problem with a different

targeted goal from a monetary point of review, which is unique

in our research.

By applying the same idea of the service migration across

the Internet datacenters (IDCs), Phan et al. [31] develop

a framework, called Green Monster, to address the energy

efficiency issues in Cloud computing. The service migration

is determined by an evolutionary multiobjective optimization

algorithm which is able to strike a balance between the

conflicting optimization objectives. In contrast, our problem

has a single objective to minimize the total monetary cost with

the service migration. Although both problems are orthogonal

at the first sight, they could be connected inherently as

the monetary cost could also be used to model the energy

consumption as well. However, this extension is still an open

problem to our algorithm.

3 SERVICE MIGRATION MODEL

We consider an arbitrary n-node network G(V,E) as a service

infrastructure to provide mobile services. A service has κ ≥ 1
replicas, each running on a virtual machine (VM) (also called

virtual server). The set of hosting (physical) machines (re-

ferred to as servers here after) has a configuration, denoted by

L, which is the specifications of this set of physical machines

that are running the VMs. This set of machines are accessed

by a sequence of batch requests σ = σ1σ2...σm issued from

a set of external devices (i.e., mobile terminals). In the online

migration scenario, the requests arrive one at a time. Each of

such request is satisfied by triggering the migration of a set of

servers in L into an ideal location. On the other hand, in the

off-line migration scenario a migration is not triggered until a

sequence of requests are received, namely, the whole access

pattern has been detected and known in advance. It not only

benefits the scenarios to proactively schedule the service to

facilitate the mobile accesses but also provides a metric to

measure the performance of its online counterpart.

During a migration, the service moves through a subset of

the virtual servers over time in a live fashion to maximize the

efficiency [7], [8]. The required resources for the migration on

the target machines are always assumed to be available. This

can be achieve by reservation [47] or pre-configuration of the

machines with sufficient resources. We do not distinguish the

active and inactive servers like in [16] and all the servers in our

model are active. We denote the configuration of a subset of

servers at ti as Li. Some frequently used symbols in this and

subsequent sections are listed in Table 1 for quick references.

Each specific request is routed to the service over a wireless

link first to connect the network via a connect point and then

based on some algorithms or metrics to reach a service. We de-

note the connection cost (monetary) as µ and the transmission

TABLE 1
Notation frequently used in model and algorithm

descriptions

Symbol Meaning

n the number of nodes in the network
∆max the maximum node degree
m the length of a requests sequence
Cuv transmission cost between node u and v
Cv Cv = {Cuv|∀u ∈ V as a connect point}
λ λ = maxu,v∈V {Cuv}
βuv migration cost between node u and v
βv βv = {βvu|u ∈ N (v)}
β β = maxu,v∈V {βuv}
β′ β′ = minu,v∈V {βuv}
γ γ = β/β′

µ wireless link cost
κ the number of service replicas
σ the request sequence σ = σ1σ2...σm.
σE the total served sequence in epoch E
σi the ith request σi = ∪j{(aij , σij)}
aij the access point of the jth request in σi

ar the access point of request r
σij the jth request in σi

Li the configuration at time i
N (v) neighbor nodes of node v
φ(r) r’s service node determined by routing func φ
svi service si at node v
w(svi ) access counter of si at node v
d(svi ) profile recorder of si at node v

cost (monetary) between any pair of nodes u and v as Cuv .

According to the charge models of the most current cloud

infrastructure services, it is reasonable to assume that both

these two types of costs are available from the infrastructure

service providers (ISPs) priory to the overlying cloud service

providers (CSPs). Therefore, a batch request σi at time ti can

be represented by σi = ∪j{(aij , σij)}, here aij and σij is a

sub-request of σi sent to the network via connect point aij .

In other words, ∪jσij represents the entire set of requests of

σi. Fig. 2 is an example of this model where batch request

σi contains four sub-requests σi = {(ai1, Ri1), ..., (ai4, Ri4)}.
There are two server replicas located at r and u, and one of

them moves from u to v during ti−1 and ti to satisfy σi for

total cost reduction, that is Li−1 = {r, u} and Li = {r, v}.
Obviously, in order to satisfy σi, each request r ∈ σi will

be eventually routed to certain h ∈ Li via the closest ar ∈ V .

This is typically achieved by the underlying routing function

determined by ISPs. As a result, the total monetary cost of

access (hereafter access cost) of batch request σi can be simply

calculated as the total connection costs plus transmission costs

of all the requests in σi along the routing path, which can be

expressed as Costacc(L, σi) = |σi|µ+
∑

r∈σi
Carφ(r), φ(r) ∈

L, where ar is request r’s nearest connect point and φ(r)
is r’s service node determined by the routing function φ(.).
Note that in this equation we implicitly assume that the sizes

of requests are so small that the network bandwidth is never

the bottleneck for their transmissions, rather, the link latency is

the issue. Clearly, this cost is affected by the level of network

latency.

In contrast to the requests, which are rather light-weight, the
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Fig. 2. An example of service access and migration

model where two service replicas are located at server
u and r, respectively, and ais represent the access points

at time ti. In the figure, a server is migrated from u to v to

adapt to the requests at ti ( dashed lines: wireless Con-
nections; dotted lines: Service requests at ti, represented

by Ris; arrowed lines: planned server migration route;

arrowed dashed lines: actual service migration route).

traffic volume of migrating services is usually not negligible

due to the large size of service states. Unlike the access cost

which is dominated by the access latency, the migration cost

(monetary) Costmig of the service depends greatly on the

service size and available bandwidth on the migration path.

