
Repairing Faulty Nodes and Locating a Dynamically
Spawned Black Hole Search Using Tokens

Mengfei Peng
Aurora Technology Development

Toronto, Canada
Email: mengfei@auroratd.com

Wei Shi
School of Information Technology

Carleton University
Ottawa, Canada

Email: wei.shi@carleton.ca

Jean-Pierre Corriveau
School of Computer Science

Carleton University
Ottawa, Canada

Email: jeanpier@scs.carleton.ca

Abstract—In a distributed cloud, it is crucial to detect and
eliminate faulty network entities in order to protect network
assets and mitigate the risks associated with constantly arising
attacks. Much research has been conducted on locating a single
static black hole, which is defined as a network site whose
existence is known a priori and that disposes of any incoming
data without leaving any trace of this occurrence. In this paper,
we introduce a specific attack model that involves multiple
faulty nodes that can be repaired by mobile software agents,
as well as what we call a gray virus that can infect a previously
repaired faulty node and turn it into a black hole. The Faulty
Node Repair and Dynamically Spawned Black Hole Search (FNR-
DSBHS) problem that proceeds from this model is much more
complex and realistic than the traditional Black Hole Search
problem. We first explain why existing algorithms addressing
the latter do not work under this new attack model. We then
distinguish between a one-stop gray virus that, after infecting
a faulty node that has been repaired, can no longer travel to
other nodes; and a multi-stop gray virus. We observe that, in an
asynchronous network, a solution to the FNR-DSBHS problem is
possible only when dealing with a single one-stop gray virus. In
that specific context, we present a solution for an asynchronous
ring network using a token model, that is, a ring in which a
constant number of tokens is the only means of communication
between the team of agents. We claim that, in such a ring, b+9
agents can repair all faulty nodes as well as locate the black hole
that is infected by this single one-stop gray virus. We prove the
correctness of the proposed solution and analyze its complexity
in terms of number of mobile agents used and total number of
moves performed by these agents. We show that in the worst
case, within O(kn2) moves, b+9 agents suffice to repair b faulty
nodes and report the location of the black hole that is infected,
at any arbitrary point in time, by the one-stop gray virus.

Keywords—Faulty Node Repair, Faulty Node, Dynamically
Spawned Black Hole Search, Mobile Agent, Token, Asynchronous
Network.

I. INTRODUCTION

Over the past few years, as cloud-based services have
become prevalent, so has the need for effective diagnosis
of all-too-frequent network anomalies and faults. As cloud
servers are usually geographically dispersed (as opposed
to directly connected to each other), physically locating a
network fault may be expensive and difficult, nay impos-
sible. Consequently, using software agents to locate and/or
repair network faults has become an alternative solution that
has attracted considerable attention, especially in distributed
computing [1]. A mobile agent is an abstract and autonomous

software entity. As such, these agents are versatile and robust
in changing environments, and can be programmed to work
in cooperative teams. Such team members may have different
complementary specialties, or be duplicates of one another
[2].

There are many types of faults in a network, such as black
holes (e.g., [3]), repairable black holes (e.g., [4], [5]), faulty
agents (e.g., [6]), etc. Among these, a black hole is a severe
and pervasive problem. A black hole models a computer that
is accidentally off-line or a network site in which a resident
process (e.g., an unknowingly-installed virus) deletes any
visiting agents or incoming data upon their arrival, without
leaving any observable trace [7]. Existing work has focused
on the Localization and/or Elimination of network faults when
the existence and the status of such faults are known a
priori and do not change. Real world examples show that
such models are no longer sufficient to cover new actual
situations: nowadays many computer faults/viruses cannot
be completely removed by anti-virus software. In particular,
after a repair, a previously infected node may still be more
vulnerable than a normal one and may be easily reinfected.
For example, for the fast spreading worms mentioned in
[8] (such as W32/CodeRed, Linux/Slapper, W32/Blaster or
Solaris/Sadmind), a host can be exploited only if the system
has a vulnerability known a priori. Such virus behaviour is
commonly referred to as vulnerability dependency. In cloud
computing, the term vulnerability refers to the flaws of a
system that allow an attack to be successful [9]. Security
issues pertaining to vulnerability have been widely discussed
in research work (e.g., [10], [11], [12]). In the traditional
black hole model, a hacker can inject into a computer host
a virus that can delete any incoming data, this virus being
possibly subsequently removed by an anti-virus agent. In the
attack model that we consider in this paper, the initial fault
of a node is repairable and we call each such node a faulty
node. Once repaired, a faulty node behaves like a normal one;
however, it can be infected again by what we call a gray virus
(GV for brevity). The latter is a piece of malicious software
that can infect a repaired node (due to this node’s inherent
vulnerability) by residing in it and turning it into a black hole.
This GV has no effect on a normal node or link. A GV is
called a one-stop gray virus if, after infecting a vulnerable
node (i.e., a faulty node that has been repaired), it can no
longer travel to other nodes; otherwise, it’s a multi-stop gray
virus. When a GV arrives in a host and how long it stays in it
are unknown. Thus, a faulty node may be GV-infected only

momentarily or, in the worst case, permanently.

The attack model we have just sketched out leads to what
we call the Faulty Node Repair and Dynamically Spawned
Black Hole Search (FNR-DSBHS) problem. As with the tradi-
tional black hole search problem, this problem can be tackled
using one or a team of identical mobile agents (hereafter
agents). These agents have limited computing capabilities and
bounded storage. They all obey an identical set of behavioural
rules (referred to as the “protocol”), and can move from one
node to its neighbours. Also, these agents are anonymous (i.e.,
do not have distinct identifiers) and autonomous (i.e., each
has its own computing and bounded memory capabilities)
[13]. As faulty nodes are harmful but can be repaired, part of
these mobile agents’ job is to repair all the faulty nodes. The
agents then need to locate, within finite time, the GV(s) that
infect some of the vulnerable nodes (by “turning” them into
black holes). We remark that while an anti-virus software is
scanning a computer host, this host is much harder to infect.
Thus, similarly, we assume that a node cannot be turned into
a black hole while visited by an agent.

