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In high-performance computing (HPC), workflow-based workloads are usually data intensive for
exploratory analysis of a scientific computation problem that may involve a large parameter space.
To achieve the best performance, storage resource constraint is always a pragmatic concern in
reality as the potential problem space scale, especially in big data science, as well as its required
dataset are ever growing to outpace any increasing rate of storage capacity. Therefore, the workflow
computation in a HPC environment with finite storage resources is still a practical topic that is
worthwhile studying. To this end, we propose a novel scheduling framework that enhances the
scheduling policies of Versioned Name Space and Overwrite-Safe Concurrency, introduced in our
earlier work, with abilities to handle the deadlock problem in workflow computation with finite
storage constraints. We achieve this goal by leveraging the data dependency information of the
workflow to integrate a collection of deadlock resolution algorithms into the workflow scheduler.
With such integration, after extensive simulation-based studies we conclude that the enhanced
scheduling policies can solve the deadlock problem introduced by the storage constraints caused
by big data overflow. More interestingly, we demonstrate that our enhanced scheduling policies
perform better than the cases where only pure deadlock algorithms are applied when storage is

highly constrained in terms of makespan performance.
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1. INTRODUCTION

A computational workflow is usually composed of a variety
of standalone application components that are either control-
dependent or data-dependent carrying out a well-defined
scientific computing process [1–3]. In reality, a scientific
workload often consists of multiple instances of the same
workflow, with each instance acting on independent input
files or different initial parameters typically for data-intensive
processing or parameter-based studies. For example, the
CyberShake [3] workload consists of 80 sub-workflow
instances, each having more than 24000 individual jobs and
58GB data. Another example is the Sextractor [2] workload,
which consists of 2611 pipeline instances on the DPOSS [4]
dataset, with each instance accessing a different 1.1GB
image to search for bright galaxies. Therefore, resolving

the dependencies between instance and maximizing their
concurrencies can significantly optimize such computation.
However, it is not always available in practice due to a variety
of resource constraints.

In this paper, we are particularly interested in the trade-
offs between the storage overhead and makespan performance.
With the advance of high-performance computing (HPC) in
big data science, the size of involved datasets is constantly
growing up to outpace the increasing rates of any affordable
storage capacity [5]. In particular, some practical and system
policies still exist in certain cases to limit the freedom of
storage uses. For example, when multiple instances of a
workflow share the same file system for their concurrent
execution, an individual instance may run out of storage
space. Consequently, the storage space management remains

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2014

 The Computer Journal Advance Access published October 17, 2014
 at U

niversity of N
ew

 B
runsw

ick on January 31, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


2 Y. Wang and W. Shi

important for maintaining high performance and throughput of
the computational workflows in HPC [6].

In our earlier work, we developed two workflow scheduling
policies: Versioned Name Space (VNS) and Overwrite-Safe
Concurrency (OSC) [7] to show how the data dependencies
between the constituent jobs can be exploited to maximize
the concurrency at the cost of storage overhead [7]. VNS
and OSC represent two extremes along a spectrum of policies
that maximize the makespan performance while assuming
the storage capacity is infinite. Although those proposed
scheduling policies exhibit certain advantages in storage
management for high-performance workflow computing, they
are incapable of resolving the deadlock problem that could be
caused by the competition for the finite storage resources from
concurrent workflow instances.

Given finite storage resources, it is highly possible that
members of a set of the workflow instances hold input storage,
but are blocked indefinitely from accesses to the storage
resources held by other instances within the set for their output
data. Since, according to our computation model (described
later), no member of the set releases its own resources before
it completes its computing tasks, the deadlock will last forever
unless the resolution is involved.

Deadlock is a prevalent problem in HPC when non-
preemptive resources in general and storage in particular
are constrained. In our case, deadlock not only degrades
the system performance but also under-utilizes the storage
resources if it is improperly addressed. These problems will
become more serious in the era of cloud-based HPC where
the resources are typically provisioned on-demand in a pay-
as-you-go fashion. In this paper, we enhance the proposed
workflow scheduling policies to address the storage constraints
via deadlock resolution, which allows them to be used in more
practical environments.

In practice, there are various ways to handle the deadlock
problem, ranging from admission control to deadlock resolu-
tion. Despite being a simple solution, the admission control
is conservative and not space-efficient to storage utilization.
Therefore, we advocate the deadlock resolution approach as it
is more flexible and efficient in storage management. The con-
tributions of this paper are as follows:

(i) We enhance the existing scheduling policies by
integrating the proposed deadlock resolution algorithm
to maximize the makespan performance and minimize
the storage overhead for workflow computation with
storage constraints.

(ii) We present in-depth simulation results to show how
these enhanced scheduling policies behave with respect
to different features of the workloads as well as
different storage budget.

The simulation results show that the enhanced scheduling
policies not only expand their application range as desired
but also show performance advantages over the pure deadlock

resolution approaches when the storage is highly constrained.
Although there exist some related work in the literature on
scheduling data-intensive workflows on storage-constrained
resources [8–12], to our best knowledge, we believe we are the
first ones to consider the deadlock issues in such a situation.
Therefore, our results are deemed to be of great importance to
adapting the scheduling algorithms to the workflows in reality.

The rest of the paper is organized as follows: in the next
section, we discuss some related work in workflow scheduling
with storage constraints. The computation model is presented
in Section 3. We outline the scheduling polices to be enhanced
as well as the candidate deadlock resolution algorithms in
Section 4. We then present the enhanced policies in Section 5
and the evaluation results in Section 6. Finally, we conclude
the paper in Section 7.

2. RELATED WORK

The applications of computational workflows to big data
science inspired great interest in recent years in scheduling
scientific workflows with data and storage managements in
mind [6, 9, 11–13]. Pandey and Buyya [6] optimize the
resource selections in the context of a data grid in the presence
of replicated files for scientific workflow. They identify
that scheduling policy and storage constraint are two major
challenges in workflow scheduling and advocate to consider
them together, which is also our concern. In contrast, Juve
and Deelman [13] investigate how data can be managed in
shared file systems for efficient workflow computation in the
cloud. Given the pay-as-you-go billing model, it is particularly
important for users to minimize the resources to support the
execution of their workflows on provisioned resources.

The key issue centered around the constrained storage is
how to design the scheduling policies to allocate jobs and
then reclaim the unused storage resources so that the finite
storage capacity can be fully utilized. Ramakrishnan et al. [9]
pioneered the research to schedule data-intensive workflow
onto a set of distributed computational sites with storage
constraints. The basic approach is to introduce a cleanup job
to each data file when that file is no longer used by other jobs
in the workflow or when it has already been staged out to some
permanent storage. The garbage files are collected in time,
and the storage footprint of the workflow can thus be reduced
significantly.