Therefore, we assign node v with a migration cost set βv =
{βvu|u ∈ N (v)} (clearly, βvv = 0) to reflect the server mi-

gration costs from v to the corresponding target u, u ∈ N (v)
where N (v) represents the neighbor set of v. Particularly,

for any u and v in G we denote β = max(u,v)∈E{βuv},
β′ = min(u,v)∈E{βuv}, and γ = β/β′ for later discussion.

Again, βv is also given by the ISPs in advance for each node

v in the network.

To minimize the access cost, we need to identify a matching

function π that can figure out the migration target server

in Li for each server in Li−1. To this end, we denote

Li−1 = {u1, u2, ..., uκ} and Li = {v1, v2, ..., vκ} and have

Costmig(Li−1,Li) = min
π
{
∑

βujvπ(j)
} where π is the

permutation of {1, 2, ..., κ}. Costmig(Li−1,Li) represents the

minimum migration cost from Li−1 to Li.

Therefore, for a sequence of batch requests σ = σ1σ2...σm,

the goal of the service migration is to determine L1,L2, ...,Lt
(t is to be determined) to minimize the total service cost

defined as Cost(Li) = Cost(Li−1) + Costacc(Li−1, σi) +
Costmig(Li−1,Li), given Cost(L0) = 0. This recurrence

indicates that the total cost to satisfy σi is equal to the total

cost of satisfying the first i − 1 requests plus the access cost

in configuration Li−1 and then the migration cost from Li−1

to Li.

Although this model is more amenable to inter-datacenter

migration, it could be also applied to the intra-datacenter

migration even if the intra-datacenter network latency is low

and the bandwidth is usually high. Note that we do not model

the workloads of the target servers and the runtime cost of

the service as these factors, though important in determining

the service migration, can be neglected in the model without

having impact on our proposed algorithms. Furthermore, with

advance of the technologies in live migration as we showed

(e.g., [10]), the service disruption (aka service downtime) can

be also ignored in our model.

4 ONLINE CO-MIGRATION ALGORITHM

In this section, we present our online co-migration algorithm

which dynamically migrate κ server replicas as a whole to

adapt to the incoming requests in a time sequence order

without any knowledge of the complete access patterns. We

first present the basic idea of the algorithm and then detail it

in a more formal way.

4.1 Basic Idea

The algorithm divides the time into epochs, and compare the

cost of our algorithm with that of the optimal algorithm on a

per-epoch basis. An epoch consists of one or multiple phases

between which Migk migrates at least one server.4 An epoch

ends up with the condition that no servers can be migrated. In

that case a new epoch starts by resetting related data structures.

The algorithm handles each server individually to service

each incoming request by gathering the request and accu-

mulating its access cost in related data structures. When the

accumulated access cost reaches the migration cost β′, an mi-

gration decision is made by selecting the target node. Instead

of searching migration target in one-hop neighborhoods, we

adopt the strategy in [19] where the target node is selected

randomly from those nodes that have not been selected before

and whose total access cost to the collected requests gathered

at the source server node is less than β′. If such a node

exists, the server will be migrated to that node. Otherwise,

the server will be kept stationary. Clearly, for a κ-server

configuration, the corresponding selected targets all together

define a local neighbor of the source configuration for the

next co-migration step. The rationale behind this definition is

twofold. On one hand, the definition is easy for competitive

analysis to ensure the performance of the algorithm has an

upper bound in the worst case. On the other hand, for multiple

servers, this definition can help jump out from the local

optimal configurations in the course of the search. When no

server can be migrated, the current epoch is terminated and

the algorithm is reset to start a new one again.

4.2 Migk : An Online Co-Migration Algorithm

Suppose the κ-server set S = {s1, s2, ..., sκ} is initially

located at L, and let X−x = X \{x} and X+x = X ∪{x},
we have the algorithm working as follows:

4. A batch request could trigger multiple servers to co-migrate but no server
is migrated more than once between consecutive phases. The migration is only
determined after each batch request has been served (at most κ servers are
migrated).
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1) In each epoch E , for each request r ∈ σ, the algorithm

first computes its service server φ(r) = svi (i.e., server si
at node v ∈ L, 1 ≤ i ≤ κ) as well as the corresponding

access cost Cr(s
v
i ) = µ + Cars

v
i

and then adds it to a

counter of svi denoted as w(svi ) which is initialized to

zero. In addition, the algorithm also records the request

set for svi denoted as d(svi ), which is initially empty.

Therefore, w(svi ) =
∑

r∈d(sv
i
) Cr(s

v
i ). In general, for

each server sj , 1 ≤ j ≤ κ, we have a pair of w(svj )
and d(svj ) that satisfies the aforementioned conditions

for each v ∈ L. We call them access counter and profile

recorder, respectively.

2) The κ servers are fixed to serve request r that is routed

to svi ∈ S with the following updates:
{

w(svi ) = w(svi ) +Cr(s
v
i )

d(svi ) = d(svi ) + r
(1)

until there is a non-empty co-migration subset M ⊆ L
where M = {svi |v ∈ L, w(s

v
i ) ≥ β′}. At this time t,

a new phase starts, the algorithm selects all the server

svi ∈M to move for serving the next batch request.

