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Abstract

In Wireless Sensor Networks (WSNs), clustering . ~chniques are often used to
optimize energy consumption and increase . ~cket Delivery Rate (PDR). To
date, most of the proposed clustering , rot cu.s assume that there is a Line
of Sight (LOS) between all the sen.-,..~ 1. fact, most of the available WSN
simulators assume the use of opt~istic | ath loss models that neglect the effect
of obstacles on the PDR. However, 1. real situations such as in 3D terrains,
obstacles can interfere this ".0S. 1 "oreover, while clustering, it is also important
to maintain the coverage of o “iver Region of Interest (ROI). Therefore, finding
an integrated solution .or I Hth rlustering and coverage problems in an irregular
3D field becomes a _ressing ~oncern.

In this paper, we firs. ~dopt an obstacle-aware path loss model to reflect the
effect of obsta .les ¢ a the communication between any pair of sensors. To that
end, the C- stalia  ‘mulator is adapted to use this proposed path loss model.
Then, w. int odu ¢ a Coverage and Obstacle-Aware Cluster Head Selection
(COA”n3) nrowocol to solve the cluster heads selection problem while main-

tainin_ a goc 1 coverage of a WSN deployed in an irregular 3D field. Sim-

Email ddresses: decheng.zhang@cmail.carleton.ca (Decheng Zhang),
we1l. %7 _.arleton.ca (Wei Shi), riham.elhabyan@carleton.ca (Riham Elhabyan),
~~~_sthilaire@carleton.ca (Marc St-Hilaire)

Preprint submitted to Journal of BNTgX Templates April 22, 2019




10

15

20

ulation results demonstrate that the effect of obstacles on the I OR _annot
be neglected. Moreover, comparative evaluation results show tha COnCHS
outperforms other competent protocols in terms of PDR whi e siy - _"*aneously

maintaining an acceptable energy consumption and a good cover. e of the ROI.

Keywords: WSNs, Cluster Head Selection, ROI Coverage, b acles, 3D

rolling terrain, Energy Consumption

1. Introduction

Multiple clustering protocols have been propo. 1 in the literature to opti-
mize the energy consumption in Wireless Serw.. -~ Networks (WSNs). The main
objective of a clustering protocol is to .'nd a subset of sensor nodes that can
act as Cluster Heads (CHs). Findin_ .“e o, “imal set of CHs has been proven
to be a Non-deterministic Polync =1 (N)-hard optimization problem that has
many conflicting objectives [1]. Most { these protocols assume that the sen-
sors are deployed in a Tw -Dimc »sional (2D) network field. However, there
is an increasing number of v."SNs applications in which the network field is a
Three-Dimensional (37)) 17 ding terrain, such as volcano monitoring and land-
slide detection. Altiough rc :nt studies have proposed clustering protocols for
3D WSNs [2, 3, 4], these . “udies assume that the field is a 3D volume where sen-
sors can be pcitio’ ed freely within the whole 3D space. Compared to this free
deployment deplo, g sensors on rolling fields is different as sensors can only
be deploy 1 ra th . exposed surface, not freely within the 3D space. Further-
more. clustering protocols developed for 2D fields cannot be applied directly
in suc. appli ations because the nature of 3D rolling fields may lead to the
c ceation »f obstacles in the network field. These obstacles have a substantial
im, ~~t _n the link quality between the communicating sensors as they cause

ar mcreased path loss. Therefore, determining the optimal set of CHs on a
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3D rolling field is a critical task. Data delivery reliability is cons’ ‘ere a key
requirement in WSNs [5, 6]. In order to realize this requirement, clu. “ering pro-
tocols should ensure high-quality links between the cluster v :mb . and their
associated cluster heads. The Received Signal Strength Indicato. “RSSI) is con-
sidered a prominent metric to assess the link quality be :ween t. = transmitter
and the receiver sensors. The RSSI calculation depen” mai..., on the adopted
path loss model. Therefore, the performance of clu +e g 1 rotocols critically
depends on the ability to accurately model the path . s of the communication
signal between the transmitter and the receiver. A ~omur n limitation in most of
the previously proposed clustering protocols is the . =sumption of the free space
path loss model. The fundamental assumptic ~ behind this model is that the
transmitter and the receiver sensors have aJ me of Sight (LOS) communication
with no obstacles of any kind [7]. 1> ~al v tuations, there are almost always
obstacles in the path between tF *ransw itter and the receiver. Therefore, the
free space path loss model is considere. ideal and optimistic for predicting the
path loss between any twc senso. - since it does not take the obstacles effect
between the transmitter ana e 17 ceiver into account [8]. Most of the available
WSNs simulators assr ne f.1e u e of the free space path loss model [9, 7]. The
log-normal shadow ading 1. el is proposed as an attempt to construct a more
realistic path loss mode. Yy simulating the path loss around the sensors. Yet,
this model do s nc . account for the effect of the obstacles on the communica-
tion signal. Anoth. - significant limitation is that most of the existing clustering
protocols <’ me *.e use of the first order radio model [10, 11]. However, this
energ: mode! is 1dealized and fundamentally flawed for modelling radio power
consu, ntion a sensor networks [10, 11, 12].

