
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Using Scattered Mobile Agents to Locate a Black Hole in an
Un-oriented Ring with Tokens

Stefan Dobrev

School of Information Technology and Engineering (SITE)University of Ottawa

800 King Edwaard Ottawa, Ontario, K1N 6N5, Canada

Nicola Santoro

School of Computer Science, Carleton University

1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

Wei Shi

School of Computer Science, Carleton University
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

Received (received date)

Revised (revised date)

Communicated by Editor’s name

ABSTRACT

A black hole in a network is a highly harmful host that disposes of any incoming

agents upon their arrival. Determining the location of a black hole in a ring network
has been studied when each node is equipped with a whiteboard. Recently, the Black

Hole Search problem was solved in a less demanding and less expensive token model with

co-located agents. Whether the problem can be solved with scattered agents in a token
model remains an open problem.

In this paper, we show not only that a black hole can be located in a ring using tokens

with scattered agents, but also that the problem is solvable even if the ring is un-oriented.
More precisely, first we prove that the black hole search problem can be solved using only

three scattered agents. We then show that, with k (k > 4) scattered agents, the black

hole can be located in O(kn + n log n) moves. Moreover, when k (k > 4) is a constant
number, the move cost can be reduced to O(n log n), which is optimal. These results

hold even if both agents and nodes are anonymous.

Keywords: Black Hole, Mobile Agent, Token, Ring, Scattered, Un-oriented.

1. Introduction

1.1. The Problem and Related Work

The reality of networked systems supporting mobility agents is that these sys-
tems are highly unsafe. Indeed, the most pressing concerns are all about security
issues and mainly in regards to the presence of a harmful host (i.e., a network node

1



damaging incoming agents) or of a harmful agent (e.g., a mobile virus infecting the
network nodes); for example, see Refs. [2,15,17].

The computational and algorithmic research has just recently started to consider
these issues. The computational issues related to the presence of a harmful agent
have been explored in the context of intruder capture and network decontamination;
in the case of harmful host, the focus has been on the black hole, a node that disposes
of any incoming agent without leaving any observable trace of this destruction
Refs. [3,4,6,7,8,9,10,11,16]. In this paper, we continue the investigation of the black
hole search problem.

A black hole (BH ) models a network site in which a resident process (e.g., an
unknowingly installed virus) deletes visiting agents or incoming data; furthermore,
any undetectable crash failure of a site in an asynchronous network transforms that
site into a black hole. In presence of a black hole, the first important goal is to
determine its location. To this end, a team of mobile system agents is deployed;
their task is completed if, within finite time, at least one agent survives and knows
the links leading to the black hole. The research concern is to determine under
what conditions and at what cost mobile agents can successfully accomplish this
task, called the black hole search (Bhs) problem. The main complexity parameter
is the size of the team; i.e., the number of agents used in the search. Another
important measure is the amount of moves performed by the agents in their search.

The computability and complexity of Bhs depend on a variety of factors, first and
foremost on whether the system is asynchronous Refs. [6,7,8,9,10] or synchronous
Refs. [3,4,5,16]. Indeed the nature of the problem changes drastically and dramat-
ically. For example, both in synchronous and asynchronous systems, with enough
agents it is possible to locate the black hole if we are aware of its existence; however,
if there is doubt on whether or not there is a black hole in the system, in absence
of synchrony this doubt can not be removed. In fact, in an asynchronous system,
it is undecidable to determine if there is a black hole Ref. [8]. The consequences of
this fact are numerous and render the asynchronous case considerably difficult. In
this paper we continue the investigation of the asynchronous case.

The existing investigations on Bhs in asynchronous systems have assumed the
presence of a powerful inter-agent communication mechanism, whiteboards, at all
nodes. In the whiteboard model, each node has available a local storage area (the
whiteboard) accessible in fair mutual exclusion to all incoming agents; upon gaining
access, the agent can write messages on the whiteboard and can read all previously
written messages. This mechanism can be used by the agents to communicate and
mark nodes or/and edges, and has been commonly employed in several mobile agents
computing investigations. (e.g. see Refs. [1,14]). Although many research questions
are still open, the existing investigations have provided a strong characterization of
the asynchronous Bhs problem using whiteboard.

The availability of whiteboards at all nodes is a requirement that is practically
expensive to guarantee and theoretically (perhaps) not necessary. This leads to
the theoretically intriguing and practically important question of whether there are
simpler and less expensive inter-communication and synchronization mechanisms

2



that would still empower the team of agents to locate the black hole. The research
focus in particular has been on the token model commonly used in the investigations
on graph exploration. In this model, each agent has available a bounded number
of tokens that can be carried, placed in a node or/and on a port of the node, or
removed from them; all tokens are identical (i.e., indistinguishable) and no other
form of communication or coordination is available to the agents. Some natural
questions immediately arise: is the Bhs problem still solvable with this weaker
mechanism, and if so under what conditions and at what cost. Notice that the use of
tokens introduces another complexity measure: the number of tokens. Indeed, if the
number of tokens is unbounded, it is possible to simulate a whiteboard environment;
hence the question immediately arises of how many tokens are really needed.