3) For each svi ∈M , the algorithm does the following:

a) compute w(sv
′

i ) for each v′ ∈ V \ L that has not

been visited by si, which is the cost to serve the

requests in d(svi ) at the corresponding target node

v′5;

b) prune away those nodes v′ ∈ V \L whose w(sv
′

i ) ≥
β′ by marking them visited by si;

c) identify a node u chosen uniformly among the

remaining nodes with the property w(sui ) < β′;

d) if u exists, migrate the server at v to u, mark v
as being visited, update L = L − v + u and set

d(sui ) = d(svi ) (note that w(sui ) < β′). Otherwise,

if no such u can be found, Migk does not migrate

server svi (si stops at v) and keeps its w(svi ).

This co-migration procedure is repeated until all servers

in M have been processed, then resets M = ∅ and goes

to Step 4 for checking the epoch termination.

4) If
∑

v∈L w(svi ) ≥ κβ′, the epoch E ends in that

round (every server stops moving) and goes to Step 5.

Otherwise, goes to Step 2 for the next new phase.

5) The next epoch starts in the next round from the current

stop configuration and the counters w(svi ) and d(svi ), v ∈
V, 1 ≤ i ≤ κ, are reset to zero and empty, respectively.

The entire request sequence served in epoch E is denoted

as σE .

Remarks: Performance anomaly could happen when β′ = 0,

i.e., the migration cost is free as in this case no node in

each migration can be pruned away and thus the effective

epoch cannot be created. On the other hand, although we

describe the algorithm in a centralized manner, it is not

difficult to transform the algorithm to work in distributed

fashion. Therefore, our algorithm is feasible enough.

5. here we assume to move server si from v to v′ to continue gathering
the requests.

4.3 Analysis

Lemma 4.1: The expected number of phases within one

epoch is at most κHn where Hn is the n-th harmonic number

where n = |V |.
Proof: Based on the results in [19], we can easily

conclude the lemma by knowing that the expected number

of migrations of each server si ∈ S to serve d(svi ) within one

epoch is at most Hn where v is the stop location of si at the

end of the epoch.

Theorem 4.2: Migk is O( γ log n

min{ 1
κ
,

µ
λ+µ

}
)-competitive.

Proof: First, we consider the cost of the optimal off-line

algorithm. If Opt co-migrates in an epoch E , it has cost β′

(at least one server is migrated). Otherwise, we try to find a

lower bound for the access cost of Opt in E where κ servers are

fixed at L. Obviously, according to Migk, we have Opt(E)≥
|σE |µ. Suppose at the end of E , κ servers stop at T , we have
∑

v∈T w(svi ) =
∑

v∈T

∑

r∈d(sv
i
)Cr(s

v
i ) ≥ κβ′, then we can

estimate |σE | =
∑

v∈T |d(s
v
i )| by lower bounding it as:

∑

v∈T

∑

r∈d(sv
i
)

(µ+ Carφ(r)) ≥ κβ′

⇒
∑

v∈T

∑

r∈d(sv
i
)

(µ+ λ) ≥ κβ′

⇒
∑

v∈T

(µ+ λ)|d(svi )| ≥ κβ′

⇒(µ+ λ)
∑

v∈T

|d(svi )| ≥ κβ′

⇒|σE | ≥
κ

µ+ λ
β′

(2)

So we have Opt(E)≥ κµ
λ+µ

β′. Overall, Opt(E) ≥
min{β′, κµ

µ+λ
β′}.

For Migk, based on Lemma 4.1, we have

Migk(E)≤ β
∑

v∈T #mig(svi , d(s
v
i )) ≤ κβ · O(log n)

where #mig(svi , d(s
v
i )) is the number of migrations for

server svi within the period of E to satisfy d(svi ).
6 Finally we

conclude

Migk(E) ≤ O(
γ log n

min{ 1

κ
, µ

λ+µ
}
)Opt(E). (3)

Theorem 4.2 shows how the competitive ratio of the algorithm

relies on the charging model of the ISPs. Given κ ≥ 1 + λ
µ

,

Migk could be O(γκ logn) competitive, a κ times better than

the result in [16]. However, the result is not constant better

than that in [16]. In particular, when κ < 1+ λ
µ

, the result can

be simplified as O(γ(1 + λ
µ
) logn), which, depending on the

ratio of λ/µ, could be better or not than O(γκ2 logn). For

example, when λ = µ, there is only a single migrated server

(i.e., κ = 1) in this case, we thus have the competitive ratio

with the same order of [16] (i.e., O(γ logn)).

More importantly, for all the cases, our algorithm is much

more efficient, and thus practical in reality as we remove the

configuration complexity for migration search space in [16].

We achieve these merits by considering the migration of each

6. The cost order is not changed if we also consider the access cost.
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server independently and coordinating them as a whole via a

global phase control.

Theorem 4.3: The expected time complexity of Migk(E) for

epoch E is at most O(κn|σE |) where n = |V |.
Proof: According to Lemma 4.1, each server is expected

to move at most Hn times within one epoch, and for each

movement, four kinds of costs are incurred from 3(a) to 3(d).

According to the algorithm, the counter value of each server

is monotonically increased with respect to each visited node.