Although Ramakrishnan’s approach is effective in storage
reclamation, it cannot guarantee that a predefined storage limit
is not exceeded in the course of the computation. This is
a serious drawback as the execution could be aborted when
the storage capacity is not sufficient for the workflow under
the given job scheduling and garbage-collecting strategies.
Bharathi and Chervenak [11] note this and adopt the same
concept of the cleanup jobs to propose a heuristic and a
genetic algorithm to address the storage limit problem where
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the storage limit is respected by examining the cleanup jobs
in breadth-first (in heuristic) or the chromosome’s (in genetic
algorithm) order and waiting for those pending cleanup jobs to
complete if the storage limit is broken.

Similar to Ramakrishnan’s approach, Bharathi and Cherve-
nak’s scheduling algorithm is also on a per-job basis. As noted,
this strategy is not quite effective for those large workflows
whose number of jobs is on the order of hundreds, thousands or
even more CyberShake like workflow. Chen and Deelman [14]
study this issue and develop a suit of heuristics to partition a
large workflow into a set of sub-workflows so that the storage
constraints in each computing site could be respected and in
the meanwhile the internal job concurrency is maximized.

Although neither aforementioned studies mention the
deadlock problem explicitly due to storage constraints,1 their
approaches by nature are a kind of deadlock prevention
strategy, which is different from ours that uses storage space-
efficient strategies to resolve the deadlocks. On the other hand,
our goal is to schedule multiple workflow instances, each
of which have an equal number of jobs on shared resources
for concurrent execution instead of a single large workflow
instance running in a distributed environment with storage
constraints. Therefore, our scheduling policies are two-layered:
instances first and then jobs.

DAR, DTO [15] and DDS [16] are designed for space-
efficient workflow computation in HPC system with storage
constraints. These algorithms take the advantages of the
dataflow information of the workflow to either wisely avoid
unsafe states in storage allocation or speculatively execute each
instance whenever the instantaneous storage space is sufficient
for some job executions (but not sufficient for the whole
instance) or perform the rollback operations on the selected
in-progress instances whenever deadlock or performance
anomaly is detected. Although these algorithms can resolve
deadlocks, they do not consider the trade-offs between the
storage overhead and the performance; neither have they been
incorporated with scheduling policies to evaluate their real
impact on system performance.

3. COMPUTATION MODEL

The computation model adopted in this paper includes two
parts: the workflow model that abstracts the key characteristics
of real-world workflow-based computation in HPC, and the
execution model which represents a typical process to execute
the workflow computation.

3.1. Workflow Model

We model a workflow as a weighted DAG directed acyclic
graph G(V, E), where V is a set of nodes and E is a

1Chen and Deelman point out that the partitioned workflow could form
a deadlock loop if the cross dependencies between sub-workflows are not
resolved. But this form of deadlock is not considered in this paper.

set of edges. A node in the DAG represents a job which
in turn is a program that must be executed in sequential
order without preemption. The weight of a node is called the
computation cost. An edge represents the communication in
terms of dataflow (i.e. write/read file) via the underlying file
system from the source node to the destination node; its weight
indicates the file size. The precedence constraints of a DAG
dictate the execution orders of the nodes in the sense that a
node cannot begin execution until all its input files have arrived
and no output files are available until the job has finished and
at that time all output files are simultaneously accessible to its
destination job, and the storage for input files could be garbage
collected if they are no longer used by the subsequent jobs.

A workload consists of multiple instances of the same
workflow, with each instance having its own node and edge
weights. The node and edge weights as well as the shape of
the workflow are provided by users and not changed during
the computation since in reality multiple instances are usually
created for a parameter sweep study, and thus follow the same
computation process.

Without loss of generality, single source and sink nodes are
assumed in the DAG. These two nodes can be viewed as the
jobs in the workflow that stage in the initial input data and stage
out the result output data, respectively. As such, the net storage
after the workflow computation is zero if no intermediate data
products are maintained.

3.2. Execution model

The execution model is based on a physical or virtual cluster
of homogeneous compute nodes that are connected via a high-
speed network and share the same file system as the media for
data communication between jobs. All the compute resources
are managed by a batch workflow scheduler.

During the execution of a workflow instance, the life cycle
of a job may experience several states. Initially, all the jobs
in a workflow instance are in a blocked state. A job becomes
free if it has no parent jobs or all its parent jobs have finished.
Every free job can be scheduled but only those who have
storage space to accommodate their output dataset can enter a
ready state for execution. Otherwise, they will be in a pending
state waiting for the storage. Whenever the required storage is
available, the jobs in the pending state is changed to the ready
state for execution again. The jobs in a running state are never
stopped until they complete the computation. After a job has
completed, it enters a done state. A completed job will release
the storage space of its input data files if they are no longer
used by the subsequent jobs. In contrast, the job will keep the
storage for the output data files for future use.

Our model is deterministic, at least to the extent that the
time and storage space required by any job as well as the data
dependencies among the jobs are predetermined and remain
unchanged during the computation.
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Moreover, in our model, the storage resources are provided
in the form of a storage budget which represents the maximal
storage capacities that could be used by the computation.
Consequently, when the storage is not sufficient for all the
competing free jobs (instances) in the computation, those free
jobs would enter their pending states, holding the input storage
while awaiting the output storage. As such, a deadlock is
incurred.

4. SCHEDULING POLICY AND DEADLOCK
RESOLUTION

In this section, we first overview the scheduling policies VNS
and OSC [7], which leverage the dataflow information to trade-
off storage overhead for performance in workflow scheduling.
Then, we outline the basic ideas of the deadlock resolution
algorithms that will be integrated with the scheduling policies
for more practical use in reality.

4.1. Scheduling policies: VNS and OSC

VNS is to create a separate namespace as a sandbox for
each instance to safely execute without interference with each
other in terms of file name conflicts, a technique similar
to register renaming in processor microarchitecture design
[17, 18]. OSC adopts a different policy similar to the software
pipelining technique in compiler optimization [19, 20] to
allow a subsequent instance to concurrently execute with the
instances ahead of it unless there are file name conflicts.
Clearly, VNS and OSC represent two extremes along a
spectrum of policies that trade off the storage capacity for the
makespan performance. Compared with VNS, OSC consumes
much less storage, but its performance is limited. Compared
with OSC, VNS maximizes performance, but it consumes
much more storage.

Both VNS and OSA are built on top of a Version
Namespace Manager (VNM) which gathers and manages
the data dependency information on a per-instance basis and
provides its clients (e.g. workflow scheduler) with various data
services [7].

Although the proposed scheduling policies exhibit the
advantages in storage management for high-performance
workflow computing, they only work in the situation where
the storage capacity is infinite since both policies fall short
of strategies to resolve the deadlock that could be caused by
the competition for the finite storage resources from concurrent
workflow instances.

4.2. Deadlock resolution: DAR and DTO and DDS

DAR and DTO [15] can be viewed as extensions to Lang’s
algorithm [21] for deadlock avoidance in the computation of
workflow-based workloads with arbitrary shapes. The essence
of both algorithms is to use different strategies to exploit the

dataflow information of the workflow for the reduction of the
maximum storage claim of each instance at run time.

