
Text Entry in Virtual Reality; Implementation of FLIK

method and Text Entry Test-Bed

By

Eduardo Soto

A thesis submitted to the Faculty of Graduate and Postdoctoral

Affairs in partial fulfillment of the requirements for the degree of

Master of Information Technology: Digital Media

In

Department of Information Technology

Carleton University

Ottawa, Ontario

© 2020, Eduardo Soto

 1

Abstract

We present new testing software for text entry techniques. Text entry is the act of

entering text via some interaction technique into a machine or monitor, common text

entry techniques are the typical QWERTY keyboard, smartphone touch virtual

keyboards, speech to text techniques, and others. The purpose of this text entry test-bed

software is to provide a flexible and reusable experiment tool for text entry studies, in

such a way to include studies from a variety of sources, more specifically to this thesis,

from Virtual Reality text entry experiments. On top of the proposed text entry test-bed,

we conduct two studies comparing different text entry techniques in virtual reality as a

way of validating the text entry test-bed, as well as contributing the results of these

studies to the pool of research related to text entry in virtual reality.

 2

Acknowledgements

I would like to thank my supervisor, Professor Robert Teather, for his assistance

during this research. His advices and suggestions have consistently helped to steer this

work in a productive direction and have greatly contributed to the quality of this thesis.

I would also like to thank Luis Soto and Elena Martin for their unconditional

support throughout my academic journey. This could not have been possible without your

encouragement.

 3

Table of Contents

Abstract .. 1

Acknowledgements ... 2

List of Tables ... 5

List of Figures .. 6

List of Appendices ... 8

Abbreviations .. 9

Chapter 1: Introduction .. 10

1.1 Motivation ... 12
1.2 Contribution ... 14
1.3 Outline of Thesis ... 16

Chapter 2: Related Work .. 17

2.1 Measuring Text Entry Speed and Accuracy .. 18
2.2 Text Entry Techniques .. 20

Chapter 3: Text Entry in Virtual Reality .. 26

3.1 Text Entry Testbed .. 26
3.1.1 Experimental Setup Screens .. 27
3.1.2 Starting the Experiment... 29
3.1.3 Intermission Screen ... 31
3.1.4 Finishing the Experiment .. 32

3.2 Text Entry Techniques .. 32
3.2.1 FLIK (Fluid Interaction Keyboard) ... 33
3.2.2 Controller Pointing .. 35
3.2.3 Continuous Cursor Selection ... 36
3.2.4 Physical Keyboard .. 38

3.3 Text Entry Aids ... 39

Chapter 4: User Study 1 .. 44

4.1 Hypotheses .. 44
4.2 Participants .. 45
4.3 Apparatus ... 45

4.3.1 Hardware ... 45
4.3.2 Software .. 46
4.3.3 Procedure .. 46

4.4 Design .. 48
4.5 Results ... 48

4.5.1 Task Performance.. 48
4.5.2 User Preference ... 50

4.6 Discussion ... 52

 4

4.6.1 Participant Comments ... 54

Chapter 5: User Study 2 .. 56

5.1 Hypotheses .. 56
5.2 Participants .. 56
5.3 Apparatus ... 57

5.3.1 Hardware ... 57
5.3.2 Software .. 57
5.3.3 Procedure .. 58

5.4 Design .. 59
5.5 Results ... 60

5.5.1 Task Performance.. 60
5.5.2 User Preference ... 62

5.6 Discussion ... 64

Chapter 6: Conclusion ... 67

6.1 Summary ... 67
6.2 Discussion ... 68
6.3 Limitations ... 70

6.3.1 Text Entry Testbed .. 70
6.3.2 Studies ... 71

6.4 Future Work .. 72

Appendices ... 74

Appendix A - Questionnaires .. 74
Appendix B - Study Recruitment and Consent Forms .. 77
Appendix C - CUREB-B Protocol Form ... 81

References .. 83

 5

List of Tables

Table 1 Text entry technique rankings based showing number of participants who ranked

each technique as 1st, 2nd, 3rd, and 4th. Each column adds up to 24 based on the 24

participants. ... 52
Table 2 - Text Entry Speed (WPM) comparison to similar studies. *Used CutieKeys

Technique, which is the most similar to Flik. ... 69

 6

List of Figures

Figure 1 Hand Representations for Text Entry in VR Using a Physical Keyboard [12] .. 22
Figure 2 Effects of Hand Representations for Typing in VR [8] 22
Figure 3 On left side: Physical Keyboard 1 to 1 mapped and repositioned. On Right:

Tablet keyboard 1 to 1 mapped and repositioned [9] ... 22
Figure 4 Bimanual Text Entry with Game Controllers ... 23
Figure 5 Controller-based VR text-input techniques evaluated and implemented in this

study: a. Controller Pointing, b. Drum-like keyboard, c. Head-directed input, and d. Split

keyboard [3]. ... 24

Figure 6 Selection-based Text Entry in VR [27] .. 24
Figure 7 BigKey virtual keyboard while selecting the word "the" [2] 25

Figure 8. Participant VR view of the text entry study welcome screen. Initial screen

where the experimenter selects Participant ID, number of phrases, and number of blocks.

At this stage, the only components displayed to the participant are the title and “Please

Wait” labels in the background. .. 27

Figure 9 Text Entry Technique Selection Screen. The experimenter selects the desired

text entry condition and aid using the mouse. This screen is seen by the experimenter

while the participant only sees the label ‘Please wait while study is set up’. 28
Figure 10 Text entry Test-Bed Singleton window .. 28

Figure 11 Elements presented to participants during text entry experiment 30
Figure 12 Sample log file for one participant covering 3 blocks with 8 phrases per block

using one text entry technique using a particular modifier condition. 31

Figure 13 Intermission screen shown in between blocks. This is the screen where

participants can take a short break before starting on the next block. Viewed by

participants. ... 31
Figure 16 Fluid Intersection Keyboard (FLIK). (A) Shows the phrase to be transcribed

before the user has entered any text. (B) The user selects the character ‘n’ by moving his

right hand through it so that the red selection cursor touches and goes through the

character as seen in (C) where the sphere cursor is now behind (and partially occluded

by) the ‘n’ character key sphere. (D) Again, shows the same right hand having looped

around the bottom of the keyboard and selecting the ‘o’ character key sphere from

beneath. (E) As the right hand exits the character ‘o’, the left hand now moves through

the spacebar to select a space character. (F) User continues in this manner selecting the

next character. ... 34
Figure 14 Images showing the Controller Pointing keyboard. ... 36
Figure 15 Continuous Cursor Selection. By dragging each thumb on their respective

touchpads, the cursors move on their respective half in order to select characters from the

virtual keyboard. ... 37
Figure 17 Logitech Bridge real world setup with individual vive tracker [28] 38
Figure 18 Logitech Bridge virtual keyboard with hand representations [28] 38

Figure 19 Image showing keys rescaling on virtual keyboard based on BigKey algorithm.

In every slide, a new character is selected, and the rest of the characters are resized based

on the words found with those characters as an option to be typed next. 40
Figure 20 Image showing how word disambiguation is shown to the user. (A) (B) and (C)

show how the list of suggestions gets updated with every key press, while (D) and (E)

 7

show the selection of a suggested word and the addition of a space character after

selection is complete ... 42

Figure 21 Vive controller inputs ... 46
Figure 22 Text Entry Speed Average Comparison Chart. Error bars show standard

deviation. Black horizontal bars show pairwise significant differences between some text

entry techniques. ... 49
Figure 23 Average Error Rate (%) Comparison chart. Error bars show standard deviation.

... 50
Figure 24 Average results of NASA TLX questionnaire with standard error bars. Lower

scores represent more positive results. Black bars depict Friedman test results showing

significance between each text entry technique. ... 51
Figure 25 Study 2 Average WPM Comparison Table. Error bars show standard deviation.

Black horizontal bars show pairwise significant differences between some text entry

techniques. .. 60
Figure 26 Study 2 Average error rate (%) comparison table. Black horizontal bars show

pairwise significant differences between some text entry techniques. 61

Figure 27 Averages of Study 2 NASA TLX results ... 62
Figure 28 Study 2 Text entry Technique/Aid Pair Rankings. F = FLIK, CP = Controller

Pointing, BK = BigKey, N = None, D = Disambiguation. .. 63

 8

 List of Appendices

This page lists all of the appendices.

A Questionnaires..………………...………………………………………74

B Study Recruitment and Consent Forms..………………………………77

C CUREB-B Protocol Form……………………………………………...81

 9

Abbreviations

VR - Virtual Reality

AR – Augmented Reality

MSD – Minimum String Distance

KSPC – Keystrokes Per Character

WPM – Words Per Minute

FLIK – Fluid Intersection Keyboard

NASA-TLX – NASA Task Load Index

HMDs - Head Mounted Displays

API - Application Program Interface

DoF – Degrees of Freedom

 10

Chapter 1: Introduction

According to Ko and Wobbrock, text is a ubiquitous form of verbal

communication [13]. Text entry refers to the process of creating messages composed of

characters, numbers, and symbols using an interface between a user and a machine. Text

entry has been extensively studied in the field of human-computer interaction (HCI) over

the past few decades, especially for use in desktop and mobile contexts. Efficient text

inputtext entry is important because it directly impacts the user’s ability to write

documents, send messages, and communicate effectively when verbal communication is

not available.

Virtual reality (VR) is defined as the use of computer technology to create

simulated environments. It often employs head-mounted displays (HMD) along with

spatially tracked controllers or hand trackers as input devices. VR has become

increasingly popular in recent years; increased consumer demand means the interaction

effectiveness of VR systems affects more people than ever. This thesis focuses on text

entry in VR, such as entering text in search bars or sending text messages. In such use

cases, it is important to include an effective option to enter text in VR systems as well as

an effective method to evaluate novel text entry techniques and compare with existing

techniques.

Sutherland’s Sword of Damocles, is widely considered as the first virtual reality

head-mounted display [4] despite it being an augmented reality (AR) display. Since

Sutherland, extensive research has been dedicated to 3D interaction. This includes the

definition of the fundamental canonical 3D interaction tasks, including selection,

 11

manipulation, travel, and system control [14]. These 3D interactions take advantage of

the degrees of freedom (DoF) provided by VR, meaning the number of basic ways a rigid

object can move through 3D space. In particular, 3D systems (including VR) offer 6 DoF

interaction, three degrees of freedom corresponding to rotation (pitch, yaw, and roll), and

the other three correspond to the translational movement along the x, y, and z axes. The

focus of this thesis is on text entry in VR, in particular, through the use of selection and

system control methods, both of which can be applied to text inputtext entry in VR.

Selection tasks mainly focus on the acquisition of targets, e.g., by pointing a ray at an

object and pressing a button to indicate selection. This can be applied in text entry

through the selection of keys on virtual keyboards. System control can include the use of

physical controllers, graphical menus, voice commands, gestural commands, and others

to operate menus, all of which can be employed for text entry in VR. While selection and

system control do not strictly apply only to text entry concepts, they can be applied

within this context to find new and effective text entry techniques in VR.