Cast. lia is a popular and very efficient WSN simulator that provides a well-

de. ~me” channel model [9] and adopts a realistic energy consumption model
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based on the characteristics of the Chipcon CC2420 radio transceive dat: sheet.
However, Castalia adopts the log-normal shadow fading model and .. nce s..ares
the same drawback as most of the available WSN simulato s wi ’. ~egard to

accurately modelling the path loss in case of No Line of Sight (:.” OS) commu-

nication, i.e. when there are obstacles between the transr itter an ' the receiver.

1.1. Contributions

In this paper, we design, implement and evalua. a cc.crage-aware CHs se-
lection protocol (called COACHS) for WSNs ii. “he pres nce of obstacles in 3D
rolling fields. Since the CHs selection problem . ~s been proven to be a Non-
deterministic Polynomial (NP)-hard proble.. with many conflicting objectives,
a Pareto-based Evolutionary Algorithn. ..~ adopted to solve this problem.
The proposed protocol takes into cc -idera ‘on the following key requirements:
coverage ratio, energy efficiency, data < livery reliability, and protocol’s scala-
bility. To evaluate the performance « ¢ the proposed protocol, we compare the
simulation results against v _u-.. ~own clustering protocols, in the existence of
obstacles and under a real. ic ene gy consumption model. More precisely, the

main contributions of ‘ ais  aper are listed below.

e We adapt an “stacle-aware path loss model to evaluate the effect of obsta-
cles in the ~ormmunication between any two sensor nodes. To achieve that,
we imp! mer . a visibility function to find obstacles on the path between
any tvo sensoi.. This function is implemented based on the Bresenham’s
algor..” m. T ased on the adopted path loss model, a path loss map is de-
iived. "he Castalia simulator is then modified to use this map to calculate

ti. m=2* loss and the RSSI values between any two sensors in the network.

e We propose a new EA-based coverage-aware clustering protocol for 3D

WSNs where the network field is a 3D rolling terrain.
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e To realize the aforementioned contributions, the network field ‘s m ,delled
using the Digital Elevation Model (DEM) to account for diu. ~ent c.eva-

tions, and hence obstacles, in the field.

To the best of our knowledge, the proposed clusterine .. otoco. is the first
to consider and test the obstacles’ effect on the commu nicatior between the
sensors as well as to maximize the coverage of the RC «. Mer=over, experimental

validations are performed on real elevation data for 5., terrs .ns.

1.2. Paper Organization

The remainder of this paper is organized as 1.'ows. Section 2 presents the
related work on protocols designed for 3D W._Ns. Section 3 presents the system
model and assumptions. The design ot “he .. osed protocol (COACHS) and
the problem formulation are provid . in sc tion 4. A detailed analysis of the
simulation results is provided ir Sectic~ 5. Finally, Section 6 concludes the

paper and highlights future research «'-ections.

2. Related Works

The Low Energy idarve Clustering Hierarchy for 3D WSNs (LEACH-
3D) protocol [13] i a direc. :xtension of the original LEACH protocol and is
considered the first clus. ~ing protocol designed for 3D WSNs. The first order
radio model, - /hicl is initially proposed by LEACH, is extended to work for
3D WSNs. Baseu °n this extension, the authors prove that the effect of the
3D envire "m at o . clustering protocols cannot be neglected. LEACH-3D uses
a vari .ole ntmber of CHs and different number of CHs could be elected each
round.

