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Abstract

In Wireless Sensor Networks (WSNs), clustering techniques are often used to

optimize energy consumption and increase Packet Delivery Rate (PDR). To

date, most of the proposed clustering protocols assume that there is a Line

of Sight (LOS) between all the sensors. In fact, most of the available WSN

simulators assume the use of optimistic path loss models that neglect the effect

of obstacles on the PDR. However, in real situations such as in 3D terrains,

obstacles can interfere this LOS. Moreover, while clustering, it is also important

to maintain the coverage of a given Region of Interest (ROI). Therefore, finding

an integrated solution for both clustering and coverage problems in an irregular

3D field becomes a pressing concern.

In this paper, we first adopt an obstacle-aware path loss model to reflect the

effect of obstacles on the communication between any pair of sensors. To that

end, the Castalia simulator is adapted to use this proposed path loss model.

Then, we introduce a Coverage and Obstacle-Aware Cluster Head Selection

(COACHS) protocol to solve the cluster heads selection problem while main-

taining a good coverage of a WSN deployed in an irregular 3D field. Sim-
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ulation results demonstrate that the effect of obstacles on the PDR cannot

be neglected. Moreover, comparative evaluation results show that COACHS

outperforms other competent protocols in terms of PDR while simultaneously

maintaining an acceptable energy consumption and a good coverage of the ROI.

Keywords: WSNs, Cluster Head Selection, ROI Coverage, Obstacles, 3D

rolling terrain, Energy Consumption

1. Introduction

Multiple clustering protocols have been proposed in the literature to opti-

mize the energy consumption in Wireless Sensor Networks (WSNs). The main

objective of a clustering protocol is to find a subset of sensor nodes that can

act as Cluster Heads (CHs). Finding the optimal set of CHs has been proven5

to be a Non-deterministic Polynomial (NP)-hard optimization problem that has

many conflicting objectives [1]. Most of these protocols assume that the sen-

sors are deployed in a Two-Dimensional (2D) network field. However, there

is an increasing number of WSNs applications in which the network field is a

Three-Dimensional (3D) rolling terrain, such as volcano monitoring and land-10

slide detection. Although recent studies have proposed clustering protocols for

3D WSNs [2, 3, 4], these studies assume that the field is a 3D volume where sen-

sors can be positioned freely within the whole 3D space. Compared to this free

deployment, deploying sensors on rolling fields is different as sensors can only

be deployed on the exposed surface, not freely within the 3D space. Further-15

more, clustering protocols developed for 2D fields cannot be applied directly

in such applications because the nature of 3D rolling fields may lead to the

creation of obstacles in the network field. These obstacles have a substantial

impact on the link quality between the communicating sensors as they cause

an increased path loss. Therefore, determining the optimal set of CHs on a20
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3D rolling field is a critical task. Data delivery reliability is considered a key

requirement in WSNs [5, 6]. In order to realize this requirement, clustering pro-

tocols should ensure high-quality links between the cluster members and their

associated cluster heads. The Received Signal Strength Indicator (RSSI) is con-

sidered a prominent metric to assess the link quality between the transmitter25

and the receiver sensors. The RSSI calculation depends mainly on the adopted

path loss model. Therefore, the performance of clustering protocols critically

depends on the ability to accurately model the path loss of the communication

signal between the transmitter and the receiver. A common limitation in most of

the previously proposed clustering protocols is the assumption of the free space30

path loss model. The fundamental assumption behind this model is that the

transmitter and the receiver sensors have a Line of Sight (LOS) communication

with no obstacles of any kind [7]. In real situations, there are almost always

obstacles in the path between the transmitter and the receiver. Therefore, the

free space path loss model is considered ideal and optimistic for predicting the35

path loss between any two sensors since it does not take the obstacles effect

between the transmitter and the receiver into account [8]. Most of the available

WSNs simulators assume the use of the free space path loss model [9, 7]. The

log-normal shadow fading model is proposed as an attempt to construct a more

realistic path loss model by simulating the path loss around the sensors. Yet,40

this model does not account for the effect of the obstacles on the communica-

tion signal. Another significant limitation is that most of the existing clustering

protocols assume the use of the first order radio model [10, 11]. However, this

energy model is idealized and fundamentally flawed for modelling radio power

consumption in sensor networks [10, 11, 12].45

Castalia is a popular and very efficient WSN simulator that provides a well-

designed channel model [9] and adopts a realistic energy consumption model
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based on the characteristics of the Chipcon CC2420 radio transceiver data sheet.

