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Abstract 

We present an evaluation of a new selection technique for virtual reality (VR) 

systems presented on head-mounted displays. The technique, dubbed EZCursorVR, 

presents a 2D cursor that moves in a head-fixed plane, simulating a 2D desktop-like cursor 

for VR. The cursor can be controlled by any 2 degree of freedom (DOF) and 3/6DOF input 

device. We conducted two experiments based on ISO 9241-9. In the first study, we 

compared the effectiveness of EZCursorVR using six different controllers. Results indicate 

that the mouse offered the best performance, while the position-control joystick performed 

the worst. In the second study we evaluate EZCursorVR using three different transfer 

functions using the mouse with different degrees of cursor acceleration. Results indicate 

that, despite previous research, constant acceleration performed better than the other two 

transfer functions. We believe that future evaluation needs to be conducted to evaluate 

different acceleration curve steepnesses using the same transfer function.  
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1    Chapter: Introduction 

Selection is a fundamental task in virtual reality (VR) user interaction, and involves 

specifying a point or object for subsequent operations. Consider, for example, shooting an 

enemy in a VR first-person shooter game, or grasping a virtual object presented in a 

museum exhibit; both tasks involve selection of targets. Selection in VR has traditionally 

been divided into two (rough) classes of virtual hands (requiring depth precision to grasp 

an object) and ray-based techniques (requiring remote pointing at a target) [3]. There are 

numerous selection techniques that have been previously developed for use in VR (see e.g., 

[1,2,11,16]). Previous work has shown that two dimensional (2D) selection techniques 

outperform three dimensional (3D) selection techniques [4,29,41,42]. As of yet, no such 

technique exits for use with head mounted displays (HMDs). Therefore, we developed a 

2D section technique for use with HMDs to address the question: Does 2D based input 

offer better performance in comparison to 3D based input in HMD VR environments? 

One common selection technique used with devices such as Microsoft’s Hololens 

and various “cardboard” VR1 displays is to use a ray cast from the head (controlled by head 

rotation) in lieu of a 3D wand, presenting a cursor fixed in the centre of the screen. 

However, since the viewpoint is coupled to the selection ray, this can yield excessive head 

motion which in turn can cause neck fatigue, and disorient users. Worse, the excessive head 

movement of the user may induce nausea and cybersickness [12]. To avoid these problems, 

most modern head-mounted displays (e.g., the Oculus Rift, and HTC Vive) employ tracked 

wand input devices. While immersive, 6 degree of freedom (6DOF) devices employing 

                                                 

1 Including devices that use a smartphone as the display such as Google Cardboard (https://vr.google.com/cardboard/) and Samsung’s Gear VR 

(http://www.samsung.com/global/galaxy/gear-vr/)  

 

https://vr.google.com/cardboard/
http://www.samsung.com/global/galaxy/gear-vr/


 2 

typical virtual hand or ray-based selection techniques can be problematic. Depth perception 

is imprecise leading to inaccuracy with selection methods that require accuracy in 

depth [7,45], and latency (input lag) and jitter (input noise) remain problems, especially 

with ray-based techniques [41]. LaViola et al. recommend minimizing the number of DOFs 

when considering the design of a selection device or technique [20]. Furthermore, previous 

work has shown that 2DOF selection can offer superior performance, even in stereo 3D 

virtual environments [4,43].  

Based on these observations, we designed and implemented a novel selection 

technique we call EZCursorVR.  The intended advantages of EZCursorVR include low 

fatigue due to no in-air control, potentially greater precision via 2DOF input devices (both 

in depth and lateral axes) and a shallow learning curve to start using EZCursorVR. 

EZCursorVR is a 2D head-coupled cursor fixed in the screen plane of the head mounted 

display (HMD). Unlike stationary cursors in the center of the field of view (as used with 

Hololens, for example), EZCursorVR can move independently using 2DOF input from any 

peripheral input device, employing position or rate-control mappings. Several non-VR 

games such as ArmA2 use this method of aiming. Unlike most first-person shooter (FPS) 

games, where the mouse simultaneously controls the cursor and rotates the viewpoint, 

ArmA decouples these: moving the mouse controls the cursor, and viewpoint rotation 

begins when the cursor reaches the screen edge. Some Nintendo Wii games (e.g., 

GoldenEye) use a similar technique, with the remote pointing controller, effectively 

allowing the player to decouple view direction and selection. This effective style of 

interaction was our inspiration for EZCursorVR. In addition to supporting any source of 

                                                 

2 https://arma3.com/ 

https://arma3.com/
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2DOF input, EZCursorVR also allows users to use their head rotation to perform selections, 

or a combination of both head rotation and 2DOF input. EZCursorVR’s selection ray 

operates like a standard head selection ray, with the exception of the ability to control the 

ray using an external 2D (or 3D) controller in addition to head movement. 

We note that EZCursorVR supports combinations of head and controller movement 

for selection. We believe that using a 2D controller cursor with VR HMDs will offer overall 

superior selection performance when compared to traditional 3D selection techniques 

while vastly reducing fatigue. EZCursor VR also allows the option for users to use head-

based movement to get the cursor in the general vicinity of a target, and then use the mouse 

(or other input device) to perform fine-grained positioning.  

EZCursorVR’s 2D cursor implementation also allows for the ability to apply a 

transfer function to modify the cursor’s acceleration. This may be useful by reducing the 

cursor’s CD gain with slow movements in order to better select small perspective-scaled 

targets, while at the same time increasing the CD gain with fast movements for long-range 

ballistic motions, which is turn will benefit selection performance in VR  

1.1 Contributions 

The first contribution of this thesis is design, implementation and evaluation of a 2D head-

coupled cursor for selection in VR environments. We also developed and released a 

framework for evaluating selection performance in 3D VR HMDs that can be used in other 

future studies. Our second contribution features the implementation and evaluation of 

several transfer functions to determine their performance when compared to the cursor’s 

constant velocity. This is, to our knowledge, the first study involving the study of transfer 

functions in VR. We also evaluate the cursor’s performance with head tracking on and off 
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to reveal the effects of head movement on the cursors performance. Participant’s opinions 

on the different cursor and acceleration function designs are gathered as qualitative data. 

1.2 Thesis Outline 

The thesis is divided into five Chapters: 

Chapter 1 introduces the importance as well as the disadvantages with the current 

VR selection techniques.  

Chapter 2 provides insight and discussion regarding previous related research that 

has been done on 3D Selection Techniques, 2D vs 3D Selection, Fitts’ Law, VR Input 

Devices and Control-Display Gain and Transfer Functions. 

Chapter 3 describes the design and implementation of our 2DCursor, called 

EZCursorVR. 

Chapter 4 presents our initial user study investigating the effectiveness of our 2D 

cursor technique using multiple input devices, in comparison to a standard 6DOF ray-based 

and head-based selection techniques. The experiment conformed to a previously validated 

3D extension [43] of ISO 9421-9 [38] which uses Fitts’ law to compare pointing devices 

[13]. 

Chapter 5 extends upon the EZCursorVR framework by implementing and testing 

two transfer functions that dynamically changes the gain in relation to the acceleration of 

the device as well as test with a constant gain level as a baseline condition and then 

performed a follow up user study using the same ISO 9421-9 [38] standard methodology 

based on Fitts’ law to compare pointing device performance [13]. We present what is, to 

our knowledge, the first experiment on the use of CD gain and transfer functions for 2D 

selection in 3D environments. We also provide insight into what transfer function 
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parameters provide the best selection performance by testing with two sets of parameters 

in our transfer function. 

Finally, Chapter 6 draws conclusion from both user studies and generally discusses 

both qualitative and quantitively results, suggests design considerations, and provides 

insight into future studies and improvements that can be done. 