There is typically a cost for repairing faults using software
agents. For example, part of the content of an agent may
be a repair kit that, once used, prevents this agent from
further exploring the network [4]. In this research, we are
interested in studying the worst case scenario namely: the cost
of a repair is the worst (i.e., the most expensive in terms of
number of agents used). To do so, we assume an agent “dies”
after having repaired a faulty node. Moreover, should several
agents simultaneously enter a faulty node, we postulate one
agent will die after repairing the fault, whereas all other agents
die immediately. Clearly, in the case of an agent that does not
die after a repair and/or of other agents in the same faulty
node that also survive after the repair, fewer agents will be
needed to solve the problem.

Furthermore, contrary to the traditional black hole search
in which all agents start in a network with one and only one
back hole whose existence is known a priori, in our proposed
new attack model, a repaired faulty node can be infected and
turned into a black hole at any point in time while the agents
traverse the network to try to repair the faulty nodes. This
detail drastically changes the nature of the problem at hand
in asynchronous networks: the possible scenarios in this case
are significantly more complex than for the traditional black
hole search, especially with the presence of multiple faulty
nodes in need of repair, each of which eliminating all agents
that simultaneously enter it.

Another difference between a faulty node and a black hole
is that the former may eliminate multiple agents once and only
once while the latter eliminates multiple agents continuously.
The co-existence of multiple faulty nodes and black holes
in our model significantly increases the difficulty of both
repairing faulty nodes and locating the black hole because no
agent knows the difference between the two types of nodes a
priori.

Finally, we emphasize that in the field of black hole
searching, network synchronization must be the first concern
as it can lead to completely different tactics when solving the
problem. In this paper, we specifically consider asynchronous
networks. A synchronous network allows agents to traverse

the network in globally timed steps. In each step, each agent
can perform local computation, which includes exchanging
information with other agents that are at the same processing
step in the same node, and can then move to a neighbouring
node (or remain in the same node) [4]. In such networks, a
time-out mechanism has been introduced to enforce time syn-
chronization (e.g., [14], [15]). Such a mechanism makes the
black hole search problem easier. For example, in a network
with a single black hole, let a team of two agents explore
together, one as the leader and the second as the follower.
After each time-out, the follower should know whether the
leader has died in the black hole or not. Conversely, in
asynchronous networks, there is no global clock mechanism.
As such, the agents could initially wake up at different times.
The time that an agent takes for every action (sleep or transit)
is finite but unpredictable [16]. Therefore, it is impossible to
distinguish whether an agent died in a black hole or is just
stuck in a slow link/node in the network since the latter takes
an unpredictable amount of time [17]. As a result, the black
hole search is only solvable in an asynchronous network when
the number of black holes is known a priori. In fact, Flocchini
et. al. conclude that the black hole location can be known
only after the entire network, except for the black holes, is
explored [16]. That is, both the network size and the number
of black holes must be known a priori for both single and
multiple black holes search.

In the context of our new attack model, it is important to
note that in an asynchronous network, a GV ’s moving speed
is unpredictable. This leads to a crucial observation:

Observation 1: In an asynchronous network, given a
multi-stop GV could move much faster than the agents, from
an agent’s viewpoint all the repaired nodes could appear to
be black holes. Consequently, in the presence of a multi-
stop GV , the FNR-DSBHS problem becomes unsolvable in
an asynchronous network.

This is essentially the same conclusion as for the Multiple
Black Hole Search problem: unless the connectivity of the
network can be somehow guaranteed, multiple black holes
may disconnect some regions of the network that, conse-
quently, may never be visited by any agent. For the same
reason, if a network contains more than 1 one-stop GV ,
some parts of the network may become disconnected when
these GV s turn some nodes into black holes. That is, in an
asynchronous network, in the presence of several one-stop
GV s, the FNR-DSBHS problem also becomes unsolvable.
Consequently, in this paper, we focus on solving the FNR-
DSBHS problem with k faulty nodes and specifically 1 one-
stop GV in an asynchronous network. We further restrict
ourselves to a specific topology and to a specification com-
munication model. Namely, here, we consider an un-oriented
ring in which a constant number of tokens is the only means
of communication between the team of agents.

II. RELATED WORK

Dobrev et al. [7] study an asynchronous ring network with
both co-located agents (initially located at the same node)
and dispersed agents (initially located at different nodes). A
whiteboard model is introduced in [7], i.e., each node has a
bounded amount of storage for agents to communicate. Also

in ring networks, an enhanced token model has been used
in [14]. A token is an atomic entity that the agents can see,
place in the middle of a node or on a port, and/or remove
[13]. Flocchini et al. [18] use a pure token model in which
the tokens can be placed only in the middle of a node. The
authors show that 2 co-located agents, each with 1 token, can
locate the black hole in Θ(n log n) moves not only in rings
but also in an arbitrary network with a map.

Due to the characteristics of synchronous networks, using
a face-to-face model associated with the time-out mechanism,
a single black hole can be located in any network with only
2 co-located agents. In a face-to-face model, agents move
through the network in synchronous steps and communicate
only when they meet at a node [19]. The problem of finding
the most efficient solution for the black hole search under the
same assumption, 2 co-located agents searching for a black
hole in an edge-labeled undirected synchronous network, has
been considered in [20]. Klasing et al. [20] prove that this
problem is not a polynomial-time approximation within any
constant factor less than 389

388 (unless P=NP), and give a 6-
approximation algorithm.

Unlike the case in the synchronous network, the black
hole search problem in an asynchronous network is much
more complex and more significant in practice. Dobrev et
al. [21] introduce an algorithm to locate the black hole
in an un-oriented ring network with dispersed agents in
O(kn+n log n) moves. Shi et al. [22] prove that 2 co-located
agents, each with O(1) tokens, can locate the black hole
in Θ(n) moves for hypercubes, tori and complete networks.
Moreover, for an arbitrary unknown network graph with
known n, Dobrev et al. [23] present an algorithm using ∆+1
agents, one token per agent and O(∆2M2n7) moves to locate
the black hole. Here, M is the total number of edges of the
graph.