Research in VR text entry dates as far back as the 1990s, such as the Virtual

Notepad exploring handwriting in immersive VR [21], as well as Maggioni’s work on a

novel gestural input device for VR [19], and the neural-interface Glove-Talk 2 [6]. It

wasn’t until the recent adoption of consumer-level VR devices that the need for an

efficient and standard method for entering text in VR became a priority. With the rise in

popularity, competition, and consumer acceptance of virtual reality head-mounted

displays (HMDs), it is increasingly important to devise standards for interaction in VR.

While designers can draw inspiration from existing practice such as mobile or desktop

interaction and text entry techniques, adapting such methods to VR is not necessarily

 12

straightforward. Fundamental interaction in virtual reality is drastically different from

computer systems that came before, in that it supports much more direct interaction rather

than using techniques or devices which yield layers of separation between the user and

their task. Consider, for example, the difference between selecting an icon on a desktop

using a mouse to indirectly control a cursor, versus directly picking up an object

representing an icon in a VR system using one’s hands. With VR applications in gaming,

entertainment, simulation, therapy, training, and more [10, 20, 23], users need to be able

to convey information in written form as efficiently and quickly as possible. While a user

is immersed in a virtual environment, it is desirable to reduce the amount of distraction or

breaks in the momentum of a particular experience by having to enter some text with an

inefficient tool.

1.1 Motivation

To type long-form text in a VR environment is not yet be feasible or likely even

desirable. However, for quick messages or notes, this thesis makes contributions to text

entry in VR. For example, consider playing a multiplayer online VR game, where

communicating in written form may be preferable to speech communication. In such a

scenario, players need to enter text in a fast and accurate way that does not get in the way

of game play. Another scenario could be a VR conference where you would like to take

notes and potentially send back-channel messages to other attendees. For gaming

scenarios, one might find the need to type a quick SMS to a friend inviting them to come

online, without interrupting the gameplay. In scientific fields or even in architecture, it

might be useful to be immersed in a 3D environment and be able to annotate different

components of the environment. There are cases where typing in VR might be preferable

 13

to voice recognition, such as being immersed in VR whilst in a loud environment, or

when you need to maintain quiet. Speech-to-text could work well for specific purposes,

however, VR use has increased in areas such as office work, collaboration, and training

and education. For these applications, inputting text is an essential part of these

experiences and more often than not, precise text entry is required rather than using a

speech-to-text entry technique. Modification of existing text is unreliable and innacurate

as compared to more refined and direct text entry techniques.These are some examples of

what the work highlighted in this thesis focuses on.

Accessibility is also a factor behind the purpose of having an efficient text entry

technique for VR. As mentioned, it is not always desirable or even possible to use a

speech-to-text solution. People with speech impediments or similar disabilities might rely

solely on written or typed form of communication. On top of this, to make a system as

accessible as possible, it is necessary to consider as many forms of interaction as needed

and search for a feasible and standard method of employing these interactions. Text entry

is one of the interactions that benefits from having a standard method of interaction, as

can be seen from desktop and laptops using the standard keyboard as their text entry

technique. It is necessary to go through many iterations of techniques of any interaction

method, in our case for text entry, in order to optimize, refine, and ultimately find the

standard method of interaction.

On the topic of standard techniques, the current standards for text entry in VR are

sub-optimal, and have not seen much refinement or modifications since their first

iterations. It is our goal to provide contributions that aid in the discovery of a standard

 14

text entry technique, as well as provide empirical study data that adds to current research

in the field of text entry in VR.

1.2 Contribution

The first contribution of this thesis is a text entry testbed. A common issue for text

entry research is consistency and better standardization of methodological practice in

evaluating text entry systems [2]. Methodological consistency is important in text entry

research since usually, analysis is comparative, i.e., involves empirically comparing text

entry techniques to determine which is most efficient. Employment of similar methods

and metrics to ensure comparability between studies is motivating factor of the text entry

testbed. The text input testbed is a tool for conducting text entry studies which supports

desktop, mobile, VR, and other text input methods, that adheres to standard practice in

HCI text input research. The testbed provides a consistent platform to perform text entry

comparisons regardless of the techniques used. The testbed was developed using the

popular game engine software Unity 3D. With minimal Unity 3D experience required,

and future work focusing on eliminating the need for any Unity 3D experience,

researchers can implement a text entry technique to add key logging functions that serve

as individual character inputs. The testbed is described in Chapter 3.

The second contribution is a novel VR text entry technique called Fluid

Interaction Keyboard (FLIK). FLIK uses two controllers with 6DoF (e.g., Oculus Touch

controllers) together with a simple interface for fast and intuitive text entry. It operates by

selecting characters from a virtual soft keyboard by directly touching the characters.

When eliminating physical button presses on the controllers, users are enabled to type

 15

faster using this technique and achieve fluid hand motions to increase the speed of

character selection. FLIK was inspired by another text entry technique, Cutie Keys [3,

31] and was designed to improve on existing practice in VR text entry.

The third and final contribution is a formal evaluation of FLIK, comparing it to

existing VR text entry techniques through two user studies. The first study also validates

the use of the evaluation testbed. It compares four text entry techniques in a typical text

entry experiment where users transcribe phrases presented to them using the different

techniques. Two of the techniques are industry standard text entry techniques for virtual

reality: Controller Pointing, and continuous cursor selection. The other two techniques

are FLIK, and physical keyboard typing on a tracked keyboard using Logitech’s Bridge

SDK [28], which was added for its high performance.

The second study employs the testbed, and compares Controller Pointing and

FLIK across two aids intended to further facilitate fast text entry: BigKey [31] and Word

Disambiguation. BigKey resizes keys to offer faster selection depending on the

probability that the next letter will be typed, where the selection is based on common

digraph and trigraph frequencies. Word Disambiguation behaves similar to common

mobile phone text entry and makes word suggestions based on what was already typed.

The results of these studies are provided along with a discussion of performance, errors,

and user questionnaires.

 16

1.3 Outline of Thesis

The thesis is divided into six chapters:

Chapter 1 introduces the problem with text entry for virtual reality and the

importance of having fast, accurate, and efficient text entry in virtual reality.

Chapter 2 provides an overview of related work in text entry research. Covering

previous work on text entry error and performance analysis, text entry techniques, and

text entry techniques in the realm of virtual reality. It provides insight and the “big

picture” of the state of text entry to bring the reader up-to-date with the literature to

follow along with the rest of the thesis.

Chapter 3 describes the design and implementation of the text entry test-bed, the

FLIK text entry technique, BigKey for VR, Word Disambiguation, Logitech Bridge API,

and the other text entry techniques used.

Chapter 4 is dedicated to the first user study, where Controller Pointing,

continuous cursor selection, physical keyboard, and FLIK are tested and compared.

Chapter 5 is dedicated to the second user study, where only Controller Pointing

and FLIK are compared, except that now they use BigKey and Word Disambiguation as

conditions.

Chapter 6 draws conclusions from both user studies and discusses both

qualitative and quantitative results, suggests design considerations, and provides insight

into future studies and improvements.

 17

Chapter 2: Related Work

Text entry is a subject that has been studied for decades. In typical text entry

experiments, the time to enter a phrase is recorded while transcribing text to provide a

measure of entry speed, while the transcribed text is compared with the original text to

measure errors. Entry speed is a key metric for text entry since the goal of text entry

techniques is most commonly to offer fast ways of entering text into a system. However,

entry speed cannot be looked at by itself; error rate (e.g., number of mistyped characters)

is another metric that is used in text entry studies along with entry speed to find a balance

between fast text entry speed and acceptable error rates.

Methodology for conducting text entry studies is detailed by Mackenzie [16]; he

focuses on the evaluation of text entry techniques and laid out strategies in order to do so.

A typical text entry study starts with a working prototype. Users must be able to enter

text, and have it displayed as a result. Once this prototype is implemented, substantial

pre-experimental testing can begin. The first step is to get a rough idea of the entry speed

possible with the technique in question. Next is to decide what the evaluation task will

consist of. For text entry studies, the task is commonly to transcribe a set of phrases as

quickly and accurately as possibly using some text entry technique as the typing method.

Different tasks will have advantages over others, so it is up to the researcher to choose

the best task in order to achieve results that make sense in the context of what is being

compared. During a text entry experiment, data is collected to be able to assess

performance metrics such as entry speed and accuracy. Data for text entry studies can

include the time it takes to transcribe a single phrase, the final transcribed phrase, the set

of keystrokes (including spacebar, delete, modifier keys…), and error rate.

 18

For the methodology described above, a set of phrases is needed to conduct the

study. Mackenzie provides such a phrase set for text entry experiments [18] which

provides a consistent metric for text entry research independent of technique used,

technology involved, or even the main researcher conducting a study. MacKenzie’s

phrase set consists of 500 phrases to be used in such studies; this provides easy access to

much needed source material to be used in text entry. One way of performing text entry

studies is to have participants freely enter text with the text entry method in question;

however, this causes problems since there is no metric to measure accuracy without a

source to compare with. Phrases in MacKenzie’s phrase set have a mean length of 28.61

characters, which makes them ideal for text entry experiments for not being too short or

too long. They also provide probabilities of letters and words that might be typed next

which is useful when implementing word disambiguation systems; moreover, these

probabilities are consistent with normal English. Overall, using this phrase set balances

internal and external validity of text input experiments.

2.1 Measuring Text Entry Speed and Accuracy

Wobbrock et al. [2] describe measures of text entry performance in which they

include words per minute as a text entry speed measure as well as the minimum string

distance as an error rate measure. We now summarize key metrics of text entry

performance, several of which we employ in our experiments.

Entry speed is calculated using words per minute as seen in Equation 1 described

by Boletsis et al. [3].

 19

𝑤𝑝𝑚 =
|𝑇| − 1

𝑆
 × 60 ×

1

5

Equation 1- Words per minute formula

where S is the time in seconds from the first to the last key press and |T| is the

number of characters in the transcribed text (i.e., the phrase length). The constant ‘60’

corresponds to the number of seconds in a minute, and the factor of one fifth corresponds

to how many characters compose an average word, which is defined to be 5 characters in

text inputtext entry experiments. This definition was used to make the results more

generalizable with previous studies. We subtract 1 from the length since we start timing

the participants as soon as they enter the first key, which means the first key is not timed,

so we need to take away 1.

An important metric for measuring text entry accuracy is the minimum string

distance (MSD) [17, 24, 26, 25]. While text entry speed is a common metric is relatively

simple to calculate, accuracy, however, is more complex. Consider that a simple

character-by-character comparison of an entered string to a target phrase may not

accurately capture user errors. For example, suppose a user meant to enter the word

“quickly” but mistakenly entered “qucehkly”. The first two characters are correct, but one

might consider everything after the letter ‘u’ to be incorrect due to displacement of all the

letters typed; however, the final three letters ‘kly’ are correct. A character-by-character

comparison would yield seven errors, which clearly does not give a realistic idea of how

many mistakes the user actually made.