The problem of locating the BH using tokens has been examined in the case
of co-located agents, that is when all the agents start from the same node. In this
case, Bhs is indeed solvable Refs. [7,11]. In particular, in Ref. [11] it was shown
that a team of two or more co-located agents can solve Bhs with O(n log n) moves
and two (2) tokens per agent in a ring network. Notice that the ring is the sparsest
bi-connected grapha, and for which the number of moves for black hole search with
whiteboards is the worst.

The problem becomes considerably more difficult if the agents are scattered, that
is, when they start from many different sites. In particular, with scattered agents,
the presence (or lack) of orientation in the ring and knowledge of the team size are
important factors; here, oriented ring means all the agents in this ring are able to
agree on a common sense of direction. This is true also in the whiteboard model
Ref. [8]. In the token model, in particular, it is known that in an oriented rings it
is possible to locate a BH with O(1) tokens per agent performing Θ(n logn) moves
Ref. [12].

1.2. Main Results

Clearly, communication between mobile agents is considerably more restricted
(and complex) in a token model than in a whiteboard one. The question then is
whether this additional constraint complicates significantly token-based solutions
to the Bhs.

In this paper we prove that this is not the case for ring networks. In fact, we
show that, for Bhs in a ring, the token model is computationally and complexity-
wise as powerful as the whiteboard model, regardless of the initial position of the
agents and of the orientation of the topology.

More precisely, first we prove that in an un-oriented ring, the BH can be located
by a team of three or more scattered agents, each using O(1) tokens; the total
amount of moves being O(n2) in the worst case. We then show that, if there are k

(k > 4) scattered agents, the BH can be located with O(kn + n log n) moves and
O(1) tokens per agent. When k (k > 4) is a constant number, the number of moves
used can be reduced to Θ(n log n), which is optimal. These results hold even if both
agents and nodes are anonymous.

abi-connectivity is required for Bhs in asynchronous systems Ref. [9]

3



We also point out that the results we achieve in this paper are an improvement
over Ref. [12].

2. Model, Observations and Basic Tool

2.1. The Model and Basic Observations

Let R be a anonymous ring of n nodes (i.e. all the nodes look the same, they
do not have distinct identifiers). Operating on R is a set of k agents a1, a2, ..., ak.
The agents are anonymous (do not have distinct identifiers), mobile (can move
from a node to a neighboring node) and autonomous (each has computing and
bounded memory capabilities). All agents have the same behavior, i.e. follow the
same protocol, but start at the different nodes (and they may start at different and
unpredictable times), each of which is called a homebase (H for brevity).

The agents can interact with their environment and with each other only through
the means of tokens. A token is an atomic entity that the agents can see, place it in
the middle of a node or/and on a port, or remove it. Several tokens can be placed on
the same place. The agents can detect the multiplicity, but the tokens themselves
are undistinguishable from each other. Initially, there are no tokens placed in the
network, and each agent starts with some fixed number of tokens.

Note that the tokens are the only means of inter-agent communication we con-
sider. There is no read/write memory (whiteboards) for the agents to access in the
nodes, nor is there face-to-face recognition. In fact, an agent notices the presence
of another agent by recognizing the token(s) it leaves. When we say two agents
meet, there are two situations: two agents walking in the same direction meet, it
means that one agent catches up with the agent in front of it in the same direction.
Here catch up means finds the token(s) of the other agent in the same advancing
direction. When two agents walking in the opposite direction meet, we mean that
both agents find the token(s) of the other agent in the same node.

One of the nodes of the ring R is a BH. All the agents are aware of the presence
of the BH, but at the beginning the location of the BH is unknown. The goal is to
locate the BH, i.e. at the end there must be at least one agent that has not entered
the BH and knows the location of the BH.

The primary complexity measure is team size: the number of agents needed to
locate the BH. Other complexity measures we are interested in are token count : the
number of tokens each agent starts with, cost : the total number of moves executed
by the agents (worst case over all possible timings and starting locations).

The computation is asynchronous in the sense that the time an agent sleeps or is
on transit is finite but unpredictable. The links obey FIFO rule, that is, the agents
do not overtake each other when traveling over the same link in the same direction.
Because of the asynchrony, the agents can not distinguish between a slow node and
the BH. From this we get:
Lemma 1 Ref. [8] It is impossible to find the Black Hole if the size of the ring is
not known.