Cooper et al. [19] start studying the multiple black holes
search (MBHS for brevity) problem in synchronous networks
by locating all the reachable black holes. Later, the same
authors [4] present solutions to the multiple repairable black
holes (faulty nodes) problem. D’Emidio et al. [5] study the
same problem under the same condition as [4] with the change
of one assumption: if more than one agent enters the same
faulty node at the same time, all agents die. Flocchini et al.
tackle the MBHS problem via a subway model in [24]. The
authors use carriers (the subway trains) to transport agents
(the passengers) from node to node (subway stops), and
the black holes no longer affect the carriers and can only
eliminate the agents.

Cai et al. [6] study a network decontamination problem
with a black virus, which is related to both black hole search
and intruder capture problems. The authors present a black
virus that is a dangerous process that is initially resident
in the network. Luccio et al. [25] consider a mobile agents
rendezvous problem in spite of a malicious agent, which is
similar to [26] that rendezvouses agents in a ring in spite of
a black hole. Královič et al. [27] research a periodic data
retrieval problem using a whiteboard in asynchronous ring
networks with a malicious host. Bampas et al. [28] improve
this result by showing that at least 4 agents are required when
the malicious host is a gray hole that can choose to behave

as a black hole or as a safe node, and 5 agents are necessary
when the whiteboard on the malicious host is unreliable.

III. MODEL, ASSUMPTIONS AND OBSERVATIONS

Let G = (E, V) be an un-oriented ring network, where
E denotes the set of edges, V denotes the set of nodes (e.g.,
computer hosts) and n (n = |V |) denotes the number of nodes
in G. Every pair (u, v) ∈ E (u ∈ V and v ∈ V) represents
the link from neighbouring nodes u to v.

Let Vf ⊆ V denote a set of faulty nodes, and b (b < n)
denote the number of faulty nodes in the network. A faulty
node deletes any incoming data. However, it can be repaired
by the first visiting agent. After repair, a faulty node behaves
like a normal node and is referred to as a repaired node.
However, unlike a real normal node that is never a faulty
node, a repaired node can be infected by a gray virus and
consequently turned into a black hole. If one or more agents
simultaneously enter a faulty node, one agent will die after
repairing the fault, and all other agents will die immediately.

Let A denote a set of k (k ≥ 2) identical agents
in the network. We make no assumptions on the amount
of time required by an agent’s actions (e.g., computation,
or movement) except that it is finite; thus, the agents are
asynchronous. All agents initially wake up in the same node
hb (hb ∈ V) that is referred to as their homebase and is
assumed to be safe (e.g., not a faulty node or black hole).
All agents know the network topology a priori. Each agent is
endowed with a limited number of tokens that can be put on
or picked up from a port or the centre of a node. Any token
on a node is visible to all agents on the same node. Since
the agents are invisible to each other, thus, the only way to
exchange information is through the use of tokens. All agents
know n and b. Because, minimally one agent dies in a faulty
node in order to repair it, at least b + 1 agents are required
to allow one surviving agent to report the locations of the
repaired nodes (potential GV infected nodes).

The links in the network obey a FIFO rule; that is, the
agents do not overtake each other when travelling over the
same link in the same direction. In an un-oriented ring, the
agents are not able to agree on a common sense of direction
[29] (e.g., the Left direction to one agent might be the Right
to another agent).

This FIFO rule is necessary to guarantee minimal cost
in terms of number of agents in solving the FNR-DSBHS
problem in asynchronous networks regardless of choice of
communication model (i.e., whiteboards or tokens). As we
have mentioned earlier, a faulty node can only eliminate the
first set of agents entering it simultaneously, while a black
hole always eliminates all agents it encounters. While visiting
each node, an agent is not able to distinguish between a faulty
node and a black hole. This is because an agent either is
eliminated by a faulty node or a black hole, or passes through
a node that is either safe (i.e., not a faulty node nor a black
hole) or repaired. Thus, the least expensive way to distinguish
the black hole from the faulty nodes is to a) make sure an
agent leaves a notice before it dies in the faulty node and b)
make sure 2 agents walk into the black hole sequentially via
the same port. Consequently a port that leads to a black hole
will have 2 messages (e.g., 2 tokens) while a port that leads

to a faulty node will have only 1 message on it. Obviously,
without the FIFO rule, all simultaneously arriving agents
will die in a faulty node and a black hole. Consequently,
the messages these agents left will be meaningless. Thus, in
order to terminate the algorithm within finite time with finite
number of agents we must rely on the FIFO rule.

Unlike Cooper et al. [4] who solve the multiple black hole
problem in synchronous networks with the advantage of the
time-out mechanism, in this paper we aim at solving the FNR-
DSBHS problem in an asynchronous network where every
agent’s move or computation costs a finite but unpredictable
amount of time. In [4], the goal of the agents is only to repair
all the faulty nodes without reporting their locations, given
the network map is supplied in advance. In this paper, we
define the FNR-DSBHS problem as the following: use a team
of mobile agents to repair all the faulty nodes in the entire
network and have finally at least one surviving agent that
knows the location of the black hole(s) infected by a gray
virus.

Furthermore, Cooper et al. assume that if two or more
agents enter a faulty node at the same time, only one dies
for the repair while the others can continue exploration. We
consider a more challenging model: all agents that simulta-
neously enter a faulty node die when this node is repaired.

Observation 2: If the one-stop GV appears after all faulty
nodes have been repaired, the FNR-DSBHS problem becomes
a faulty node repair problem and a single black hole search
problem with all the possible locations of the black hole
known a priori.