A Fu 7y-based Clustering Scheme for 3D WSNs (FCM-3) is proposed in [2] to
ap, ' ! stering protocols in 3D WSNs. The proposed protocol assumes the ra-

di , model which is proposed in [13]|. The adopted fuzzy approach optimizes one
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objective function which is defined as minimizing the total energy ¢ ‘msv aption
and is constructed by combining the distances between sensor noa. - ana Jheir
corresponding CHs and between the CHs and the Base Stat'on ( °7 iuto the
radio model. FCM-3 defines two constraints to ensures single-. ~ connections
for the intra-cluster and inter-cluster communication. < milar t« LEACH-3D,
the number of CHs is variable. However, experimental suli. _.ow that FCM-3
achieves the best performance when the number of «'H- 1s fr m 20% to 30% of
the network size, which is considered a high number.

A Particle Swarm Optimization (PSO)-basc.’ Prot,col for CHs selection
(PSO-CH) [14] is a centralized PSO-based proto. ! that is used to find the
optimal set of CHs. The PSO-CH protocol c. ~siders the following properties:
the network’s energy efficiency, data tra. sm’;sioa reliability, and the protocol’s
scalability. The objective function 1.°«" is u od to evaluate each candidate so-
lution is defined as the weighted ™ o1 three sub-objectives, each of which is
related to the aforementioned propertic. PSO-CH is designed and implemented
under realistic networks se? .ings < 1d realistic energy consumption model. The
link quality estimation ‘n F._"-C"( is based on the Received Signal Strength
Indicator (RSSI) of re eive 1 pa: kets.

All the aforeme cioned |. Jtocols are applicable to 3D WSNs. However, the
path loss model adapteu v these protocols ignore the effect of the obstacles on
the communic .tion oetween the sensors. They also assume that the field is a 3D
volume whr e the . ~nsors can be positioned freely within the field. Moreover,
all these | "ot cols assume the use of an ideal energy consumption model.

T} - reseerch work in [15] investigates the impact of various path loss mod-
els on ‘he pe formance of the Ad Hoc On-demand Distance Vector (AODV)
1outing |, votocol. In this work, the effect of varying the number of obstacles on

the Pac’ ot Delivery Rate (PDR) is analyzed for the different path loss models
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under comparison. In order to achieve that, the Network Simula’ w-2 NS-2)
is enhanced to accommodate the different path loss models. Simui. *on results
indicate that the performance of the AODV protocol, in term of t ~. PDR and
the mean delay, is affected by the increase in the number of obsta 'es. Although
no specific path loss model is recommended, the authors >stablis, =d that using
simple path loss models is considered very optimistic ©  esu......ing the perfor-
mance of routing protocols.

The Surface-Level Irregular Terrain (SLIT) path ©~ss model [16] is a semi-
empirical path loss model for WSN with irregnlar ~~rrair. The SLIT model uses
the terrain information, expressed by the DEM a. =, to provide a fast and an
accurate estimation of the large-scale path los. due to the obstacles existing in
the field. The total path loss is express. 1 2 . a unction of both the free-space
path loss and the path loss due to thL > chstad'es in the field, which is calculated
using the Epstein-Peterson diffr *i~n I ss model [17]. In order to verify the
SLIT model, empirical experiments a.. conducted and the average difference
between the measured resv ¢s and the predicted results from the SLIT model
are recorded. Experimental . ~ult, have shown that the SLIT model provides
an accurate path loss aod ( thr ¢ accounts for the terrain profile.

In this paper, "ve adop. che SLIT path loss model [16] and propose an
obstacle-aware clustering nrotocol for 3D WSNs to evaluate the effect of ob-

stacles on clus .erin | protocols.

3. The ! vst .m T fodel

T e 3D rd'ling field is modelled using the Digital Elevation Model (DEM).