MSD instead is based on an algorithm used in DNA analysis, phylogenetics,

spelling correction, and linguistics for measuring the distance between two strings. As an

example, consider two strings ‘abcd’ and ‘acbd’. To calculate the error between these two

 20

strings you could take the transcribed string and delete the c, then, insert a c after the b.

This requires two actions to make the strings identical, so MSD = 2. Minimum String

Distance is denoted MSD(A, B) where A is the presented text and B is the transcribed

text. With this in mind, MSD(A, B) = 0 means A and B are identical. Further refinement

for error analysis [17] notes the difficulty of analyzing errors in text entry systems, in that

the displacement of letters in certain text entry errors might make correctly typed letters

incorrect (see, e.g., the example of quickly” vs. “qucehkly” mentioned earlier).

The use of MSD for text entry evaluations was pioneered by Mackenzie and

Soukoreff [26] by using the Levenshtein distance between two strings, which refers to the

minimum number of edits required to transform one into the other. These edits can be

adding a letter, removing a letter, or changing a letter to match the target string. To

finalize their work, they summarize their efforts along with providing insights in what

they coined pathological error correcting [25]. This consists of users noticing they have

made a mistake, but they have already typed more letters, instead of using the cursor

pointer to correct the error in the proper location, they proceed to hit the backspace key

multiple times.

2.2 Text Entry Techniques

Text entry techniques are the input methods for entering text into a system. These

can include physical keyboards, touchpads, voice recognition, and even pencils.

There has been extensive research done in the area of text entry using physical

keyboards [8, 9, 12]. This type of work typically focuses on conducting text entry

experiments using standard keyboards to enter text into a computer system to compare

entry speed and accuracy measures. The main focus lies on physical keyboard text entry

 21

studies in the context of VR use. Walker et al. introduced Decoder-Assisted Typing using

an HMD and a physical keyboard [29], where it is stated that using a real keyboard in

virtual reality presents a key issue which is occlusion (not being able to see the keyboard

you are typing on). Occlusion significantly degrades the performance of typing with a

physical keyboard in VR for all but touch typists, who are able to type without looking at

the keyboard they are typing on. Walker et al. employed an experiment consisting of

three conditions, visible typing, occluded typing, and HMD typing. Visible typing

outperformed the other techniques, and HMG typing performed the worst, proving that

there is a real issue when it comes to occlusion. For their follow-up study [30], an extra

feature was added which is displaying a virtual keyboard which presents visual feedback

on the key pressed. They performed a study with conditions: Desktop, Desktop Assistant,

HMD, and HMD Assistant. The HMD Assistant condition performed better than

standalone HMD, which shows that there are viable solutions to occlusion.

Other researchers studied hand visualizations when typing on physical keyboards

[8, 9, 12], comparing different hand representations in VR text inputtext entry. Knierim et

al. [12] employed retro reflective markers to accurately track fingers, with the ability to

track fingers they proceeded to conduct a user study to compare different hand

representations along with three levels of opacity; full opacity, 50% opacity, and

invisible, see Figure 1. The hand representations included realistic hands, abstract

skeleton hands, finger tips only, and real world (no VR). It was found that rendering of

hands in VR has a significant effect on the typing performance measured using the WPM

for inexperienced users in VR, however, the hand representation type had no effect on

significance.

 22

Grubert et al. [9] made use of the Logitech Bridge SDK [28]. This method was

employed to be able to track the physical keyboard and hands and display a digital hand

representation in VR. The hand representation included no hands, realistic hands, finger

tips only, and VideoHand, where a video pass-through allows the user to see their hands

in VR. They found no significant results on entry speed; however, participants reported

that their preferred technique was VideoHand.

Figure 1 Hand Representations for Text Entry in VR Using a Physical Keyboard [12]

Figure 2 Effects of Hand Representations for Typing in VR [8]

Figure 3 On left side: Physical Keyboard 1 to 1 mapped and repositioned. On Right: Tablet keyboard

1 to 1 mapped and repositioned [9]

Most text entry techniques in VR do not use a physical keyboard, due to the

restricted mobility of using a standard keyboard, when VR often requires users to

physically move around. The two most common techniques are controller pointing and

 23

bimanual text entry. Controller pointing requires spatially tracked controllers to be able to

point and select keys on a soft keyboard. Bimanual text entry presents a soft keyboard

split into two sides and requires two touchpads or joysticks to move the cursor on each

side of the keyboard to select keys, as can be seen in Figure 4. Bimanual entry commonly

employs two joysticks that are moved by each thumb to control one of two cursors on the

corresponding side of the virtual keyboard [22]. In a typical text entry experiment, using

bimanual entry, the offered entry speeds are at best 15.6 WPM, but on average 8.1 WPM.

Figure 4 Bimanual Text Entry with Game Controllers

Similar techniques have been included in several studies, which consistently

report low text entry speeds between 5.3 and 10 WPM [3, 27]. Previous studies compared

bimanual entry with other techniques such as:

• Controller Pointing,

• A drum-like keyboard (CutieKeys [31]), where users hit the keys on a soft keyboard

using drumming like motion

• Head-directed input [3], where the orientation of the head defines the selection of

keys via a ray cast from the head position

• Freehand [27], where hand tracking is employed to select keys directly

• Controller tapping [27] which is similar to freehand except users select keys by

tapping with the controller

Figure 5 and Figure 6 depict examples of these techniques. The drum-like keyboard

(Figure 5b) offered the best performance, which shows potential for this kind of text

 24

entry technique for VR.

Figure 5 Controller-based VR text-input techniques evaluated and implemented in this study: a.

Controller Pointing, b. Drum-like keyboard, c. Head-directed input, and d. Split keyboard [3].

Figure 6 Selection-based Text Entry in VR [27]

We finish our exploration of VR text entry techniques by mentioning BigKey by

Faraj et al. [1]. BigKey resizes keys on the virtual keyboard in real-time. It uses the

probability of a letter being typed next to increase the size of the predicted next key. For

example, upon typing the character ‘t’, the character ‘h’ is likely to be the next key due to

the frequency of the “th” digraph in English. Similarly, upon typing ‘q’, the ‘u’ key is

almost certain to follow, while other keys like ‘z’ for instance, are almost certain not to

follow. In the former case, BigKey would increase the relative size of the ‘h’ key after

striking the ‘t’ key, and increase the size of the ‘u’ key after striking the ‘q’ key (while

decreasing the size of keys like ‘z’). According to Fitts’ law, larger targets (at otherwise

equal distance) are faster to select [15]. An example of BigKey in action is seen in Figure

7.

 25

Figure 7 BigKey virtual keyboard while selecting the word "the" [2]

In this section, we discussed key works in text entry. Our work builds off of these

by employing and further developing the text entry techniques discussed. In the next

chapter we present our fluid interaction keyboard which is based on CutieKeys, as well as

adapting BigKey to controller pointing and the fluid interaction keyboard techniques. We

also take advantage of previous work in text entry measures for entry speed and accuracy

as described by Equation 1 and MSD, which we use to analyze results from our studies.

Finally, we use Mackenzie’s phrase set [18] as the text to be transcribed in our studies’

task, which is further detailed in Chapter 3.

 26

Chapter 3: Text Entry in Virtual Reality

This section describes the implementation of our text entry testbed, BigKey, word

disambiguation, and the input techniques evaluated in the studies.

3.1 Text Entry Testbed

Noting the need for an experimental framework to conduct text inputtext entry

studies in VR, we first developed a text entry experiment testbed. The design and

implementation of the text entry testbed was targeted as a flexible text entry experiment

framework developed with Unity 3D 2018.3.7f1. It was developed for conducting user

studies on text entry in VR for the purpose of this thesis. However, it doubles as a general

purpose text entry experiment tool since it can be adapted for use with any (non-VR) text

entry technique. Researchers can develop their text entry techniques and easily integrate

it with the text entry testbed for initial performance test, up to full scale user studies.

The design and development of the testbed is considered the first contribution of

this thesis. The testbed is available for download at http://sotocodes.com/text-entry-test-

bed/ and its source code is also available at https://github.com/sotoea/text-input-test-bed.

Detailed instructions on how to use and contribute to the development of the testbed are

available at the above links. We made the testbed publicly available in hopes to

continuously make improvements to the experiment software and make it more

accessible and functional over time.

The following subsections detail the sequence of events of a text entry experiment

employing the text entry testbed.

http://sotocodes.com/text-entry-test-bed/
http://sotocodes.com/text-entry-test-bed/
https://github.com/sotoea/text-input-test-bed

 27

3.1.1 Experimental Setup Screens

Upon starting the testbed, the experimenter is presented with the welcome screen

(Figure 8). The experimenter enters a participant ID, the number of phrases that will be

presented to the participant in each block, and the number of blocks (i.e., repetitions of all

experiment conditions). For example, if 10 phrases are chosen, and 3 blocks are chosen,

30 phrases will be typed overall split into 3 blocks.

Figure 8. Participant VR view of the text entry study welcome screen. Initial screen where the

experimenter selects Participant ID, number of phrases, and number of blocks. At this stage, the only

components displayed to the participant are the title and “Please Wait” labels in the background.

Upon proceeding, the experimenter is then prompted to select a text entry method

on the next screen (Figure 9). The input technique selection screen presents a list of

options which is customized by the experimenter depending on what text entry

techniques they want to include in the evaluation. If the study requires multiple levels of

independent variables to choose from, additional options will appear allowing the

experimenter to choose each condition (Figure 9). Once everything is set and an initial

text entry method to test is chosen, the system will start with the first block of the chosen

method.

 28

Figure 9 Text Entry Technique Selection Screen. The experimenter selects the desired text entry

condition and aid using the mouse. This screen is seen by the experimenter while the participant only

sees the label ‘Please wait while study is set up’.

In the background, the software contains a singleton variable which holds all

relevant information of the current experiment setup, including Participant ID, number of

phrases, current phrase, number of blocks, current block, and experiment condition. This

is all the necessary data for a study.

Figure 10 Text entry Test-Bed Singleton window

 29

Once the experiment has started, the singleton (Figure 28) contains the necessary

data to keep track of the experiment and record data to log files.

3.1.2 Starting the Experiment

Upon starting the first block and any subsequent block, the current Unity scene

will get information from the setup singleton to create a new unique log file. In the scene,

there are three main components apart from the singleton: The phrase to be transcribed,

the text entered so far, and the text entry technique are the main components that the

participant is able to visualize in the scene. The testbed currently uses Mackenzie’s

phrase set of 500 phrases as the default phrases, which are commonly used in text entry

experiments [18], but these can be changed by replacing a file called ‘phrases.txt’ with

any other phrase set as long as it follows the same format as Mackenzie’s phrase set text

file.