4



As the agents are scattered, it could be the case that there is an agent in each
neighbor of the BH, and both these agents wake up and make their first move
towards the BH. This shows that:
Lemma 2 Ref. [8] Two agents are not sufficient to locate the BH in scattered case
without knowing the orientation of the ring.

3. Algorithm Shadow Check

In this section, we present an algorithms that proves that the BH can be located
with minimum of 3 scattered agents in an un-oriented ring.

3.1. Basic Ideas, General Description and Communication

We call a node/link explored if it is visited by an agent. A safe (explored) region
consists of contiguous explored nodes and links. We call the last node an agent
explored its Last-Safe-Place (LSP for brevity). In the scattered agents case, during
the executing of Bhs, there are more than one safe regions in the ring. Our goal is
to merge all the safe regions into one, which eventually includes all the nodes and
links with the exception of the BH and the two links leading to the BH. Let us
describe how this goal is going to be achieved.

Upon waking up, an agent becomes a Junior Explorer (JE), exploring the ring
to the right (from the viewpoint of the agent) until it meets another agentb. When
two JE s meet, they both become Senior Explorers (SE), and start exploring the
ring in opposite directions. We call the explored area between these two SE s a safe
region for them. A SE explores the ring, growing its safe region and checking after
each newly explored node whether the safe region contains all the nodes except the
BH. When two SE s moving in opposite directions meet, the two safe regions merge
into a bigger safe region. The two meeting SE s become Checkers and check the size
of the new safe region. There could be more than one such safe region in the whole
ring. When a JE sees a safe region(i.e., it encounters a SE ), it becomes Passive
(stops being active).

When no unusual event occurs, each SE repeats the following cycle: it leaves
two (SE s use two tokens) tokens on the port (if there is no token on this port) of
the unexplored link on which it is going to move next. Once it reaches the node
(if it is not the BH ), the SE leaves there two tokens on the port from which it did
not enter that node. It returns to the previous node, picks up the token(s) on the
port it used, then returns to the last explored node. If, between cycles, an agent
notices any unusual event (e.g., token situation changes on certain ports of a node),
it stops the cycle and acts according to this interruption. The details of possible
interruptions are explained later.

3.2. Using Tokens for Communication and coordination

The communication and coordination between the agents are described as fol-
lows:

bmore precisely, finds a token of another agent

5



• One token on the port means a JE is exploring the link via this port.

• Two tokens on the port means a SE is exploring the link vis this port.

• One token on the port and one token in the middle means this is the node in
which two opposite direction JE s meet.

• One token on each port means this is the node in which one JE catches up
with another JE in the same direction.

We are going to explain the details of the algorithm in the next sub-sections.
In order to make the algorithm simpler to understand, we describe the procedure
“Junior/Senior Explorer” from the viewpoint of the agents, who agree on the same
”right” direction. The procedure for all the agents who agree on the same ”left”
direction can be achieved by changing the word ”right” into ”left”, and ”left” into
”right”.

3.3. Procedure “Initialize” and “Junior Explorer”

A JE will eventually either end up in the BH or become a Checker upon meet ing
a SE or a potential SE, or become a SE upon meet ing another JE. A potential SE
refers to the status of a JE after it either met another JE in the same direction or
a different direction, but before it becomes a SE.

Once an agent wakes up, it becomes an JE that will immediately go to the
next node to its right after putting a token on the right port. There are 6 possible
situations a JE may encounter upon arriving at its right neighbor node u. Now we
can look at the details (expressed with respect the agent at hand) of each case:

• Case 1
The agent A puts one token in the middle, then goes back to the left node. If
there is a SE caught up with agent A, then A will become a Checker to the
left. If the agent it just met (let’s say B) in the opposite direction also left A

a sign (a token in the middle), then A will become a SE to the left. If A is
caught up by another JE in the same direction, A will pick up all the tokens,
then become a Checker to the right.

• Case 2
The agent A goes back to the left node. If A is caught up by another JE, it
will become a Checker to the right. If A notices that the SE it just met in the
opposite direction left A a sign(a token in the middle), then it will become
Passive immediately. If the JE A just met left A a sign, then A will become
a SE to the left.

• Case 3
The agent A puts one token on the left port, then goes back to the left node.
If A’s token is still there, it will move this token to the left port, add one
more token on the left port then it becomes a SE to the left. If either A sees

6



the sign a SE it just met left to it, or A is caught up by another JE, it will
become Passive immediately.

• Case 4
The agent A goes back to the left node. If A’s token is still there, then it
will pick the token and then become Passive. If A is caught up by a SE, then
it will become Passive. If A is caught up by another JE, it will pick up the
tokens, then become a Checker to the right.

• Case 5
The agent A returns to the left node. If A is caught up by a SE, then it
becomes Passive. If A is caught up by another JE, it will become a Checker
to the right. If it notices that the JE it just met left it a sign (a token in the
middle), then it will move the two tokens to the left port and become a SE
to the left.