Thus, for a particular server, each node in G is visited only

once to see if the counter value associated with the visiting

server at that node is not less than β′, and at the end of

Hn phases (i.e., one epoch), all n nodes have been visited,

and for each visit, at most |σE | requests are used to compute

the counter value at that visited node. Then the cost of 3(a)

for each server in one epoch is at most n|σE |. 3(b) can be

computed in conjunction with 3(a) at constant cost, and 3(c)

is assumed to be a constant cost operation. Finally, for con-

figuration updates in 3(d), we can also achieve a constant cost

operation depending on the data structure for organizing the

configuration (e.g., hashtable). Overall, for at most κ servers

in M , the total cost in Step 3 is in the order of O(κn|σE |).
Obviously, given the precomputed all pairs of shortest paths,

the cost for servicing each request in Step 2 is O(1). In Step

5, the reset operation takes O(κ) time. Therefore the total time

complexity of Migk is O(1 + κ + κn|σE |) = O(κn|σE |). In

other words, on average the algorithm takes O(κn) time to

serve a request.

5 OFF-LINE CO-MIGRATION ALGORITHM

In this section, we study the co-migration problem in its off-

line form with the assumption that the whole access pattern has

been detected and known in advance. Therefore, the migration

can be figured out with the complete knowledge of the access

requests, which would exhibit some monetary advantages

(less monetary cost) over its online counterpart. The off-line

study not only benefits the scenarios when the access patterns

could be predicted but also provides a metric to measure the

performance of the online algorithm. We first briefly discuss

the optimal algorithm based on dynamic programming (DP)

technique, and then propose a multithreaded branch&bound

algorithm, which is built on the sampling method, to simplify

and speed up the DP computation.

5.1 Optimal DP Algorithm

OPT exploits the optimal sub-structure property of this prob-

lem to construct the DP recurrence in Equation (4) where the

minimum-cost solution wi(L
j
i ) at ti can be obtained from the

minimum-cost solutions to all the sub-problems of L′ ∈ Ci−1

at ti−1 given sever configuration Lji (there could be
(

n
κ

)

possible configurations) for 1 ≤ j ≤
(

n
κ

)

,

wi(L
j
i ) = min

L′∈Ci−1

{wi−1(L
′) + Costacc(L

′, σi)

+ Costmig(L
′,Lj

i )}
(4)

where Ci−1 = {L1i−1, ...,L
(nκ)
i−1} is the set of all the possible

server configurations at ti−1 and σi is the batch request at ti.

Initially, L10 = {v1, v2, ..., vκ} and w0(L10) = 0. For any other

configuration Lj0, w0(L10,L
j
0) = Costmig(L10,L

j
0), 2 ≤ j ≤

(

n
κ

)

, and the optimal solution is then given by,

w∗(L∗) = min
1≤j≤(nκ)

{wm(Lj
m)} (5)

the optimal migration strategies can be reconstructed from Ln
by recursively backtracking the optimal configuration L′ at

ti−1 which steers to the optimal configuration Lji at ti.

5.2 Multithreaded Branch&Bound Algorithm

It is easy to see that handling the large configuration space

and minimizing wn(Ln) in the DP algorithm to find the

optimal migrations is an overly complex task. However, the

DP algorithm is still valuable as its recurrence matrix contains

a lot of viable, and some are relatively good solutions although

not optimal. Therefore, it is worthwhile to find or approximate

them in an efficient way. In the sequel, we adopt a sampling

method with local search on the DP matrix whereby designing

a multithreaded branch&bound algorithm to overcome the

complexity and solve this problem under a certain condition.

5.2.1 Sampling Method with Local Search

This method is based on DP Recurrence (4) to handle the con-

figuration complexity by repeatedly sampling the configuration

space C to obtain the initial κ random configurations, and

then updating them with local search according to a revised

recurrence of (4). Specifically, suppose the selected κ + 1
configurations are L00,L

1
0, ...,L

κ
0 , and the κ servers are initially

located at L00, then for a request sequence σ = σ1σ2...σm, the

DP matrix in (4) can be simplified as








w0(L00) w0(L10) ... w0(Lκ0 )
w1(L01) w1(L11) ... w1(Lκ1 )

... ... ...
wm(L0m) wm(L1m) ... wm(Lκm)









(6)

where w0(L00) = 0, and for 1 ≤ l ≤ κ, we have w0(Ll0) =
Costmig(L00,L

l
0), l ≥ 1 and for 1 ≤ i ≤ m, 0 ≤ l ≤ κ,

wi(L
l

i) = min
0≤j≤κ

X
j
i−1⊂Lj

i−1

Zl

i=N (Xj
i−1)

{wi−1(L
j
i−1) + Costacc(L

j
i , σi)

+ Costmig(X
j
i−1, Z

l

i)}

(7)

among which Lli is constructed by some Lji−1, 0 ≤ j ≤ κ
who migrates exactly l servers to reach Lli while minimizing

(7), i.e., Lli = Lji−1 − Xj
i−1 + Z l

i , |X
j
i−1| = |Z l

i | = l .

This recurrence indicates that wi(Lli) is computed from the

minimum configuration of L0i−1,L
1
i−1, ...,L

κ
i−1 when each

moves exactly l severs. We develop this strategy to consider

some neighborhoods of each selected configuration via local

search so that the sampling can cover more DP state space.

Similar to (5), the final suboptimal result of this algorithm

can be found at

w∗(L∗) = min
0≤j≤κ

{wm(Lj
m)} (8)

Note that with local search, for a particular column the

configuration of each row in the DP matrix (6) is varied
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with respect to the selection of the minimum configuration in

the last step, which is different from the standard DP matrix

determined by Recurrence (4) where the configuration of each

row for a particular column is fixed. We thus call this algorithm

Sampling-based DP algorithm (SDP).