1.3 Associated Publications 

Excerpts from this thesis are featured in the following publications [35] 

1. Ramcharitar, A., & Teather, R. J. (2018). EZCursorVR: 2D selection with virtual 

reality head-mounted displays. In Proceedings of Graphics Interface 2018. pp.123-

130. https://doi.org/10.20380/GI2018.17 

2. Ramcharitar, A., & Teather, R. J. (2017). A head coupled cursor for 2D selection in 

virtual reality. In Proceedings of the ACM Symposium on Spatial User Interaction 

(SUI ’17), pp. 162–162. ACM Press. https://doi.org/10.1145/3131277.3134358 
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2    Chapter: Related Work 

The following chapter covers research previously done on 3D Selection Techniques, 2D 

vs 3D Selection, Fitts’ Law, VR Input Devices and Control-Display Gain and Transfer 

Functions.  

2.1 3D Selection Techniques 

There is an extensive body of literature on 3D selection techniques, dating back to 

the 90s. For the sake of brevity, we discuss only key studies here, and refer the reader to 

Argelaguet and Andujar’s comprehensive 3D selection survey [1] and/or LaViola, Kruijff, 

McMahan, Bowman, and Poupyrev  [20 , Chapter 7] for a more thorough overview.  

Past studies have compared variations of direct touch [22] with ray-based 

techniques. Traditional ray-based techniques, although the most commonly used technique 

in commercial VR systems, are susceptible to hand tremor which at far distances and when 

selecting smaller targets yield high error rates [40]. Several methods to addressed these 

issues have been proposed such as the bubble cursor [14,46] and go-go [32], which were 

designed to support easier selection of remote or small targets by changing the style of the 

selection cursor. Non-traditional 3D selection techniques such as starfish (which uses a 

cursor with four branches that lands on nearby targets) are useful for selection in dense 

environments [48]. However, non-standard techniques may necessitate additional learning. 

In contrast, EZCursorVR should be easy to understand due to its similarity to desktop 

interaction – users already have extensive experience with two-dimensional cursors and 

can leverage their familiarity. 

Previous research has also looked at progressive refinement selection interfaces. 

Kopper, Bacim and Bowman proposed a two tier selection process where to user first 
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selects a group of objects, then in multiple steps, refines the selection using a quad divided 

menu for increased object selection accuracy [19]. They report that this was more accurate 

at selecting remote objects compared to ray-casting. Similarly, our proposed technique 

allows combinations of 2DOF input for cursor movement with refinement via head 

movement (or vice versa). Unlike progressive refinement techniques, this can be done 

simultaneously rather than dividing the selection process into multiple steps.  

Young, Teather and Mackenzie developed an IMU-based input device mounted on 

the users’ arm to enabled 6DOF target selection via virtual hand techniques [49]. Such a 

device is an attractive option for use with EZCursorVR since it does not require tethering 

as it is largely self-contained and does not require an external tracker. Although the results 

show a lower error rate than optical trackers, throughput was lower and arm fatigue was 

very high. Fatigue is a major on-going problem with VR controllers [6,15]. Our goal with 

EZCursorVR was to design a control scheme that supports the kind of “lazy” interactions 

envisioned by Mine, Brooks and Sequin [26], using an approach to minimize physical 

movements (and hence fatigue) while increasing target selection throughput. 

2.2 2D vs 3D Selection 

Generally, using a 2D selection technique in VR can offer less complexity when 

performing selections in comparison to a 3D selection technique [20]. This is mostly 

attributed to 2D selection techniques having fewer number of DOFs when compared to 3D 

selection techniques.  2D selections are most likely to be familiar with a wider pool of users 

that are already accustomed to performing 2D sections with, for example, a desktop mouse 

or Wii controller. This drastically reduces the learnability curve and therefore allows users 
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to experience VR without taking an extensive amount of time to learn new controls and 

allowing them to jump right into experiencing VR. 

Image-plane interaction is an early example of leveraging the benefits of 2D 

interaction in 3D spaces [30]. Like our technique, it requires only 2DOF input to select 

objects, but does so by lining up the hand with objects rather than explicit use of a cursor. 

We provide a detailed comparison between our technique and image-plane interaction in 

Section 3.3. 

Like previous work [22,41,43] our selection task presents targets in a plane. When 

viewed from the starting position, this essentially “collapses” the 3D selection task into a 

2D task [21]. Our selection technique is similar to that of Qian and Teather, who used a 2D 

eye-controlled cursor that moved within the reference-frame established by head 

orientation [33], however, our technique can use any 2DOF device, including the eyes to 

perform selections. Eye-based selection was shown to offer worse error rates and 

throughput than head-based selection. This is likely due to the imprecise and jittery nature 

of eye saccades. We expect different results, as our implementation used lower jitter 

controller inputs such as a joystick and mouse. Hence, we expect our results to be more in 

line with previous comparisons of 2D and 3D selection [44,47] which revealed 2D 

techniques outperformed 3D techniques [28,30].   

One issue with using 2D selection cursors in stereo 3D environments is having two 

cursor images – double vision – due to lining up the cursor at one depth with a remote 

feature at a different depth. This diplopia occurs since the eyes cannot converge to the 

depth of the cursor and target simultaneously. The result is a “doubling” of either the target 

or cursor, and has been shown to influence 3D selection, more so when the depth difference 
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between the cursor and target is large [43]. One possible solution is to render the cursor to 

one eye only, but this may cause eye fatigue [36]. We instead address this by dynamically 

scaling and resizing the cursor according the target depths such that it always remains the 

same size and is rendered close to the target to avoid diplopia while also being rendered to 

both eyes. This approach is recommended by Unity3D tutorials on interaction in VR3. 

2.3 Fitts’ Law 

Since both our studies employs Fitts’ law, we briefly describe it here. Fitts’ law is 

a predictive model that characterizes performance of selection techniques and pointing 

devices, revealing the highly linear relationship between task difficulty (ID – index of 

difficulty) and selection time (MT). The model is given as: 

𝑀𝑇 = 𝑎 + 𝑏 × 𝐼𝐷 (1) 

where 

𝐼𝐷 = 𝑙𝑜𝑔2 (
𝐷

𝑊
+ 1) (2) 

D is the distance to the target and W is the target’s size (width), while a and b are 

derived via linear regression. This has been formalized as a tool for testing input devices 

[8, 15] via ISO 9241-9 [38]. Many studies have used the ISO 9241-9 standard for 

comparing 2D input devices [7,28]. The standard has also been adapted for use in 3D 

selection tasks[39,43]. The standard prescribes the use of throughput (TP) as a dependent 

variable. Throughput is calculated as 

𝑇𝑃 =  
𝐼𝐷𝑒

𝑀𝑇
 (3) 

                                                 

3 https://unity3d.com/learn/tutorials/topics/virtual-reality/interaction-vr 

https://unity3d.com/learn/tutorials/topics/virtual-reality/interaction-vr
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As per the ISO 9241-9 standard, effective ID (IDe) is used to calculate throughput 

as: 

𝐼𝐷𝑒 = 𝑙𝑜𝑔2 (
𝐷𝑒

𝑊𝑒
+ 1) (4) 

where 

We = 4.133 ×  𝑆𝐷𝑥 

De is the effective amplitude and We is the effective target width. Effective ID 

enables direct comparison between studies with varying error rates, as it adjusts 

experimental error rate to 4%. The accuracy adjustment is done by calculating SDx – the 

standard deviation of over/under-shoot lengths relative to the target centre, projected onto 

the task axis (the line between subsequent targets). It is multiplied by 4.133, which 

corresponds to a z-score of ±2.066 in a normal distribution, or 96% of the selection 

coordinates hitting the target (i.e., a 96% hit rate, or 4% error rate). It also better accounts 

for the task participants performed, than that which they were presented with. 