In this case, the FNR-DSBHS problem is even easier than a
traditional single black hole search problem. In this research,
we are only interested in studying the scenario in which a
one-stop GV may appear and infect a repaired node at a
time prior to having all faulty nodes repaired. Contrary to the
traditional black hole search that has one black hole before
the search starts, having a black hole that appears at a random
time significantly increases the difficulty and complexity of
the task. We will further explain this observation later.

A. Double Cautious Walk With Tokens

To locate a black hole in a traditional black hole search in
an asynchronous network there is a commonly used technique
called cautious walk: a first agent leaves a mark indicating
danger (a token or whiteboard message) on its current node
before it enters into the next node that may be the black hole.
When a second agent sees this mark, it will not enter that next
node. This technique is used to minimize the loss of mobile
agents. In the proposed FNR-DSBHS problem, we introduce
a new technique: Double Cautious Walk With Tokens:

An agent A (see Figure 1) marks a port in node u as
dangerous by placing a token at this port before moving to
the next node v. Once arriving at node v, the agent marks
the entering port as dangerous by placing another token at
the port and immediately returns to node u. Upon its return,
this agent will pick up the first token in node u to show that
this port is no longer dangerous and move again to node v.
While arriving, the agent picks up the second token on the
port through which this agent enters v. We call this port its
entering port and the other port its exiting port.

A

u v

A

u v

A

u v

u v
A

Step 1

Step 2

Step 3

Step 4

Exiting port Entering port

Fig. 1. Double Cautious Walk with tokens: Agent A puts a token at node u
and moves to v (Step 1). Agent A puts a token at v and immediately returns
to u (Step 2). Upon return, A picks up a token and again moves to v (Step
3). Upon arriving, A picks up a second token (Step 4).

Since the one-stop GV may appear and infect a vulnerable
node at any point in time, a previously safe but vulnerable
node u where an agent started the first step of a double
cautious walk may be infected and become a black hole. This
sudden change leads to the elimination of this agent while it
returns to a previously safe node u during its double cautious
walk (Step 2 in Figure 1). This is why the cautious walk
with tokens [13] is no longer sufficient in terms of minimizing
agent loss. In the new double cautious walk with tokens, even
if an agent dies in the black hole while returning, it leaves a
token at the second node, thus, further prevents extra agent
loss.

During an exploration, some agents die after repairing
faults, while some may die in a black hole. When an agent
sees one token at a port, it knows that another agent is
exploring the next node, but it cannot know whether the next
node is a repaired node or a black hole. This agent needs
to leave a second token at that port before entering the next
node. If the next node is a black hole, the port that leads to the
black hole will have two tokens on it since both agents died
in it. Otherwise, if the next node becomes a repaired node
after the previous agent dies, this agent will eventually pick
up its first double cautious walk token. Thus, this mechanism
distinguishes the black hole from a repaired node. An agent
will never leave via a port with two tokens (a 2-token port)
unless it is the same port through which it just entered a node.

The characteristic of the GV that can infect a repaired
node at any time has significantly complicated the FNR-
DSBHS problem. For a link (u, v), it is possible that 2 agents,
A and B, enter via port p1 sequentially (not simultaneously
due to the FIFO rule) after each putting down 1 token; this
leaves 2 tokens on port p1 (see Figure 2). Both agents A and
B proceed to node v and leave 2 tokens in total on p2.

In traditional black hole search, any node from which an
agent comes is safe. Therefore, when the 2 agents return to
node u via link (u, v), they know that nodes u and v are

A

B

C

D

p1 p2
u v

Fig. 2. During a double cautious walk, after visiting nodes u and v, two
agents A and B die in a previously visited node u that is now a gray virus
infected black hole.

safe. They will be able to safely return to their previous nodes
regardless of the number of tokens left on the entering port.
However, with a GV in the network, a previously visited
node is no longer guaranteed to be safe. It is possible that the
previously visited node u of agents A and B has been turned
into a black hole. In this situation, both sets of 2 tokens on
ports p1 and p2 will remain forever. This situation becomes
more complex when there is one or more agent(s) traversing
the ring in opposite directions (e.g., agents C and D in Figure
2).

It is very important to note that with multiple faulty
nodes in the network as described in our new attack model,
even when an agent can leave unlimited information on any
node it visits, none of the existing black hole algorithms can
solve the FNR-DSBHS problem. As previously mentioned,
this is because 1) all traditional black hole search algorithms
terminate when all nodes in the network have been explored
except one and this sole unexplored one is the black hole;
2) in traditional black hole search algorithms, there is no
mechanism to distinguish a black hole from faulty nodes;
thus, all agents will treat a faulty node as a black hole. Since
faulty nodes are all treated as black holes, agents will all
be deleted by the faulty nodes. Thus, the “safe” area cannot
grow to reach n−1 nodes (as required in the traditional black
hole models) and no agent is able to explore (n − 1) nodes
in a given network. Hence, even with extra communication
capabilities and unlimited local memory storage on each
node of the network, none of the existing black hole search
algorithms can locate and repair all faulty nodes and locate
the re-infected black hole.

B. List of Acronyms

Table I shows some acronyms used in this paper.

TABLE I. LIST OF ACRONYMS

Acronyms Definition

k Total Number of Agents
b Total Number of Faulty Nodes

GV Gray Virus
A,B,C,D,A1, A2 NameS of Agents

v, u,Nx, Ny NameS of Nodes
hb homebase Node

Cl, Cr Number of tokens in the
centre of an agent´s left/right block

In the next section, we present an algorithm that can repair
all the faulty nodes, and locate the GV within finite time.