In DAR, the maximum claim of each instance is dynamically
computed by summing the resource requirements of all the
remaining jobs (i.e. those jobs that have not yet been finished),
instead of using a static predefined value. Clearly, this value
is monotonically decreasing as the computation proceeds,
and thus the storage resources could be more effectively
utilized by those in-progress concurrent instances, which, as
a consequence, speeds up the workload as a whole.

In contrast to DAR, DTO adopts a different strategy to
compute the dynamic maximum claim of each instance in the
workload. It topologically orders the remaining jobs in the
current instance and in the meanwhile computes the minimal
maximum claim for the topological sequence in the following
ways:

(i) When a new job is ordered, we first ensure that all
its input data are available (usually generated by its
upstream jobs), and then allocate the storage space for
its output data (our execution model).

(ii) When a running job is finished, the storage for its input
data will be released immediately if the input data are
no longer used by the subsequent jobs (using dataflow
dependencies).

(iii) After all the jobs in the instance are ordered, the
maximum storage once used in the sorting course is
used as the minimal maximum claim of the instance.

Based on this computation, one can clearly see that the
maximum claim is not a fixed number for the same set of
remaining jobs in the instance since it is related to how the
jobs are topologically sorted. However, with the availability of
a topological sequence, we also know there is a safety sequence
as well since the scheduler can follow the topological sequence
to safely schedule the jobs within the claimed maximum
storage capacity without incurring a deadlock. The scheduler
computes the topological sequence for safety check each time
a job is scheduled. This is the basic idea of DTO for deadlock
avoidance. Compared with DAR, DTO is more aggressive in
storage utilization since, for the same instance, its computed
maximum claim is constantly less than that of DAR.

Unlike the previously selected algorithms, the basic idea of
the DDS algorithm [16] is based on the deadlock detection and
recovery principle. Specifically, given a storage budget Bgt ,
the DDS algorithm works as follows to detect a deadlock:

(i) Select an instance as well as a job for which the request
is less than or equal to Bgt . If such a job is found, the
job is granted its request and put into execution. Then,
the algorithm continues to search until no more such
jobs can be found. If no such jobs exist, go to (3).

(ii) Whenever a job is completed, its current allocated
storage resources (for input data) are added to Bgt and
then go back to (1) after releasing the ready jobs.
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Dataflow-Based Scheduling for Scientific Workflows in HPC with Storage Constraints 5

Algorithm 1 Integrated scheduling algorithm.
1: procedure Scheduling(bgt)
2: r ← 1 � for computing the associated inst.
3: sb← bgt � init. storage budget
4: while accept(message) do
5: � when a new instance arrives
6: if message = N EW _I N ST then
7: � a new inst. id and workflow id from VNM
8: I ← get New I nstance()
9: do_newinstance(r, sb, I )

10: end if
11: � when a notice of a done job arrives
12: if message = DO N E_J O B then
13: j ← get DoneJob()

14: do_donejob(r, sb, j)
15: end if
16: � when a request for a job arrives
17: if message = RE Q_J O B then
18: j ← FCFS(ReadyQ) � send the job j to the requester
19: req ← j
20: end if
21: end while
22: end procedure

(iii) If there are running jobs, the algorithm simply waits for
a job completion and go to (2). Otherwise, a deadlock
is detected.

After a deadlock is detected, DDS then uses a variety of
strategies to compute the amount of storage that needs to be
released, select the victims to rollback and finally reallocate
the released storage to recover from the deadlock.

5. ENHANCED SCHEDULING POLICIES WITH
DEADLOCK RESOLUTIONS

Given the basic idea of the scheduling policies and the
deadlock resolution algorithms, in this section we focus
squarely on their integration to address the storage constraints.
The details of each policy and algorithm can be found in the
corresponding references and are not reiterated here. Basically,
the scheduling policies and the resolution algorithms are
orthogonal in terms of the functionality and implementation
mechanism, and thus the integration is relatively simple. The
key point is how to manage the storage budget (including
resolve deadlock) when new instances arrive and done jobs are
noticed. With supports from VNM, we sketch the integration
process in Algorithms 1–3.

The main scheduling algorithm (Algorithm 1) is abstracted
into a 3-state machine to process three kinds of messages.
First in Algorithm 2, when a new instance arrives (i.e.
NEW_INSTANCE), a new instance id i and a new/old workflow
id w will be obtained from VNM. These ids are used to
identify the namespace for this instance in the following
computation. After that, for each job j in instance i , we try
to find its dependent jobs (actually, the jobs’ names), i.e.
those jobs in instance i − r (of the same workflow) such

that the job j cannot be scheduled until all those jobs have
finished by instance i − r (inter-instance control-flow). This
is accomplished by VNM.findOutJob() (Line7). As for
OSC, VNM.findOutJob() will return the direct successors
(job names) of job j in the dataflow graph.

In contrast, VNS has the least constraints with an empty
set of dep_ jobs. After determining its dep_ jobs, job j will
be submitted to SubQ. We see that SubQ accommodates the
submitted jobs on a per-instance basis. Each job in SubQ
is associated with a set of data structures and functions to
store and manage its scheduling information. For example,
the data structures of holding the set of intra- and inter-
instance dependent jobs, which are returned by the functions
intra() and inter(), respectively. Another important
function is SubQ[i][j].associate(), which is used to
identify the inter-instance dependent jobs of the current job
j in instance i , and put them into a set of inter-instance
dependent jobs (Line11). For each job in SubQ, it will be
put into BlockedQ if its data dependencies are not resolved.
Otherwise, the integrated deadlock resolution algorithms is
invoked via Deadlock Resolver (DR). Depending on whether
the deadlock can be resolved or not, the job will be put
into ReadyQ for execution after allocating the storage for
its output data or PendingQ for requested storage resources
(Lines13−24).

Whenever a notice of a done job arrives (i.e. DONE_JOB)
in Algorithm 3, the available storage budget is first updated
due to the released storage from the done job, and then
the jobs in PendingQ are checked one by one using the
deadlock resolution algorithm to see if they can be transferred
from PendingQ to ReadyQ (Lines 4−13). Following
that, all the jobs in the current instance are enumerated
to see if any intra-instance dependency can be resolved.
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Algorithm 2 Algorithm for processing new instance.
1: procedure do_newinstance(r,sb,I)
2: (i, w)← VNM.getInstanceId(I )
3: for ∀ j ∈ Ii do
4: dep_ jobs ← ∅

5: if Ii−r �= ∅ then
6: � policy could be VNS or OSC
7: dep_ jobs ← VNM.findOutJob(w, j, policy)

8: end if
9:

10: SubQ.submit (i, j) � SubQ[i] holds Ii
11: Sub[i][ j].associate(dep_ jobs, Ii−r )