 

2.4 VR Input Devices 

VR input devices are just as important as the selection techniques that are associated 

with them. When designing new interaction techniques, it is also important to consider the 

device that it is going to be used with. Designing a selection technique that can work with 

many different input devices, as well as appealing to a wider audience (i.e. users with 

disabilities), can be beneficial as it allows users to use the device that they are most 

comfortable with. 

Most traditional VR controllers include an Xbox/PS4 controller or a tracked HTC 

Vive/Oculus Touch controller. While this may be a more conventional approach to 
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controller design, several studies have explored alternative controllers for input in VR 

environments. TickTockRay is a smartwatch controller mounted on the users arm that uses 

raycasting to perform selection in smart phone VR environments [18]. While effective, this 

method causes fatigue as the user has to constantly move their hand to select targets. Our 

approach is to utilize a controller that requires very little arm movement to ensure that 

fatigue is reduced significantly.  

 Hand worn glove devices have also been explored for interacting and performing 

direct selections in VR [5,10,50]. Selecting objects further than the user’s reach become an 

issue with these methods of direct selection. Ideally a selection device should support 

selection of both near and far targets. A recent study using an arm-mounted IMU-based 

6DOF input device was developed and tested in a Fitts’ law test environment [49]. Despite 

results showing a lower error rate, selection performance was mediocre but more 

importantly, many users expressed arm fatigue due to the nature of the selection where the 

user had to hold their arm in front of them and move it to select targets. This seems to be 

an ongoing issue with input devices in general [15] but increases as the number of DOF 

increases. In light of this, we chose to use the mouse as the input device in our studies due 

to the fact that it does not require the user to perform physically demanding movements.  

Eye based input in VR has been shown to perform poorly likely due to inaccurate 

and jittery nature of eye saccades [33]. As an alternative, we use a mouse as the 2D input 

source for all testing to eliminate any unintended co-variables such as the unpredictable 

jittery nature of the eyes. Users would already be familiar with using the mouse and 

wouldn’t require any additional training to use the input device thus we expect better results 

in overall performance. 



 12 

2.5 Control-Display Gain and Transfer Functions 

Control Display (CD) gain can offer several benefits for selection in VR. Since 

the user’s viewpoint can move interactively in VR, CD gain is one possible option to 

decelerate cursor movement in order to facilitate fine positioning when selecting small 

and close together targets while also offering accelerated cursor movement for selecting 

larger and further apart targets. 

Our second study employs the usage of control-display (CD) gain as a possible 

option to improve performance. CD gain is defined as the relationship between the amount 

of display movement versus the amount of controller movement [24] and can often be 

represented as a linear ratio as: 

𝑪𝑫𝒈𝒂𝒊𝒏 =  
𝑽𝒑𝒐𝒊𝒏𝒕𝒆𝒓

𝑽𝒅𝒆𝒗𝒊𝒄𝒆
 

where Vpointer is the velocity of the cursor and Vdevice is the velocity of the input device 

respectively. If CDgain < 1 then the cursor moves slower than the input device, but precision 

is increased. On the other hand, if CDgain > 1 then the cursor moves faster than the mouse, 

therefore less clutching is required but precision suffers. This creates a speed-accuracy 

tradeoff which was first pointed out by Jenkens and Connor [17] and shown in Figure 1. 

Mackenzie and Riddersma tested the expectation that the optimal gain setting 

would be at the intersection of both lines [37]. Their results suggest that there was no 

optimal CD gain setting as error rates were highest when using the expected optimal 

setting.  
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Figure 1: The relationship between CD gain and selection time. Fine positioning becomes more 

difficult with high gain (due to overshooting targets) while coarse positioning takes longer with low 

gain due to excessive clutching.  Figure reproduced from Jenkens and Connor [17] 

Based on the results of previous research on CD gain, [37] we only included one 

constant CD gain condition in our experiment as a baseline of comparison. Additionally, 

we tested the implementation of several pointer transfer (or acceleration) functions where 

the CD gain isn’t constant but changes as a function of the speed of the device. The faster 

the device is moved, the faster the cursor moves while slow movements causes CD gain to 

decrease. Acceleration functions have been shown to be more effective when compared to 

constant CD gain [8,9] not only for standard mouse pointing tasks but also for large scale 

input using in air gestures for pointing [27]. These acceleration functions can be seen in  

Figure 2. Some arm-extension interaction techniques such as Go-Go [32] rely on a similar 

concept in VR, by employing a non-linear acceleration on the users virtual hand, once the 

real hand moves beyond a certain distance threshold. Similar to Go-Go, our study was 

aimed to measure selection performance using acceleration functions but using a 2D 

selection technique instead of a 3D selection technique. 
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Figure 2: Curves showing two different acceleration functions. Left: Nancel 2015 [27], Right: 

Poupyrev 1996 [32]. 

2.6 Summary 

Previous research has shown that 2D selection as well as the use of transfer 

functions increases selection performance while reducing the effects of the speed accuracy 

tradeoff. However, previous research has only been conducted on 2D and 3D desktop 

environments and therefore worth exploring the question of whether the benefit of using 

2D controllers and transfer functions carry over to HMD based VR scenarios. To our 

knowledge, our studies represent the first evaluation of 2D pointing selection performance 

in a VR head-mounted display, as well as the first application of control-display gain in 

such scenarios. 
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3    Chapter: The 2D Cursor – EZCursorVR 

Selection in VR typically involves two aspects: the interaction technique itself (i.e., 

the software part), and the input device (i.e., the hardware part). Example interaction 

techniques include ray-casting, Poupyrev’s go-go technique [32], and direct touch with the 

hand. Common VR input devices include wands, such as those provided with the HTC 

Vive and Oculus Rift, joysticks (e.g., on game controllers) and even the mouse can be used. 

LaViola et al. [20] point out that interaction technique and input device are separable – an 

input device can support multiple different interaction techniques, and vice versa. 

Consider, for example, that ray-casting (an interaction technique) is supported by both 3D 

trackers and the mouse (input devices). Likewise, 3D trackers support both ray-casting and 

direct touch metaphor interaction techniques. Both components are important 

considerations when performing selections in VR, and it is desirable when designing new 

interaction techniques that they can work with multiple different input devices. After all, 

not all users have access to the same equipment. 

Based on previous research, we formulated several design considerations and goals 

when creating EZCursorVR: 

1. Supporting 2DOF input sources. 

2. Being able to operate the cursor in 2D (eliminating depth). 

3. If desired, allowing selection with the head. 

4. Keeping the cursor size constant despite object depth. 

5. Minimizing the learning curve for new users. 

The following is a detailed explanation on the design and implementation of our 

cursor. Like screen-based techniques [44] EZCursorVR uses ray-casting and relies on the 
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concept of image plane selection [30]. From the user’s perspective, they appear to select 

targets using a 2D cursor to overlap the 2D “screen-space” projection of targets. The plane 

the cursor resides in appears to be fixed to the head. In other words, rotating or moving the 

head also results in movement of the cursor, although the cursor position itself appears 

fixed in this plane. This is depicted in Figure 3. Unlike classical image-plane interaction 

[30], which allows the user to line up their hand with virtual objects for selection, our 

technique instead does this indirectly, via the use of an external controller to control the 

position of a selection cursor, similar to desktop environments. 

 

Figure 3: Movement of EZCursorVR. Head-movement and rotation influences the position of the 

plane-fixed cursor. The cursor can be independently controlled by an external input device (e.g., a 

mouse, in this example, although other sources of 2DOF or even 6DOF are supported.) 