However, Castalia adopts the log-normal shadow fading model and hence shares

the same drawback as most of the available WSN simulators with regard to50

accurately modelling the path loss in case of No Line of Sight (NLOS) commu-

nication, i.e. when there are obstacles between the transmitter and the receiver.

1.1. Contributions

In this paper, we design, implement and evaluate a coverage-aware CHs se-

lection protocol (called COACHS) for WSNs in the presence of obstacles in 3D55

rolling fields. Since the CHs selection problem has been proven to be a Non-

deterministic Polynomial (NP)-hard problem with many conflicting objectives,

a Pareto-based Evolutionary Algorithm (EA) is adopted to solve this problem.

The proposed protocol takes into consideration the following key requirements:

coverage ratio, energy efficiency, data delivery reliability, and protocol’s scala-60

bility. To evaluate the performance of the proposed protocol, we compare the

simulation results against well-known clustering protocols, in the existence of

obstacles and under a realistic energy consumption model. More precisely, the

main contributions of this paper are listed below.

• We adapt an obstacle-aware path loss model to evaluate the effect of obsta-65

cles in the communication between any two sensor nodes. To achieve that,

we implement a visibility function to find obstacles on the path between

any two sensors. This function is implemented based on the Bresenham’s

algorithm. Based on the adopted path loss model, a path loss map is de-

rived. The Castalia simulator is then modified to use this map to calculate70

the path loss and the RSSI values between any two sensors in the network.

• We propose a new EA-based coverage-aware clustering protocol for 3D

WSNs where the network field is a 3D rolling terrain.
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• To realize the aforementioned contributions, the network field is modelled

using the Digital Elevation Model (DEM) to account for different eleva-75

tions, and hence obstacles, in the field.

To the best of our knowledge, the proposed clustering protocol is the first

to consider and test the obstacles’ effect on the communication between the

sensors as well as to maximize the coverage of the ROI. Moreover, experimental

validations are performed on real elevation data for 3D terrains.80

1.2. Paper Organization

The remainder of this paper is organized as follows. Section 2 presents the

related work on protocols designed for 3D WSNs. Section 3 presents the system

model and assumptions. The design of the proposed protocol (COACHS) and

the problem formulation are provided in section 4. A detailed analysis of the85

simulation results is provided in Section 5. Finally, Section 6 concludes the

paper and highlights future research directions.

2. Related Works

The Low Energy Adaptive Clustering Hierarchy for 3D WSNs (LEACH-

3D) protocol [13] is a direct extension of the original LEACH protocol and is90

considered the first clustering protocol designed for 3D WSNs. The first order

radio model, which is initially proposed by LEACH, is extended to work for

3D WSNs. Based on this extension, the authors prove that the effect of the

3D environment on clustering protocols cannot be neglected. LEACH-3D uses

a variable number of CHs and different number of CHs could be elected each95

round.

A Fuzzy-based Clustering Scheme for 3DWSNs (FCM-3) is proposed in [2] to

apply clustering protocols in 3D WSNs. The proposed protocol assumes the ra-

dio model which is proposed in [13]. The adopted fuzzy approach optimizes one
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objective function which is defined as minimizing the total energy consumption100

and is constructed by combining the distances between sensor nodes and their

corresponding CHs and between the CHs and the Base Station (BS) into the

radio model. FCM-3 defines two constraints to ensures single-hop connections

for the intra-cluster and inter-cluster communication. Similar to LEACH-3D,

the number of CHs is variable. However, experimental results show that FCM-3105

achieves the best performance when the number of CHs is from 20% to 30% of

the network size, which is considered a high number.

A Particle Swarm Optimization (PSO)-based Protocol for CHs selection

(PSO-CH) [14] is a centralized PSO-based protocol that is used to find the

optimal set of CHs. The PSO-CH protocol considers the following properties:110

the network’s energy efficiency, data transmission reliability, and the protocol’s

scalability. The objective function that is used to evaluate each candidate so-

lution is defined as the weighted sum of three sub-objectives, each of which is

related to the aforementioned properties. PSO-CH is designed and implemented

under realistic networks settings and realistic energy consumption model. The115

link quality estimation in PSO-CH is based on the Received Signal Strength

Indicator (RSSI) of received packets.