IV. ALGORITHM PAIR-BLOCK

A. General Description

An agent, A1, wakes up at homebase hb and randomly
chooses one direction to explore the ring using the double
cautious walk. If A1 is blocked by a 2-token port on node Nx,
A1 marks Nx as left-block in its memory. A1 also memorizes
whether there is any token in the centre of this left-block. A1

reverses direction and continues exploration until blocked by
another 2-token port on node Ny; A1 remembers Ny as its
right-block. An agent is said to be Blocked when there are
2 or more tokens on the exiting port of a node in its current
exploration direction. A1 counts the distance between the left-
block and right-block. If the distance is n− 2, the algorithm
terminates and the only unexplored node is the infected black
hole; if the distance is smaller than n − 2, A1 executes the
following:

If there is no token in the centre of either the left-block
nor the right-block, A1 puts 2 tokens in the centre of the
right-block (2-token-centre node). A1 then returns to look
for its left-block until it arrives at its left-block or is blocked
by another 2-token port. For the later case, the new node
becomes the new left-block of A1. A1 puts 1 token in the
centre of its left-block and waits. All other details of this
procedure can be found in Procedure 2.

S
A

Right-block

Left-block

Fig. 3. The simplest situation: there are no other agents between the left-
block and right-block of agent A

If the left-block is not beside a black hole, at least 1 token
at the 2-token port will disappear. When A1 sees 1 token is
gone, it looks for its right-block to pick up the 2 tokens in
the centre. A1 then returns to its left-block and continues its
exploration (see all situations in Procedure 4).

Another scenario could be that another agent A2 picks up
1 token from the 2-token port of the right-block, if this right-
block is not beside a black hole. When A2 sees 2 tokens in the
centre left by A1, A2 picks them up and becomes a sender .
The sender goes to a 1-token-centre node (e.g., left-block of

TABLE II. NUMBER OF TOKENS ON NODES LEFT-BLOCK AND
RIGHT-BLOCK. T: TOKEN. C: THE CENTRE.

Combi-
nations

Cl Cr Action 1 Action 2

1 0 0 Put 2T in C of right-
block. Go to left-block

Put 1T in C of left-
block and wait.

2 0 1 Go to left-block. Put
2T in C of left-block

Go to right-block.
Wait.

3 0 2 Go to left-block Put 1T in C of left-
block. Wait.

4 1 0 Put 2T in C of right-
block

Go to left-block. Wait.

5 1 1 Put 1T in C of right-
block

Go to left-block. Wait.

6 1 2 Go to left-block Wait.
7 2 0 Put 1T in C of right-

block
Exchange names. Wait.

8 2 1 Exchange names. Wait.
9 2 2 Pick up 1T in C of

right-block
Exchange names. Wait.

A1), and drops the extra 2 tokens in the centre to inform
A1. After this, A2 reverses its direction and continues its
previous exploration. When A1 sees 3 tokens in the centre, A1

picks up all the tokens and goes to its right-block to continue
exploration. Such exploration continues until one agent finds
there are n− 1 nodes between its left and right blocks.

The most complex scenario that costs the most agents
is shown in Figure 4. According to algorithm Pair-Block, at
most 2 agents may enter the same link sequentially from both
sides. Consequently, at most 4 agents may move (2 in each
direction) on the same link from both directions at the same
time. If a node adjacent to this link becomes a black hole,
all 4 agents on this link may die when they enter the black
hole during their double cautious walk. The detailed proof is
presented in Section V.

B. Detailed Explanation

a) Procedure “Pair-Block”: An agent wakes up at hb
and randomly chooses one port to explore the ring using the
double cautious walk. When the agent returns to pick up its
token during cautious walk, if it sees 2 tokens in the centre,
it becomes a sender and sends the extra tokens to a 2-token
port with 1 token in the centre. If an agent does not become
a sender, it will meet a pair of left-block and right-block,
and then either wait at its left-block, terminate the algorithm,
or execute Procedure 2. In addition, clear memory means the
agent deletes the information about left-block and right-block.
After memory is cleared, an agent will memorize other nodes
with 2-token ports as a new left-block or right-block.

b) Procedure “GoBack”: To execute this procedure,
an agent has met its left-block and is currently at its right-
block. Let Cl and Cr denote the number of tokens in the
centre of its left-block and right-block respectively. The agent
puts i (i = 0, 1) token or picks up 1 token to make Cl =
1&Cr = 2. The agent then waits at its left-block. An agent
may meet no/one/two tokens in the centre of its left-block and
right-block. Exchange names means to exchange the names
of its left-block and right-block; for example, nodes Nx and
Ny are left and right blocks, respectively, so that after name
exchange, Ny becomes left-block and Nx is right-block. All
possibilities of Cl and Cr and actions 1 & 2 that an agent
will take in these situations are shown in Table II.

Algorithm 1 PAIR-BLOCK

Wake up at hb. Choose one port to explore the ring using double
cautious walk.

loop
if Blocked by a port that has more than 2 tokens during

exploration then
Execute the same as being blocked by a 2-token port.

end if
if See 2 tokens in the centre when returning during double

cautious walk then
Pick up the 2 extra tokens in the centre. Become a

sender.
if Blocked by a 2-token port with one token in the centre

then
Put 2 tokens in the centre. Reverses direction. Clear

memory.
else if Blocked by a 2-token port then

Reverse direction. Delete the 2 extra tokens. Clear
memory.

end if
end if
Continue exploration until blocked by a 2-token port. Mark

this node left-block.
Reverse direction and continue exploration until blocked by

another 2-token port. Mark this node right-block.
Count the distance d of left-block and right-block.
if d = 0 then

Wait until any 2-token port has fewer than 2 tokens.
Leave through that port and continue exploration.
Clear memory.

else if 0 < d < n− 2 then
Execute GoBack.

else if d = n− 2 then
Terminate the algorithm.

end if
end loop

c) Procedure “GoToOne”: The agent is currently at
its right-block and needs to move to its left-block. It may
arrive at its left-block successfully or meet another 2-token
port. There are three main situations that may happen and
should be discussed whenever an agent moves from its left-
block to its right-block .

1) A1 arrives at its left-block, and the 2-token port still has
2 tokens.

2) A1 arrives at its left-block, and the 2-token port has fewer
than 2 tokens.