In actuality, the rendered cursor is displayed in world-space at the intersection point 

of a ray originating at the head (the camera in Figure 4) and directed towards an invisible 

control cursor that moves in a head-coupled plane (#1 in Figure 4). The control cursor is 

constrained to move from one extent of the user’s field of view to the other. The ray from 

the head to the control cursor is used to determine which object is selected, and where to 

position the rendered cursor (#2 in Figure 4).  
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Figure 4: The invisible control cursor (#1) that moves in the head-coupled plane, and the visible 

rendered cursor (#2). 

3.1 Cursor Rendering 

Although our intent is to support 2D selection in 3D spaces, simply rendering the 

control cursor fixed in a head-coupled plane would introduce the double-vision problem 

detailed earlier [43]. We address this problem by instead displaying the rendered cursor 

(#2 in Figure 4) as an object in the scene. The control cursor is not displayed at all. The 

rendered cursor is displayed at the correct depth, as determined by ray-casting, using the 

ray depicted in Figure 4, originating at the eye/head position, and directed through the 

control cursor. The rendered cursor is drawn at the intersection point with the scene. We 

then scale the rendered cursor to cancel out the scaling effect of perspective. As a result, 

the rendered cursor appears consistent in size regardless of its depth. We also render it as 

a billboard, so it is always oriented towards the viewer. The end result is that the rendered 
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cursor appears to operate in 2D, but its stereo depth is correct for any point in the scene, 

eliminating double-vision effects [43].  

3.2 Input Sources 

Since the control cursor resides in a plane, 2DOF input sources can readily control 

its movement through simple mappings. For example, from the default screen-centre 

position, mouse displacement can map to control cursor displacement (subject to a gain 

function). Similarly, joysticks can be used in both velocity- and position-control mappings. 

Changes in the position of the control cursor are reflected in changes to that of the rendered 

cursor, via ray-casting as described above. Due to cancelling out perspective, the rendered 

cursor appears to move in 2D, but with correct stereo depth. 

For our study, we have also implemented a technique that uses a 6DOF input source 

to control the cursor. In our case, the user points a tracked wand at the head-coupled plane. 

The wand-ray/plane intersection point is used for the position of the control cursor. This is 

similar to the ray-screen technique demonstrated in previous work [44], which in turn, is 

similar to how remote pointing works with the Nintendo Wii remote. 

3.3 Comparison with Image-Plane Selection 

Our technique is similar to image-plane selection introduced by Pierce and Forsberg 

[30]. The 2D plane for our technique is a head-coupled plane that moves along with the 

user’s head rotation to remain parallel to the user’s FOV. Our technique most closely 

resembles the ‘Sticky Finger’ technique where a user can select objects by aligning an 

outstretched finger with the target. In contrast, we replace direct interaction with a 2D 

controlled cursor.  
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Our technique is different from image-plane selection in two key ways. First, with 

image-plane selection, the user must outstretch their arms to point at or frame targets. This 

in-air interaction causes extreme fatigue after extended use, leading to the well-known 

“gorilla-arm syndrome” [15]. Our technique avoids this by using 2D selection devices, 

which necessitate less effort and thus reduce fatigue. Second, with image-plane selection, 

movement is mapped 1:1. In contrast, EZCursorVR offers the ability to apply control-

display (CD) gain to cursor movement. While this tends not to be available with 1:1 

VRselection techniques (e.g., ray-casting), we argue that gain could help with 2DOF 

control. Consider, for example, that remote targets perspective scale to be smaller and in  

accordance with Fitts’ law, harder to select. Remote targets are difficult to select with 

rays[31], but with EZCursorVR, slow 2D movement (e.g., with a mouse) could be further  

decelerated by lowering CD gain, enabling precise selection of small targets. Similarly, 

gain could be increased for long-range ballistic movements, enabling fast crossing of the  

screen for far away targets. 
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4    Chapter: User Study 1 - 2D Cursor for VR 

In this chapter, we present our first study evaluating EZCursorVR with several 

input techniques including the mouse, thumbstick, and motion controller. 

4.1 Hypotheses 

The main hypotheses of our first user study were: 

H1: Performance with 2D techniques will be higher than 3D techniques, as found 

in prior research [47]. 

H2: The mouse will perform best, followed by Ray2D, Velocity-Joystick, Head-

only, and finally Position-Joystick. This ranking is based on our own pilot testing and 

intuition, as well as previous studies that used similar input methods [25,28,33]. 

H3: Throughput will be consistent across target depth using EZCursorVR , but will 

vary with depth using the standard ray, as found in previous research [44]. 

4.2 Participants 

Our study included 18 participants (15 male, 3 female, aged 18-44 years) recruited 

from the local community. We gave participants a pre-test questionnaire asking about their 

familiarity with VR. 12 participants had previous exposure to VR. 

4.3 Apparatus 

4.3.1 Hardware 

The experiment was conducted on a VR-ready laptop with an Intel core i7-7700HQ 

quad core processor, a Nvidia Geforce 1070 GPU, and 16GB of RAM, running the latest 

build of Microsoft Windows 10. We used an Oculus Rift CV1 head-mounted display, 

connected to the computer via HDMI. The CV1 features a resolution of 1080 x 1200 per 

eye, a 90Hz refresh rate and a 110° field of view. 
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Participants were seated in our lab, positioned far enough away from obstacles to 

ensure there was no chance of hitting anything. Depending on the experimental condition, 

participants either used a mouse, an Oculus Touch controller, or the HMD itself (via head 

tracking) as an input device. The Oculus Touch controller features real-time motion 

tracking, a thumb joystick, two trigger buttons, and vibrotactile feedback and was used for 

several different input methods in our experiment. See Figure 5. 

 

Figure 5: Participant wearing the Oculus Rift using the touch controllers. Inset: close-up of Oculus 

Touch controllers. 

4.3.2 Software 

Our test environment was created in Unity with the purpose to test device selection 

performance in VR HMDs and using external libraries for the Oculus Rift hardware. The 

test environment was based on ISO 9241-9 standard reciprocal selection task (Figure 6). 
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Each round consisted of 9 spherical targets, presented in one of three different sizes, at 

three different distances apart from each other. Each ring of targets was presented at one 

of three different depths from the user. Within a round, target size, distance, and depth were 

held constant. 

Targets were shown in four different colours: 

Green:   Indicates targets that were already hit. 

Red:   Indicates targets that were previously missed. 

Blue:    Indicate the “active” target that the user is supposed to select. 

Black:   Indicate targets that are not yet active. 

The software automatically logged performance data, such as selection times, error rates, 

and calculated throughput as described in Equation (4). 

 

Figure 6: Fitts’ law test environment in Unity. The red cursor depicts the position of the head-

coupled cursor, as described in Section 3.1.1 

4.3.3 Controllers 

Our study included 6 input-device/interaction-technique combinations, which we 

refer to as “controllers”. All controllers, except for Ray3D use EZCursorVR. We describe 
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these, and their effect on the control cursor (noting that the effect on the rendered cursor is 

implied, as described in Chapter 3) as follows: 

Mouse: The control cursor is controlled by the mouse using a direct mapping of the 

mouse’s x and y movement. 

Head: The control cursor was fixed in the center of the field of view, and thus can 

only controlled by the user’s head gaze. This was intended as a commonly used baseline 

condition (i.e., EZCursorVR was disabled) to assess the added value of independent cursor 

control. 

Velocity-Joystick: The control cursor is controlled by the joystick on the Oculus 

Touch controller and moves at a constant velocity in the direction the user pushes on the 

joystick. 

Position-Joystick: The control cursor is controlled by the joystick on the Oculus 

Touch controller but uses a position-control mapping. It thus moves depending on the 

location the joystick is pushed – i.e., pushing the joystick moves the cursor to the 

corresponding position across the field of view. When the user is not pushing the joystick, 

the control cursor returns to the center position. 