The migration scheme can be reconstructed by starting from

L∗ to repeatedly backtrack matrix (6) to t = 0. For example,

if w5(Lκ5 ) is the minimal result for σ = σ1, ..., σ5, we can

backtrack which one at t = 4 leads to it, say w4(L34). This

indicates that migrating κ servers from L34 to reach the final

result. Similarly, from L34, we can see who migrate 3 servers

to result in it. To enable this backtracking procedure to work,

we have to keep the related information in the matrix.

For the time complexity of this algorithm, we have the

following result,

Theorem 5.1: Given κ ≤ logn
log(1+∆max)

, the algorithm has

the time complexity of O(m(κn)2) to serve the request

sequence σ with a length of m.

Proof: Since in each row i, wi(Lli) is computed by

selecting the minimum out of the costs to migrate exactly l
servers, each from L0i−1,L

1
i−1, ...,L

κ
i−1, the time complexity

to compute a row can be written as

O(κ
κ
∑

l=0

(

κ

l

)

∆l
max(l + κ|σi|) ≤ O(κ2(1 + ∆max)

κ|σi|)

= O(nκ2|σi|)

(9)

given κ ≤ log n
log(1+∆max)

. As in general |σi| ≤ n, the complexity

can be simplified as O(n2κ2). Therefore, the total time to

serve the request sequence σ with a length of m is at most

O(m(κn)2).

As for the worst case of the algorithm, its performance can

be upper bounded by the following results, regardless of the

local search.

Lemma 5.2: The off-line algorithm serves batch request

σi ∈ σ by migrating at most |σi| servers from Li−1 to Li
if |σi| ≤ κ.

Proof: According to the algorithm’s Equation (7), after

serving a request, the server’s configuration is updated by

proactively migrating some servers to some nodes for the next

request. As the storage cost is not countered, this effect can

be equivalently achieved by delaying the proactive migration

until the request is actually made to this server at some time

step afterwards. Therefore, given |σi| ≤ κ, there are at most

|σi| server migrations.

Theorem 5.3: The off-line algorithm in its worst case is

within 1 + λ+β
µ

times of the optimal result.

Proof: Clearly, for any σi ∈ σ, 1 ≤ i ≤ m, we have

OPT (σi) ≥ µ|σi|. On the other hand, the cost of the SDP

algorithm is less than or equal to (λ + µ)|σi| + liβ where li
is the number of servers that are triggered by σi to migrate.

Obviously, if |σi| ≤ κ, due to Lemma 5.2, there are at most

|σi| servers that migrate. Otherwise, there are at most κ servers

Algorithm 1 Multithreaded Branch&Bound algorithm (BnB)

1: procedure BRANCH&BOUND(Ns, Nt, κ, n, σ)

2: ⊲ Ns: # of samples, Nt: # of threads, σ: request seq.

3: Bound : B ←∞
4: Number : Nl = Ns/Nt

5: while Ns ≥ 0 do

6: Do PARALLEL

7: ⊲ k ∈ [1...Nl], # of generated samples in SDP

8: ⊲ there are ⌈Nl/k⌉ rounds for each SDP

9: Ns ← Ns − k
10: call SDP(&B, k, κ, n, σ)

11: END PARALLEL

12: end while

13: output(B) ⊲ B stores the final cost value

14: end procedure

to migrate. In either case li ≤ |σi|, we have

SDP

OPT
≤

(λ+ µ)
∑m

i=1 |σi|+
∑m

i=1 liβ

µ
∑m

i=1 |σi|

≤
(λ+ µ+ β)

∑m
i=1 |σi|

µ
∑m

i=1 |σi|
= 1 +

λ+ β

µ
.

(10)

Then, SDP ≤ (1 + λ+β
µ

)OPT .

Remarks: Unlike the online scenario, this ratio is independent

of the number of servers and the network size. In particular,

this theorem shows that the performance of the non-migration

algorithm is away from the optimal migration version at most

1 + λ
µ

times.

5.2.2 Algorithm Description

We can repeat the SDP algorithm by multiple rounds, each

with κ initial configurations plus L00 to progressively im-

prove the quality of the results. To this end, we design a

branch&bound (BnB) algorithm which is more effectively

than the simple multi-round approach to reach a good result.

Since the SDP algorithm can select the samples (i.e., κ
configurations) independently, we can allow multiple SDP

instances to execute in parallel on a multicore platform via

multithreading.

Intuitively, based on the given number of the samples, the

BnB algorithm can generate all the samples at once and store

them in a central queue. The SDP threads organized in a thread

pool then pick up the samples from the queue, one at a time

to compute the total service cost of that selected sample. The

so far best (lowest) upper bound of the cost is stored in a

global variable, which is used to cut off those branches whose

lower bounds will be greater than the upper bound. The stored

upper bound is updated whenever a new lower upper bound

is found in some SDP instance. Although this algorithm is

simple and can achieve load balancing to a great extent, it is

not that effective as a large number of nodes in the BnB tree

will be generated and examined.