All the aforementioned protocols are applicable to 3D WSNs. However, the

path loss model adapted by these protocols ignore the effect of the obstacles on

the communication between the sensors. They also assume that the field is a 3D120

volume where the sensors can be positioned freely within the field. Moreover,

all these protocols assume the use of an ideal energy consumption model.

The research work in [15] investigates the impact of various path loss mod-

els on the performance of the Ad Hoc On-demand Distance Vector (AODV)

routing protocol. In this work, the effect of varying the number of obstacles on125

the Packet Delivery Rate (PDR) is analyzed for the different path loss models
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under comparison. In order to achieve that, the Network Simulator-2 (NS-2)

is enhanced to accommodate the different path loss models. Simulation results

indicate that the performance of the AODV protocol, in terms of the PDR and

the mean delay, is affected by the increase in the number of obstacles. Although130

no specific path loss model is recommended, the authors established that using

simple path loss models is considered very optimistic in estimating the perfor-

mance of routing protocols.

The Surface-Level Irregular Terrain (SLIT) path loss model [16] is a semi-

empirical path loss model for WSN with irregular terrain. The SLIT model uses135

the terrain information, expressed by the DEM data, to provide a fast and an

accurate estimation of the large-scale path loss due to the obstacles existing in

the field. The total path loss is expressed as a function of both the free-space

path loss and the path loss due to the obstacles in the field, which is calculated

using the Epstein-Peterson diffraction loss model [17]. In order to verify the140

SLIT model, empirical experiments are conducted and the average difference

between the measured results and the predicted results from the SLIT model

are recorded. Experimental results have shown that the SLIT model provides

an accurate path loss model that accounts for the terrain profile.

In this paper, we adopt the SLIT path loss model [16] and propose an145

obstacle-aware clustering protocol for 3D WSNs to evaluate the effect of ob-

stacles on clustering protocols.

3. The System Model

The 3D rolling field is modelled using the Digital Elevation Model (DEM).

The DEM is a digital representation of a given ground surface topography or150

terrain. In the DEM, the network field is represented as a matrix of cells, where

each cell holds a value that represents the average elevation of the area contained
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by that cell. DEMs are commonly built using remote sensing technology or from

land surveying, and are usually available to download. For example, the geospa-

tial data extraction tool [18] is part of Natural Resources Canada’s altimetry155

system designed to meet the users’ needs for elevation data and products. This

tool provides data from seamless national datasets based on custom-defined ge-

ographic area and customized data options. The main motivation to adopt the

DEM in our proposed protocol is to be able to simulate a realistic 3D rolling

field and to find the obstacles between any two sensor nodes in the network.160

The sensors are assumed to be uniformly deployed in a 3D rolling field. Based

on the DEM data, the height coordinate of a sensor located at position (x, y) is

restricted to the field’s elevation at that specific position.

For the energy consumption model, a discrete-based realistic model which

is based on the characteristics of the Chipcon CC2420 radio transceiver data165

sheet [19] is used. The total energy consumed by sensor node n, consumedEn,

is calculated as follows [20]:

consumedEn =
∑

statej

Pstatej × tstatej +
∑

tr

Etransitions (1)

The index statej refers to the energy states of the sensor: sleep, reception,

or transmission. Pstatej is the power consumed in each statej, tstatej is the

time spent in the corresponding state, and tr is the number of transitions for S.170

The energy spent in transitions between states, Etransitions, is also added to the

node’s total energy consumption. The different values of Pstatej and Etransitions

can be found in [19].

For the path loss model, we adopt the SLIT path loss model [16] to find the

path loss between any two sensors.175

For the coverage ratio computation, the target terrain surface is first parti-

tioned using Triangular Irregular Network (TIN) [21]. Fig. 1 depicts the surface
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triangularization on the xOy-projection plane 1. Then, a revised 3D binary

sensing model [22] is applied to measure the coverage redundancy, which is a

network coverage performance indicator.180

Figure 1: Triangular Irregular Network on the xOy-Projection Plane of the Target Terrain

Figure 2: Trimesh of Rolling Terrain Partition (Triangular Irregular Network)

1Let xOy be a reference plane. Any point T(xt,yt,zt) in a 3D space can be projected onto
this xOy plane, and the projection point T ′(xt,yt) is referred to as the xOy-projection of T.
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4. A Coverage and Obstacle-aware Clustering Protocol for WSNs

with Rolling Field

The network operating time of the proposed protocol is divided into rounds.