Ray2D: The control cursor position is determined by the intersection of the head-

coupled plane and the 6DOF ray from the Oculus Touch controller. In other words, the 

user points the controller at the plane to control the cursor position, rather than at objects 

themselves. 

Ray3D: The user controls a standard 6DOF ray using the Oculus Touch controller, 

necessitating selection by pointing at the target volumes (rather than their projection). This 
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was intended as another baseline condition, as the most typical interaction technique used 

with 6DOF-tracked wands in modern VR games. 

4.4 Procedure 

Upon arrival, we asked participants to answer a pre-experimental questionnaire 

about their familiarity with various VR input devices and any previous experiences in VR. 

They were then shown how to use each of the controllers and how the target selection task 

worked. They were given a practice round to familiarize themselves with the hardware and 

software. Data gathered from these practice trials were excluded from our analysis. After 

participants performed several practice trials and indicated that they were comfortable 

using the hardware and software, they were then asked to perform the actual experiment. 

Their instructions were to select the highlighted target as quickly as possible and as close 

as possible to the center. Upon pressing the selection button, the trial advanced to the next 

target (which turned blue, indicating it was the “active” target) regardless if the selection 

hit or missed. Upon finishing a round (9 targets) a new combination of target width, 

distance, and depth was randomly picked (without replacement). The experiment ended 

after the participant completed all combinations of distance, width, and depth, with each 

controller.  

After completing the experiment, we gave participants another questionnaire that 

asked them to evaluate their preference toward each controller. We also asked them to rank 

their preferred controller from best to worst. Finally, they were debriefed and were given 

$10 compensation for their time. The entire experiment took roughly 1 hour. 

4.5 Design 
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 Our experiment employed a within-subjects design with a single independent 

variable, controller, with 6 levels: Mouse, Head, Position-Joystick, Velocity-Joystick, 

Ray2D and Ray3D. Controller ordering was counterbalanced according to a balanced 

Latin square to offset learning effects. 

 Each participant completed a total of 9 trials per round × 6 controllers × 3 distances 

× 3 widths × 3 depths = 1458 trials, or 26244 trials over all 18 participants. The 

combinations of distance and width produced 9 indices of difficulty, ranging from 1.2 bits 

to 3.7 bits. These were not analyzed, but rather used to produce a realistic range of task 

difficulties.  

Our experiment included 3 dependent variables: Throughput (bits/sec, calculated 

as described earlier), error rate (percentage of missed targets), and movement time (in 

milliseconds). Movement time was calculated as the difference in time from selection of 

target n to target n+1. 

4.6 Results 

4.6.1 Throughput 

Results for throughput are shown in Figure 7. A Shapiro-Wilk test using right tailed 

distribution indicated that the data is normally distributed (p = 0.05). Repeated measures 

ANOVA revealed that the main effect of controller on throughput was statistically 

significant (F5,85 = 68.74, p < 0.0001), as was the main effect for depth (F2,34 = 48.09, p < 

0.0001). The controller × depth interaction effect was also statistically significant (F10,170 

= 6.87, p < 0.0001). The Scheffe posthoc test indicated that most pairs of controllers were 

significantly different (p < .05). These pairwise differences are also seen in Figure 7. 

Average throughput with the mouse was lower (around 2.66 bps) than those of the other 
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3D studies that have reported mouse throughput of around 3.7 bits/sec [28]. This may be 

because the cursor was controlled by both the head and the mouse, and head movements 

may have adversely affected the throughput. Previous studies did not use head-coupled 

cursor planes. 

 

Figure 7: Throughput by Depth. Error bars show ±1 SD. Statistical groups (i.e., controllers that are 

not significantly different) are indicated with curly braces, with dashed lines showing significant 

differences to other groups via the Scheffe test. 

4.6.2 Movement Time  

Results for movement time are shown in Figure 8. A Shapiro-Wilk test using right 

tailed distribution indicated that the data is normally distributed ( p = 0.94).  Repeated-

measures ANOVA revealed that the main effect of controller on movement time was 

statistically significant (F5,85 = 36.63, p < 0.0001) as was the main effect on depth (F2,34 = 

8.48, p < 0.005).  The controller × depth interaction effect was not statistically significant 
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(F10,170 = 1.21, p>0.5). The Scheffe posthoc test revealed many pairwise differences 

between the controller types (p < .05) – all of the Mouse, Ray2D, Ray3D, and Head 

controllers had significantly faster movement times than the two joystick-based controllers. 

These are seen in Figure 8.  

 

Figure 8: Movement time by controller and depth. Error bars show ±1 SD. 

4.6.3 Error Rate 

Results for error rate are seen in Figure 9. A Shapiro-Wilk test using right tailed 

distribution indicated that the data is normally distributed (p = 0.51).    Repeated-measures 

ANOVA revealed that the main effect of controller on error rate was statistically significant 

(F5,85 = 20.43, p < 0.0001) as was the main effect on depth (F2,34 = 224.62, p < 0.001).  The 

controller × depth interaction effect was statistically significant (F10,170 = 7.43, p < 0.001). 

The Scheffe post hoc test revealed four pair-wise significant differences (p < .05), seen in 

Figure 9. 
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Figure 9: Error rate by controller and depth. Error bars show ±1 SD. 

4.6.4 Qualitative 

Participants rated the various control schemes out of 5 on a Likert scale on 

accuracy, fatigue and speed. Results are shown in Figure 10. Friedman non-parametric test 

shows that there was a difference in quality of results across accuracy, fatigue and speed 

reporting (χ2= 59.620, p < 0.0005, df = 5), (χ2 = 16.929, p < 0.005, df = 5) and (χ2 = 42.074, 

p < 0.0005, df = 5) respectively. Vertical bars ( ) show pairwise significance. 
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Figure 10: Qualitative Results for controller Fatigue, Speed and Accuracy. Error bars show ±1 SD. 

Higher values are better. 

4.7 Discussion 

Overall, the mouse outperformed the other controllers. This was expected based on 

previous work, and as the mouse was most familiar controller. However, using the mouse 

with EZCursorVR yielded worse performance than in previous work in non-head-tracked 

stereo 3D environments. Although we anticipated a larger difference, this result still 

validates the basic concept of EZCursorVR – the technique offered better performance than 

other common VR selection techniques, notably rays controlled by either a wand or the 

head. 

Hypothesis H1, that 2DOF devices would perform better than 3/6DOF devices, was 

partly confirmed. The mouse Ray2D were the two top performers. EZCursorVR worked 
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well with some of the controller input devices. On the other hand, both joystick-based 

controllers performed very poorly. This suggests that the performance of EZCursorVR is 

highly dependent on the actual input device it is used with. Future work will investigate 

this further. 

Similarly, hypothesis H2 was partially confirmed as well. While the mouse and 

Ray2D did outperform the other controller schemes, velocity-joystick did not perform as 

well as expected. The poor performance of the velocity-joystick may be attributable to the 

constant cursor speed. This restricted participant control over cursor acceleration, resulting 

in frequent overshooting of targets. This may highlight an opportunity to use CD gain, or 

a more complex transfer function to potentially improve joystick performance. Position-

joystick also offered very low performance. This can likely be attributed to the high 

sensitivity of the cursor, and the fact that participants were unfamiliar with position-

controlled cursors in general. 

As expected the mouse had the lowest error rate. Both ray controllers as well as the 

head only had lower error rates compared to both joystick controller schemes. We attribute 

this to the abstract and unnatural pointing nature of the joysticks as opposed to a more 

natural feeling, ‘look to select’ or ‘point to select’ methods of the ray and head only 

controllers, especially for far or small targets where a controller that can fine tune the 

movement of the cursor would result in lower error rates. 