• Case 6
The agent A puts a token on the right port then goes back to the left node.
If A’s token is still there, then it will pick the token and continue as a JE. If
it is caught up by a SE, then it will become Passive. If A is caught up by an
other JE, then it will become a SE to the right.

The pseudo code of procedure “Initialization” and “Junior Explorer” are in
Algorithm 1, 2, 3, 4.

Algorithm 1 Algorithm Shadow Check — Procedure “Initialization” and “Junior
Explorer”
1: procedure Initialization
2: wakes up and puts a token on the right port then execute Junior Explorer(right)
3: end procedure
4: procedure Junior Explorer(right)
5: loop
6: walk to the right node
7: if there is 1 token on the left port then
8: execute Case 1
9: else if there are 2 tokens on the left port then

10: execute Case 2
11: else if there is 1 token on the right port then
12: execute Case 3
13: else if there is 1 token in the middle and 1 on the right port then
14: execute Case 4
15: else if there is nothing in the node then
16: execute Case 5
17: else if there is 1 token on each port then
18: execute Case 6
19: end if
20: end loop
21: end procedure

7



Algorithm 2 Algorithm Shadow Check — Procedure “Junior Explorer” — Cases
1 and 2
1: procedure Case 1
2: put 1 token in the middle of the node, go back to the left node
3: if there are 2 tokens on the right port then
4: execute Checker(left)
5: else if there is 1 token on the right port and 1 token in the middle then
6: execute Senior Explorer(left)
7: else if there is 1 token on each port then
8: pick up all the tokens, execute Checker(right)
9: end if

10: end procedure
11: procedure Case 2
12: go back to the left node
13: if there is 1 token on each port then
14: execute Checker(right)
15: else if there are 2 token on the left port then
16: become Passive
17: else if there is 1 token on the right port and 1 in the middle then
18: execute Senior Explorer(left)
19: end if
20: end procedure

Algorithm 3 Algorithm Shadow Check — Procedure “Junior Explorer” — Cases
3 and 4
1: procedure Case 3
2: put 1 token on the left port, go back to the left node
3: if there is only 1 token on the right port then
4: move this token to the left port, add one more token on the left port,
5: execute Senior Explorer(left)
6: else if there are 2 tokens on the right port or 1 token on each port then
7: become Passive
8: end if
9: end procedure

10: procedure Case 4
11: go back to the left node
12: if there is 1 token on the right port then
13: pick the token then become Passive
14: else if there are 2 token on the right port then
15: become Passive
16: else if there is 1 token on each port then
17: pick up the tokens, execute Checker(right)
18: end if
19: end procedure

8



Algorithm 4 Algorithm Shadow Check — Procedure “Junior Explorer” — Cases
5 and 6
1: procedure Case 5
2: return to the left node
3: if there are 2 tokens on the right port then
4: become Passive
5: else if there is 1 token on each port then
6: execute Checker(right)
7: else if there is 1 token on right port and in the middle then
8: move the 2 tokens to the left port, execute Senior Explorer(left)
9: end if

10: end procedure
11: procedure Case 6
12: put a token on the right port, go back to the left node
13: if there is 1 token on the right port then
14: pick the token and execute Junior Explorer(right)
15: else if there are 2 tokens on the right port then
16: becomes Passive
17: else if there are 1 token on each port then
18: execute Senior Explorer(right)
19: end if
20: end procedure

3.4. Procedure “Checker”

A Checker is created when an agent realizes it is in the middle of two SE s
exploring in different directions. The purpose of the Checker is to check the distance
between the two SE s. A Checker keeps walking to the right until it either sees the
token of a SE going to the right, or a node with one token on each port. If the
distance is n − 2, that means that two agents have died in the BH, and the only
node left is the BH. Otherwise, it keeps walking to the left until it either sees the
token of a SE going to the right, or a node with one token on each port. If now
the distance is n− 2, then it will become DONE (the BH is located), otherwise it
becomes Passive immediately.