3) A1 is blocked by a 2-token port with no/one/two tokens
in the centre before arriving at its left-block.

d) Procedure “WaitToFind”: An agent has met its
right-block and now waits at its left-block. The agent waits
until 1 token on the exiting port is gone or Cl = 3. For the
former case, the agent looks for the 2 tokens in the centre
of its right-block. For the later case, the agent picks up all 3
tokens and goes to its right-block to continue exploration.

V. CORRECTNESS AND COMPLEXITY ANALYSIS

Lemma 1: b + 2 agents are necessary to repair all faulty
nodes and locate the black hole in a ring network

Proof: Since there are b faulty nodes in the ring network
and 1 agent can only repair 1 faulty node, b agents are needed.

Algorithm 2 GOBACK

if Cl + Cr = 0 then
Put 2 tokens in the centre of right-block. i = 1. Execute

GoToOne.
else if Cl = 0&Cr = 1 then

Go to left-block
if Arrive left-block and the 2-token port still has 2

tokens then
Put 2 tokens in the centre of left-block. Exchange

names. i = 0. Execute GoToOne.
else if Arrive left-block and the 2-token port has fewer

than 2 tokens then
Clear memory.

else if Blocked by a 2-token port before left-block then
Update this node as left-block. Exchange names.

Execute GoBack.
end if

else if Cl = 0&Cr = 2 then
i = 1. Execute GoToOne.

else if Cl = 1&Cr = 0 then
Put 2 tokens in the centre of right-block. i = 0. Execute

GoToOne.
else if Cl = 1&Cr = 1 then

Put 1 token in the centre of right-block. i = 0. Execute
GoToOne.

else if Cl = 1&Cr = 2 then
i = 0. Execute GoToOne.

else if Cl = 2&Cr = 0 then
Put 1 token in the centre of right-block. Exchange

names. Execute WaitToFind.
else if Cl = 2&Cr = 1 then

Exchange names. Execute WaitToFind.
else if Cl = 2&Cr = 2 then

Pick up 1 token in the centre of right-block. Exchange
names. Execute WaitToFind.

end if

Algorithm 3 GOTOONE

if Arrive left-block and the 2-token port still has 2 tokens then
Put i token in the centre of left-block. Execute WaitToFind.

else if Arrive left-block, and the 2-token port has fewer than 2
tokens then
Go to right-block.
if Arrive at right-block and see two tokens in the centre then

Pick up all tokens in the centre. Reverse direction. Clear
memory.

else if Arrive at right-block then
Reverse direction. Clear memory.

else if Blocked by a 2-token port with 2 tokens in the centre
then
Pick up all tokens in the centre. Reverse direction. Clear

memory.
else if Blocked by a 2-token port then

Reverse direction. Clear memory.
end if

else if Blocked by a 2-token port with no tokens in the centre
then
Put 1 token in the centre, update this node as left-block.

Execute WaitToFind.
else if Blocked by a 2-token port with 1 token in the centre then

Update this node as left-block. Execute WaitToFind.
else if Blocked by a 2-token port with 2 tokens in the centre then

Pick up 1 token. Update this node as left-block. Execute
WaitToFind.

end if

Algorithm 4 WAITTOFIND

Wait till either 1 token on the exiting port is gone or 1
token in the centre becomes 3.

if 1 token on the exiting port is gone. then
Go to right-block.
if Blocked by a 2-token port with 2 tokens in the centre

then
Pick up 2 tokens in the centre. Return to left-block.

else if Blocked by a 2-token port or arrive right-block.
then
Return to left-block.

end if
if Arrive at left-block and there is 1 tokens in the centre

then
Pick up the token in the centre. Clear memory.

else if Blocked by a 2-token port. then
Reverse direction. Clear memory.

else
Clear memory.

end if
else if 1 token in the centre becomes 3 then

Pick up all 3 tokens in the centre. Go to right-block
and clear memory.

end if

To distinguish the black hole from the repaired nodes, at least
one agent has to enter the black hole and die, thus, b+1 agents
are required. To report the locations of the faulty nodes and
the black hole, at least 1 agent has to survive, hence, b + 2
agents are necessary.

Lemma 2: b+9 agents are sufficient to report all repaired
faulty nodes and locate the black hole in a ring network.

Proof: As proven in Lemma 1, b agents are needed to
repair all faulty nodes. In our algorithm, to distinguish the
black hole from the repaired nodes, each port that leads to the
black hole will have 2 tokens, each of which was left by one
agent. Because there is already 1 token left from the previous
faulty node repair, 3 more tokens from three different agents
will be needed. At least 1 agent has to survive and report the
locations, thus, minimally b + 4 agents are required to repair
all the faulty nodes and locate the black hole that may appear
at any arbitrary point in time.

If two agents simultaneously enter the same faulty node,
they both die. Since the agents travelling on the same link in
the same direction obey the FIFO rule, maximum 2 agents
(one from each direction) can enter the same faulty node and
simultaneously die. If 2 agents meet from different directions,
all faults from their common homebase hb to the meeting
node have been repaired. Therefore, in this ring network, there
is only one black hole and no faulty nodes after this meeting,
so that one more agent is needed in this situation and b + 5
agents are necessary.

As a GV can infect a repaired node at any time, it is also
possible that node v turns into a black hole while an agent
is returning to v after picking up its first token (Step 3 in
Figure 1), which makes the agent die in the black hole without
leaving any trace in the network. For a repaired node, 1 agent
has already died repairing it and left 1 token on a port that
leads to this repaired node, so that 3 more agents can enter
node v and die.

A

B

C

D

u v
p1 p2

E

F

G

H

p3 p4

Fig. 4. At most 8 agents die in the black hole

Assume agents A and B travel in the opposite direction
as agents C and D. They left their first cautious walk tokens
on port p1 and p2, respectively. While agents A and B are
moving towards node v, node v becomes infected and turned
into a black hole, so that agents A and B will immediately
die when they arrive at node v. Agents C and D will also die
in node v after they leave their second cautious walk tokens
on port p1. None of these 4 agents can return to pick up
their tokens on port p1 (see Figure 4). According to Line 4
in Procedure 1, all agents treat such a port the same as a
2-token port.