Participants experienced some difficulty selecting remote targets with the ray-based 

techniques, as we had anticipated. With Ray3D, selecting remote targets was difficult, due 

to their smaller angular size. As a result, most participants preferred Ray2D over Ray3D, 

especially when selecting far targets. Additionally, participant hand tremor, while small, 
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propagated up the visible ray in Ray3D causing it to sway substantially, also making it 

difficult for selecting far targets. Although Ray2D also used a ray, this swaying was 

reduced due to the comparatively short distance to the head-coupled plane. This likely 

explains the easier time participants had with Ray2D. 

Surprisingly, H3 was not found to be true, despite previous evidence [44] that 

suggests throughput calculated in the plane should be constant over depth. There are two 

possible reasons for this. First, we used more extreme depth differences than in previous 

work, which was constrained to a depth range of about 28 cm. In contrast, our depth range 

was 30 m. Another factor is that head motion influenced our techniques, unlike in previous 

work. In our study, the head was a constant source of potential input noise, as it was the 

origin of all rays. These two factors, taken together, may have yielded this result, and may 

speak to a limitation of our technique and/or a need to reinvestigate projected throughput. 

The coupling of head with the cursor movement proved valuable for both joystick 

controllers as participants. Participants were observed using a combination of head and 

joystick movement and confirmed this in post-experiment debriefing. Several participants 

noted they used the joystick for coarse motions, and then “fine tuned” their selection via 

head movement. This made it easier to select small or high distance targets (although 

opposite to how we initially expected). Similarly, some participants expressed interest in 

being able to switch between the head only and EZCursorVR while performing selections 

(i.e., toggling independent cursor movement on and off). This is a topic for a future study 

and will allow us to definitively determine if participants actually use the two control styles 

(head + controller) together or independently. 
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4.8 Summary 

In the first experiment, both joystick controllers moved the control cursor linearly, 

adjusted by a scale factor. Adding a dynamic and potentially non-linear gain function to 

provide cursor acceleration could improve joystick performance, and perhaps even the 

mouse condition. Consider, for instance, the difficulty participants had in selecting remote 

targets. Remote targets perspective scale to be smaller and hence harder to select targets. 

A gain function that reduced gain with slow movements might make these easier to select. 

We explore non-linear gain functions for our follow-up study in Chapter 5, as well as 

measure the difference in performance with head tracking on vs headtracking off by 

isolating the head movement from the controller. 
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5    Chapter: User Study 2 - 2D Cursor Acceleration 

In this chapter, we present our second study evaluating EZCursorVR with several 

different distinct transfer functions including an inverted, sigmoid and constant function as 

a baseline. 

5.1 Hypotheses 

The use of constant CD gain levels has previously been shown to have no difference 

in 2D selection performance [37]; non-constant transfer functions have shown greater 

promise [8,27]. However, VR selection may benefit more, due to the scaling effect of 

perspective in 3D; selecting remote (i.e., small) targets may benefit from decreased gain. 

We therefore hypothesize that the use of transfer functions will increase performance when 

compare to constant gain. Finally, we also provide insight into what transfer function 

parameters provide the best selection performance by testing with two sets of parameters 

in our transfer function. 

5.2 Participants 

Our study included 15 participants (10 male, 5 female, aged 19-31 years) recruited 

from the local community. We gave participants a pre-test questionnaire asking about their 

familiarity with VR. All 15 participants had previous exposure to VR. 

5.3 Apparatus 

5.3.1 Hardware 

The experiment was conducted on a VR-ready laptop with an Intel core i7-7700HQ 

quad core processor, a Nvidia Geforce 1070 GPU, and 16GB of RAM, running Microsoft 

Windows 10. We used an Oculus Rift CV1 head-mounted display, connected to the laptop 
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via HDMI. The CV1 features a resolution of 1080 x 1200 per eye, a 90Hz refresh rate and 

a 110° field of view. 

5.3.2 Software 

We used the same 3D Fitts’ law framework developed for the previous study4. The 

test environment is based on the ISO 9241-9 reciprocal selection task. Each round had 9 

spherically shaped targets varying in one of three different sizes, distances from each other 

and depths from the user. Target size, distance and depth were held constant within a 

specific round. Target colours were the same as described in section 4.2.2. The software 

automatically logged data on performance such as throughput, selection times and error 

rates. 

5.3.3 Transfer Functions 

Three transfer functions were designed and implemented to resemble functions 

used in previous research [8,27]  

Constant (Green) is a constant 1:1 gain function 

𝑓(𝑥) = 𝑥 

Where 𝑥 is the fixed slope of the line. 

Shallow (Blue) is modeled after the absolute value of an inverted function. 

𝑓(𝑥) =
1

𝑙
× 𝑥 × (𝑥 + 𝑡) 

Where 𝑙 represents the linearity (the curvature of the line) and 𝑡 represents the intersection 

(the point on the x axis where the curvature of the line crosses the constant line. A higher 

                                                 

4 https://github.com/adrianramcharitar/UnityFittsLawVR 
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value yields a more linear curve and thus lower levels of cursor acceleration at high device 

movement speeds. 

Steep (Red) is modeled after a Sigmoid function.  

𝑓(𝑥) =  (
𝑘

1 + 𝑒(𝑎+𝑏𝑥)
) 

Where 𝑎 represents the phase shift, 𝑏 represents the steepness and 𝑘 represents the 

amplitude of the function. We define each of these terms below. 

Phase shift:  The horizontal shift of the function. 

Steepness:  The magnitude of the cursor acceleration, higher values equal a faster 

acceleration. 

Amplitude:  The maximum acceleration threshold of the cursor until the speed is 

constant.  

All three control functions were implemented in Unity by first getting the delta 

movement for the mouse, then applying the Pythagorean theorem to the change in 

movement of the x and y axis to get diagonal change distance. This value was then 

substituted into each of the transfer functions and the cursor was then displace by the 

resulting value. Functions were implemented using Unity’s Math.f5 class. These functions 

are all integrated as part of the Fitts’ law framework and are show in Figure 11. 

                                                 

5 https://docs.unity3d.com/ScriptReference/Mathf.html 
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Figure 11: Graph of both Transfer acceleration functions used along with constant acceleration as a 

baseline (Green: Constant, Blue: Shallow, Red: Steep). 

5.4 Procedure 

Upon arrival, participants completed a questionnaire on their familiarity with VR 

input devices. Participants were then shown how to perform the selection task and were 

given a practice round to familiarize themselves with the hardware and software. Data 

gathered from the practice trials were excluded from analysis. They were then asked to 

perform the actual experiment and were instructed to select the highlighted target as 

quickly and as close to the center as possible. As participants pressed the select button, the 
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trial advanced to the next target, turning blue to indicate the next target to select. After each 

round was finished (9 targets), a new random (without replacement) combination of target 

width, distance and depth was presented to the participant. The experiment ended after the 

participant completed all combinations of distance, width and depth with each gain 

level/transfer function. At the end of the experiment, participants were asked to fill out 

another questionnaire as well as a post experimental structured interview, so we could 

gather quantitative data about features such as gain level and head tracking preference.  

Upon completion of the experiment, participants were debriefed and given $10 

compensation for their time. The experiment took approximately 1 hour to complete. 

5.5 Design 

Our experiment used a 2 × 3 (Head tracking × Control function) within-subjects 

design with the following variables and levels: 

Control function:  Constant, Steep Transfer Function, Shallow Transfer Function  

Head tracking: On, Off 

Width:   0.75, 0.5, 0.25 m 

Distance:   1, 2, 3 m 

Depth:   10, 20, 30 m 

Each participant completed 9 trials per round × 3 distances × 3 widths × 3 depths × 

3 control functions × 2 head tracking = 1458 trials, or 21,870 trials over all 15 participants. 