Each round consists of two phases, the set-up phase, and the steady-state phase.

The operation of these phases is similar to that of [14]. In this paper, we focus185

on the protocol adopted by the BS in the set-up phase to find the optimal set

of CHs and clusters. The proposed protocol includes six different processes as

illustrated below:

4.1. DEM Extraction

The geospatial data extraction tool [18] provided by Natural Resources190

Canada is used to extract the elevation data for a given network field. Based on

the DEM data for a given network field, the BS constructs an elevation matrix

that holds the elevation data for all the cells contained by the network field.

The ArcGIS software package is utilized to generate and extract the elevation

data given the DEM data for that field.195

4.2. LOS Algorithm

A Line of Sight (LOS) algorithm is needed to find the obstacles in the commu-

nication link between any two sensors in the field. In this paper, the Bresenham

LOS algorithm is utilized to implement the visibility function. The Bresenham

algorithm is often used in computer graphics for line drawing on 2D surfaces. In200

this paper, we have modified it to be used for LOS determination on 3D rolling

fields. In this algorithm, if the elevation of any corresponding points between the

transmitter and the receiver does not cut the virtual line drawn between them,

then there is a LOS between the transmitter and the receiver. Otherwise, it is

said that there is NLOS (non-LOS) between them. In this paper, an obstacle is205

defined as the point which has an elevation higher than that of the transmitter

10



or the receiver. The LOS algorithm returns a visibility matrix that has N rows

and N columns, where N is the total number of sensors. This visibility matrix

holds the path loss of all the obstacles between any two sensors in the network.

4.3. Path Loss Map Calculation210

Based on the visibility matrix, a path loss map is generated by the BS.

This map reflects that path loss between any two communicating sensors in

the network and is calculated using the SLIT path loss model. The Castalia

simulator is then modified to use this path loss map instead of the one provided

by the log-normal shadow fading model to calculate the propagation loss and215

the RSSI values for the links between any two communicating sensors.

4.4. TIN Surface Partition

A Triangular Irregular Network (TIN) partition is applied to the target net-

work field. First, we generate am∗n grid on a xOy-projection plane of the target

terrain (see Fig. 1). Let dv denote the distance between any pair of neighbouring220

vertices on a grid line. The elevation value of each vertex is obtained from the

DEM data utilizing a linear interpolation method [23]. As shown in the figure,

a given vertex vi,j(1 ≤ i ≤ m, 1 ≤ j ≤ n) has a one-to-one mapping to the given

terrain surface. We generate a triangular network that contains 2(m−1)(n−1)

triangles using these vertices. We calculate the expected coverage ratio of the225

ROI utilizing this triangular network.

4.5. Redundant Coverage Calculation

Before deriving the redundant coverage value for each sensor, we use a

Breadth First Search (BFS) like approach [24] to pinpoint a set of triangles

that are covered by a specific sensor. Since a fine-grained partition is required230

to model a complex rough terrain surface and because the target terrain can be
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much larger than the scale of each triangle, a brute force approach is unattain-

able.

In this paper, we use a binary 3D sensing model [22]. In this model, if a

point p in the network field is located within the sensing range r of sensor node235

n, then it is assumed that p is covered by n. The sensing region of n is modelled

as a sphere centred at n with a sensing radius r. We say that a triangle in the

ROI is covered by sensor n if its three vertices are covered by n, and uncovered

otherwise.

We also use a redundant coverage formula as proposed in [25]. In this for-240

mula, the redundant coverage Di is defined as:

Di =
Si

Si1 +
Si2

2 + Si3

3 + ...+ SiN

N

(2)

where S is the entire coverage of each sensor. For each sensor i, let Si be

the sensor’s coverage area, Si1 is Si minus the area that overlaps with other

sensors. Si2 is the overlapping area between two sensors’ covering area, and

SiN is a N -covering area that is the overlapping area by N sensors. Therefore,245

Si can be represented as:

Si = Si1 + Si2 + Si3 + ...+ SiN (3)

Intuitively, the more redundant a node is, the more it should be selected

as a CH, so that even if a number of redundant nodes run out of battery, the

network redundancy is not effected.