As each text entry trial commences, the participant sees the target phrase (i.e., the

phrase to be transcribed), the text they have entered so far in a separate text field, and any

components that need to be visualized and controlled (e.g., rays, virtual keyboards, etc.)

required for a given text entry technique. See Figure 11. The testbed randomly selects a

phrase from the phrase set; this is the “target” phrase, and it is presented to the participant

in the phrase to transcribe section and will wait for the participant to enter the first letter,

this is repeated for the number of phrases selected by the experimenter for each block.

When the participant enters the first character, a timer starts. The timer stops once the

participant hits ENTER or an equivalent key on the virtual keyboard being used. The timer

measures how long it took the participant to enter the phrase. While the participant is

 30

entering text, the system records the raw input stream, which corresponds to all

characters selected in order; this includes space, backspace, and modifiers.

Figure 11 Elements presented to participants during text entry experiment

While the participant is entering text, the system records the raw input stream,

which corresponds to all characters selected in order; this includes space, backspace, and

modifiers.

When the participant completes a phrase and hits ENTER, the testbed records all

relevant details to a log file, which is structured as seen in Figure 12. In the log file, each

trial appears as a single row, and includes experiment setup details such as the participant

ID, text entry technique, current condition, block number, the phrase to be transcribed,

the text that is actually transcribed by the participant, the raw input stream, time, the

calculated entry speed in words per minute, and error rate in minimum string distance [2].

 31

Figure 12 Sample log file for one participant covering 3 blocks with 8 phrases per block using one

text entry technique using a particular modifier condition.

3.1.3 Intermission Screen

Once the participant completes all phrases in a given block, the log file is closed

and is ready to be processed, the system will then move on to an intermission screen

where the participant can take a break. This intermission also provides a chance for the

experimenter to ask for any feedback or to fill out any questionnaires that might be

needed. Once ready, the next block begins.

Figure 13 Intermission screen shown in between blocks. This is the screen where participants can

take a short break before starting on the next block. Viewed by participants.

 32

3.1.4 Finishing the Experiment

Upon completing all blocks for a given condition, the system returns to the

welcome screen. The experimenter can then continue with the next experimental

condition, or provide participants with a questionnaire, or complete the experiment as

appropriate.

3.2 Text Entry Techniques

This subsection describes the main four text entry techniques of the two

experiments described in Chapters 4 and 5 of this thesis. These techniques include

controller pointing, continuous cursor selection, physical keyboard, and fluid interaction

keyboard (FLIK), as well as the two “aids” (BigKey and word disambiguation). These

text entry techniques as well as the aids were included not only to empirically compare

the techniques, but to also validate the text entry testbed itself. The techniques are chosen

due to their standard use in the industry; Controller Pointing and continuous cursor

selection being widely used as the main technique in the VR industry, physical keyboard

due to its high performance in non-VR applications, and fluid interaction keyboard as a

novel technique to compare. The two experiments, detailed in the following chapters,

were designed to necessitate modification to the text entry testbed to support

incorporating different techniques and aids, as a way to assess the effectiveness and ease

of use of the testbed as an experimental tool. Overall, the objective was to support

multiple text entry techniques and the evaluation of various combinations of text entry

techniques and aids, while simultaneously collecting performance data on VR text entry

methods. In the following subsections, we describe the text entry techniques used, which

are defined as the method in which you enter text into a computer system, as opposed to

 33

keyboard layout, which is the layout individual keys are presented to the user on physical

or virtual keyboards. For example, entering text input on a smart phone using traditional

tap keyboard versus using a swipe method are both considered text entry techniques,

whereas QWERTY and DVORAK are two different keyboard layouts a given text entry

technique can adopt. For our studies, we implement the QWERTY keyboard layout on

our text entry techniques since it is more commonly used in text entry environments, as

well as keyboard layouts being beyond the scope of this thesis.

3.2.1 FLIK (Fluid Interaction Keyboard)

One of our main contributions to this thesis is the FLIK text entry technique. This

text entry technique is inspired by CutieKeys [31]. CutieKeys employs a drumstick

metaphor, where users enter text by swinging the VR controller like a drumstick to hit

pads corresponding to keys organized in the standard QWERTY keyboard layout.

However, unlike CutieKeys, FLIK supports contacting keys from both top and bottom

directions. In our implementation of FLIK, the virtual keyboard presents every key as a

sphere, positioned far enough from its neighbor to prevent overlap or mistaken

keystrokes due to accidental collisions between the cursor and the key sphere. FLIK uses

bimanual 3D tracked controllers. A selection cursor sphere is attached to the tip of each

controller; these selection spheres are what the user manipulates, and intersects with the

key spheres to issue a specific keystroke. Intersection between the selection cursor and

the key sphere simultaneously selects and confirms the key input; no further button

presses are required with FLIK. Upon intersecting a key sphere, the user can move in arcs

in both direction, and loop back through the keyboard to the desired key (unlike

CutieKeys, which would require they move back (upwards) from below upon striking a

 34

key, then move back down again from above to strike the next key). Although the

difference between FLIK and CutieKeys is subtle, we anticipate that this minor

difference will improve entry rates due to the continuous movement of the hands. In

contrast, with CutieKeys, the user has to tap on a key, and then reverse the direction of

movement to stop selecting the key. See Error! Reference source not found..

Figure 14 Fluid Intersection Keyboard (FLIK). (A) Shows the phrase to be transcribed

before the user has entered any text. (B) The user selects the character ‘n’ by moving his right hand

through it so that the red selection cursor touches and goes through the character as seen in (C)

where the sphere cursor is now behind (and partially occluded by) the ‘n’ character key sphere. (D)

Again, shows the same right hand having looped around the bottom of the keyboard and selecting the

‘o’ character key sphere from beneath. (E) As the right hand exits the character ‘o’, the left hand

now moves through the spacebar to select a space character. (F) User continues in this manner

selecting the next character.

 35

3.2.2 Controller Pointing

Controller Pointing: Controller Pointing requires using two 6DOF controllers. A

selection ray is emitted from each controller, which allows a participant to bimanually

(using both controllers, one in each hand) remotely point at a virtual (i.e., soft) keyboard

presented in front of them. Individual keystrokes are issued upon pressing the primary

thumb button on the controller currently being used for selection. For extra visual

feedback, the key currently intersected by the selection ray changes colour. The

controllers also vibrate to confirm selection when the button is pressed. Auditory

feedback in the form of a “click” sound is also provided. Both rays pointing at the same

key would not have any side-effects. See Figure 15.

 36

Figure 15 Images showing the Controller Pointing keyboard.

3.2.3 Continuous Cursor Selection

Continuous Cursor Selection: With continuous cursor selection, the virtual

keyboard is divided in left and right halves to support bimanual entry. Keys on the right

half of the keyboard are selected via a cursor controlled by the right hand and vice versa.

A 2D selection cursor is initially placed at the midpoint on each keyboard half. These

selection cursors are controlled by moving the corresponding (right or left) joystick (e.g.,

with an Oculus Touch controller) or sliding a finger/thumb on the controller’s touchpad

(e.g., on an HTC Vive controller). The cursors move in a continuous motion in the

direction of joystick or touchpad movement. Once the cursor hovers over the desired key

on the virtual keyboard (half), a button press on the corresponding controller confirms

selection and issues the keystroke. The same feedback mechanisms described above for

the controller pointing technique are employed with this technique as well. For the

purpose of this thesis, feedback mechanisms are not treated as an independent variable

but instead are part of the text entry technique as whole. However, with minimal

modification to the testbed, feedback mechanisms could be included as a separate

independent variable if desired. See Figure 16.

 37

Figure 16 Continuous Cursor Selection. By dragging each thumb on their respective touchpads, the

cursors move on their respective half in order to select characters from the virtual keyboard.

 38

3.2.4 Physical Keyboard

Physical Keyboard: Lastly, there is a tracked physical keyboard with virtual hand

representations by using Logitech Bridge API [28] in combination with an HTC Vive

individual tracker mounted on a keyboard. The hand representations are provided by the

Logitech Bridge API via the HTC Vive’s integrated camera and Logitech’s proprietary

computer-vision hand recognition techniques. This technique behaves the same as using a

physical keyboard except that the user sees a virtual representation of the keyboard (and a

video image of their hands) rather than the physical keyboard itself.

Figure 17 Logitech Bridge real world setup with individual vive tracker [28]

Figure 18 Logitech Bridge virtual keyboard with hand representations [28]

 39

3.3 Text Entry Aids

The testbed supports the following add-on features that can be applied with any of

the above text entry techniques (or any other that could be added). This demonstrates the

flexibility of the testbed in providing a way to add different techniques with varying

levels of complexity. The testbed currently supports two such aids, BigKey and word

disambiguation, described below.

BigKey: BigKey [1], detailed in chapter 2, employs a custom algorithm which

operates by analyzing the input stream of the current word. The higher the probability a

letter will be typed next, the bigger the size of its key on the virtual keyboard. The

algorithm starts when an initial character for a new word is entered (i.e., following press

of the SPACE key). Prior to entry of the initial character for a new word, all keys are the

same average size.

Following the first keystroke for the new word, the algorithm retrieves all

possible words that start with this character provided in the phrase set used by the testbed.

Since the testbed included only a fixed phrase set size, there are a limited number of

possible words that can be entered, so the overall computing time for creating an array of

such words is short. Prior to entering the next character, the system calculates the

frequency of all subsequent next characters. This is done by counting the occurrences of

each character in sequential order, starting with ‘a’, ‘b’, ‘c’, and so on, that directly

follow the entered character for all words in the array. After this calculation is complete,

all letters with 0 frequency (i.e., those that never follow the initial character) are scaled to

the smallest size, while the letter or letters with highest frequency, are scaled up to the

maximum size. Letters with frequencies between 0 and the highest frequency are scaled

 40

by a factor multiplier which starts with the scaling factor of the letter with the highest

count. The highest ranked letter would be scaled up by a factor of 1.75, the second by a

factor of 1.7, and so on in decrements of 0.05. This ensures that all characters that might

follow the initial character receive some scaling multiplier, with the more probable ones

being scaled proportionally larger. See Figure 19.

Figure 19 Image showing keys rescaling on virtual keyboard based on BigKey algorithm. In

every slide, a new character is selected, and the rest of the characters are resized based on the words

found with those characters as an option to be typed next.

 41

BigKey operates as follows. After the initial keystroke the word list is filtered

using the first letter. All words that do not contain this new character as their next

character are removed from the list. The algorithm then repeats this process, refining the

list and calculating new scale factors for all keys on each subsequent keystroke. Upon

finishing the word (i.e., the SPACE key is pressed), the words list is cleared and every key

is rescaled to the default size in preparation for the next word.

According to Fitts’ law [15], dynamically resizing keys in this fashion decreases

the difficulty (and thus selection time) in selecting a more probable next key, while

increasing the difficulty (and thus selection time) in selecting a less probable next key.