The Dr.." *  a digital representation of a given ground surface topography or
{>rrain. 11 the DEM, the network field is represented as a matrix of cells, where

each ceil holds a value that represents the average elevation of the area contained
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by that cell. DEMs are commonly built using remote sensing technc' ey r from
land surveying, and are usually available to download. For example, he gecspa-
tial data extraction tool [18] is part of Natural Resources C .nad '. altimetry
system designed to meet the users’ needs for elevation data ana , "oducts. This
tool provides data from seamless national datasets based on custc n-defined ge-
ographic area and customized data options. The mair 10otiv....on to adopt the
DEM in our proposed protocol is to be able to sim ‘12" ¢ a 1 alistic 3D rolling
field and to find the obstacles between any two sen. » nodes in the network.
The sensors are assumed to be uniformly deploy. ' in a 3D rolling field. Based
on the DEM data, the height coordinate of a sensc. 'ocated at position (x,y) is
restricted to the field’s elevation at that specuw’ - position.

For the energy consumption model, * d’.crece-based realistic model which
is based on the characteristics of th> ~hipc \n CC2420 radio transceiver data
sheet [19] is used. The total ene ;- ~ons 'med by sensor node n, consumedE,,,

is calculated as follows [20]:

_ 2 D 5) E
consumedEn = str Lej X tstatej + Etransitions (1)

sto ej tr
The index states reic. * to .he energy states of the sensor: sleep, reception,
or transmission. g, - is the power consumed in each statej, tsiqie; is the
time spent in t' ¢ ¢ rresponding state, and tr is the number of transitions for S.
The energy spe..” n transitions between states, Eirqnsitions, 1S also added to the
node’s tot . er rgy consumption. The different values of Pyiqt; and Eyransitions
can be f~md .. '.9].
Fcr the pa h loss model, we adopt the SLIT path loss model [16] to find the
pr ou loss vetween any two sensors.
For t} 2 coverage ratio computation, the target terrain surface is first parti-

" ~od using Triangular Irregular Network (TIN) [21]. Fig. 1 depicts the surface




triangularization on the xOy-projection plane '. Then, a revisec 3D oinary
sensing model [22] is applied to measure the coverage redundancy, -vhicu is a

180 network coverage performance indicator.

{5y

=0

NN

Figure 1: Triangular Irregular Network o' the zt “-Projection Plane of the Target Terrain

Figure 2: (rim' sh of Rolling Terrain Partition (Triangular Irregular Network)

Let "y bea .erence plane. Any point T(z¢,yt,2¢) in a 3D space can be projected onto
this z( y plane, and the projection point T”(x¢,y:) is referred to as the zOy-projection of T.
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4. A Coverage and Obstacle-aware Clustering Protocol or "~VSNs

with Rolling Field

The network operating time of the proposed protocol is d" -ide . into rounds.
Each round consists of two phases, the set-up phase, and t! ¢ steady-.cate phase.
The operation of these phases is similar to that of [14]. 1. this p' per, we focus
on the protocol adopted by the BS in the set-up pb e t~ “nd the optimal set
of CHs and clusters. The proposed protocol inclv Jes six di'.erent processes as

illustrated below:

4.1. DEM Extraction

The geospatial data extraction tool [18] p.~vided by Natural Resources
Canada is used to extract the elevation d. “e ior a given network field. Based on
the DEM data for a given network fic'a, “he 3S constructs an elevation matrix
that holds the elevation data fo. -.. %~ zells contained by the network field.
The ArcGIS software package is utilized to generate and extract the elevation

data given the DEM data ‘or that Teld.

4.2. LOS Algorithm

A Line of Sight (.OS) ai > ithm is needed to find the obstacles in the commu-
nication link between ai., two sensors in the field. In this paper, the Bresenham
LOS algorithr is v ilized to implement the visibility function. The Bresenham
algorithm is often . ~ed in computer graphics for line drawing on 2D surfaces. In
this pape. wr hav modified it to be used for LOS determination on 3D rolling
fields. .n this algorithm, if the elevation of any corresponding points between the
transL itter a-.d the receiver does not cut the virtual line drawn between them,
tien the e is a LOS between the transmitter and the receiver. Otherwise, it is
sa. ' the’ there is NLOS (non-LOS) between them. In this paper, an obstacle is

de 1ned as the point which has an elevation higher than that of the transmitter

10
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or the receiver. The LOS algorithm returns a visibility matrix that ~as "V rows
and N columns, where N is the total number of sensors. This visiL "ty muatrix

holds the path loss of all the obstacles between any two senso s in .~ network.