12: � check intra- and inter-instance dependency
13: if SubQ[i][ j].intra() = ∅

14:
⋂

SubQ[i][ j].inter() = ∅ then
15: � DR: Deadlock Resolver, alg could be DTO, DAR or DDS
16: if DR.resolveDeadlock(i, j, sb, alg) then
17: sb← sb −Wi j � Wi j is the write size of j ∈ Ii
18: ReadyQ.submit (i, j)
19: else
20: PendingQ.submit (i, j)
21: end if
22: else
23: Blocked Q.submit (i, j)
24: end if
25: end for
26:
27: end procedure

If so, the corresponding job is removed from BlockedQ
and linked to the ReadyQ as long as there is no inter-
workflow instance dependencies and success in deadlock
resolution (Lines 15−33). After resolving intra-instance
dependency (of the current instance i), the inter-workflow
instance dependencies are resolved between the current and
the next instances by roughly following the same principle as
in the intra-instance dependency resolution (Lines 35−51).
Note that SubQ[i+r][k].clear(j) in Line38 is used
to remove job j from job k’s dependent job set in SubQ[i+r]
(computed by Line 7 and Line 11 in Algorithm 2). For
those jobs in both instances i and i + r , when their intra- and
inter-instance dependencies are resolved, the algorithm follows
the same procedure as that in NEW_INSTANCE to resolve the
deadlock problem.

Finally, when a new request for job arrives (i.e. REQ_JOB),
FCFS is applied to ReadyQ to select the next ready job for
executing (Lines 17−20 in Algorithm 1).

6. PERFORMANCE EVALUATION

6.1. Experimental setup

We simulate the computation model presented in Section 3
and implement a scheduler using the simulation package
SMURPH [22]. The scheduler accepts the dataflow DAG
from the user submitting the workflow instances and follows
the execution model to manage the submitted workloads. It
schedules each job according to the VNS or OSC policy and

dispatches the job based on the deadlock resolver for safety
check.

As in [7], we continue to use the two representative
structures Fork&Join and Lattice as shown in [7] as the
benchmarks in our experiments. The Fork&Join structure is
characterized by the number of stages and fan-out factors,
while the Lattice structure is characterized by its width and
height. Both structures represent a wide range of scientific
workflows that could be deployed in HPC systems [23–26].

Since there is no well-accepted model for job service time
(JST), in experiments we assume that, for instances of all
the examined workflows, the job service time is uniformly
distributed in [500,1000] time units (i.e. indivisible time
unit (ITU)) and their inter-arrival time follows the exponential
distribution from 0 to 1600 time units.

To ensure that the observation is made on sufficient
workloads, the number of instances in each workload is fixed
as a constant 100 in each experiment. Since our studied
scheduling policies are not intended to optimize the utilization
of a limited number of compute nodes instead, they aim to
maximize the degree of concurrency (DOC), and thus, we hope
that the maximum DOC is never constrained by the compute
nodes. Therefore, to reflect our concern, the computation
environment is modeled as an unbounded number of
homogeneous compute nodes that can access a shared storage.

Finally, for the purpose of comparison, we use BASE in
some experiments as a baseline policy that entails the serial
execution of the workflow instances in the workload. As such,
in BASE, files are never versioned and storage is deallocated
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Algorithm 3 Algorithm for processing done job.
1: procedure do_donejob(r,sb,j)
2: i ← j.get I nstanceI d()

3: � release the storage that is no longer used
4: sb← sb + Ri j � Ri j is the read size of j ∈ Ii
5: � transfer jobs from PendingQ to ReadyQ
6: for ∀k ∈ PendingQ do
7: l ← k.get I nstanceI d()

8: if DR.resolveDeadlock(l, k, sb, alg) then
9: PendingQ.delete(k)

10: sb← sb −Wlk
11: ReadyQ.submit (k)

12: end if
13: end for
14: � resolve intra-instance data dependency
15: for ∀k ∈ SubQ[i] do
16: if j ∈ SubQ[k].intra() then
17: SubQ[k].intra()← SubQ[k].intra()/{ j}
18: end if
19:
20: if (k ∈ Blocked Q)

⋂
(SubQ[k].intra() = ∅) then

21: � check (inter-instance) name conflicts
22: if SubQ[k].inter() = ∅ then
23: � alg could be DTO, DAR or DDS
24: if DR.resolveDeadlock(i, j, sb, alg) then
25: sb← sb −Wi j
26: ReadyQ.submit (i, j)
27: else
28: PendingQ.submit (i, j)
29: end if
30: Blocked Q.delete(i, k)

31: end if
32: end if
33: end for
34: � resolve inter-instance data dependency
35: if SubQ[i + r ] �= ∅ then
36: for ∀k ∈ SubQ[i + r ] do
37: if ¬SubQ[i + r ][k].inter() �= ∅ then
38: SubQ[i + r ][k].clear( j)
39: if (SubQ[i + r ][k].intra() = ∅)

40:
⋂

(SubQ[i + r ][k].inter() = ∅) then
41: � alg could be DTO, DAR or DDS
42: if DR.resolveDeadlock(i, j, sb, alg) then
43: sb← sb −Wi j
44: ReadyQ.submit (i, j)
45: else
46: PendingQ.submit (i, j)
47: end if
48: end if
49: end if
50: end for
51: end if
52:
53: end procedure

after the completion of each instance. Although this straw-man
policy is quite simple and inefficient, it is not uncommon in
practice.

6.2. Simulation results

In the following experiments, we consider the situation when
the storage is constrained. Again, the constrained storage

is given as a storage budget that represents the maximal
storage that a computation can use. To resolve the incurred
deadlock, the scheduling policies can employ our studied
deadlock resolution algorithms (i.e. DDS, DAR and DTO).
Our purpose is primarily to measure the performance of these
policies (combined with the deadlock resolution algorithms
if needed) under a variety of storage budgets. To this
end, we first classify the storage budgets according to the
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TABLE 1. Minimal and maximal storage requirements of each scheduling policy.

BASE OSC VNS

Min Max Min Max Min Max

Fork&Join (X × Y ) Y + 1 2 · Y Y + 1 Y · (X + 1) Y + 1 2 · k · Y
Lattice (X × Y ) N/A 4 ·min(X, Y ) N/A 2 · X · Y − (X + Y ) N/A 4·k ·min(X, Y )

Fork&Join: X = Stage, Y = Fan-out Factor. Lattice: X = Width, Y = Height, k = the total number of
instances.

requirements of the scheduling policies into a set of storage
ranges, and then identify and evaluate the policies that can
be applied to each storage range. Additionally, based on the
classification, we also measure the storage utilization of each
applied policy and investigate the impact of AIT on the
performance.

6.2.1. Storage budgets classification
To classify the storage budgets, we analyze the maximal and
minimal storage requirements for each policy and then use
the analytical results to identify a set of storage ranges (see
Table 1). More specifically, given a workflow of Fork&Join
with stages of X and fan-out factor of Y (i.e. X × Y ), for all
policies, we at least need Y storage units to enable the first job
to execute, and an additional one unit to enable the subsequent
jobs to execute. Thus, the minimal storage requirements of all
scheduling policies are Y + 1. Since, in Base policy, there are
at most Y concurrent jobs in a single instance, with each job
holding two storage units by its read and write dataset, the
maximal storage requirements are thus 2·Y . For VNS, because
of k concurrent instances, this number is naturally 2·k · Y .
But for OSC, the situation is a little bit complicated; due to
the introduced inter-instance dependencies, there are at most
Y ·(X+1) (i.e. the total number of edges in the dataflow DAG)
storage units to hold active files.