To address this problem, we allow each SDP thread in

the pool to be assigned equally Nl = Ns/Nt samples in
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Algorithm 2 Sampling-based DP algorithm (SDP)

1: procedure SDP(B, k, κ, n, σ)

2: PriorityQ : Q
3: Sample : u
4: ⊲ Generate k samples and put into Q, σ = σ1, ...σm

5: for j ∈ [1, ..., k] do

6: Sample : sj ← RandSample(κ, n)

7: sj .c← µ
∑|σ|

i=1 |σi| ⊲ the lower bound of cost

8: sj .t← 1 ⊲ σt is the next req to be served

9: Q.enq(sj)
10: end for

11: while Q 6= ∅ do

12: u← Q.deq()
13: if u.t = |σ|+ 1 then

14: ⊲ a new upper bound found

15: if u.c < B then

16: B ← u.c ⊲ update the best bound

17: end if

18: else ⊲ σt is served in u
19: ⊲ wu

t is from (7) for u
20: ⊲ u.c is a lower bound of u
21: u.c← min0≤j≤κ{wu

t (L
j
t )}+ µ

∑|σ|
i=t+1 |σi|

22: u.t← t+ 1
23: if u.c < B then

24: Q.enq(u) ⊲ put back u
25: end if

26: end if

27: end while

28: end procedure

⌈Nl/k⌉ rounds, each having k samples instead of one at a

time, here, Ns and Nt are the numbers of the samples and

threads respectively. The proposed BnB algorithm is shown in

Algorithm 1.

Algorithm 2 illustrates the SDP algorithm. As described,

there are k samples that are locally generated in each SDP

thread. Due to the large sample space, the probability of any

two samples (in the same or different threads) that are not

the same is as high as 1 − κ!/
(

n
κ

)κ
. Therefore, the repeated

computation in the algorithm can be ignored.

In the algorithm, each SDP thread will handle k samples,

each having κ randomly selected configurations plus L0. All

the k samples, each being initialized with its lower bound of

service cost to serve σ (Line 7) and the next request in σ to

be served (Line 8), are organized in a priority queue with the

minimum at the top (Line 5-10). Each time, the one at the top

is dequeued and used to serve a request in σ (Line 11-12).

For a particular sample u, the algorithm first checks if u.t =
|σ|+1. If so, the whole sequence σ has been served by u, and

a new upper bound is found. If this value is smaller than B,

B will be updated with the new upper bound (Line 13-17).

Otherwise, if u.t < |σ| + 1, its priority value is computed

TABLE 2
Average inter-node distances and node degrees of

different networks with 100 nodes used in the

experiments

Prof. BA(3,1) Lattice(10,10) ER(0.065) Tree(2)

Dist 2.6 6.67 2.25 6.29

Deg 5.44 3.6 9.74 1.98
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Fig. 3. Performance changes of BnB with respect to

the number of samples and the number of configurations
(NC) in each sample. The migration costs of four server

replicas are uniformly distributed in [0, 2000].

as a lower bound of its total service cost after satisfying σt:

u.c = min
0≤j≤κ

{wu
t (L

j
t)}+ µ

|σ|
∑

i=t+1

|σi| (11)

here, the first part of Equation (11) is the minimum cost to

serve the request sequence up to time t (i.e., σt) while the

second part is a lower bound of the cost to serve the remaining

requests7 (Line 18-22). The priority of each sample is updated

whenever a request is served. The updated priority will be

compared with the globally best bound B. If it is lower than

B, u as a promising sample will be put back to Q again for

future examination with respect to the remaining requests in

σ. Otherwise, u is discarded and the next one is dequeued

(Line 23-26).

Arguably, the artifact of selecting the samples (the number

and configurations) could be further improved according to

the access patterns. However, we adopt the random sampling

because this strategy is independent of the access distribution,

and can eventually adapt to the distribution when the sample

space selected by the multiple rounds is significantly large.

7. min0≤j≤κ{w
u
t (L

j
t )} is computed by Matrix (6) of the sample u.
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Fig. 4. Speedup of Migk when the number of threads

is varied from 1 to 16 for Zipf-like access pattern on all

studied networks (Samples=160, configurations=32).
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Fig. 5. Performance ratios of BnB over the optimal DP
algorithm when both the network sizes and the number of

servers are limited.

6 PERFORMANCE EVALUATION

We evaluate the proposed algorithms through extensive

simulation-based studies. To this end, we developed a simula-

tor in Java to create network topologies, generate the access

patterns and execute the migration algorithms, online and

off-line, to move the servers to satisfy each generated batch

request according to a certain distribution in a time order. Each

request is served by its closest server in terms of the shortest

path distance. Ties-are-broken arbitrarily.

6.1 Experimental Setup

We choose networks with four typical topologies: tree, lattice,

Erodös-Rényi (ER) random graph [48] and Barabási-Albert

(BA) graph [49], each of which consists 100 nodes. These

topologies exhibit different structural properties to represent a

spectrum of communication networks in previous studies [20],

[21], [50]–[52].

Both tree and lattice network topologies have typical topo-

logical characteristics that allow us to observe the behaviours

of the algorithms under some extreme yet predictable condi-

tions. In particular, the tree structure, characterized by average

node degree, is always the intensively studied structure in

different contexts including Clouds [50]–[53]. The lattice

structure, characterized by its width and height, represents

planar networks that have been observed in a surprising

number of graphs in the Internet topology zoo [54]. In contrast,

ER and BA graphs are random graphs without enforcing

any regular structure. Both graphs are considered here as a

complement to model general inter-networks that could be

used in inter-cloud connections. In ER, each edge is included
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Fig. 6. Performance comparison between COV and Migk
with respect to the changes of the migration costs when

the number of servers is fixed as four (Uniform Pattern).

in the graph with probability p independent from every other

edge whereas the BA graph is determined by the number of

initial nodes and edges to be added at each time step. In our

experiments, we always fix the network size as 100 since we

expect that in reality the number of machines that can host

the movable service is not that large. The average inter-node

distances and node degrees of the four above-mentioned of

network topologies are listed in Table 2.