4.8. Path Loss Map Calculation

Based on the visibility matrix, a path loss map is g.~erat.d by the BS.
This map reflects that path loss between any two cor aw ‘cating sensors in
the network and is calculated using the SLIT pau. loss ...odel. The Castalia
simulator is then modified to use this path loss . *ap instr ad of the one provided
by the log-normal shadow fading model to calc.'~te the propagation loss and

the RSSI values for the links between any t..~ communicating sensors.

4.4. TIN Surface Partition

A Triangular Irregular Network (T.N) . artition is applied to the target net-
work field. First, we generate a mx*.. ~rid on a zOy-projection plane of the target
terrain (see Fig. 1). Let d,, der~te the distance between any pair of neighbouring
vertices on a grid line. Tt : elevatii n value of each vertex is obtained from the
DEM data utilizing a I rear inte: polation method [23]. As shown in the figure,
a given vertex vm(l < _ m,” <j<n)has a one-to-one mapping to the given
terrain surface. W. o merate a triangular network that contains 2(m —1)(n—1)
triangles using .. e vertices. We calculate the expected coverage ratio of the

ROI utilizing o ‘< ¢riangular network.

4.5. Redu. 11t C werage Calculation

B rore de iving the redundant coverage value for each sensor, we use a
Breadt.. Wir, Search (BFS) like approach [24] to pinpoint a set of triangles
{hat are overed by a specific sensor. Since a fine-grained partition is required

to mowel a complex rough terrain surface and because the target terrain can be

11
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much larger than the scale of each triangle, a brute force approach < ur uttain-
able.

In this paper, we use a binary 3D sensing model [22]. 0 thii _-ndel, if a
point p in the network field is located within the sensing range 1+ ¥ sensor node
n, then it is assumed that p is covered by n. The sensing egion o, n is modelled
as a sphere centred at n with a sensing radius . We = 7 the. . triangle in the
ROI is covered by sensor n if its three vertices are cc = .d by n, and uncovered
otherwise.

We also use a redundant coverage formula as ~rope ed in [25]. In this for-

mula, the redundant coverage D; is defined as:

D; = “wn 2
’ Sil-i-%—krfr—i-...—i-sjv’v @

where S is the entire coverage of ¢ cu 2nsor. For each sensor i, let S; be

the sensor’s coverage area, S;; is 5, minus the area that overlaps with other
sensors. S;o is the overlapr .ug “rea between two sensors’ covering area, and
S;n is a N-covering area ti. * is th . overlapping area by N sensors. Therefore,

S; can be represented s:

S, =81+ Sio+ Sis+ ... + Sin (3)

Intuitivels the more redundant a node is, the more it should be selected

as a CH, ' o th «&t even if a number of redundant nodes run out of battery, the

network redu. a2 .cy is not effected.

4.6. 1+ mding he Optimal Set of CHs
Once the modified RSSI values are calculated, the BS runs an EA-based
alg itk to find the optimal set of CHs. In this paper, we adopt the Non-

de mimated Sorting Genetic Algorithm II (NSGA-II) as an optimization tool to

12




find the optimal set of CHs. The problem formulation for the ado; -ed "«SGA-
25 based algorithm is provided in the next section. Table 1 presents t.. nota.ions

used in this paper.

Table 1: Notations

Symbol Definition

P Population generated from the Adolr\; EA

N Total number of sensors

n Sensor number n, 0 <n < N

C; Individual number i of P

Xin Component number n .“

K; Total number of cl. «we.. _~merated from Cj

CLy, Cluster number = oene. ated from C;, 0 < k; < K;
CHy, Cluster head numbc - k generated from C;, 0 < k; < K;
|C'Ly, Number of sensoi. ~lustered in CLy,

E(n) Remain’ 1g e, rgy of node n

initial E(n) Initial en. ~ay . node n

RSSI(n,CHki) RE 51 voque “or the link from n to C'Hy,

LQ(,L,CH,W) “ink qu.’ ¢y for the link from n to C'Hy,
RSSI(n,CHy,)
LQn, Hy) = — =m0 =
D; Redundant coverage for the sensor node n from Cj
- Sin

S T SN (S0,/9)

4.6.1 Decisy m Variables
Tn t,. = ,posed protocol, a sensor node may be in one of two states: a CH,
v non-C 1. To find the optimal set of CHs, a random initial population P is

26~ generaved and evolved by the adopted EA. Each candidate solution (Chromo-

13
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some) C; in P has a dimension equal to the network size minus * e P (ie.,
N —1). Binary encoding is adopted to represent each chromosomec, whero the
size of each component of C; is 1 bit.