For the Lattice workflow, the formulae of the minimal
storage requirements for all policies are not available,
but the values are independent of policies, similar to the
situation in Fork&Join. As for the maximal requirements,
we can follow the same analysis in Fork&Join to give their
formulae.

In the following experiments, for our Fork&Join workload,
the minimal requirement of BASE and OSC policies is 33
since the fan-out factor is 32, but the maximal is 64 and
128, respectively, because there are at most 32 concurrent jobs
based on BASE and 64 on OSC at any time point during the
computation. For VNS, the corresponding values are 33 and
6400 since we have 100 instances in the workload. As for
the Lattice workload, we can have a similar analysis. All the
values are shown in Table 2. It should be noted that since we
do not have formulae to express the minimal requirements of
these policies for Lattice workload.

TABLE 2. Minimal and maximal storage requirements of each
scheduling policy (based on dataflow DAG).

BASE OSC VNS

Min Max Min Max Min Max

Fork&Join (3× 32) 33 64 33 128 33 6400
Lattice (8× 12) 20 32 20 172 20 3200
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FIGURE 1. Performance comparison of the studied scheduling
policies on Fork&Join (3 × 32) workload when storage budget is in
the range of 33–128 units.

6.2.2. Makespan and average DOC
Figure 1 shows the performance comparison of the studied
scheduling policies on Fork&Join workload when the storage
budget is in the range of 33–128. Owing to the strategies for
deadlock avoidance in DAR, it is not available for all policies
in this particular case (such storage is insufficient to enable it
to work).

From this figure, we can see that all the policies combined
with the given deadlock resolution algorithms exhibit the
same performance in the storage range of [33, 64]. It is
not difficult to understand that in such a case, the storage
is only sufficient for at most one active instance. Thus, all
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Dataflow-Based Scheduling for Scientific Workflows in HPC with Storage Constraints 9

these policies have to serialize the execution of the workflow
instances, leading to the same performance.

When the storage budget is >64, the performances of both
BASE policies are kept as a constant because the maximal
requirements of the BASE policies are 64. In [65, 72],
VNS policies have big performance anomalies. A simple
explanation to this phenomenon is the inappropriate admission
of a new instance for execution, leading to low storage
utilization. For example, when the storage budget is 65,
both VNS policies can admit two instances for concurrent
execution, each holding 32 storage units, leaving only one free
storage unit. After the first job is completed in an instance, 32
jobs will become ready. Unfortunately, only one of them can be
executed due to the remaining one free storage unit, reducing
the average DOC severely (see Fig. 1 (right)). The severity is
mitigated as the storage budget is gradually increased. We can
observe the same phenomenon around 100 storage units when
three instances can be admitted and the 4 storage units are
left to increase the average DOC slightly. Our OSC policies
address this problem by introducing control dependencies
between consecutive instances.

After the storage budget is >72 and <128, both OSC
and VNS outperform BASE policies since BASE policies
cannot benefit from the storage increments. As for comparison
between OSC and VNS in this particular case, their
performance difference is almost indistinguishable.

Based on the above experimental results and analysis, we
can draw the following conclusions:

(i) When the storage budget is extremely tight, say, not
greater than the maximal requirement of BASE policy,
for Fork&Join workload, all studied policies, no matter
what kinds of deadlock resolution approaches are used,
are reduced to BASE policy.

(ii) When the storage budget is greater than the maximal
requirement of BASE policy but less than that of
OSC policy, OSC, combined with either the DDS
approach (i.e. OSC(DDS)) or the DTO approach
(i.e. OSC(DTO)), is the performance leader. In this
situation, VNS policy is also a competitor but it suffers
from the performance anomaly.

Figure 2 shows the same simulation study, but for the
Lattice workload. From this figure, we can observe the same
phenomenon related to the BASE policies as that in the
Fork&Join workload, that is, the performances of BASE
policies are not changed after the storage budget is >32 (i.e.
the maximal requirements of BASE policies). However, unlike
in Fork&Join workload, the performances of the scheduling
policies are different when the storage budget is in the range
of [20, 32], no single policy can beat all the others on all
the data points in this range.

When the storage budget increases from 32 to 172, the per-
formances of both OSC and VNS are also improved accord-
ingly. OSC leads the improvements because its introduced
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FIGURE 2. Performance comparison of the studied scheduling
policies on Lattice (8 × 12) workload when storage budget is in the
range of 20–172.

inter-instance dependencies allow the running instances to
have more opportunities to acquire the needed storage to finish
the computation, consequently reducing the number of blocked
instances2 and improving the storage utilization. As such, OSC
has higher average DOC than VNS policies (see Fig. 2 (right)),
running somewhat counter to intuition.

In addition, we also notice that both OSC and VNS
outperform considerably BASE policies, which is different
from the situation in Fork&Join workload (i.e. the performance
gaps between BASE and OSC/VNS in Fork&Join is not so
large as in Lattice). The reason is that the Lattice is expected to
have a lower intra-workflow instance DOC than the Fork&Join
because of the additional dependencies between the jobs. Thus,
compared with the Fork&Join, given a storage budget, more
Lattice instances can be executed concurrently by OSC and
VNS. This is evidenced by Fig. 2 (right) where OSC and VNS
enjoy much higher average DOC than BASE policies.

Furthermore, for VNS, we found that the performance of
VNS(DDS) is better than that of VNS(DTO). We attribute
this performance difference to two factors. First, there are
always hosts/processors (be aware of the assumption that an
unbounded number of homogeneous computational nodes are
available) to minimize the overhead incurred by deadlock
detection in VNS(DDS). Secondly, the safety checking
algorithm in our deadlock avoidance is not optimal and always
conservative, which may hurt the performance of VNS(DTO).

Similar to the Fork&Join, we draw the follow
conclusions:

(i) In our Lattice workloads, no single policy can out-
perform all the others when storage budget is less than
the maximal requirement of BASE policy.

2Blocked instances may hold the storage that cannot be used by other
instances.
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10 Y. Wang and W. Shi

(ii) As the budget increases to the maximal requirement
of OSC, both OSC policies (i.e. OSC(DDS) and
OSC(DTO) are clearly the performance leaders.

Other interesting storage ranges are [128, 6400] and
[172, 3200] for Fork&Join and Lattice, respectively.
These ranges represent the budgets that are greater than the
maximal requirement of OSC and less than the maximal
requirement of VNS with respect to each kind of workloads.
Generally, BASE and OSC policies cannot gain more
performance when the storage budget is greater than their
maximal requirements, and thus, it is impossible for them
to be the performance winner. Therefore, in the following
experiments, we focus on the VNS policy combined with
different deadlock resolution algorithms. But, for the purpose
of comparison, we also show the data points of OSC in
the figures. Actually, the performance of each VNS policy
(i.e. VNS(DDS), VNS(DTO) and VNS(DAR)) reflects the
effectiveness of the combined deadlock resolution algorithms.