Using BigKey, the virtual keyboard dynamically changes individual key sizes each time

the user enters a character. The expectation is that this technique will on average,

improve text entry speed since the original work on BigKey demonstrated significant

results in favor of BigKey [1]. However, there is a high likelihood that it decreases text

entry speed when the user makes a mistake, due to how the algorithm analyses the next

possible characters. In situations where the user enters the wrong key (e.g., mistakenly

hits the wrong key), BigKey provides incorrect resizing from what is expected, or might

even not resize at all since the characters typed might not resolve to any word – and thus

compounds the effects of errors. In order to make it easier for users, the keys scale to

their default size if a wrong sequence of characters is entered and they cannot resolve any

words.

Word Disambiguation: In every language, there are frequencies of how often

each word appears. From these frequencies, one can implement a general Word

 42

Disambiguation system that can be used with most text entry scenarios. The testbed

implements this in the form of suggestions, every time the user enters a key, the system

computes the most likely word to be typed in order of ranking, then it displays the top

three ranked words as selection options to complete a word in one selection rather than

finishing the whole word. See Figure 20 for an example.

Figure 20 Image showing how word disambiguation is shown to the user. (A) (B) and (C) show how

the list of suggestions gets updated with every key press, while (D) and (E) show the selection of a

suggested word and the addition of a space character after selection is complete

This system works in a similar way to how key prediction is implemented for

BigKey. The main difference is that with disambiguation, the ranking for every word in

the phrase set is used. Along with Mackenzie’s phrase set, a list of word rankings is

provided. This list contains all words used in the phrase set along with their ranking. The

rankings are in the form of a simple integer number, representing the frequency of use of

this word. Following the same method as BigKey, where a list of words is gathered once

a character is entered, the array of possible words can then be ordered in terms of their

ranking, after which the top three ranking words are simply selected and displayed as

 43

selection options to the participant. Note that the ranked words in the list correspond to

possible words containing the keys that have been typed so far, it does not predict the

next word to come, but instead suggests three different words to complete the current

word.

For text entry studies, this method works well due to the limited phrases and

words used in the phrase set. This also allows for consistency between studies since the

sample size of the phrases remains fixed, allowing for better comparative analysis of

results between different studies. Ease of implementation is also a big factor when using

such a predictive algorithm for both word disambiguation and BigKey. Using the

Mackenzie phrase set allows for researchers to create these types of techniques without

worrying about optimization and more complicated prediction algorithms which are

fields of their own.

 44

Chapter 4: User Study 1

This chapter presents the first user study using the text entry testbed described in

Chapter 3. In addition to comparing four VR text entry techniques, the study also serves

as a validation of the text entry testbed, which is also employed in the second user study

described in Chapter 5. This first experiment consists of a performance comparison of the

four text entry techniques for virtual reality: Controller Pointing, Continuous Cursor

Selection, FLIK, and Physical Keyboard. This study was approved under CUREB-B file

number 109263.

4.1 Hypotheses

The main following hypotheses for this first user study are decided based on pre-

testing of the text entry techniques used are:

 H1: Experienced touch typists will perform fastest when using the

physical keyboard, while inexperienced typists would have similar results across the

other text entry techniques.

 H12: Excluding the results of experienced touch typists using the physical

keyboardPhysical keyboard will perform the best, followed by FLIK, and controller

pointing coming in third, but not far behind FLIK Controller Pointing will perform the

next best, followed by comparable performance in terms of text entry speed between

physical keyboard and FLIK. It is expected that continuous cursor selection will offer the

worst performance.

 H23: Continuous cursor selection will yield the lowest fatigue, followed

by physical keyboard, and lastly FLIK.

 45

4.2 Participants

This study included 24 participants, 14 male, 10 female, and aged 18 – 30 (SD =

2.96). Recruitment was done through flyers posted around campus as well as word of

mouth. Participants were asked before-hand if they were touch-typists or not (if they are

able to type on a keyboard effectively without looking at the keyboard) of which 15

claimed to be touch-typists. All participants stated that they are comfortable with basic or

advanced computer use.

4.3 Apparatus

4.3.1 Hardware

The experiment was conducted using a VR-ready laptop with an Intel core i7-

6700HQ quad core processor, an Nvidia Geforce GTX 1070 GPU, and 16GB of RAM,

running the latest build of Microsoft Windows 10. The Logitech G810 was used as the

physical keyboard due to integration requirement with the Logitech Bridge SDK. We

used the HTC Vive HMD with the touchpad enabled 6 degree of freedom controllers.

The HTC Vive provides a 1080 x 1200-pixel resolution per eye, 90 HZ refresh rate, and

110 degrees of field of view.

To minimize potentially confounding variables, participants were always seated in

our lab, with a wide radius of free space around them to maximize range of movement.

Participants used the HTC Vive controllers as the main input device in all conditions,

with the exception of the physical keyboard condition, where they instead used the

tracked keyboard. Participants pressed the trigger buttons on the HTC Vive controllers to

confirm selections where applicable and used the touchpad on the controllers for the

 46

continuous cursor selection portion of the experiment, see Figure 21.

Figure 21 Vive controller inputs

4.3.2 Software

The study employed the text entry testbed described in Chapter 3. It was

developed in Unity 3D and it integrates easily with any text entry technique. The study

included the following text entry techniques: Controller Pointing, Continuous Cursor

Selection, FLIK, and Physical Keyboard (see Chapter 3 for detailed descriptions). Each

text entry technique used in this study was developed in Unity independent of the text

entry testbed and was then integrated with the testbed in order to use the full functionality

of the system. Once all the text entry techniques have been integrated and tested with the

text entry testbed, the experiment can begin by providing the number of blocks and

number of phrases. The integration process is described in Chapter 3. All necessary data

is logged by the system into unique log files to avoid overwriting previous data.

4.3.3 Procedure

Upon arrival, participants were asked to read the consent form provided in

Appendix A. They were informed of their right to withdraw from the experiment at any

 47

point without any obligation to finish the experiment if at any time they felt

uncomfortable or nauseous. Participants were then asked to try the HMD, and were

presented with their first text entry technique (based on counterbalancing order). They

were given around two minutes to practice with the technique, to become familiar with

the general system and the first text entry technique they would use. These practice trials

were not recorded. After this practice period, the study began with the same text entry

technique used in the practice round.

The task involved transcribing presented phrases using the current text entry

technique. Participants performed 3 blocks with each of the four text entry techniques,

where each block consisted of 8 phrases to be transcribed. Once a block completed,

participants took a short break if desired and continued with the next block once they

were ready, when all three blocks were finished, the next text entry technique was chosen

and the process repeated from trying out and practicing the technique for 2 minutes. In

between each technique, participants were also asked to fill out the NASA-TLX

questionnaire provided in Appendix A. During the breaks, participants were encouraged

to provide any feedback about the current technique. Participants were instructed to

transcribe the phrases presented as quickly and accurately as possible but were not told to

prioritize either-or in order to not be biased towards speed or accuracy.

In this study, error correction was allowed via the backspace key, but it was not

necessary to transcribe the phrases perfectly in order to continue. At the end of the study,

participants were asked to fill out one last questionnaire asking them to rank each

technique as well as provide any additional feedback they might have. This questionnaire

is also provided in Appendix A.

 48

4.4 Design

The experiment employed a within-subjects design, with two independent

variables, text entry technique with four levels (FLIK, controller pointing, physical

keyboard, and continuous cursor selection) and block with three levels (block 1, 2, and

3). Blocks are used as independent variables since they can potentially reveal learning

curves in the resulting data. The order of text entry technique was counterbalanced using

a Latin square.

We recorded three dependent variables (entry speed, error rate, and NASA-TLX

scores). Entry speed was measured in words per minute (WPM), and calculated as seen in

Equation 1 from Chapter 2 and detailed in Chapter 2. Error rate was based on the MSD,

see Equation 2 and Chapter 2 for full discussion. TLX scores are the overall results from

the NASA-TLX questionnaire. Exit questionnaires were given once the experiment was

done. Across all 24 participants, this yielded 3 blocks × 8 phrases × 4 techniques ×

24 participants = 2304 phrases transcribed

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 % =
100 × 𝑀𝑆𝐷(𝑃, 𝑇)

max (|𝑃|, |𝑇|)

Equation 2 - Error rate formula

4.5 Results

4.5.1 Task Performance

In this subsection, we present quantitative results from the first study in relation to

speed and accuracy. They are computed per participant, for each text entry technique, and

averaged per block.

 49

Starting with text entry speed, results ranged from 12.32 WPM for Continuous

Cursor Selection to 49.56 WPM for Physical Keyboard. See Figure 22 for full results.

Figure 22 Text Entry Speed Average Comparison Chart. Error bars show standard deviation. Black

horizontal bars show pairwise significant differences between some text entry techniques.

Repeated-measures analysis of variance revealed that the effect of text entry

technique on entry speed was statistically significant (F3, 69 = 54.886, p < .0001), as was

the effect of block on entry speed (F2, 46 = 88.432, p < .0001). A Post Hoc Bonferroni-

Dunn test at the p < .05 level revealed pairwise significant differences between some text

entry techniques. These pairwise differences are represented as horizontal bars on Figure

22.

For error rate, results ranged from 1.83% error for physical keyboard to 4.03% for

continuous cursor selection. See Figure 23.

0

10

20

30

40

50

60

70

80

90

Flik Keyboard Controller Pointing Continuous Cursor
Selection

A
ve

ra
ge

 E
n

tr
y

Sp
e

e
d

 (
w

p
m

)

Text Entry Technique

Block 1 Block 2 Block 3

 50

Figure 23 Average Error Rate (%) Comparison chart. Error bars show standard deviation.

Analysis of variance revealed that the effect of text entry technique on error rate

was not statistically significant (F3, 69 = 0.431, ns), nor was the effect of block (F2, 46 =

1.681, p > .05).

4.5.2 User Preference

Workload

User workload is based on Hart and Staveland’s NASA Task Load Index (TLX).

NASA TLX is a short questionnaire based on 6 questions to assess perceived workload

related to performing a task. The questionnaire can be found in Appendix A:

Each of these questions can be answered on a scale from ‘Very Low’ to ‘Very

High’, with ‘Performance’ as an exception which uses a scale from ‘Perfect’ to ‘Failure’.

In all cases, a lower overall score signifies less workload and greater overall preference to

this technique. See Figure 24 for NASA TLX results.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

Flik Keyboard Controller Pointing Continuous Cursor
Selection

Er
ro

r
ra

te
 (

%
)

Text Entry Technique

Block 1 Block 2 Block 3

 51

Figure 24 Average results of NASA TLX questionnaire with standard error bars. Lower scores

represent more positive results. Black bars depict Friedman test results showing significance between

each text entry technique.

Friedman post hoc pairwise comparison using Conover’s F test results are

represented on Figure 38 by horizontal bars between each text entry technique.

Exit Questionnaire

The exit questionnaire consists of two questions and was filled out at the end of

the study when participants have used all techniques. The first question is to rank each

text inputtext entry technique in terms of their favourite to use, with 1 being their overall

favourite and 4 being their least favourite. Table 1 summarizes these rankings.

 52

Table 1 Text entry technique rankings based showing number of participants who ranked

each technique as 1st, 2nd, 3rd, and 4th. Each column adds up to 24 based on the 24 participants.