4.6. Finding the Optimal Set of CHs250

Once the modified RSSI values are calculated, the BS runs an EA-based

algorithm to find the optimal set of CHs. In this paper, we adopt the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) as an optimization tool to
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find the optimal set of CHs. The problem formulation for the adopted NSGA-

based algorithm is provided in the next section. Table 1 presents the notations255

used in this paper.

Table 1: Notations

Symbol Definition

P Population generated from the adopted EA

N Total number of sensors

n Sensor number n, 0 ≤ n < N

Ci Individual number i of P

Xi,n Component number n of Ci

Ki Total number of clusters generated from Ci

CLki
Cluster number k generated from Ci, 0 ≤ ki < Ki

CHki Cluster head number k generated from Ci, 0 ≤ ki < Ki

|CLki
| Number of sensors clustered in CLki

E(n) Remaining energy of node n

initialE(n) Initial energy of node n

RSSI(n,CHki
) RSSI value for the link from n to CHki

LQ(n,CHki
) Link quality for the link from n to CHki

LQ(n,CHki
) =

RSSI(n,CHki
)

−100

Di,n Redundant coverage for the sensor node n from Ci

Di,n =
Si,n∑N

j (Snj/j)

4.6.1. Decision Variables

In the proposed protocol, a sensor node may be in one of two states: a CH,

or non-CH. To find the optimal set of CHs, a random initial population P is

generated and evolved by the adopted EA. Each candidate solution (Chromo-260
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some) Ci in P has a dimension equal to the network size minus the BS (i.e.,

N − 1). Binary encoding is adopted to represent each chromosome, where the

size of each component of Ci is 1 bit.

Let, Ci = [Xi,1, Xi,2, Xi,3, ..., Xi,N−1] be the ith chromosome of P where each

component, Xi,n, 1 ≤ n ≤ N − 1 maps the state of sensor n. Each component265

Xi,n of chromosome Ci is initialized with either 1 to indicate that sensor n is a

CH node, or 0 to indicate that sensor n is not a CH. It should be noted that

this encoding process will result in a variable number of CHs. Table 2 shows the

random sequences created for two individuals in P on a network including 10

sensor nodes other than the BS. Each row presents a solution for a chromosome270

in P . For example, in chromosome C1, sensors 2, 5 and 10 are CHs while the

rest of the sensors are non-CH nodes.

Table 2: Chromosomes Population

Node ID 1 2 3 4 5 6 7 8 9 10

C1 0 1 0 0 1 0 0 0 0 1

C2 0 0 1 1 1 0 0 0 1 0

The clusters are formed by associating each non-CH node to its closest CH

that has the lowest RSSI value. Once the clustering process ends, each sensor

node belongs to only one cluster and each cluster head node acts as the CH of275

exactly one cluster.

4.6.2. Objective Functions

Each chromosome Ci is evaluated according to four objective functions,

which are briefly described in Table 3 and defined below.
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Table 3: Objective Functions

Objective Description Goal
Function
Ki Minimize the total number of CHs Save energy
Ui Minimize the number of unclustered sensors Enhance scalability
Li Maximize the link quality between clusters Data delivery reliability
Ei Maximize the total remaining energy of the CHs Balance energy consumption
Ri Maximize the redundant network coverage of CHs Optimize network coverage

Ki =
N−1∑

n=1

1, ifXi,n = 1 (4)

Ui = N −
Ki∑

ki=1

|CLki
| (5)

Li = max
k=1,2,...,K

∑

∀n∈CLk

LQ(n,CHki
)

|CLki
| (6)

Ei =
N∑

n=1

initialE(n)

E(n)
, ifXi,n 6= 00 (7)

Ri =
1

Ki

Ki∑
Di,ki (8)

It should be noted that the calculation for Li in the proposed protocol de-280

pends on the newly derived RSSI values which in turn depend on the generated

path loss map. The pseudo-code of COACHS executes in an arbitrary node n

is shown in Algorithm 1. The proposed protocol utilizes a timer-event model to

represent each step executed in a WSN node. The setTimer function has two

parameters: Event_Name and Time. Event_Name is an index for all steps,285

and Time is a double-typed value representing time elapsed. At the begin-

ning of each round, each node first searches their neighbours (FIND-NBRS) by

broadcasting their own ID then waiting for the responses from their neighbours.