Let, C; = [X;1, Xi2, Xi 3, ..., Xi, n—1] be the ¢y, chromosome ¢. P where each
component, X; ,,1 <n < N — 1 maps the state of sensir n. Ea h component
Xi,n of chromosome Cj is initialized with either 1 to i~ ‘icai. .l.at sensor n is a
CH node, or 0 to indicate that sensor n is not a C." 7, shc 1ld be noted that
this encoding process will result in a variable number « € CHs. Table 2 shows the
random sequences created for two individuals i P on . network including 10
sensor nodes other than the BS. Each row presents solution for a chromosome
in P. For example, in chromosome C1, senso. * 2, 5 and 10 are CHs while the

rest of the sensors are non-CH nodes.

Table 2: Chrom sou. -~ Population

NodeID 1 2 o 4 5 6 7 8 9 10

C1 o 1 0 o 1 0 0 0 O 1
Co o o0 1 1 1 0 O 0 1 0

The clusters are for.. - 1 by associating each non-CH node to its closest CH
that has the lowes . 7 SSI value. Once the clustering process ends, each sensor
node belongs te . 'y one cluster and each cluster head node acts as the CH of

exactly one ci. *e .

4.6.2. Ou, -t ve F .nctions
Es ch chr mosome C; is evaluated according to four objective functions,

which . e bri fly described in Table 3 and defined below.

14
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Table 3: Objective Functions

Objective Description Goal

Function

K; Minimize the total number of CHs Sav ene

U; Minimize the number of unclustered sensors E- aanc  scalanility

L; Maximize the link quality between clusters Data  livery reliability

E; Maximize the total remaining energy of the CHs __lance ¢ °rgy consumption
R; Maximize the redundant network coverage of CHs = Optin. e network coverage

N-1
Ki=Y> 1, ifX;,=1 (4)
n=1
K;
Ui=N-> |CL, (5)
k/‘iil
> Qe
— LA
Li= 1@:?,12%.).(.,1{ '\OLy,| (6)
N .
mu. 'E(n)
E; = X
i X_j By L Xin #00 (7)
1
R, = - ik 8
KiY: ks (8)

It should be not d th.' t}: calculation for L; in the proposed protocol de-
pends on the new y de. ved RSSI values which in turn depend on the generated
path loss map ['h pseudo-code of COACHS executes in an arbitrary node n
is shown in Algo. hm 1. The proposed protocol utilizes a timer-event model to
represent cach ster executed in a WSN node. The setTimer function has two
parame’ s: £t Name and Time. FEvent Name is an index for all steps,
and _ime is . double-typed value representing time elapsed. At the begin-
n g of each round, each node first searches their neighbours (FIND-NBRS) by
b nadcas g their own ID then waiting for the responses from their neighbours.

+.  cach node broadcasts their ID, residual energy, neighbours’ IDs and their

15
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respective RSSI to the BS. Once received this information, the BS <tar’s a se-
ries of processes to find the optimal CHs. In detail, the DEM data “r a given
network field is first extracted as described in Section 4.1. Th n, & ' ~e of sight
algorithm, the Bresenham’s algorithm to be precise, is utilized . compute the
visibility matrix. Based on this visibility matrix, a path !ss map which reflects
the path loss between any pair of communicating sensco~ s ge.._.ated. This path
loss map, containing the propagation loss and the I S vali 3s for the links in
the network, is later used as an input for the NSGA." optimization. The net-
work coverage information for each single node 15 ~lso 17 quired for the NSGAII
optimization. In order to obtain this, A TIN par.. ‘on is applied to the target
field. Then, Equation 3 is applied to compute he redundant network coverage.