Text entry Technique Rank

1 2 3 4

FLIK 10 12 2 0

Keyboard 8 4 11 1

Controller Pointing 5 8 8 3

TouchpadContinuous

Cursor Selection

1 0 3 20

4.6 Discussion

The physical keyboard condition did best overall, however, this was expected.

After that, FLIK did about as well as controller pointing, with an average entry speed of

23 WPM on the third block, where the top entry speed achieved on any block was 28

WPM. When it comes to user preference and workload, FLIK scored worse on mental

and physical demand. This is reasonable since this technique is analogous to something

like playing the drums, where focus is placed on managing the accurate movement of

hands as well as the physical effort of moving both hands continuously. Despite this,

FLIK makes up for this in performance and low frustration, which are important factors

when it comes to user preference. Due to the fact that these text inputtext entry

techniques are, for the time being, meant to be used in short text entry tasks, the physical

demand aspect becomes less of an issue since users would not be writing long form text,

hence, reducing the exposure to fatigue. Ranking first overall as participants’ favorite text

inputtext entry technique, it serves as proof that standard VR text inputtext entry

techniques such as Controller Pointing, and continuous cursor can be not only,

 53

outperformed but could be replaced by more favorable alternatives.

Physical keyboard demonstrated high results in terms of text entry speed, with a

top entry speed score of 49.6 WPM on the third block. While there were some cases of

low scores among some of the participants, with one participant scoring the lowest of

15.7 WPM, this is far offset with the proficiency of participants using regular keyboards,

with most being able to type without looking down at the keyboard. Cases where scores

were low could be attributed to poor tracking, appearing as the virtual hands not aligning

perfectly with real world hands, these cases were rare and the offset of the virtual hands

with the real-world hands was not extreme. While the physical keyboard offered

performance double that of the other techniques, we again note that the physical keyboard

is, in many ways, a sub-optimal choice as a VR text entry technique due to several issues

unrelated to performance. For example, the extra hardware (specific Logitech keyboard,

attachment piece for the keyboard, and external HTC Vive sensors) and software required

is not something that is readily available with out of the box VR headsets. This decreases

the adoption rate of such a technique, at least until these components become an

integrated part of a HMD package. The most negative factor is that this technique is not

very portable. VR users tend to be standing and walking, rotating in place, and generally

changing their position more often than not. Carrying a full-sized keyboard does not lend

itself very well for this type of activity since it would need to be stationary.

Controller Pointing is currently the most commonly used technique in

commercial VR products, and was shown to offer good performance as well. However,

with text entry speed results coming in below FLIK (although not significantly worse),

and being overall ranked second as participants’ favorite choice of text entry technique,

 54

there is room for improvement when it comes to the standard method of entering text in

VR. The continuous cursor technique, which is also commonly available in commercial

products, was by far the least preferred and worst performing technique, further

demonstrating that the industry VR software developers have gravitated towards several

sub-optimal techniques.

As per H1, results support that physical keyboard performs the best, and that

continuous cursor selection performs the worst, however, there was no significant

difference between FLIK and controller pointing. H2, on the other hand, revealed that

continuous cursor selection was not the technique that yields the least fatigue due to high

physical, mental, and temporal demand. Physical keyboard did show lower fatigue,

followed by controller pointing, and lastly FLIK.

Taking these results into consideration, the decision of continuing to validate the

text entry testbed with a second study was made. During this second study, only FLIK

and Controller Pointing techniques were used in combination with BigKey and Word

Disambiguation.

4.6.1 Participant Comments

Below are some of the most notable comments made by participants, which

further support the points made above.

• I found the physical keyboard cool, but I don't see it as a feasible solution to VR

due to the extra hardware.

• FLIK was very fun however, more tiring than the rest. Keyboard was cool, but

only looked at the virtual keyboard a few times, and it was disorienting.

• FLIK was good and fast. Keyboard was nice, but the tracking could be better.

 55

Touchpad was nice and low effort, but it was easy to make mistakes.

• FLIK is good and different, however, keys are too close, so it causes unexpected

typos. Keyboard tracking is not accurate.

• Touchpad is annoying when typing.

• FLIK feels good to type with, very flexible and fun, it does sometimes feel too

sensitive making me have to make some corrections.

Taking these results into consideration, the decision of continuing to validate the

text entry testbed with a second study was made. During this second study, only FLIK

and Controller Pointing techniques were used in combination with BigKey and Word

Disambiguation.

 56

Chapter 5: User Study 2

This chapter presents the second user study which compares performance between

Controller Pointing and FLIK with the addition of text entry aids, BigKey and word

disambiguation. To further demonstrate the flexibility of the text entry testbed, the

Oculus Rift CV1 was used in this study instead of the HTC Vive which have different

setup requirements and APIs. This study was approved under CUREB-B file number

109263.

5.1 Hypotheses

The main following hypotheses for this second user study are decided based on pre-

testing of the text entry techniques usedwere:

H1: FLIK will outperform Controller Pointing without aidsregardless of aid.

H2: BigKey + FLIK + BigKey will show better performance as compared to

controller pointing + BigKey due to more direct interaction.

H3: Despite greater “gorilla arm” effect and fatigue that FLIK might cause, user

preference will favour FLIK.

5.2 Participants

This second study consisted of 24 participants, 13 male, 11 female, and aged 18 – 55 (SD

= 9.01). Recruitment was done through flyers posted around campus as well as word of

mouth. In this study, all participants had little to no experience in virtual reality systems.

All participants stated that they are comfortable with basic or advanced computer use.

There are no repeated participants from the 1st study.

 57

5.3 Apparatus

5.3.1 Hardware

The experiment was conducted on a VR-ready laptop with an Intel Core i7-

6700HQ quad-core processor, a Nvidia Geforce GTX 1070 GPU, and 16GB of RAM,

running the latest build of Microsoft Windows 10. We used the Oculus Rift CV1 HMD

with two Oculus Touch 6DOF controllers. The Oculus Rift CV1 provides a 1080 x 1200-

pixel resolution per eye, a 90 HZ refresh rate, and 110 degrees of field of view.

Participants were seated in a spacious study room, positioned far away enough

from obstacles to avoid accidentally hitting anything. Participants used the Oculus Touch

controllers as the main input device, pressing the triggers to confirm selections for

Controller Pointing and used the 3D tracked capabilities of the controllers for both text

entry techniques.

5.3.2 Software

Similar to the first study (Chapter 4), this study employed the text entry testbed

described in Chapter 3. The text entry techniques were implemented and integrated with

the text entry testbed for the previous study, hence, only the BigKey and word

disambiguation conditions were added on top of the text entry techniques before testing

the experiment software. All necessary data is logged by the system into a unique log file

to avoid overwriting previous data.

 58

5.3.3 Procedure

Upon arrival, participants were asked to read the consent form provided in

Appendix B. They were told that if at any time they felt uncomfortable or nauseous that

they were free to stop the experiment without finishing. Participants were then asked to

try the HMD, followed by presenting them with their first text entry technique with the

first condition (no aids, BigKey, or word disambiguation), where they were free to try it

out and practice for around two minutes. Once they felt comfortable, the study began

with that text entry technique.

Participants performed a transcription task for three blocks. Each block consisted

of eight phrases to be transcribed; this was done for all six conditions. Once a block was

finished, participants took a short break then continued with the next block. When all

three blocks were finished, the next text entry technique and aid was chosen and the

process repeated from trying out and practicing the technique for two minutes. In

between each technique/condition, participants were also asked to fill out the NASA-

TLX questionnaire provided in Appendix A. During the breaks, participants were

encouraged to provide any feedback about the current technique. Finally, just before the

start of each block, participants were instructed to transcribe the phrases presented as

quickly and accurately as possible.

For this study, error correction was disabled, to reduce variability between

participants. This decision was based on behaviors observed in user study 1, where some

participants took much longer in order to correct the phrases, whereas other participants

ignored errors and finished with less time.

 At the end of the study, participants were asked to fill out one last questionnaire

 59

asking them to rank each technique as well as provide any additional feedback they might

have.

5.4 Design

The experiment employed a within-subjects design, with three independent

variables:

• Text entry technique: FLIK, controller pointing

• Aid: no aid, BigKey, Word Disambiguation

• Block: 1, 2, and 3

 The text entry techniques and aids were counterbalanced using a Latin square.

With all 24 participants, this resulted in:

3 blocks * 8 phrases * 2 text entry techniques * 3 aids * 24 participants = 3456

phrases transcribed.

There were three dependent variables (entry speed, error rate, and NASA-TLX

scores). User experience was the overall results from the NASA-TLX and exit

questionnaire found in Appendix A. The NASA TLX remained the same, and for the exit

questionnaire, two questions are asked. The first was to choose their most favored

technique/aid combination in terms of which one the participant liked the best, and the

second was if there are any comments, feedback, opinions about the study, or the

techniques used.

 60

5.5 Results

5.5.1 Task Performance

Starting with entry speed (WPM), the slowest condition was Controller Pointing

with no aid, at 18.12 WPM. The fastest condition, at 27.8 WPM was FLIK+BigKey. See

Figure 25 for full results of study 2 entry speed.

Figure 25 Study 2 Average WPM Comparison Table. Error bars show standard deviation. Black

horizontal bars show pairwise significant differences between some text entry techniques.

Repeated-measures analysis of variance revealed that the effect of text entry

technique on entry speed was statistically significant (F1, 23 = 67.705, p < .0001). The

effect of aid on entry speed was statistically significant (F2, 46 = 41.098, p < .0001). The

effect of block on entry speed was statistically significant (F2, 46 = 107.446, p < .0001).

The text entry technique-block interaction effect was statistically significant (F2, 46 =

0

5

10

15

20

25

30

35

40

Flik + Bigkey Flik + None Flik +
Disambiguation

Controller
Pointing +

Bigkey

Controller
Pointing + None

Controller
Pointing +

Disambiguation

A
ve

ra
ge

 W
o

rd
s

p
e

r
M

in
u

te

Text Entry Technique + Aid

Block 1 Block 2 Block 3

 61

5.338, p < .01). The aid-block interaction effect was statistically significant (F4, 92 =

6.179, p < .0005).

Post Hoc Bonferroni-Dunn test at the p < .05 level results are represented as

horizontal bars showing individual significant results for each text entry technique + aid

combination.

Error rates ranged from 0.73% error for Controller Pointing + BigKey to 4.11%

for FLIK + word disambiguation. See Figure 26.

Figure 26 Study 2 Average error rate (%) comparison table. Black horizontal bars show pairwise

significant differences between some text entry techniques.

Repeated-measures analysis of variance revealed that the effect of text entry

technique on error rate was statistically significant (F1, 23 = 6.456, p < .05). The effect of

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%
4.5%
5.0%

Flik + Bigkey Flik + None Flik +
Disambiguation

Controller
Pointing +

Bigkey

Controller
Pointing + None

Controller
Pointing +

Disambiguation

Er
ro

r
R

at
e

 (
%

)

Text Entry Technique + Aid

Block 1 Block 2 Block 3

 62

aid on error rate was statistically significant (F2, 46 = 23.412, p < .0001). The text entry

technique-block interaction effect was statistically significant (F2, 46 = 13.855, p < .0001).