Then, each node broadcasts their ID, residual energy, neighbours’ IDs and their
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respective RSSI to the BS. Once received this information, the BS starts a se-290

ries of processes to find the optimal CHs. In detail, the DEM data for a given

network field is first extracted as described in Section 4.1. Then, a line of sight

algorithm, the Bresenham’s algorithm to be precise, is utilized to compute the

visibility matrix. Based on this visibility matrix, a path loss map which reflects

the path loss between any pair of communicating sensors is generated. This path295

loss map, containing the propagation loss and the RSSI values for the links in

the network, is later used as an input for the NSGAII optimization. The net-

work coverage information for each single node is also required for the NSGAII

optimization. In order to obtain this, A TIN partition is applied to the target

field. Then, Equation 3 is applied to compute the redundant network coverage.300

Ideally, the more redundant a node is, the more it should be selected as a CH, so

that network coverage is not largely effected even if a redundant node runs out

of battery. At this point, the BS launches the NSGAII optimization, using the

path loss map, redundant coverage and remaining energy level of each sensor as

inputs. At last, the BS configures the set of optimal CHs then reset the status305

of each sensor. As a result, the CHs and CMs enter a steady-phase. Each CHs

establishes communication channels, aggregates packets and relays packets to

the next hops. Each CMs relays packets to its CH, then goes to sleep-mode.

COACHS then proceeds to the next round.

5. Simulation Results and Analysis310

The COACHS protocol and the proposed path loss model are implemented in

Castalia. In addition, we have implemented both LEACH-3D and PSO-CH. The

simulations are performed on elevation data from the Armadillo Peak volcano in

British Columbia, as illustrated in Figure 3. The DEM of this field is obtained

using the geospatial data extraction tool [18] provided by Natural Resources315
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Algorithm 1: Pseudo-code of the proposed protocol
1 begin Procedure startup()
2 setT imer(START − ROUND, 0.0);
3 end
4 begin Procedure timerFiredCalback(index)
5 switch index do
6 case START − ROUND : do
7 double timer = uniform(0.0 , r);
8 setT imer(FIND −NBRS, timer);
9 setT imer(BROADCAST − INFO, r);

10 if isBS then
11 setT imer(FIND − CHs, n);
12 end
13 else
14 setT imer(RUN − STEADY − PHASE,m);
15 end
16 roundNumber + +;
17 setT imer(START − ROUND, roundLength); . r, n, and m are random

times
18 end
19 case FIND −NBRS : do
20 broadcast (ID);
21 end
22 case BROADCAST − INFO : do
23 broadcast (ID, residualEnergy, neighbours′ IDs and their RSSI);
24 end
25 case FIND − CHs : do
26 dem_Matrix = extractDEM();
27 visibility_Matrix = runLOSAlgorithm(dem);
28 calculatePathLossMap(visibility_Matrix);
29 partitionTINSurface();
30 calculateRedunduntCoverage();
31 optimalCHs = runNSGAII(NetworkInfo); . find optimal CHs
32 broadcast(configuration = optimalCHs + sensorsstates);

33 end
34 case RUN − STEADY − PHASE : do
35 if (!isCH||!isCM) then
36 setStateSleep();
37 end
38 if (isCH) then
39 clusterLength = clusterMembers.size();
40 setT imer(START − SLOT, clusterLength× slotLength);

41 end
42 else
43 setT imer(START − SLOT,myTDMATurn× slotLength);
44 end
45 end
46 case START − SLOT : do
47 setT imer(START − SLOT, clusterLength× slotLength);
48 if (isCH) then
49 aggregatePackets(); . aggregate packets
50 processBufferedPackets(); . send packets to next hop
51 end
52 else
53 processBufferedPackets(); . send packets to CH
54 setT imer(END − SLOT, slotLength); . go to sleep mode at end of slot
55 end
56 end
57 case END − SLOT : do
58 if (!isCH||!isCM ||!isRelayNode) then
59 setStateSleep();
60 end
61 end
62 end
63 end
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Canada. To generate the elevation data, a 20× 20 fishnet is constructed using

the ArcGIS software on a scaled version of the network field. The network field

is scaled down to 100 × 100 meters. The sensors are deployed randomly and

their position is restricted by the elevation of the rolling field. The initial energy

of the sensors is set to 18720 J. Each round is 500s and the number of rounds320

is set to 5. We vary the total number of sensors from 100 to 500.