The combinations of distance and width produced 9 indices of difficulties, ranging from 

1.2 bits to 3.7 bits. Width, distance and the resulting IDs were not analyzed, but used to 

produce a realistic range of task difficulty.  

Our experiment included 3 dependent variables: 
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Throughput:  Measured as Bits/Sec (Calculated as described in Chapter 2) 

Error Rate:  Measured as percentage of missed targets in a round 

Movement Time:  Measured as average time to select targets, in milliseconds  

Movement time was calculated as the delta time between target n and n+1.  

5.6 Results 

5.6.1 Throughput 

Results for throughput are shown in Figure 12. A Shapiro-Wilk test using right 

tailed distribution indicated that the data is normally distributed (p = 0.99). Repeated 

measures ANOVA revealed that the main effects for head tracking and control function on 

throughput were both statistically significant (F1,11 = 14.168, p < 0.005) and (F2,22 = 92.596, 

p < 0.0001) respectively, as was the main effect for depth (F2,22 = 20.030, p < 0.0001). The 

head tracking × depth interaction effect was also statistically significant (F2,22 = 17.063, p 

< 0.0001). The 3-way interaction effects were not significant (F4,44 = 0.870, p > 0.05). The 

Scheffe posthoc test indicated that most pairs of control functions were significantly 

different (p < .05). These pairwise differences between transfer functions are also depicted 

in Figure 12 as horizontal bars ( ). 
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Figure 12: Throughput on Depth. Error bars show ±1 SD. 

5.6.2 Movement Time 

Results for movement time are shown in Figure 13. A Shapiro-Wilk test using right 

tailed distribution indicated that the data is normally distributed (p = 0.93). Repeated 

measures ANOVA revealed that the main effect of control function on movement time was 

statistically significant (F2,22 = 89.911, p < 0.0001), as was the main effect for depth (F2,22 

= 4.304, p < 0.05). Both the head tracking × depth and control function × depth interaction 

effects were also statistically significant (F2,22 = 13.146, p < 0.0005) and (F4,44 = 0.193, p 

< 0.0001) respectively. 3-way interaction effects were not significant (F4,44 = 0.870, p > 

0.05). The Scheffe posthoc test indicated that several pairs of control functions were 

significantly different (p < .05). These pairwise differences are depicted in Figure 13 as 

horizontal bars ( ). 
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Figure 13: Movement Time on Depth. Error bars show ±1 SD. Note: bars show significant pairwise 

differences between transfer functions, but not depths. 

5.6.3 Error Rate 

Results for error rate are shown in Figure 14. A Shapiro-Wilk test using right tailed 

distribution indicated that the data is not normally distributed (p = 0.001).  Friedman non-

parametric revealed a significant difference in the quality-of-result assessments between the 

six conditions (χ2 = 34.356, p < 0.001, df = 5). . However, the Scheffe posthoc test failed to 

detect any significant pairwise differences. The 3-way interaction effect was not significant 

(F4,44 = 1.423, p > 0.05).  
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Figure 14: Error Rate on Depth. Error bars show ±1 SD. 

5.7 Discussion 

Contrary to previous research [27,37] our results indicate that constant velocity 

performs better than both transfer functions for throughput, movement time and error rate. 

We believe that this is attributed to our experimental design where we tested each transfer 

function with one level of steepness instead testing each transfer function with several 

steepness levels to address participant gain preference and familiarity. This is further 

supported by our post experimental structed interview where several participants stated 

that they could not tell the difference between constant and accelerated curves while others 

found there to be extreme differences in cursor acceleration. Previous research  evaluated 

several different degrees of steepness with the same function shape to better normalize 

results over participant preference of gain [8]. For example, gamers might prefer high 

gain/acceleration while more casual participants might prefer lower gain/acceleration.  

In conditions where head tracking was disabled, throughput was not significantly 

affected by depth. Note how throughput scores are relatively flat in the head-tracking off 
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conditions in Figure 12. This is consistent with previous studies using non-HMD 3D 

environments [44]. However, when head-tracking was enabled, depth affected throughput. 

This suggests that the inclusion of an additional 6DOF input source causes inconsistent 

performance over target depth. 

With constant gain and head tracking off, error rate was consistent with previous 

mouse-based Fitts’ law studies, around 4% [34]. This reinforces the results for other depths. 

This condition was most comparable to desktop like setups as opposed to VR setups and 

therefore reinforces our results while also giving us a calibration point to other 2D 

selection-based research.  

From data collected through a post experimental questionnaire, most participants 

preferred using a combination of head and cursor to aim at targets. This could explain the 

increased throughput for the steep transfer function due to most participants feeling the 

steep transfer function was too sensitive and ended up aiming using their head for small 

and further targets. However, as noted in the previous study, head tracking introduces 

additional unintentional movement – input noise, or jitter – which explains the higher error 

rate for all conditions with head tracking on.  

Most participants indicated that they felt it was faster and more precise to select 

targets when head tracking was enabled. Several indicated that they would aim in the 

general direction of the target using their head, and then fine tune with mouse but other 

participants found that a secondary method of selection was distracting and made it harder 

to select targets. This suggests that introducing a secondary input method that moves a 

cursor via an inconsistent acceleration function while concurrently moving that same 

cursor via head movement may introduce an extra layer of complexity into the participant’s 
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task of aiming and selection targets. It was observed that participants would often 

overshoot targets and therefore a cursor that moves with constant acceleration or an option 

to toggle input selection between the head and mouse may resolve this issue.  

Overall, while transfer functions may help the user in selecting a target, introducing 

a secondary input method that moves the cursor concurrently as well as forcing the user 

the use a transfer function with a pre-defined acceleration curve steepness may be 

detrimental when performing a selection task.  

5.8 Summary 

In the second experiment, we added a non-linear gain function to provide cursor 

acceleration to see if it could improve cursor performance using the mouse. Despite what 

research indicates, our transfer function did not improve performance of the cursor. We 

believe that this may have been due to our experimental design where we tested one 

steepness per transfer function instead of testing for several steepness across a particular 

transfer function to accommodate participant familiarity and comfortability when using a 

particular transfer function. 
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6    Chapter: Conclusion 

6.1 Summary 

In this thesis, we proposed, implemented and tested EZCursorVR, a 2D head 

coupled cursor that can be controlled by any 2DOF input device. The idea of EZCursorVR 

was to leverage benefits of 2DOF input techniques, which had previously been perform 

better than 6DOF input techniques [30]. The technique was developed for use in VR 

environments display on head-mounted displays, where 2D input has not previously been 

studied.  

In our first study, we looked at how EZCursorVR’s selection performance 

compared to traditional 3D selection techniques as well as different input techniques for 

2D cursor movement. EZCursorVR was tested in a Fitts’ law environment built in the Unity 

game engine and conforming to ISO 9241-9. Our results showed that a 2D cursor controller 

by the Oculus Touch motion controller performed the best (other than the mouse which we 

used as a baseline condition). We also discovered that most users preferred to use a 

combination of the head and 2D input device to move the cursor while some found it to 

unintentionally move the cursor. We proposed a follow up study that looks at further 

increasing cursor selection performance by implementing a transfer function which has 

also shown to increase selection performance [8,9,27]. 

Our second study explored selection performance of EZCursorVR after the 

application of several transfer functions to the cursors acceleration. We implemented three 

transfer functions: Constant, Shallow and Steep. These transfer functions were tested with 

EZCursorVR with the same Fitts’ law selection task framework. Our results indicated that 

the Constant transfer function performed the best, contrary to previous studies on transfer 
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functions [8,9]. We believe that this is due to participant unfamiliarity with the cursor 

acceleration curve and that different curve steepnesses need to also be tested to get an 

overall idea of how that specific curve performs. 