The aid-block interaction effect was statistically significant (F4, 92 = 12.067, p < .0001).

A Post Hoc Bonferroni-Dunn test at the p < .05 level showed individual

significant results on error rate for each of the text entry technique + aid combination and

are represented by horizontal bars.

5.5.2 User Preference

Workload

Similar to the first user study, user workload is based on the NASA TLX

questionnaire, where six questions are asked related to perceived mental demand,

physical demand, temporal demand, performance, effort, and frustration. Each of these

questions can be answered on a scale from ‘Very Low’ to ‘Very High’, with

‘Performance’ as an exception which uses a scale from ‘Perfect’ to ‘Failure’. A lower

overall score signifies less workload and overall preference towards a technique.

Figure 27 Averages of Study 2 NASA TLX results

 63

As seen in Figure 27, FLIK + None and Controller Pointing + None scored

similarly to corresponding conditions in study 1. Friedman post hoc pairwise comparison

using Conover’s F test results are represented by horizontal bars between each text entry

technique; this shows that the BigKey condition had a positive impact overall for both

text entry techniques, affecting some categories significantly, such as mental demand,

performance, effort, and frustration. It is also interesting to note that Word

Disambiguation is overall rated negatively, on average receiving higher scores than the

rest, this could be attributed to a distraction factor in the study, for example, having to

keep track of the suggested words while typing at the same time.

Exit Questionnaire

For this second study, the exit questionnaire’s first question was modified to

choose their favorite technique/condition pair alone, in this way, showing participants’

favorite technique/condition pair would make it clear of the technique/condition rankings.

See Figure 28 for the sum total of the 24 participant’s favorite overall text entry

technique-aid combination.

Figure 28 Study 2 Text entry Technique/Aid Pair Rankings. F = FLIK, CP = Controller Pointing, BK

= BigKey, N = None, D = Disambiguation.

From this chart, we see how FLIK + BigKey pair was the clear favorite among

 64

participants. Another interesting point to notice is how BigKey is ranked first for both

techniques, followed by no condition, and ranked last is word disambiguation.

5.6 Discussion

Using BigKey with FLIK improved both performance and satisfaction, yielding

the highest entry speed at 27.9 WPM. This suggests that there is potential in alternative

VR text entry techniques, and how they can be improved with different tweaks and aids,

even offering better performance than common commercial approaches, such as ray

casting. Word disambiguation demonstrated to have below average results and actually

caused some frustration and higher mental demand than other text entry technique + aid

combinations. Even with the Controller Pointing technique, BigKey demonstrated the

best overall performance for the technique, and word disambiguation coming in second

while hindering user preference in a big way.

While keeping in mind the text entry error rates and entry speed (word

disambiguation scoring relatively poor in these) an assumption can be made that the task

of choosing and selecting fully suggested words from the list of suggestions increases

mental workload, particularly when taking into consideration that this type of VR typing

task is already something that might be new to most people. On the other hand, BigKey is

non-intrusive and works with the participant in the task of purely typing character by

character, making it easier and more obvious to type the next character in the sequence,

achieving a greater flow in the typing task as well as user satisfaction. The higher

performance of BigKey can be attributed to Fitts’ law, which states that the time required to

rapidly move to a target area is a function of the ratio between the distance to the target and the

width of the target.

 65

Unlike our first user study, FLIK + none shows significant results against controller

pointing + none. This is notable because these two combinations are the same as FLIK and

controller pointing in the first study. The change in between the two studies could be attributed to

the HMD used, and this could potentially be a factor in the performance of these techniques.

When using the HTC Vive, the controllers are larger and heavier, which could benefit controller

pointing and hinder FLIK. With more weight and larger controllers, moving your hands fluidly in

3D space becomes tiresome as is the case for FLIK. In contrast, controller pointing requires

sensitive rotational movements which are better achieved with the weight and size of the

controllers. When using the Oculus Rift, the controllers are smaller and lighter. Performing

continuous fluid motions in 3D space becomes easier when the controllers are lighter in weight

and smaller in size. For controller pointing, the control of rotational movements becomes

sensitive and thus harder to select targets at a distance.

NASA TLX scores show that FLIK + BigKey are the top favorite technique + aid

combination among participants with overall significant results. However, FLIK without BigKey

shows worse overall scores than controller pointing + BigKey, with poor word disambiguation

scores as well. This shows that existing techniques can be improved with carefully selected

modifiers to aid in performance and user satisfaction.

Below some of the most notable comments made by participants are presented,

which further support the points made above.

• “Word suggestion is nice and all, but it is very distracting for the FLIK technique,

it is also distracting for Controller Pointing but to a lesser extent. It simply affects

my concentration while performing the task at hand.”

• “Overall, I like both techniques, but by far BigKey is something I would love to

have in something like my iPhone keyboard.”

• “At first, I thought FLIK had an issue with the spacing between the letters, but

 66

after trying BigKey I was very pleasantly surprised at how this became a non-

issue very quickly.”

• “I would love to try FLIK in a real-world situation, like for example, playing a

game and having to type a message to a friend or type some text to solve a puzzle

or something like that.”

Given these results, both H1 and H2 are proven to be correct which could be true for a

number of factors which benefit FLIK, such as the more direct interaction of FLIK which

is further supported by Fitt’s Law [15]. H3 is supported from results as well as participant

comments, showing that FLIK is preferred as depicted by overall TLX results.

 67

Chapter 6: Conclusion

6.1 Summary

In this thesis, the focus was to propose, implement and test the Text InputText

Entry Testbed, a general-purpose text inputtext entry testing software with a focus on

virtual reality text inputtext entry experiments. This tool was designed to be flexible and

customizable, and to be able to use any text inputtext entry technique, not only text

inputtext entry techniques for VR. The text inputtext entry testbed was made with the 3D

game engine software Unity, which was chosen for its 3D capabilities and, for the

support of 2D experiences. By providing researchers with simple plugin functions that

they can add to their text inputtext entry techniques, the tool takes care of many other

features, from logging data, to study structure and flow. Furthermore, the tool is tested by

conducting two studies summarized below.

The first study regarded an implementation of two common VR text inputtext

entry techniques used in commercial VR products; Controller Pointing and continuous

cursor selection. Besides the two common techniques, two other text inputtext entry

techniques were also implemented: physical keyboard-based typing using Logitech’s

Bridge technology to allow users to visualize the keyboard and their hands within VR,

and the novel Fluid Intersection Keyboard (FLIK). Results of the first study indicated that

the physical keyboard is by far the best technique in terms of text entry speed. FLIK

performed similar to the controller pointing technique, which is currently the industry

standard for entering text into VR systems. Despite the similar entry speed results

between the two, FLIK was favored by participants, showing lower frustration levels and

 68

overall positive results from NASA-TLX scores.

The second study featured a subset of the text inputtext entry techniques from the

first study; Controller Pointing, and FLIK. Across both techniques, we evaluated two

aids, BigKey and Word Disambiguation, in addition to a third “default” implementation

of each text inputtext entry technique without either aid. The conditions without aids

provided comparison points to the first study. In total, this meant six different conditions

were researched; FLIK + none, FLIK + BigKey, FLIK + Word Disambiguation,

Controller Pointing + None, Controller Pointing + Bigkey, and Controller Pointing +

Word Disambiguation. Results showed that using Bigkey as an aid improved entry speed

of both text entry techniques, with significant results in favor of FLIK + Bigkey. This is

notable due to the fact that the FLIK as compared to Controller Pointing techniques from

the first study did not show significant results.

6.2 Discussion

Further comparing Controller Pointing in both studies as well as Continuous

Cursor Selection in the first user study with results obtained by Speicher et al. [27],

similar results can be seen for both techniques. The thesis showed that text entry speed

for Controller Pointing resulted in higher entry speed than Speicher. However, the

contrast between Controller Pointing as compared to Continuous Cursor Selection text

entry speed is reflected in both this thesis and the research of Speicher. A similar paper

by Boletsis and Kongsvik [3] further validates our results by implementing their version

of Controller Pointing, Continuous Cursor Selection, and CutieKeys, which is what FLIK

is based on. As can be seen in Table 2, many results are similar on all these techniques.

Grubert et al. [9] reported an entry speed of 38.7 WPM text entry speed on their

 69

VideoHand technique, which is what the keyboard technique with video pass-through in

this thesis is based on. Table 2 presents that the system demonstrated different results, the

standard deviation for both papers is large and presents similar results overall.

Table 2 - Text Entry Speed (WPM) comparison to similar studies. *Used CutieKeys

Technique, which is the most similar to Flik.

Results from
our Studies

Speicher [27] Boletsis [3] Grubert [9] Knierim [12]

Controller
Pointing

19.13 15.44 16.65 - -

Continuous Cursor
Selection

13.9 8.35 10.17 - -

FLIK 21.49 - *21.01 - -

Physical Keyboard 45.64 - - 38.7 40

In terms of subjective data, BigKey had a big impact on user preference, which

made this aid significantly preferable. On the other hand, it was surprising to see that

participant’s did not find Word Disambiguation helpful; these subjective results were

confirmed by the performance results, as Word Disambiguation did not provide

significantly better performance results than the null condition.

A different VR headset was used in each user study to further demonstrate the

flexibility of the text entry testbed. Integration of different VR headsets is straight-

forward within the Unity environment, however, setup and configuration does differ and

thus we tested for ease of use with different VR headsets. The testbed can also be made to

operate as a general purpose (i.e., non-VR) text entry testbed. For example, consider

removing the VR component of the physical keyboard technique in the first user study.

The technique would then work as a standalone non-VR text entry technique. This

emphasizes that this tool is not just for VR experiments, but also serves as a general text

entry experiment tool.

 70

6.3 Limitations

6.3.1 Text Entry Testbed

The text entry testbed is designed to allow for quick and simple setup of VR text

entry experiments; this can come with some limitations due to the rapid evolution of VR

technology regarding APIs and development configuration. It often occurs that a new VR

headset is announced, moreover, new APIs and development tools for each headset.

Integrating these into Unity is usually simple and comes with good documentation.

However, there are many different ways that these can be implemented. Due to all these

options, it is not simple to release the text entry testbed as a ready to use VR text entry

testing tool with all the necessary libraries or plugins needed to support any VR headset.

Researchers would have to make sure that any new headset that is not already part of the

text entry testbed is set up correctly with Unity to be compatible with the tool.

It is also important to note that as of now, the testbed must be used with Unity.

This means that all project files come in the form of a Unity project. This is important

since it would require some experience with the Unity engine to implement the desired

text entry technique into the software. It is included in this thesis since future work will

focus efforts on implementing a standalone version of the text entry testbed with simple

techniques to integrate any text entry technique. In its current form, it may not be

completely accessible due to the experience required with the engine; however, this

makes the tool highly customizable to support any kind of testing environment. Having

the tool as open source, researchers and developers are able to contribute changes and

updates to expand and refine the functionality of the text entry testbed.