The pseudo code of procedure “Checker” is in Algorithm 5

9



Algorithm 5 Algorithm Shadow Check — Procedure “Checker”
1: procedure Checker
2: repeat
3: walk to the right
4: until meet a node with either 2 tokens on the right port or 1 token on each port
5: dist = 0
6: repeat
7: walk to the left increasing dist
8: until there are 2 tokens on the left port or 1 token on each port of a node
9: if dist = n − 2 then

10: become DONE
11: else
12: become Passive
13: end if
14: end procedure

3.5. Procedure “Senior Explorer”

A senior explorer will eventually either end up in the BH or locate the BH,
or become a Checker upon meet ing another SE or a potential SE. A potential SE
means a status of a JE after it either met another JE in the same direction or
different direction, but before it becomes a SE. A SE walks to the right node. If
it meets another SE in the different direction (we say: faces a SE ), it will pick up
all the tokens and become a Checker to the right. If it realizes it is the node which
two JE s in the different directions met, it will then become a Checker to the right.
If it realizes this node is where two JE s in the same direction met, it will then go
back to the left port, pick up all the tokens and become a Checker. If it meets a JE
going to the left, then it will pick the token on the left port, put two tokens on the
right ports and go back to the left node and pick up the two tokens on the right
port. Then the SE will execute the check phase to the left. If it meets a JE going
to the right, then it will put one more token on the right port, go back to the left
node; pick up the two tokens on the right port, then execute the check phase to the
left. If the node is empty, the SE will then put two tokens on the right ports, go
back to the left node; pick up the two tokens on the right port, then execute the
check phase to the left.

Once a SE is in the check phase, it walks to the left until it either sees the token
of a SE going to the right, or a token with one token on each port. If there are n−2
links in the safe region, then it will become DONE, otherwise it goes back to its
LSP. If there is no token on the right port of its LSP, it then will become Passive.

The pseudo code of procedure “Senior Explorer” is in Algorithm 6.

10



Algorithm 6 Algorithm Shadow Check — Procedure “Senior Explorer” — right
agents
1: procedure Senior explorer(right)
2: loop
3: walk to the right node
4: if there are 2 tokens on the left port then . face to face to a SE
5: pick up all the tokens, execute Checker(right)
6: else if there is 1 token in the middle of the node and 1 token on the right port

then
7: execute Checker(right)
8: else if there is 1 token on each port then
9: go back to the left port, pick up all the tokens, execute Checker(right)

10: else if there is 1 token on the left port then
11: put 2 tokens on the right port, pick up the token on the left port
12: go back to the left node, pick up the two tokens on the right port
13: else if there is 1 token on the right port then
14: put 1 more token on the right port, go back to the left node; pick up the 2

tokens on the right port
15: else
16: put 2 tokens on the right port, go back to the left node; pick up the 2 tokens

on the right port
17: end if
18: Walk to the left until found a node with 2 tokens on the left port or 1 token on

each port, increasing dist
19: if dist = n − 2 then
20: become DONE
21: else
22: Return dist steps to the right
23: if there is no token on the right port of the node then
24: become Passive
25: end if
26: end if
27: end loop
28: end procedure

3.6. Analysis of Algorithm Shadow Check

According to Lemma 2, we assume there are at least three agents in the ring
network. The following lemmas and corollary hold.
Lemma 3 Eventually there is at least one SE.
Proof. Given there are at least three agents in the ring, there are at least two JE s
exploring the ring in the same direction. Sooner or later, the third JE will meet one
of the other JE. Hence, in such case, at least two SE s will be created. But consider
the situation of only three agents wake up during the entire execution, two agents
died in the black hole as JE s. In this case, the third agent will sooner or later sees
the token that a JE left before it went into the BH. The third JE then becomes
a SE and starts exploring in the backward direction. Eventually, it will reach the
token that the other dead JE left. Given the two JE both died in the black hole,

11



the distance (on the explored segment) between the two tokens is n−2. So the only
SE will be able to tell the location of the black hole correctly. 2

Corollary 1 At most two agents enter the BH.
Proof. Given before any explorer (JE or SE ) explores a new node, it leaves one or
two tokens in the current node as a marker. There is no other agent (a JE, a SE or
a Checker) goes beyond the node with marking token(s). If this agent successfully
explored a empty node, then it goes back to the node, in which it left a token. If
the node is the same as before this agent left, the agent will then pick up the token
and continue exploring the next node along the ring. This mechanism insures that
there is no more than one agent explores a node via the same link. Given there are
only two links adjacent to each node, there are two links leading to the BH. Hence
there is at most one agent enters the BH from either link connects to the BH, which
means there are at most two agents enters the BH. 2

Lemma 4 A safe region will be created.
Proof. Lemma 3 shows there is at least one SE during the execution. According
to the definition of a SE : two JE meeting (a JE sees the token of the other JE )
each other will create two SE s. These two SE s will explore the ring in opposite
directions starting from the same node. Hence safe region is created. When there
are only three agents wake up in the entire execution and two JE s die in the BH
before meet any other agent (see Lemma 1), the third JE will sooner or later meet
a token which a JE left before die in the BH. A safe region is also created between
the third JE and the LSP of another JE (died in the BH ). 2

Lemma 5 Whenever the length of a safe region increases, it will be checked.
Proof. In the case of there are at least two SE s in the network, The two explorers
at each end of a safe region keep advancing. Each of them does not stop until meets
another SE or die in the BH or finds out that the length of its safe region is n− 2
(links) during checking phase.