In our model, access pattern is characterized by a sequence

of online batch requests distributed across the network along

the time axis. Each batch request is specified by its arrival time

instance, batch size as well as distribution of the connect points

together with the associated weights. In our experiments, we

adopt three types of patterns that are often used in network

studies [20], [21], each with different merits to evaluate

the migration algorithms: First, to isolate the impact of the

network topologies, we use uniform distribution, denoted as

Uniform(p,q), for both the batch size (i.e., the number of

requesting nodes) in [1,p] and request weight in [1,q]. Then,

in order to reflect the skewness among nodes, we assume

a uniform batch size in [1,p] and a Zipf-like distribution,

characterized by a parameter α ≥ 1, to capture the amount

of access weight skew of each requesting node. We denote it

as Zipf(p,α). Finally, to model the mobile access dynamics, we

deliberately partition the network graphs into different zones

(ω) by clustering nodes based on their locations. The nodes

in different zones will make requests at the different time

segments to mimic the mobile accesses. In each zone, we also

follow the Zipf-like distribution (Zipf(p,α)). Therefore, this

pattern reflects both spatial skewness and temporal dynamics,

denoted as Zone(p,α, ω).

The major performance metric is defined as the ratio of the

total service cost achieved by the proposed algorithm over the

one achieved by a sub-optimal off-line algorithm, an effective

sampling-based approximation. We chose this metric as it can
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Fig. 7. Performance comparison between COV and Migk
with respect to the changes of the migration costs when

the number of servers is fixed as four (Zipf-like Pattern).

not only measure the relative performance to the potential

optimal results but also demonstrate the performance changes

of the algorithms between different configurations.

6.2 Results

In this section, we evaluate the performance of the proposed

algorithms in various cases. Since the compared online algo-

rithms are evaluated relative to the off-line algorithm, we first

measure the performance of the BnB algorithm in terms of its

ratio over the optimal DP algorithm whereby we use it as a

baseline to compare the online algorithms. In the experiments,

each data point in the graphs is averaged over five runs by

changing the random number seed in the simulator. To measure

the distribution of the values for each data point, we also

compute the standard deviation of each data point. However,

for clarity of presentation, we omitted standard deviation bars

on the graphs if most of them are less than 10% of the data

point’s values.

6.2.1 Performance Studies on the BnB Algorithm

Performance Behaviours: We first study the performance

behaviours of BnB with respect to the number of samples. In

theory, as the number of samples increases, the performance of

the algorithm should also increase accordingly. Fig. 3 verifies

this by showing how the service costs decrease along the x-

axis (the number of samples) of all the sub-figures when the

number of threads is four. Since each sample consists of a

set of randomly selected configurations, the performance of

the algorithm is not only related to the sample size but also

reliant on the number of configurations in each sample. To

evaluate this impact, we also compare the performance of

the algorithm when the numbers of configurations in each

sample are varied. As shown in Fig. 3, the service costs

of the algorithm decrease as the number of configuration
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Fig. 8. Performance comparison between COV and Migk
with respect to the changes of the migration costs when

the number of servers is fixed as four (Zone Pattern).

increases, which is not beyond our expectation. Although the

decreasing trends are obvious with respect to the changes of

samples, the values of the decreasing, in various cases, are not

that significant, which allows us to use a small-scale sample

spaces (including the number of samples and the number of

randomly selected configurations in each sample) to evaluate

the algorithm without sacrificing too much performance while

maintaining the efficiency.

By fixing the sample size as 160 and the number of

configurations as 32, we also measure the speedups of BnB

for Zipf-like access pattern in Fig. 4 where the experiments

are performed under Ubuntu 12.04 running on a hardware

configuration of 8GB memory and a 3392.183 MHz quadcore

processor, with total of 8 threads, each with 8192K cache.

From this figure, one can easily observe that the algorithm

achieves a linear speedup up to 4 threads and maximizes at

8 threads across all the examined cases. This observation is

understandable as the processor is quadcore with total of 8

physical threads. These results demonstrate the scalability of

our algorithm.

Performance Evaluations: In these experiments, we lever-

age the conclusions in the last sub-section and evaluate BnB

by using a relative small-scale sampling strategy (100 samples,

each with 16 configurations). To compare the performance in

different cases (e.g., different network topologies and access

patterns), we normalize the service costs of BnB with those of

the optimal DP algorithm.

Fig. 5 shows the results when both the network sizes and the

number of servers are limited to small scales for overcoming

the configuration complexity. For the sake of clarity, we only

plot the ratios for Zip-like access pattern on all the studied

networks with size≤20 (Fig. 5 (a)), and the ratios for all the

access patters on the lattice and tree networks, each having

100 nodes since the results of these cases are worse and more

varied than those of the other two topologies (Fig. 5 (b)). In
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Fig. 9. Performance comparison between COV and Migk
with respect to the changes of the number of servers

when the migration costs are uniformly distributed in [0,
2000] (Uniform Pattern).

both cases, there are at most 4 servers. From this figure, one

can easily see that, except for the tree with less than 4 servers,

the performance of BnB is less than 20% of the optimal results

across all the studied cases. These results demonstrate that

the performance variances of BnB are relatively stable with

respect to the changes of network sizes, topologies, and access

patterns.