VR experiences differ largely between one another, they could require users to be

 71

moving, walking, standing, or sitting down, which makes it difficult to provide

specifications for external validity and generality. For our studies, participants were

sitting down, which supports experiences where users are also sitting down. This decision

was made due to the fact that the physical keyboard condition requires users to be sitting

down, thus, to maintain consistency, other text entry techniques were also tested sitting

down.

The use of the QWERTY keyboard layout is also adopted in our studies for being

the most widely used keyboard layout in real world scenarios; however, using the text

entry testbed the keyboard layout can be changed to other layouts if needed.

6.3.2 Studies

A limiting factor of our studies comes down to the tracking technology used for

the physical keyboard condition in the first user study. While efforts were made to keep

light interference, keyboard position, and head position constant, constant calibration of

the system was necessary to maintain tracking accuracy. We used the VideoHand version

of the physical keyboard as proposed by Grubert et al. [9] in our studies. While this

technique performed best overall in their studies, it is also reported that the four hand

representations tested in their work are just a small set of possible conditions in a large

design space, in which more could be proposed.

For both the first and second study, FLIK was developed, which is originally

based on CutieKeys [31], and tested among different text entry techniques. CutieKeys is

not as standardized in the industry like Controller Pointing or Continuous Cursor

Selection. However, it has gained popularity among developers. For the thesis, the

 72

inclusion of the CutieKeys text entry technique could have resulted in interesting results

when compared with FLIK.

The Mackenzie phrase set used works well when it comes to development of the

predictive algorithms used by BigKey and word disambiguation, however, this poses an

issue in that this phrase set is clearly limited to a set of words, making the results of the

predictive algorithms biased to better performance as opposed to using the entire corpus

of a given language. The phrase set used did not change in any of our studies, so while

results might differ from using a different phrase set or corpus, the comparative analysis

between text entry techniques and aids in this thesis maintains it’s validity.

6.4 Future Work

For future iterations of the software, a main focus is to dedicate development

efforts to allow researchers to implement any text entry techniques in such a way that

they can just start the text entry test-bed, enter the name of the technique that they are

using, and have text automatically entered into any text entry area from their text entry

technique. This would require some education to researchers in the area of developing

their text entry techniques to work on operating system methods that allow for typical

keyboards to enter text onto the machine.

Other future work could explore different kinds of text entry experiments using

this software. From plain desktop text entry techniques to virtual or augmented reality

techniques, as well as other types of human-computer interactions other than these such

as wearables (smartwatches, smart glasses…), brain-computer technologies such as

EEG’s like EMOTIV devices [5]. Conducting studies comparing different types of

HMDs and controllers is also an important study to perform since this could potentially

 73

be a significant factor when it comes to text entry in VR.

Providing this tool as a free open source project would allow future researchers

and developers to contribute their work and ideas to expand the functionality of the text

entry test-bed and ultimately create a consistent, fully formed version of the tool to

conduct text entry experiments.

 74

Appendices

Appendix A - Questionnaires

 75

Study 1 Exit Questionnaire

 76

Study 2 Exit Questionnaire

 77

Appendix B - Study Recruitment and Consent Forms

 78

 79

 80

 81

Appendix C - CUREB-B Protocol Form

 82

 83

References

[1] K. Al Faraj, M. Mojahid, and N. Vigouroux, “BigKey: A Virtual Keyboard for

Mobile Devices,” 2009.

[2] a. S. Arif and W. Stuerzlinger, “Analysis of text entry performance metrics,” Sci.

Technol. Humanit. (TIC-STH), 2009 IEEE Toronto Int. Conf., pp. 100–105, 2009.

[3] C. Boletsis and S. Kongsvik, “Controller-based Text-input Techniques for Virtual

Reality: An Empirical Comparison,” Int. J. Virtual Real., vol. 19, no. 3, pp. 2–15,

2019.

[4] W. Contributors, “The Sword of Damocles (Virtual Reality),” Wikipedia, The Free

Encyclopedia. [Online]. Available:

https://en.wikipedia.org/wiki/The_Sword_of_Damocles_(virtual_reality).

[Accessed: 09-Jan-2020].

[5] EMOTIV, “EMOTIV.” [Online]. Available:

https://www.emotiv.com/?gclid=CjwKCAiAhc7yBRAdEiwAplGxX_rAdLfhY2V

UpfE9LQJeVovnSZZRWLlQjIEDhP9QF_Wif5CrkAyc_xoC-

lAQAvD_BwEhttps://www.emotiv.com/?gclid=CjwKCAiAhc7yBRAdEiwAplGx

X_rAdLfhY2VUpfE9LQJeVovnSZZRWLlQjIEDhP9QF_Wif5CrkAyc_xoC-

lAQAvD_BwE. [Accessed: 10-Feb-2020].

[6] S. S. Fels and G. E. Hinton, “Glove-TalkII - A neural-network interface which

maps gestures to parallel formant speech synthesizer controls,” IEEE Trans.

Neural Networks, vol. 9, no. 1, pp. 205–212, 1998.

[7] D. R. Gentner, J. T. Gruding, S. Larochelle, D. A. Norman, and D. E. Rumelhart,

“A Glossary of Terms Including a Classification of Typing Errors,” in Cognitive

Aspects of Skilled Typewriting, New York: Springer Verlag, 1983, pp. 39–43.

[8] J. Grubert, L. Witzani, E. Ofek, M. Pahud, M. Kranz, and P. O. Kristensson, “Text

Entry in Immersive Head-Mounted Display-based Virtual Reality using Standard

Keyboards,” pp. 1–8, 2018.

[9] J. Grubert, L. Witzani, E. Ofek, M. Pahud, M. Kranz, and P. O. Kristensson,

“Effects of Hand Representations for Typing in Virtual Reality,” pp. 1–8, 2018.

[10] M. Jensen and N. R. Melzack, “SpiderWorld and SnowWorld,” no. July, 2004.

 84

[11] A. Kano, J. C. Read, A. Dix, and I. S. MacKenzie, “ExpECT: An Expanded Error

Categorisation Method for Text Input,” Proc. HCI’07 Conf. People Comput. XXI,

vol. 1, p. 15, 2007.

[12] P. Knierim, V. Schwind, A. M. Feit, F. Nieuwenhuizen, and N. Henze, “Physical

Keyboards in Virtual Reality: Analysis of Typing Performance and Effects of

Avatar Hands,” Proc. 2018 CHI Conf. Hum. Factors Comput. Syst., pp. 1–9, 2018.

[13] A. J. Ko and J. O. Wobbrock, “Text Entry,” User Interface Software and

Technology. [Online]. Available:

https://faculty.washington.edu/ajko/books/uist/text-entry.html. [Accessed: 05-Jan-

2020].

[14] J. J. LaViola and D. Bowman, 3D User Interfaces, 2nd ed. Addison-Wesley

Professional, 2017.

[15] F. Law and I. S. Mackenzie, “Fitts’ Law,” vol. 1, pp. 349–370, 2018.

[16] I. S. Mackenzie, “Evaluation of Text Entry Techniques,” Text Entry Syst., pp. 75–

101, 2007.

[17] I. S. MacKenzie and R. W. Soukoreff, “A character-level error analysis technique

for evaluating text entry methods,” Proc. Second Nord. Conf. Human-computer

Interact. - Nord. ’02, no. 1, p. 243, 2002.

[18] I. S. MacKenzie and R. W. Soukoreff, “Phrase sets for evaluating text entry

techniques,” CHI ’03 Ext. Abstr. Hum. factors Comput. Syst. - CHI ’03, p. 754,

2003.

[19] C. Maggioni, “Novel gestural input device for virtual reality,” 1993 IEEE Annu.

Virtual Real. Int. Symp., pp. 118–124, 1993.

[20] M. Pérez-Ramírez and N. J. Ontiveros-Hernández, “Virtual Reality as a

Comprehensive Training Tool,” 2009.

[21] I. Poupyrev, N. Tomokazu, and S. Weghorst, “Virtual Notepad: Handwriting in

immersive VR,” Proc. - Virtual Real. Annu. Int. Symp., pp. 126–132, 1998.

[22] F. E. Sandnes and A. Aubert, “Bimanual text entry using game controllers:

Relying on users’ spatial familiarity with QWERTY,” Interact. Comput., vol. 19,

no. 2, pp. 140–150, 2007.

[23] W. J. Shelstad, D. C. Smith, and B. S. Chaparro, “Gaming on the rift: How virtual

reality affects game user satisfaction,” in Proceedings of the Human Factors and

Ergonomics Society, 2017, vol. 2017-October, pp. 2072–2076.

 85

[24] R. W. Soukoreff and I. S. MacKenzie, “Metrics for text entry research- an

evaluation of MSD and KSPC, and a new unified error metric,” Proc. Conf. Hum.

factors Comput. Syst. - CHI ’03, vol. 5, pp. 113–120, 2003.

[25] R. W. Soukoreff and I. S. MacKenzie, “Recent developments in text-entry error

rate measurement,” Ext. Abstr. 2004 Conf. Hum. factors Comput. Syst. - CHI ’04,

p. 1425, 2004.

[26] R. W. Soukoreff and I. S. MacKenzie, “Measuring errors in text entry tasks,” CHI

’01 Ext. Abstr. Hum. factors Comput. Syst. - CHI ’01, p. 319, 2001.

[27] M. Speicher, A. M. Feit, P. Ziegler, and A. Krüger, “Selection-based Text Entry in

Virtual Reality,” Proc. 2018 CHI Conf. Hum. Factors Comput. Syst. - CHI ’18, no.

April, pp. 1–13, 2018.

[28] V. Tucker, “Introducing the Logitech BRIDGE SDK,” 2017. [Online]. Available:

https://blog.vive.com/us/2017/11/02/introducing-the-logitech-bridge-sdk.

[Accessed: 10-Oct-2019].

[29] J. Walker, S. Kuhl, and K. Vertanen, “Decoder-Assisted Typing using an HMD

and a Physical Keyboard,” Chi ’16, no. May, 2016.

[30] J. Walker, B. Li, K. Vertanen, and S. Kuhl, “Efficient Typing on a Visually

Occluded Physical Keyboard,” in Proceedings of the 2017 CHI Conference on

Human Factors in Computing Systems - CHI ’17, 2017.

[31] M. Weisel, “Cutie Keys.” [Online]. Available: https://www.normalvr.com/blog/an-

open-source-keyboard-to-make-your-own/. [Accessed: 19-Jan-2020].

[32] J. O. Wobbrock, “Measures of Text Entry Performance,” Text Entry Syst., pp. 47–

74, 2007.

[33] J. O. Wobbrock and B. A. Myers, “Analyzing the input stream for character- level

errors in unconstrained text entry evaluations,” ACM Trans. Comput. Interact., vol.

13, no. 4, pp. 458–489, 2006.