When a SE meets another SE, according to the algorithm, both of them become
Checkers. Hence, the two safe regions merge correctly.

Otherwise, when a SE meets a JE, the JE picks its token if it is still there
then becomes Passive immediately. The SE will keep exploring after picking up
the token of the JE.

When one SE dies in the BH, the other will keep exploring the ring until it
figures out the length of the segment is n − 2 during its own checking steps. In
either case the segment still keeps grow correctly until reaches length n− 2. 2

Lemma 6 The length of a safe region keeps increasing until contains n − 2 links
or n− 1 nodes.
Proof. A safe region is between two SE s. We observe the fact that each SE goes
to check the location of the other SE in the same safe region, after exploring one
more node. A SE terminates the algorithm as soon as it notices that the length of
the safe region between the two LSP is n− 2. This procedure ensures that if there
are only two SE s left, they will not both die in the BH. If one SE died in the BH,
the surviving agent will sooner or later advance to the node next to the BH, then

12



while seeking for its partner, it will notice the distance between the two LSPs is
n− 2. The only node left between the two unexplored links is the BH. 2

Theorem 1 Algorithm Shadow Check correctly locates the BH with k (k > 3)
scattered agents in an un-oriented anonymous ring network. The total cost is O(n2)
moves and, 5 tokens per agent.
Proof. According to the above lemmas, three scattered agents are enough to locate
the BH.

Now let us analyze the move cost: because there are k scattered agents, there
is a maximum of k/2 safe regions in the ring. In procedure “Senior Explorer”, an
agent traverses its safe region once it explores one more node. There is a maximum
2n moves in each such traversal. There are at most n nodes in the ring, which
means there are at most n such traversals. So, O(n2) moves are used. In procedure
“Checker”, the maximum number of each check is 2n. A check can be triggered
by either two safe regions merging or the SE this Checker follows exploring one
more node. Given, there are no more than k/2 merges and n such checks, the total
number of moves in procedure “Checker” is no more than 2n2. Hence, the total
move cost is O(n2).

Now we analyze the token cost: a JE uses one token on the port to mark its
progress. Once a JE meets another JE, one extra token is used to mark the node
in which the two JE s meet and form a pair of SE s. This token will stay in the node
until the algorithm terminates. A SE puts two tokens on the port as soon as it is
created. It puts another two tokens on the port of the next node to mark progress.
The first two tokens will be picked up and reused when exploring the next node.
Hence, at most 1 + 2 + 2 = 5 tokens are used by each agent. 2

4. Algorithm Modified ‘Shadow Check’

4.1. Motivation

In the previous section, we presented algorithm Shadow Check that handles the
Bhs problem in an un-oriented ring with a minimum of 3 scattered agents and 5
tokens per agents. According to Theorem 1, an agent in one of the k/2 safe regions,
traverses its safe region every time it explores one more node in order to check the
size of this safe region. This is due to requiring minimum team size: Since there are
only 3 agents in total, and because of the definition of Checker, it is obvious that
there is at most one Checker formed in algorithm Shadow Check. So the explorers
have to both explore the ring and check the size of the safe region. This cost (n2)
moves in the worst case.

After considering what kind of cost would we obtain if we had one more agent,
we modify the algorithm slightly. The modified algorithm Modified ‘Shadow Check’
is such that:

• it can handle 4 or more scattered agents instead of 3;

• eventually there will be two Checkers formed and O(kn + n log n) moves are

13



used for an arbitrary k. If k (k > 4) is a constant number, the move cost can
be reduced to Θ(n log n)

4.2. Modification

We can obtain algorithm Modified ‘Shadow Check’ by performing the following
modifications on algorithm Shadow Check :

1. In procedure “Junior Explorer”: change all the action ”become Passive” of
a JE in algorithm Shadow Check, into ”become a SE in the same direction
reusing the two tokens of the caught up SE”, whenever this JE is caught up
by a SE.

2. In procedure “Senior Explorer”, there are two types of SE s: a SE with a
Checker and a SE without a Checker.

• a SE with a Checker : marked as three tokens on the port (the extra
token is added by its Checker).

• a SE without a Checker : marked as two tokens on the port.

In both procedures, the ‘check phase’ in algorithm Shadow Check is deleted;
Instead, as soon as it caught up with a JE, it will becomes a Checker in the
opposite direction;

• In procedure “a SE with a Checker”: as soon as a SE with a Checker
faces another SE with/without a Checker, it becomes Passive. Other-
wise, it continues exploring.

• In procedure “a SE without a Checker”: as soon as a SE without a
Checker faces another SE with/without a Checker, it becomes a Checker.
Otherwise it continues exploring.