Ideally, the more redundant a node is, th. mr ce 1v should be selected as a CH, so
that network coverage is not largely .. ~tea °ven if a redundant node runs out
of battery. At this point, the BS '~»nchyx the NSGAII optimization, using the
path loss map, redundant coverage anu “emaining energy level of each sensor as
inputs. At last, the BS cor «gures *he set of optimal CHs then reset the status
of each sensor. As a resrlt, 1. > CF s and CMs enter a steady-phase. Each CHs
establishes communic' cior char nels, aggregates packets and relays packets to
the next hops. Ea-a CMs . .ays packets to its CH, then goes to sleep-mode.

COACHS then proceeds '~ the next round.

5. Simula’ion 1. sults and Analysis

The C"OA ™S protocol and the proposed path loss model are implemented in
Caste ia. In a. dition, we have implemented both LEACH-3D and PSO-CH. The
Si” ...atious are performed on elevation data from the Armadillo Peak volcano in
1 ritish C)lumbia, as illustrated in Figure 3. The DEM of this field is obtained

~ino the geospatial data extraction tool [18] provided by Natural Resources

16




Algorithm 1: Pseudo-code of the proposed protocol

© 0N wAWN =

e O
N AW N KO

begin Procedure startup()
setTimer(START — ROUND, 0.0);

end

begin Procedure timerFiredCalback(index)
switch indexr do

end

end

end

end

end

end

cas’
|

end

case START — ROUND : do

double timer = uniform(0.0, 7);
setTimer(FIND — NBRS, timer);
setTimer(BROADCAST — INFO,r);
if isBS then
| setTimer(FIND — CHs,n);
end
else
| setTimer(RUN — STEADY — PHASE,n.,
end
roundNumber + +;
setTimer(START — ROUN D, roundLength);
times

case FIND — NBRS : do

broadcast (ID);

case BROADCAST — INFO : do

> r, n, and m are random

broadcast (ID, residual Energy, neigr. ~wrs’ IDs and their RSSI);

case FIND — CHs : do

dem __Matrixz = extract DEM();

visibility  Matriz = runL ~SAlgo., thm(dem);
calculatePathLossMap(vis. . ot M. strix);
partitionTIN Sur face();

calculate RedunduntCeverage(),

optimalCHs = runNS A1: .7 * jorkInfo);

> find optimal CHs

broadcast(con figuration — mtimalCHs + sensorsstates);

case RUN — STEADY - PHASE : do

if (lisCH||!isCD ) the.
| setStateSl =p();
end
if (isCH) t¥ »n
cluster _eng*h = cvuster Members.size();

setTi wer(S JAR™ — SLOT, cluster Length X slotLength);

end
else

| s Timer(S1.+RT — SLOT, myT DM ATurn x slotLength);

end

case £~ ‘RT — SLOT : do

< tTi er(START — SLOT, cluster Length X slotLength);

f (is' H) then
.ggregatePackets();
‘ p. ~essBuf feredPackets();
e .d
Ase
rocessBuf fered Packets();

> aggregate packets

> send packets to next hop

> send packets to CH

setTimer(END — SLOT, slotLength); ©> go to sleep mode at end of slot

end

END — SLOT : do

if (lisCH||!isCM||!isRelayNode) then
| setStateSleep();

end

17
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Canada. To generate the elevation data, a 20 x 20 fishnet is const: 'cte . using
the ArcGIS software on a scaled version of the network field. The 1. “work feld
is scaled down to 100 x 100 meters. The sensors are deployv .d r: - '~mly and
their position is restricted by the elevation of the rolling field. T1. initial energy
of the sensors is set to 18720 J. Each round is 500s and che nun er of rounds

is set to 5. We vary the total number of sensors from *"0 tv ZCu.

Figure 3: Scaled Version of the Armadil: 7 eak Volcano in British Columbia

In this section, we consider t' ~ fallov.‘ng objectives:

1. Investigate the effect of obstacles on the PDR.

2. Compare the perforr .ance ot 11l the competent protocols in the existence
of obstacles. The compa.” on is done in terms of the PDR, the num-
ber of elected C.7~ .he ‘ nergy consumption and the average number of

unclustered - . es per round.

We conside’ tw cases to investigate the effect of the obstacles on the PDR.