Figure 3 (left) shows the makespan comparison between
three VNS policies. Clearly, VNS(DAR) is the best among the
three, which also has the highest AC (Fig. 3 (right)). The per-
formance of VNS(DDS) and VNS(DTO) is indistinguishable.
The performance advantage of VNS(DAR) over the other two
lies in the fact that it overcomes the performance anomalies
shown in the VNS(DDS) and VNS(DTO) policies by reserving
storage (i.e. safety checking by using a storage upper bound)
for the running instances. As discussed, performance anoma-
lies are resulted from inappropriate storage allocation for some
free or pending instances that may not make progress except
for holding the storage. As for VNS(DDS) and VNS(DTO),
they have the similar freedom to allocate storage to the sched-
uled job (VNS(DTO) relaxes its safety checking compared
with VNS(DAR)), and thus, show similar performances. From
this experiment, our conclusions are as follows:
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FIGURE 3. Performance comparison of the proposed scheduling
policies on the Fork&Join (3 × 32) workload when storage budget
is in the range of 130–1300.
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FIGURE 4. Performance comparison of the proposed scheduling
policies on the Lattice (8 × 12) workload when storage budget is in
the range of 180–1300.

(i) For single instance, VNS(DAR) is the most conserva-
tive in terms of storage utilization among the three VNS
policies. However, for multiple concurrent instances,
such conservativeness does not compromise the overall
performance, rather it improves the performance (the
best performance among all). This situation is opposite
to that of VNS(DDS) and VNS(DTO).

(ii) Big fan-out factor and low average degrees of
internal nodes of Fork&Join workload can lead to a
performance anomaly even if the storage is not so
scarce (i.e. greater than the maximal requirement of
OSC).

Figure 4 shows the same experiment for the Lattice
workload. Unlike the situation in Fork&Join, VNS(DAR),
from the figure, has only a slight performance advantage
over VNS(DDS) and VNS(DTO) when the storage budget
is not >700. After that, all VNS policies enjoy the same
performance (i.e. makespan and AC). This observation, again,
demonstrates that when the storage is not sufficient for the
workflow-based computation, making the running instances
to have more opportunities to acquire the needed storage is
beneficial to overall performance.

Comparing the two sub-graphs of Fig. 4, we found that
the ACs of all the VNS policies increase almost linearly, but
the corresponding makespan reductions are not proportional
to the AC’s increments. The reason is that when the storage
is constrained, the makespan of the workload is primarily
determined by the available storage, and very sensitive to
its increment since there are always a large number of
free/pending jobs waiting for storage to be executed. With
the gradual increments of the storage, these free/pending jobs
can acquire the needed storage for execution, and the ACs
are naturally increased in a linear fashion. As such, the intra-
instance data dependencies are replacing the storage, and
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Dataflow-Based Scheduling for Scientific Workflows in HPC with Storage Constraints 11

becoming the dominant factor to determine the makespan.
However, the makespan cannot be reduced linearly since it is
not determined by the total number of jobs, but the critical path
of the workload.

To summarize, we have the following conclusions:

(i) Again, VNS(DAR) exhibits the best performance. The
conservativeness of VNS(DAR) for single instance
(in terms of storage utilization) improves the perfor-
mance of multiple Lattice workflow instances. But
the improvement is not so pronounced as that of the
Fork&Join workload.

(ii) For the Lattice workload, all VNS policies can equally
take advantage of storage increments to improve the
average DOC and reduce makespan.

When the storage budget continually increases over the
maximal requirements of VNS policy (i.e. the storage budget
is in [6400, 12800] for Fork&Join workload or [3200,
17200] for Lattice workload), the performances of all VNS
policies are the same as that of VNS under infinite storage
budget, and hence, the best among all studied scheduling
policies.

6.2.3. Storage utilization
In the following experiments, we investigate the storage
utilization of the studied policies. To this end, we classify the
storage into three classes. The first class is the storage that is
being used by active instances. We call the storage in this class
active storage; further, we denote the amount of active storage
at time t as Sactive(t). The ratio of the active storage to the total
available storage is thus defined as

Ractive =
∫ makespan

0 Sactive(t)dt

makespan · total storage

The higher Ractive, the better is the storage utilization, and
thus, better is the performance. As we know, an active instance
may become inactive due to the storage constraints. The total
storage held by inactive instances belongs to the second class,
named inactive storage. The total inactive storage at time t is
denoted as Sinactive(t). Accordingly, we have

Rinactive =
∫ makespan

0 Sinactive(t)dt

makespan · total storage

One can easily see that inactive storage has a negative impact
on the performance since it cannot be reclaimed for use by
other active instances. Therefore, for Rinactive, the lower, the
better. The third class of storage is called free storage, which
neither belongs to the active storage nor to the inactive storage.
Actually, it is free to be used in any instance. The free storage is
related to scheduling policies, deadlock resolution algorithms,
as well as the shapes of workflows. Similarly, at time t , the

total free storage is denoted as S f ree(t). To describe the free
storage, we have

R f ree = 1− (Ractive + Rinactive)

Figure 5 shows the ratios of these classes of storage for
both workloads when the available storage is not greater than
the maximal requirement of OSC. In the Fork&Join workload,
all policies have the same storage ratios (including Ractive,
Rinactive and R f ree) before the storage budget reaches 64.
This observation confirms that when the storage is not greater
than the maximal requirements of BASE, all policies have the
same performance. The Ractives of all policies are decreased in
the storage interval of [34, 64]. This is because the single
active instance cannot make full use of all available storage.
We can verify this by seeing that their Rinactives are 0 and
the R f rees are monotonically increasing. The observation is
continually obtainable for BASE policies until the storage
reaches 128.

After 64, both OSC and VNS policies have similar storage
ratios except that VNS policies have sharp drops in their
active storage ratio Ractives in the range of [65, 70]. This
anomaly is due to the inactive instances that hold storage
(see the inactive storage sub-graph in Fig. 5 (top)). Both
OSC policies overcome the anomaly by introducing control
dependencies between consecutive instances. However, these
introduced dependencies slightly hurt their Ractives after the
storage is >100.

In the Lattice workload, the Ractives of the BASE policies
are also the same, but in the Fork&Join workload, the Ractive

is dropped from 0.8 instead of 1. This is because the available
storage cannot be fully used immediately by the single active
instance. There are always some free storage at the beginning
stage of executing each instance (see the corresponding
R f ree).