3. The procedure “Checker” is modified as follows:

A Checker is created when it realizes it is in the middle of two SE s exploring
in different directions. Once an agent becomes a Checker, it checks the size
(number of nodes) of the safe region once, namely, it walks until the LSP
of a SE with/without a Checker, then changes direction, walks and keeps
counting the number of nodes it passes, until it arrives in the LSP of another
SE without a Checker. We call this a check and this second SE the SE of this
Checker. Let L denote the size of a safe region. Now this Checker puts an
extra token on the port where its SE left two tokens. But if what this Checker
meets is a SE with a Checker, then this Checker leaves a token in the middle
of the node and becomes Passive immediately. There are two situations that
can trigger a Checker to check again:

14



• Merging check : there is a token in the middle of the LSP of the SE of
this Checker. This is caused by two safe regions merging. This Checker
then picks up the token in the middle and performs a check in order to
update L.

• Dividing check : this Checker followed its SE for b(n− L)/2c steps.

If while a Checker is following its SE, it notices that its SE became Passive
(i.e., no token or not three tokens on the port in the next node), it then keeps
walking until it sees the LSP of another SE. If it is a SE without a Checker,
then this Checker becomes a Checker of this SE ; otherwise, this Checker puts
a token in the middle of this LSP and becomes Passive immediately.

If while a Checker is check ing the length of its safe region L, it notices that
the safe region contains n − 1 links. Then the BH is located: the only node
left unexplored is the BH.

The pseudo code of procedure “Checker” follows:

Algorithm 7 Algorithm Modified ‘Shadow Check’ — Procedure “Checker”
1: procedure Checker
2: loop
3: dist = 0
4: repeat
5: keep walking to the right and increase dist
6: until there are 2 tokens on the left port or 1 token on each port of a node or

dist = n − 2
7: if dist = 0 then
8: become DONE
9: else

10: dist = 0
11: repeat
12: walk to the left and increase dist
13: until there are 2 tokens on the left port or 1 token on each port of a node
14: if dist = n − 2 then
15: become DONE
16: else
17: follow the SE for b(n − dist)/2c nodes
18: end if
19: end if
20: end loop
21: end procedure

4.3. Correctness and complexity

Given there are at least 4 agents in the ring, we know:
Lemma 7 At least two SEs are formed in algorithm Modified ‘Shadow Check’.
Lemma 8 Eventually at least two Checkers will be formed.

15



Proof. Assume there are only 4 agents in the ring and all the agents are still
JE s even after two of them died in the BH. The JE s left will either meet each other
then become two SE s or eventually sees the token the JE died in the BH. If it is the
first case, the two SE s will then explore the ring in opposite directions. Eventually
each of them will see the token of the JE which died in the BH, then the SE will
become a Checker. Hence there are two Checkers will eventually be created. If it is
the second case, then there would be two pairs of SE s were formed if the two JE s
did not go into the BH. This proves Corollary 7. The two surviving SE s will then
exploring the ring in the opposite directions. Eventually they will meet and form
two Checkers consequently. The case of more than 4 agents applies the same result.
Hence, eventually there are at least two Checkers. 2

Theorem 2 Algorithm Modified ‘Shadow Check’ correctly locates the BH
Proof. According to Corollary 1 and Lemma 7 and 8, eventually there will be two
Checkers formed/left which keep checking the size of the safe region until the only
safe region in the ring contains n−1 nodes or n−2 links. Hence the BH is correctly
located. 2

Theorem 3 Algorithm Modified ‘Shadow Check’ correctly locates the BH in an
un-oriented ring with k (k > 4) scattered agents, each having 5 tokens. When k is
arbitrary, the total cost is O(kn+n log n). If k is a constant number, then the total
move cost is Θ(n log n).
Proof. First we analyze the move cost: a SE with/without a Checker keeps explor-
ing nodes along the ring without turning back. There are at most n such moves in
total. In procedure “Checker”, the maximum number of moves in each check is 2n,
and there are no more than log n Dividing checks, given a Checker does not proceed
with the next Dividing check until it follows its SE for b(n − L)/2c steps. There
are no more than k/2 Merging Checks in total, given k scattered agents can form
at most k/2 safe regions. So the total number of moves in procedure “Checker”
is no more than kn + 2n log n. When k (k > 4) is a constant number, the total
number of moves in procedure “Checker” becomes O(n log n), and the total move
cost is O(n log n). The lower bound follows from the whiteboard model presented
in [8]. Hence the total cost of moves is optimal when four or more (O(1)) scattered
agents searching for a BH in an un-oriented ring.