If node v can be turned into a black hole, it is a repaired
node, so that there has been an agent H who died for repairing
it. Since agent H immediately dies after arriving at a faulty
node, it cannot leave its second double cautious walk token,
thus, it leaves only 1 token on port p4. If agents G, E, and F
die in the same situation as agents A, C, and D, there will be
2 and 4 tokens on port p3 and p4 respectively. In summary,
7 agents die in the black hole and 1 agent dies repairing a
faulty node. This is true even if agents A, B, and G die while
returning after picking up their first token instead of moving
towards node v, because the second cautious walk tokens left
on port p1 by agents C and D, as well as the 2 tokens on port
p4 by agents E and F , will remain and block other agents.
Since in the worst case only agents A, B, G, and H die in the
black hole, 4 extra agents die in this situation, which requires
more agents than the above situation where only 3 agents die
without leaving any trace. These two situations cannot happen
in the same network. Therefore, b + 9 agents are required in
total.

Lemma 3: Algorithm Pair-Block can correctly repair all
faulty nodes and locate the black hole.

Proof: For any port with 2 or more tokens, there are
three cases to consider for the agents that left these tokens:
all active agents, only one dead agent (for fault repair), at least
two dead agents. For the first two cases, all active agents will
return to pick up their tokens and leave at most 1 token on the
port, so that the port can only temporarily block other agents.
Since all links obey the FIFO rule, a port with 2 or more dead
agents leads to a black hole. An agent will be permanently
blocked by such a port in one direction, hence, it can only
explore the ring in the opposite direction and either die or
arrive at the other side of the black hole. If an agent has been
blocked by 2 ports that lead to the black hole, it has visited
n− 1 nodes and located the black hole.

Lemma 4: In the worst case, the FNR-DSBHS task can
finish within O(kn2) moves in total.

Proof: As proved in Lemma 2, in the worst case all
accidents happen and leave only 1 surviving agent. As there
is a single black hole in the network and each port that leads
to the black hole will have at least 2 tokens, the surviving
agent will be blocked by the two ports and the distance is
n− 2, thus, the algorithm is terminated.

For any agent, one step of the double cautious walk
approach needs 3 actual moves. According to Procedure 1
lines 14 and 15, forming a pair of left-block and right-block
needs up to 2 ∗ 3(n − 2) moves. Also in Procedure 1 or
Procedure 4, removing a pair may also need up to 2∗3(n−2)
moves. If every exploration of a new node by an agent creates
a pair of left and right blocks, up to (2∗3+2∗3)∗(n−2)∗n
moves are required. Furthermore, if this happens to every
agent, a total of 12∗k∗n∗(n−2) moves are required to form
and remove a pair of blocks for all agents. Hence, O(kn2)
moves are required to repair all faulty nodes and locate the
black hole in the worst case.

Theorem 1: After O(kn2) moves, b + 9 agents are suffi-
cient to repair and locate b faulty nodes and the black hole
infected by a one-stop gray virus at a random time.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a new attack model involving
both faulty nodes and a so-called gray virus (that can only
infect a faulty node that was previously repaired). Most
importantly, at any point in time, this virus may turn into
a black hole any node previously visited by an agent, as well
as unvisited nodes and even a node being currently visited by
an agent. Such dynamic behaviour leads to what we call the
Faulty Node Repair and Dynamically Spawned Black Hole
Search (FNR-DSBHS) problem. The latter is considerably
more realistic and complex than the traditional black hole
search problem (in which black holes are not dynamic but
instead exist from the very start of the algorithm trying to
locate them). We consider a specific instance of this problem
and introduce an algorithm that can repair all faulty nodes and
locate the black hole that is infected by a one-stop GV in an
asynchronous ring network using a token model, that is, a ring
in which a constant number of tokens is the only means of
communication between the team of agents. Our solution rests
on a new technique called double cautious walk with tokens,
which can mark both the previously visited and unexplored
dangerous nodes. We demonstrate this technique guarantees
minimal loss of mobile agents. We conclude that b+9 agents
are required to repair all faulty nodes as well as locate the
black hole that is infected by the one-stop gray virus.

We emphasize that, without any additional assumptions,
the general FNR-DSBHS problem becomes a multiple black
hole search problem and remains unsolvable in an asyn-
chronous network. In particular, as future work, we ask what
additional assumptions must be made in order for this problem
to become solvable in the presence of several one-stop GV s
and in the case of one or more multi-stop GV s in an arbitrary
unknown network topology. For example, in order to make
the detection of a multi-stop gray virus more feasible, we
could decree that such a GV can only move to another node

after deleting at least one agent at the current node (instead of
freely moving at any point in time, which is the general case).
Also, we must eventually ask whether there are fundamental
differences between one-stop GV s and multi-stop ones if
GV s are truly dynamic, that is, if GV s may appear in the
network at any point in time. We may also consider whether
the general problem or any of its specializations is solvable
in a synchronous network.

Additionally, for a one-stop GV in an asynchronous
network, apart from ring networks, it will be necessary
to consider other common network topologies as well as
arbitrary networks. Also, in order to reduce the number of
agents required, is it possible to avoid multiple simultaneous
agent deaths in a same node? Finally, beyond the token model,
we may want to consider other communication models such
as face-to-face or whiteboards.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from
the Natural Sciences and Engineering Research Council of
Canada (NSERC) under Grant No. RGPIN-2015-05390.

REFERENCES

[1] R. Královič, “Advice complexity: Quantitative approach to a-priori
information,” in SOFSEM 2014: Theory and Practice of Computer
Science. Springer, 2014, pp. 21–29.

[2] M. S. Greenberg, J. C. Byington, and D. G. Harper, “Mobile agents
and security,” Communications Magazine, IEEE, vol. 36, no. 7, pp.
76–85, 1998.