Although these results cannot fully reflect the actual perfor-

mance of BnB, they at least exhibit some supportive evidences

that BnB is a relatively good sub-optimal off-line algorithm

for comparison. Note that BnB requires κ ≤ logn
log(1+∆) , but we

think this constraint is practical in reality as the number of

servers is usually much less than the total number of network

nodes. By combing the results in Fig. 3 and Fig. 5, we can

see that the BnB algorithm with the examined configurations

can effectively approximate the optimal results while reducing

the runtime overhead (again, using small sampling space with-

out sacrificing the performance). Therefore, in the following

experiments, we will use it as a baseline to measure the

performance of compared online algorithms in various cases.

6.2.2 Performance Evaluation on the Migk Algorithm

To evaluate the online algorithm Migk, in addition to normaliz-

ing it with BnB to assess its performance relative to the off-line

results, we also compare it with a reference algorithm from our

previous studies [55], called Cooperative Migration with Vir-

tual Moves algorithm (COV) COV is squarely designed for the

service migration in clouds and has shown some advantages

over some existing algorithms [16], [20]. For instance, COV

overcomes the inefficient one-hop migration of the service for

each migration (i.e., the local-search limitation) in [20] and

in the meanwhile removing the configuration complexity for

search space reduction in [16] as well with a proposed concept

of virtual move. However, it does not assure the worst case
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Fig. 10. Performance comparison between COV and
Migk with respect to the changes of the number of servers

when the migration costs are uniformly distributed in [0,
2000] (Zipf-like Pattern).

performance. By comparing with COV, we can show how Migk

behaves better than the existing algorithm in practice and also

guarantees the performance bound in the worst case as well.

By fixing the number of the servers as four, we show from

Fig. 6 to Fig. 8 the compared results of both algorithms

with respect to the changes of the migration costs for the

three selected access patterns on the different networks. From

these figures, one can easily observe that Migk exhibits better

overall performance than COV across all the studied cases,

except for the scenario when migration cost is free. These

results are consistent with our original expectations as Migk

is designed to be sensitive to the changes of the access pattern

and adaptive to them with service migration. It always allows

each server to independently select its own migration target

along a cost-decreasing path, rather than taking all the server

replicas in a configuration as as whole to make migration

decision as COV does. As a consequence, the computation

of Migk can be steered toward a more cost efficient way

than COV which, compared with Migk, is biased against the

migration to serve the demand sequence. This also explains

why the performance of Migk is inferior to that of COV in most

comparisons since in this case, as we discussed in Section 4.2,

the effective epochs of Migk cannot be created when β′ = 0,

thus Migk would incur too many migrations to adapt to the

access patterns. Admittedly, this is a shortcoming of Migk.

Fortunately, migration for free is not a reasonable practice in

cloud-based services.

In addition to the performance merits, Migk also exhibits

another advantage over COV, that is, compared with COV, the

performance of Migk is relatively stable when the migration

costs are varied. This is a nice feature for the service providers

that allows the service costs are highly predictable.

In addition to the migration costs, we also studied how the

compared algorithms behave with respect to the number of
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Fig. 11. Performance comparison between COV and
Migk with respect to the changes of the number of servers

when the migration costs are uniformly distributed in [0,
2000] (Zone Pattern).

servers. Given the size of networks as 100 nodes, we studied

the algorithms by varying the number of the servers from 2 to

4. The results for different access patterns are shown in Fig. 9,

Fig. 10 and Fig. 11, respectively, when the migration cost

is uniformly distributed between 0 and 2000. As understood

from the previous explanations, Migk is consistently better

than COV for all the access patterns on the studied networks.

These results are also consistent with those in our previous

experiments. Moreover, as the number of server replicas is

varied, the performance of Migk is also stable, which is again

within our expectations. Note that in some cases (e.g., Zone

pattern on Lattice), it could be possible for Migk to outperform

the off-line algorithm since the baseline algorithm is sup-

optimal.

In summary, all these experimental results demonstrate

the performance advantages of Migk over COV, rendering

Migk to be more practical in reality. On the other hand, the

performance of Migk in its worst case is guaranteed as we

showed in Theorem 4.2, which is different from COV whose

performance is unbounded.

7 CONCLUSIONS

In this paper, we formulated and studied the service migration

problem in cloud platforms from both online and off-line

perspectives. For the online case, we proposed Migk, an

online randomized algorithm with a mean competitive ratio

of O( γ logn

min{ 1
κ
, µ
λ+µ

}
) to co-migrate κ servers in a static n-

node network within O(κn) time, which is better than the

previous results in terms of both the competitive ratio and

time complexity [16].

For the off-line case, we proposed a multithreaded

branch&bound algorithm, named BnB, which is based on

DP techniques and leverages sampling methods to efficiently

approximate the optimal results when the number of servers is

upper-bounded by O( logn
log(1+∆) ), a practical case in reality. Our

simulation results showed that the results of BnB on average

are consistently within 120% of the optimal result across all

our experimental cases.

Using BnB as the baseline, we further compared the pro-

posed algorithm with COV, an optimized co-migration algo-

rithm that exhibits some performance advantages over some

existing algorithms. After analyzing the experimental results,

we conclude that Migk achieves a better cost reduction than

COV under the designed experimental setup.
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