Throughput, movement time and error rate received similar values for the mouse 

with the head tracking on condition in both our user studies (2.26 bps vs 2.65 bps, 0.92 s 

vs 1.1 s and 14.9 % vs 16.1 % respectively). This suggests that the data collected was fairly 

consistent between both studies, which is important because a consistent throughput score 

provides a baseline of comparison across both studies. Additionally, throughput across 

both studies with the head on condition decreases as target depth increases, however when 

head tracking is turned off, throughput remains more or less consistent across target depth 

which is more in line with what previous studies have noted [44]. This suggests that the 

addition of head movement consequently introduces diminished performance for further 

targets. When a participant naturally moves their head towards a target this also moves the 

cursor. While not an issue for closer and larger targets, for smaller and further targets, even 

small head movements may cause the cursor to completely pass over and miss the intended 

target. 

It is also worth noting that when comparing throughput results from study 1 for the 

Ray2D condition and the mouse + head on condition from study 2, the results are almost 

identical (2.23bps vs 2.24bps) respectively. This demonstrates that Ray2D’s Wii like 

targeting method may be a suitable contender for a controller if used in conjunction with 

head aiming, since it performs roughly as well as the mouse when head tracking is enabled. 

This also suggests that having a 2D cursor in VR accelerating at a constant speed may not 
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necessarily hinder selection performance as the cursor in both methods of selection 

accelerates by a constant value. 

In conclusion, to address our original research question, we showed that 2D 

selection offers superior performance when compared to 3D selection in HMD VR 

environments, which validates the basic idea of the cursor. In both studies, participants 

enjoyed using EZCursorVR and preferred using a combination of head and controller to 

perform selections. However, results show that for far distance targets, head movement 

noise introduces unintentional cursor movement, decreasing performance. An option to 

toggle head on and off could resolve this issue. Applying a head dampening function where 

head movements under a certain threshold prevent the in game camera from moving, 

therefore stabilizing small head movements and increasing selection performance can also 

be explored.  

6.2 Limitations and Future Work 

In both our studies we tested with non-occluded targets which is not realistic 

scenario but is necessary for Fitts’ law evaluations. A follow up study could explore how 

users can select objects behind other objects. This might be accomplished, for example, by 

changing the roll of the controller (the unused DOF) for depth selection. The visual design 

of EZCursorVR itself could be explored, for instance, using different crosshair styles, sizes, 

and transparency levels. Participants noted that, especially for small targets, the cursor 

could sometimes occlude targets, making it more difficult to select them. An improved 

visualization might eliminate such problems 

We also note that a number of control variables were chosen based on pilot testing 

and could be further explored for “fine-tuning” such as alternative transfer function shapes 
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and constant gain levels. Other factors such as non-gamers/experienced gamers would 

further add to and reinforce our initial study. 

Another limitation we encountered was learnability. A 60-minute user study was 

not enough time for participants to fully get accustomed a new cursor input device or 

acceleration that what they are already used to. A longitudinal study would be beneficial 

for learning the effects of performance of the control schemes over longer periods of time. 

A Fitts’ law test conforming to ISO 9241-9 does not allow for realistic scenarios 

such as player movement, target movement and seeking tasks. Performing a gameplay 

evaluation with EZCursorVR using a commercial game for example, would provide 

additional insight into player experience and in terms of qualitative data. 

Finally, in both studies, participants performed the experiment while in a seated 

environment while in most VR setups users are moving around and standing up. An input 

hardware device built specifically for EZCursorVR could be prototyped and built that 

allows portability as well as control EZCursorVR in VR HMDs, while accommodating 

first-time users. 

6.3 Design Consideration 

Based on our studies, the following guidelines for designing a 2D cursor for VR are 

recommended. 

1. Due to the unintentional movement to EZCursorVR when a secondary input 

method is introduced, we recommend providing a clutch mechanism, to toggle on 

and off the additional input method. 
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2. When designing transfer functions for EZCursorVR, giving the user the option to 

chooses their curve steepness is recommend as a user may be more comfortable 

with a certain acceleration curve steepness. 
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Appendices 

Appendix A  Questionnaires 

A.1 User Study 1 
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A.2 User Study 2 
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Appendix B   Consent Forms 

B.1 User Study 1 
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B.2 User Study 2 
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Appendix C  Software Implementation 

In order to test a device, the user must: 

1. Specify input parameters (Width, Amplitude, Number of Spheres, etc...) 

2. Specify controller input (Mouse, Thumbstick, Head, etc…) 

3. Run testing 

4. View logged results 

Several key classes are used to control, render and log resulting data and are described 

below: 

Experiment Control 

Three classes play a key role in the control of running the experiment and are described in 

detail below. 

 

 

UML diagram for experiment control classes 

ExperimentController.cs: Allows the user to set parameters for targets, inputs and 

permutation combinations.  
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Code snippet where the user specifies the number of spheres as well as the Amplitude, Width and 

Depth. 

Also generates permutations for the sphere parameters to randomize rounds and stores 

them into a new array containing the shuffled combination of parameters. 

 

Code snippet showing the permutation function implementation. 

PlaceSpheres.cs: Renders the round of spheres in the scene. 

Logger.cs: Logs various experimental data and outputs to .txt file. 
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Text file that Loggers.cs generates. (Top: Log for per sphere selection. Bottom: Log for per round 

selections.) 

Cursor positioning and rendering 

There are four main classes that are used in the process of rendering both cursors as well 

as positioning them in the scene. They are described in detail below. 

 

 

UML diagram for cursor positioning and rendering classes 

 

VRInput.cs: Handles all input parameters such as click, double click, on mouse up, on 

mouse down.  
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CursorRaycaster.cs: Casts a Raycast from the reticle onto the canvas. Firstly, a ray is 

created that points forward from the camera (or center of the HMD viewport). Then the ray 

is casted into the scene and performs an intersection test with objects in the scene. 

If the object happens to be a sphere, call the RaycastIntersect() function to get the 

intersection coordinates. 

 

Code snippet showing raycast generation from the tracked controller 
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Code snippet showing the raycast hit detection on targets 

 

CursorPositioner.cs: Positions and moves first invisible cursor against the plane. The 

SetPostion() method positions the first invisible cursor onto the invisible plane. This 

cursor’s position is constrained to the area of the invisible plane (or the HMD’s FOV). 
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Code snippet showing the first cursor position 

 

CursorPositioner2.cs: Positions, moves and resizes the 2nd visible cursor against objects 

in the scene. Also ensures that the cursor is always rotated to face the user. 
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Code snippet showing the second rendered cursor position 

 

Cursor movement via Input devices 

There are five main classes that are used receive movement from several different types 

on input devices and translate their movement to cursor movement. They are described 

below: 
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UML diagram for cursor movement via input devices 

 

SetControlScheme.cs:  Allows user the set their preferred control scheme (Mouse, Joystick, 

Motion…). This class also allows the user to easily select their input device to test with 

using a drop down list in the main Unity editor. 
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SetControlScheme.cs resulting list in the Unity editor 

MotionController.cs: Controls the cursor via the Oculus Rift’s 

GetLocalControllerPosition() method to return the touch controller’s rotational position in 

Vector3 coordinates.  

 

Code snippet showing how the framework receives the position from touch controller’s rotation. 

 

KBMove.cs: Controls the cursor via the mouse using GetAxisRaw() function and return the 

position as a Vector2 coordinate. 

 

Code snippet showing how the framework receives the position from the mouse. 

 

ThumbstickController.cs: Controls the cursor via the Touch controller’s 

Axis2D.SecondaryThumbstick and returns the position as a Vector2 coordinates.  
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Code snippet showing how the framework receives the position from touch controller’s thumbstick. 

 

MouseAcceleration.cs: Controls cursor acceleration using a user defined transfer function. 

 

Code snippet showing how the framework uses a transfer function to accelerate cursor movement. 
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