[3] S. Dobrev, P. Flocchini, R. Královič, and N. Santoro, “Exploring
an unknown dangerous graph using tokens,” Theoretical Computer
Science, vol. 472, pp. 28–45, 2013.

[4] C. Cooper, R. Klasing, and T. Radzik, “Locating and repairing faults
in a network with mobile agents,” Theoretical Computer Science, vol.
411, no. 14-15, pp. 1638–1647, Mar. 2010.

[5] M. D’Emidio, D. Frigioni, and A. Navarra, “Exploring and making
safe dangerous networks using mobile entities,” in Ad-hoc, Mobile,
and Wireless Network. Springer, 2013, pp. 136–147.

[6] J. Cai, P. Flocchini, and N. Santoro, “Network decontamination from
a black virus,” in Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International.
IEEE, 2013, pp. 696–705.

[7] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, “Mobile search
for a black hole in an anonymous ring,” in Proceedings of the 15th
International Conference on Distributed Computing, ser. DISC ’01.
London, UK, UK: Springer-Verlag, 2001, pp. 166–179.

[8] P. Szor, The art of computer virus research and defense. Pearson
Education, 2005.

[9] K. Hashizume, D. G. Rosado, E. Fernández-Medina, and E. B.
Fernandez, “An analysis of security issues for cloud computing,”
Journal of Internet Services and Applications, vol. 4, no. 1, pp. 1–
13, 2013.

[10] M. Almorsy, J. Grundy, and I. Müller, “An analysis of the cloud
computing security problem,” in Proceedings of APSEC 2010 Cloud
Workshop, Sydney, Australia, 30th Nov, 2010.

[11] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina, “Controlling data in the cloud: outsourcing computa-
tion without outsourcing control,” in Proceedings of the 2009 ACM
workshop on Cloud computing security. ACM, 2009, pp. 85–90.

[12] B. Grobauer, T. Walloschek, and E. Stocker, “Understanding cloud
computing vulnerabilities,” Security & privacy, IEEE, vol. 9, no. 2,
pp. 50–57, 2011.

[13] S. Dobrev, R. Královič, N. Santoro, and W. Shi, “Black hole search
in asynchronous rings using tokens,” in The 6th Conference on
Algorithms and Complexity (CIAC ’06). Springer, 2006, pp. 139–
150.

[14] J. Chalopin, S. Das, A. Labourel, and E. Markou, “Tight bounds
for black hole search with scattered agents in synchronous rings,”
Theoretical Computer Science, 2013.

[15] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc, “Searching for a
black hole in synchronous tree networks,” Combinatorics, Probability
& Computing, vol. 16, no. 4, pp. 595–619, Jul. 2007.

[16] P. Flocchini and N. Santoro, “Distributed security algorithms by mobile
agents,” in Distributed Computing and Networking. Springer, 2006,
pp. 1–14.

[17] W. Shi, “Black hole search with tokens in interconnected networks,”
in The 11th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS 2009). Springer, 2009, pp. 670–
682.

[18] P. Flocchini, D. Ilcinkas, and N. Santoro, “Ping pong in dangerous
graphs: Optimal black hole search with pure tokens,” in Proceedings
of the 22nd International Symposium on Distributed Computing.
Springer, 2008, pp. 227–241.

[19] C. Cooper, R. Klasing, and T. Radzik, “Searching for black-hole
faults in a network using multiple agents,” in Proceedings of the 10th
International Conference on Principles of Distributed Systems, ser.
OPODIS’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 320–
332.

[20] R. Klasing, E. Markou, T. Radzik, and F. Sarracco, “Approximation
bounds for black hole search problems,” Networks, vol. 52, no. 4, pp.
216–226, 2008.

[21] S. Dobrev, N. Santoro, and W. Shi, “Locating a black hole in an un-
oriented ring using tokens: The case of scattered agents,” in The 13th
International Euro-Par Conference European Conference on Parallel
and Distributed Computing (Euro-Par 2007). Springer, 2007, pp.
608–617.

[22] W. Shi, J. Garcia-Alfaro, and J.-P. Corriveau, “Searching for a black
hole in interconnected networks using mobile agents and tokens,”
Journal of Parallel and Distributed Computing, vol. 74, no. 1, pp.
1945–1958, 2014.

[23] S. Dobrev, P. Flocchini, R. Královič, and N. Santoro, “Exploring an
unknown graph to locate a black hole using tokens,” in Fourth IFIP
International Conference on Theoretical Computer Science-TCS 2006.
Springer, 2006, pp. 131–150.

[24] P. Flocchini, M. Kellett, P. C. Mason, and N. Santoro, “Mapping an
unfriendly subway system,” in Proceedings of the 5th International
Conference on Fun with Algorithms. Springer, 2010, pp. 190–201.

[25] F. L. Luccio and E. Markou, “Mobile agents rendezvous in spite of a
malicious agent,” arXiv preprint arXiv:1410.4772, 2014.

[26] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, “Multiple agents
rendezvous in a ring in spite of a black hole,” in Proceedings of the
7th International Conference on Principles of Distributed Systems.
Springer, 2004, pp. 34–46.

[27] R. Královič and S. Miklı́k, “Periodic data retrieval problem in rings
containing a malicious host,” in Proceedings of the 17th International
Conference on Structural Information and Communication Complexity,
ser. SIROCCO’10. Springer, 2010, pp. 157–167.

[28] E. Bampas, N. Leonardos, E. Markou, A. Pagourtzis, and M. Petrolia,
“Improved periodic data retrieval in asynchronous rings with a faulty
host,” in Structural Information and Communication Complexity.
Springer, 2014, pp. 355–370.

[29] S. Dobrev, N. Santoro, and W. Shi, “Using scattered mobile agents to
locate a black hole in an un-oriented ring with tokens,” International
Journal of Foundations of Computer Science, vol. 19, no. 06, pp. 1355–
1372, 2008.