As we expected, due to the introduced inter-instance
dependencies, OSC policies have the highest Ractive, and
lower Rinactive, and thus, they have the best performance
among the policies. Compared with OSC(DDS), OSC(DTO)
has a little bit worse Ractive because of the conservativeness
in its safety checking. This is further evidenced by the free
storage sub-graph (Fig. 5 (bottom), where OSC(DTO) has
more free storage than OSC(DDS). Such conservativeness in
safety checking is also reflected in VNS(DTO), which has a
lower Ractive and higher R f ree than VNS(DDS).

Compared with OSC, due to the lack of the inter-instance
dependencies, VNS policies can admit more instances to
execute, but these active instances may quickly become
inactive under the given storage, and thus, have much more
inactive storage (i.e. higher Rinactive). This fact demonstrates
again the increasing the degree of inter-instance concurrency
cannot always benefit the performance, but rather compromises
the performance due to storage constraints.
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FIGURE 5. Storage utilization of the studied policies on Fork&Join (top) and Lattice (bottom) when the storage budget is half-maximal of OSC
requirements.

To summarize, when the storage budget is not greater than
the maximal requirement of OSC, we can draw the following
conclusions on the storage utilization:

(i) For both workloads, OSC(DDS) exhibits the best
performance in terms of storage utilization.

(ii) For our Fork&Join workload, all applied policies
except the VNS policies on average have equal
capabilities of minimizing the number of inactive
instances. Thus, their storage utilization is largely
determined by the free storage, more precisely, by the
nature of the scheduling policies.

(iii) For our Lattice workload, under the given storage,
increasing the degree of inter-instance concurrency will
compromise the performance. The storage utilization of
OSC is constantly better than that of VNS.

Figure 6 shows the same storage ratios as Fig. 5, but the
storage budgets are varied from the maximal requirement of
OSC to 1300, representing moderate storage budgets.

In Fork&Join, VNS(DAR) has the best Ractive, and both
VNS(DDS) and VNS(DTO) exhibit the utilization anomalies,
which are consistent with our previous experimental results
pertaining to their performance anomalies. By comparing
the three sub-graphs of Fig. 6 (top), we found that the
overall trends of the Ractives of all applied policies are
decreasing, but the trends of the corresponding Rinactive are
increasing with the increments of the storage. Furthermore,

VNS(DAR), which is more conservative in the safety checking
than VNS(DTO), has better utilization than VNS(DDS) and
VNS(DTO). These results further offer the supportive evidence
that the improvement of concurrency under the constrained
storage does not always lead to the improvement of storage
utilization.

Unlike the Fork&Join workload, in the Lattice workload,
the Ractive of VNS(DAR) decreases as the storage increases,
which is opposite to both VNS(DDS) and VNS(DTO).
The reason lies in the conservativeness of VNS(DAR)
in safety checking and the aggressiveness of VNS(DDS)
and VNS(DTO) in admitting new instances for execution.3

Specifically, VNS(DAR) will reserve more storage for active
instances than VNS(DDS) and VNS(DTO), and thus, has
higher Ractive.

From Fig. 6 (bottom), we observe that, for VNS(DAR),
the Ractive is decreasing with increments in storage, and
the decrement has resulted from the increment in the
corresponding R f ree, rather than the Rinactive, which is also
decreased (after certain point). This phenomenon is different
from that in Fork&Join, where the Rinactive of VNS(DAR)
increases, but the R f rees remain largely unchanged. It
demonstrates that, for the Lattice workload, VNS(DAR)
can take advantage of the storage increment to improve

3For VNS(DTO), the aggressive admission of instances for execution is
also related to its safety checking.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2014

 at U
niversity of N

ew
 B

runsw
ick on January 31, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Dataflow-Based Scheduling for Scientific Workflows in HPC with Storage Constraints 13

0 500 1000 1500
0.2

0.4

0.6

0.8

1

R
at

io
 o

f 
Fo

rk
&

Jo
in

VNS(DDS)
VNS(DTO)
VNS(DAR)

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

0 500 1000 1500
Storage

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f 
L

at
tic

e

0 500 1000 1500
Storage

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500
Storage

0

0.2

0.4

0.6

0.8

1

Active Storage Inactive Storage Free Storage

FIGURE 6. Storage utilization of the studied policies on Fork&Join (top) and Lattice (bottom) when the storage budget is equal to the maximal
of OSC requirements.

performance, this improvement is limited by intra-instance
data/control dependencies instead of the inactive instances as
in the Fork&Join workload.

For both VNS(DDS) and VNS(DTO), their Ractives are
increasing initially and remain largely unchanged ever after
the storage budget is >700, and also approaching the Ractive

of VNS(DAR). This observation is also consistent with the
experimental results in our previous studies.

When the storage is relatively constrained, due to the
aggressiveness of VNS(DDS) and VNS(DTO) to admit
instances for execution, they have low Ractives and high
Rinactives. This situation is mitigated as the storage increases,
implying that the inactive instances will acquire the needed
storage to make progress. We also observe that as the Rinactives
gradually decreases, the R f rees monotonically increase. This
is a good phenomenon, demonstrating that the factors that
determine the performance of the computation are gradually
changed from those of limited storage to intra-instance
concurrency.

To summarize this experiment, we have the following
conclusions:

(i) For both workloads, in terms of storage utilization,
VNS(DAR) exhibits the best performance.

(ii) As the storage increases over the maximal requirements
of OSC (i.e. 128) for the Fork&Join workload,
the degradation of the storage utilization of the
VNS policies mostly result from the increments

of the inactive storage. This fact demonstrates that
increasing the degree of inter-instance concurrency of
the Fork&Join workload will compromise the storage
utilization.

(iii) As the storage increases over the maximal requirements
of OSC (i.e. 172) for the Lattice workload, the factors
that determine the performance of the computation are
gradually changed from those of limited storage to
intra-instance concurrency. Thus, the degradation of
the storage utilization of the VNS policies mostly result
from the data/control dependencies inside the workflow
instances.

6.2.4. Impact of average inter-arrival time
In the following set of experiments, we examine the relative
performance of the studied scheduling policies as we vary
the average instance inter-arrival time. To this end, we select
some pairs of values (64, 86), (128, 172) and (256,
344) as the storage budgets for the Fork&Join and Lattice
workloads, respectively. These values represent half-maximal,
maximal and double-maximal storage that the corresponding
OSC requires.

Figure 7 shows the performance comparison of the studied
policies when only half-maximal storage of OSC is available.
A key observation on the Fork&Join workload is that the
performance of each policy is independent of the average
instance inter-arrival time. The reason is that the limited
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FIGURE 7. Simulation results of Fork&Join and Lattice under half of the maximal storage requirement of OSC (a) Fork&Join. (b) Lattice.

storage makes each policy to schedule the instances in a serial-
like mode, and thus, when the workload is intense, the arrival
instances will pile up at the server.