Now we analyze the token cost: as we know that except for in procedure
“Checker”, a Checker uses one more token compared to a Checker in algorithm
Shadow Check, no other modification affects the number of tokens used by each
agent. According to the algorithm, a Checker uses a token only once in its lifespan.
Also, according to Theorem 1: five tokens per agent are used in algorithm Shadow
Check. Hence, 5 tokens per agent suffice to locate the BH in algorithm Modified
‘Shadow Check’. 2

5. Conclusion

In this paper, we proved that locating the Black Hole in an anonymous ring
network using tokens is feasible even if the agents are scattered and the the orien-
tation of the topology is unknown. Thus, we proved that, for the black hole search

16



problem, the token model is as powerful as the whiteboard regardless of the initial
position of the agents.

From the results we obtain in this paper, we observe that there is a tradeoff be-
tween the team size (number of agents) and the costs (number of moves and number
of tokens used). Since both algorithms we presented require only a constant number
of tokens per agent, we are unable to simulate the distance identity presented in
Ref. [8], which is crucial in order to achieve Θ(n log n) moves with optimal team size
(3 agents). But with one more agent, the token model is as powerful as the white-
board with respect to Bhs in an un-oriented ring. And memorywise our algorithms
represent a considerable improvement on the whiteboard model.

Acknowledgements

This section should come before the References. Funding information may also
be included here.

References

1. L. Barriere and P. Flocchini and P. Fraigniaud and N. Santoro, “Rendezvous and
election of mobile agents: Impact of sense of direction,” Theory of Computing Sys-
tems. (2007) to appear.

2. D. M. Chess, “Security issues in mobile code systems,” in Proc. of 1998 Conf. on
Mobile Agent Security (MAS’98), LNCS 1419, 1998, pp. 1–14.

3. C. Cooper and R. Klasing and T. Radzik, “Searching for black-hole faults in a net-
work using multiple agents,” in Proc. of 10th Int. Conf. on Principles of Distributed
Systems (OPODIS’06), 2006, pp. 320–332.

4. J. Czyzowicz and D. Kowalski and E. Markou and A. Pelc, “Complexity of searching
for a black hole,” Fundamenta Informatica. 71(2-3)(2006) 229–242.

5. J. Czyzowicz and D. Kowalski and E. Markou and A. Pelc, “Searching for a black hole
in synchronous tree networks,” Combinatorics, Probability and Computing. (2007)
to appear.

6. S. Dobrev and P. Flocchini and R. Kralovic and G. Prencipe and P. Ruzicka and
N. Santoro, “Optimal search for a black hole in common interconnection networks,”
Networks. 47 (2006) 61–71.

7. S. Dobrev and P. Flocchini and G. Prencipe and N. Santoro, “Exploring a dangerous
unknown graph using tokens” in Proc. of 5th IFIP International Conference on
Theoretical Computer Science (TCS’06), 2006, pp. 169–180.

8. S. Dobrev and P. Flocchini and G. Prencipe and N. Santoro, “Mobile search for a
black hole in an anonymous ring,” Algorithmica. (2007) to appear.

9. S. Dobrev and P. Flocchini and G. Prencipe and N. Santoro, “Searching for a black
hole in arbitrary networks: Optimal mobile agent protocols,” Distributed Computing.
(2007) to appear.

10. S. Dobrev and P. Flocchini and N. Santoro, “Cycling through a dangerous network:
a simple efficient strategy for black hole search” in Proc. of 26th International
Conference on Distributed Computing Systems (ICDCS’06), 2006, pp. 57.

11. S. Dobrev and R. Kralovic and N. Santoro and W. Shi, “Black hole search in asyn-
chronous rings using tokens” in Proc. of 6th Conference on Algorithms and Com-
plexity (CIAC’06), 2006, pp. 139–150.

17



12. S. Dobrev and N. Santoro and W. Shi, “Scattered black hole search in an oriented
ring using tokens” in Proc. of 9th Workshop on Advances in Parallel and Distributed
Computational Models (APDCM’07), 2007, pp. to appear.

13. S. Dobrev and N. Santoro and W. Shi, “Locating a black hole in a ring using tokens:
The case of scattered agents” in Proc. of 13th International Euro-Par Conference,
European Conference on Parallel and Distributed Computing (Euro-Par’07), 2007,
pp. to appear.

14. P. Fraigniaud and D. Ilcinkas, “Digraph exploration with little memory” in Proc.
of 21st Symp. on Theoretical Aspects of Computer Science (STACS’04), 2004, pp.
246–257.

15. M. Greenberg and J. Byington and D. G. Harper, “Mobile agents and security,”
IEEE Commun. Mag. 36(7) (1998) 76–85.

16. R. Klasing and E. Markou and T. Radzik and F. Sarracco, “Hardness and approxi-
mation results for black hole search in arbitrary networks,” Structural Information
and Communication Complexity. 3499 (2005) 200–215.

17. R. Oppliger, “Security issues related to mobile code and agent-based systems,” Com-
puter Communications. 22(12) (1999) 1165–1170.

18