Figure 3: Scaled Version of the Armadillo Peak Volcano in British Columbia

In this section, we consider the following objectives:

1. Investigate the effect of obstacles on the PDR.

2. Compare the performance of all the competent protocols in the existence

of obstacles. The comparison is done in terms of the PDR, the num-325

ber of elected CHs, the energy consumption and the average number of

unclustered nodes per round.

We consider two cases to investigate the effect of the obstacles on the PDR.

In the first case, we assume that there is a LOS between all the sensors and

that there are no obstacles in the rolling field. For this case, the log-normal330

shadow fading model is used to calculate the path loss and we refer to the

proposed protocol as the NSGA-LOS-CH protocol. In the second case, we use

the provided elevation data to find the obstacles in the field and we use the

proposed obstacle-aware path loss model. For this case, we refer to the proposed

protocol as the NSGA-NLOS-CH protocol. Figure 63 shows the PDR for both335
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Figure 4: Effect of obstacles on the PDR with and without LOS

of these cases.

It is clearly shown that ignoring the effect of the obstacles, as in the case

of NSGA-CH-LOS, can lead to more optimistic PDR values. It is also noted

that the PDR of NSGA-CH-NLOS increases with the increase in the number

of sensors. Increasing the number of sensors in the same network field area340

leads to constructing shorter links for communication with a lower probability

of obstacles that could interfere those links.

Next, the performance of all the competent protocols is compared in the

existence of obstacles. Figure 63 shows the PDR for all the protocols. It is

clearly shown that NSGA-CH-NLOS outperforms the other protocols in terms345

of the PDR. This is due to the fact that NSGA-CH-NLOS clusters the network

based on the RSSI values that are derived from the proposed path loss model.

This leads to creating clusters that are adapted for the field profile. While

PSO-CH uses the RSSI values as criteria for clustering the network, the way

the RSSI is calculated does not take into consideration the obstacles in the field.350
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Figure 5: PDR comparison of various protocols in the presence of obstacles

LEACH-3D uses a totally random mechanism when electing the CHs and this,

in turn, does not guarantee a high PDR.

Figure 63 shows the average number of CHs per round for all the protocols.

It is noted that the NSGA-CH-NLOS protocol results in a higher number of

CHs. Unlike PSO-CH, the number of CHs in NSGA-CH-NLOS is variable.355

Moreover, NSGA-CH-NLOS uses a Pareto-based approach to optimize all of its

objectives concurrently. In the existence of obstacles, a higher number of CHs

needs to cluster the whole network in order to achieve the scalability objective.

The average consumed energy per sensor is shown in Figure 63. NSGA-CH-

NLOS has a slightly higher energy consumption than that of PSO-CH because360

NSGA-CH-NLOS elects a higher number of CHs as shown in Figure 63. These

CHs have to stay active during the whole round which leads to a higher level

of energy consumption. On the other hand, LEACH-3D has a very high energy

consumption level. Experimental results have shown that LEACH-3D results

in a very high number of unclustered sensors. These unclustered sensors stay365
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Figure 6: Average number of CHs per round

active during the whole round and consume more energy. On the other hand,

both NSGA-CH-NLOS and PSO-CH are able to cluster all the sensors. The

average number of unclustered sensors per round is shown in Figure 63.

6. Conclusions and Future work

Data delivery reliability and coverage ratio are considered as key require-370

ments in WSNs. Achieving such requirements in a 3D WSNs with a rolling

network field is a challenging problem due to the obstacles that may exist in

the field. Moreover, many of the current WSN research is constrained by ideal

and optimistic path loss models which are also assumed by most WSN simula-

tors. In this paper, we adopt an obstacle-aware path loss model to account for375

the effect of obstacles in the network field. To locate these obstacles, the 3D

rolling field is modelled using the DEM. Based on the adopted path loss model,

a coverage-aware cluster head selection protocol, called COACHS, is proposed.

Simulation results show that the effect of obstacles on the PDR cannot be ne-
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Figure 7: Average consumed energy per sensor
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glected. Moreover, COACHS outperforms both PSO-CH and LEACH-3D in380

terms of PDR while maintaining an acceptable energy consumption at the same

time.
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