For the Lattice workload, as discussed, we attribute the
performance gain of OSC to its introduced inter-instance
control dependencies, whereas for VNS (AIT = 0), due to
the storage contentions from multiple concurrent instances
(jobs), either the conservativeness of deadlock avoidance
(in VNS(DTO)) or the low storage utilization (occupied
storage in blocked instances) (in VNS(DTO) and VNS(DDS))
compromises their performances. However, the performance
loss diminishes as the average instance inter-arrival time
increases since the probabilities for the running instances in
VNS to acquire the needed storage are also increased.

By comparing both workloads, we can draw the following
conclusions:

(i) For Fork&Join, when the storage is equal to half of
the maximal requirement of OSC, the performances of
all compared policies are independent of the average
instance inter-arrival time.

(ii) For the Lattice workload, the performances of
VNS(DDS) and VNS(DTO) can be gradually improved
with the increments of AIT.

We next consider the performance comparison between the
studied policies when the available storage is equal to the
maximal requirements of OSC policy (i.e. (128, 172)).
The purpose of this experiment is to see whether OSC policy
is the best under the given storage as AIT increases. For
Fork&Join workload, our conclusion is that OSC and all
three versions of VNS (i.e. VNS(DDS), VNS(DTO) and
VNS(DAR)) achieve almost the same performance since they
have a similar inter-instance control due to the workflow’s big

fan-out factor (i.e. the big fan-out factor limits the number of
concurrent active instances), leading to similar average DOCs
(Fig. 8).

In the Lattice workload, when AIT = 0, OSC is superior
to both VNS(DDS) and VNS(DTO), but a little bit inferior
to VNS (DAR). However, with the increments of AIT, both
VNS(DDS) and VNS(DTO) gradually outpace OSC and catch
up with VNS(DAR). In batch Lattice workload (i.e. AIT = 0),
due to the low intra-instance concurrency, VNS(DDS) and
VNS(DTO) initially have more active instances than OSC
has. But due to the constrained storage, some of these active
instances quickly become inactive, but hold the allocated
storage which cannot be used by other active instances, leading
to lower average DOC and performance. This situation is
different from VNS(DAR) which reserves sufficient storage for
the progress of the active instances.

To summarize this third experiment, we have the following
conclusions:

(i) Again, for the Fork&Join workload, the performances
of OSC and VNS are independent of AIT.

(ii) For the Lattice workload, the VNS(DDS) and
VNS(DTO) can benefit from AIT increments.

When we increase the storage budgets to the double-
maximal requirements of OSC (i.e.(256, 344)), as dis-
cussed, the performance of BASE and OSC will not change
since both policies cannot benefit from this storage extension.

In the Fork&Join workload, the performances of VNS
policies are relatively stable as AIT increases from 0 to 800,
and their values are around half or double of those when
the storage is 128 with respect to the makespan or average
DOC. It is expected that all VNS policies can take advantage
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FIGURE 8. Simulation results of Fork&Join and Lattice under the maximal storage requirement of OSC. (a) Fork&Join. (b) Lattice.
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FIGURE 9. Simulation results of Fork&Join and Lattice under the double-maximal storage requirement of OSC. (a) Fork&Join. (b) Lattice.

of the storage extension to gain performance benefits. As
AIT increases over 1600, all VNS policies are reduced to
OSC policy since, in the OSC policy, the difference between
the time that two consecutive workflow instances can start
execution is around 750 × 2 = 1500, which is less than
AIT ≥ 1600.

For the Lattice workload, we can draw the same conclusions
with those when the storage budget is 172 except the
situation where AIT = 0 (Fig. 9). Unlike the situation
in 172, when the storage budget increases to 344, for
the batch workload, VNS(DDS) and VNS(DTO) outperform
OSC. This demonstrates again that both VNS policies can
take advantage of storage extension to improve computation
performance. Another observation is that the performance gaps
between the three versions of VNS policies compared with

those in the previous situation (i.e, storage budget is 172)
are reduced (Fig. 9). This fact shows that, for the Lattice
workload, VNS(DDS) and VNS(DTO) can benefit more from
the storage extension than VNS(DAR) since, for VNS(DDS)
and VNS(DTO), their average DOCs increase ∼160% from
172 to 344, whereas the average DOC of VNS(DAR) only
increases about 50% in the same situation.

To summarize this above-mentioned experiment, we have
the following conclusions:

(i) Compared with OSC, VNS polices can further obtain
performance benefits from the storage budget increase.

(ii) For the Lattice workload, VNS (DDS) and VNS(DTO)
can benefit more from the storage budget increase than
VNS (DAR).

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2014

 at U
niversity of N

ew
 B

runsw
ick on January 31, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


16 Y. Wang and W. Shi

17218

Storage

Storage

Fork&Join

Lattice

600412833

3200

12800

17200

unlimited

unlimited

OSC

OSCOSC

*
*

*
*

*

*

*
*
*

*
*

* VNS*

*

OSC

BASE(DDS)
BASE(DTO) BASE

VNS(DDS)
VNS(DTO)
VNS(DAR)

BASE

VNS(DDS)
VNS(DTO)
VNS(DAR) VNS

BASE(DDS)
BASE(DTO)
OSC(DDS)
OSC(DTO)
VNS(DDS)
VNS(DAR)

BASE

VNS(DDS)
VNS(DTO)
VNS(DAR)

BASE

VNS(DDS)
VNS(DTO)
VNS(DAR)

BASE

OSC

OSC
BASE

OSC(DDS)
OSC(DTO)
VNS(DDS)
VNS(DTO)
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7. CONCLUSIONS

Based on the experiment results of our proposed policy and the
comparative evaluation results against other policies, we draw
further conclusions:

(i) When the storage budget is the bottleneck, namely, not
greater than the maximal requirement of BASE policy,
regardless of which kinds of deadlock resolution
approaches are combined, the performance of all
studied policies are indistinguishable for the Fork&Join
workload and incomparable for the Lattice workload.

(ii) As long as the storage budget is greater than
the maximal requirement of BASE policy, OSC
and VNS always perform better than the BASE
policy on makespan and storage utilization. More
specifically, OSC(DDS) and OSC(DTO) are the
performance leaders when the storage budget is less
than the requirement of OSC policy, followed by the
VNS(DAR). When the storage budget increases over
the maximal requirement of VNS, no policy can further
improve the performance. All VNS policies are equally
effective and exhibit the best performance among all
studied policies (Fig. 10).

This phenomenon is further evidenced by comparing
the storage utilization of these policies. For both
workloads, OSC(DDS) and OSC(DTO) exhibit better
performance if the storage budget is not greater than the
maximal requirement of OSC. Otherwise, VNS(DAR)
performs the best in storage utilization.

(iii) When the given storage budget is not greater than the
maximal requirement of OSC, our DDS and DAR algo-
rithms have a similar performance in terms of deadlock

resolution for the Fork&Join workload, but the former
offers a better Lattice workload than the latter.

After increasing the storage budget over the maximal
requirement of OSC, the DAR algorithm joins the com-
petition, and outperforms both the DDS and the DTO
algorithms. This phenomenon can also be evidenced by
comparing the storage utilization of VNSs combined
with the corresponding deadlock resolution algorithms.
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