In the first cas. e assume that there is a LOS between all the sensors and
that therr are no rbstacles in the rolling field. For this case, the log-normal
shadow ‘~ding ~ odel is used to calculate the path loss and we refer to the
propc sed prot rcol as the NSGA-LOS-CH protocol. In the second case, we use
tF_ proviaed elevation data to find the obstacles in the field and we use the
L oposed obstacle-aware path loss model. For this case, we refer to the proposed

. *~col as the NSGA-NLOS-CH protocol. Figure 63 shows the PDR for both
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Figure 4: Effect of obstacles on ... "™R with and without LOS

of these cases.

It is clearly shown that ignc. o ‘"~ ffect of the obstacles, as in the case
of NSGA-CH-LOS, can lead to more optimistic PDR values. It is also noted
that the PDR of NSGA-C"{-NLO." increases with the increase in the number
of sensors. Increasing tlie nu. b’ of sensors in the same network field area
leads to constructing hor er li- ks for communication with a lower probability
of obstacles that cr 11d intericre those links.

Next, the performanc. of all the competent protocols is compared in the
existence of ¢ star.es. Figure 63 shows the PDR for all the protocols. It is
clearly sho /n that . "'SGA-CH-NLOS outperforms the other protocols in terms
of the PD.. "his 's due to the fact that NSGA-CH-NLOS clusters the network
based on the RSSI values that are derived from the proposed path loss model.
This lc s t- creating clusters that are adapted for the field profile. While
1 SO-Ch uses the RSSI values as criteria for clustering the network, the way

the 2771 is calculated does not take into consideration the obstacles in the field.
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LEACH-3D uses a totally random m. <. misi1 when electing the CHs and this,
in turn, does not guarantee a hi, - 0"

Figure 63 shows the average number of CHs per round for all the protocols.
It is noted that the NSG/ -CH-N. OS protocol results in a higher number of
CHs. Unlike PSO-CH. the u. ™' er of CHs in NSGA-CH-NLOS is variable.
Moreover, NSGA-CH YLC 5 us s a Pareto-based approach to optimize all of its
objectives concurre 'tly. In v.e existence of obstacles, a higher number of CHs
needs to cluster the whoic network in order to achieve the scalability objective.

The avera e co .sumed energy per sensor is shown in Figure 63. NSGA-CH-
NLOS has . slightiy higher energy consumption than that of PSO-CH because
NSGA-Cr NV .OS :lects a higher number of CHs as shown in Figure 63. These
CHs ! ave tc stay active during the whole round which leads to a higher level
of ene1, -* cor ;umption. On the other hand, LEACH-3D has a very high energy
¢onsump ion level. Experimental results have shown that LEACH-3D results

in o -y high number of unclustered sensors. These unclustered sensors stay

20




370

375

9
= 30
e
3
[oN)
2}
jus)
O 20} B
Gy
5)
$ -
8
g
=
= 10 [ |
(]
0
<
g
<
0 ! ! ! ! !
100 200 300 40y 500
Network siz.

NSGA-CH-NLOS PO o ——— LEACH-3D

Figure 6: Average nur-ter of Chs per round

active during the whole round and .. ume more energy. On the other hand,
both NSGA-CH-NLOS and PSC® ©'H ai » able to cluster all the sensors. The

average number of unclustered sensors ~er round is shown in Figure 63.

6. Conclusions and Futu. ~ we k

Data delivery relia. *li'y ar ( coverage ratio are considered as key require-
ments in WSNs.  -hieving such requirements in a 3D WSNs with a rolling
network field is -~ challenging problem due to the obstacles that may exist in
the field. Mo. ve , many of the current WSN research is constrained by ideal
and optim’ stic »ath .oss models which are also assumed by most WSN simula-
tors. In thi. »ape , we adopt an obstacle-aware path loss model to account for
the e ect of bstacles in the network field. To locate these obstacles, the 3D
rolling 1. '1 ", modelled using the DEM. Based on the adopted path loss model,
« coverag -aware cluster head selection protocol, called COACHS, is proposed.

Simuiauion results show that the effect of obstacles on the PDR cannot be ne-
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glected. Moreover, COACHS outperforms both PSO-CH and LF ‘CF -3D in

terms of PDR while maintaining an acceptable energy consumption . * the .ame

time.
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