

FACE AS A MULTIMEDIA OBJECT

Ali Arya, Steve DiPaola

School of Interactive Arts and Technology, Simon Fraser University,

2400 Central City, 10153 King George Highway, Surrey, BC, Canada V3T2W1
E-mail: {aarya, sdipaola}@sfu.ca

ABSTRACT

This paper proposes the Face Multimedia Object (FMO),
and iFACE as a framework for implementing the face
object within multimedia systems. FMO encapsulates all
the functionality and data required for face animation.
iFACE implements FMO and provides necessary
interfaces for a variety of applications in order to access
FMO services.

1. INTRODUCTION

Psychological studies have shown that babies, only nine
minutes after birth, are drawn to faces, although they can
barely focus their eyes [6]. This fascination with faces
continues throughout our lives. With its expressive
capabilities, face is the window to our thoughts and
emotions, and is perceived uniquely by a dedicated part
of human brain [6]. In light of the important role of faces
in visual communication, MPEG-4 standard has provided
special Face Definition and Animation Parameters, in
order to facilitate creating and transmitting facial views in
multimedia presentations [4]. This helps describe and
animate faces within a multimedia stream, independent of
background and other media objects. Simple definition of
geometry and desired animation movements, on the other
hand, is far from a comprehensive framework for using a
“face multimedia object”.

Traditional multimedia objects are of audio and
video types, usually considered as one concrete piece, i.e.
not divided into smaller objects. Modern multimedia
presentations and standards now allow media objects of
higher complexity to be used, i.e. different audio and
video objects forming a new “combined type”. Familiar
examples (or possible candidates) can be separate
foreground and background objects in a video stream,
speech as a special case of audio data that corresponds to
a text to be spoken by a specific individual, and a “music
video” as a special media object made of two parallel
audio and video objects. Each one of these examples
illustrates the need for (and convenience of) a higher
level of abstraction on top of traditional media objects

when used in a certain type of application. Such layer of
abstraction encapsulates related data, isolates the user
from unnecessary details, enforces certain relation
between low-level components, and provides a unique
access mechanism (similar to a class hierarchy in object-
oriented programming languages).

Rapid of growth of visual communication systems,
from video phones to virtual agents in games and web
services, has a brought a new generation of multimedia
systems that we refer to as face-centric. Such systems are
mainly concerned with multimedia representation of
facial activities. Examples can be video messaging on cell
phones and online customer support agents. Needless to
say, each one of these applications has its own domain-
specific algorithms, data, and control mechanism, but
they all share the same front end that has to support a
well-defined set of face-related capabilities. The concept
of a “face multimedia object” arises from the need to
encapsulate all the common requirements of such
applications into one single component.

In this paper, we introduce Interactive Face
Animation – Comprehensive Environment (iFACE) as a
framework for Face Multimedia Object (FMO). Just like
any other object, FMO includes data objects of less
complicated types (audio, video, etc), and needs to
provide proper services and interfaces to access and
process those objects. iFACE integrates:
• Hierarchical 3D head model for controlling facial

actions from vertex to feature-group levels
• 2D image transformations for direct image-based

animation
• Text-to-speech audio generation and lip-sync
• Structured content description language
• Streaming components
• Wrapper objects to simplify development
• Behavioural modeling
• Proper interfaces to access the underlying objects

from a variety of client application

In Section 2, we briefly review some related work in

the area of face animation. Basic concepts and the
structure of iFACE are the topics of Sections 3 and 4.

Implementation notes and some concluding remarks are
presented in Sections 5 and 6.

2. RELATED WORK

Facial Action Coding System (FACS) was one of the first
comprehensive studies of facial actions [3]. MPEG-4
Face Animation Parameters (FAP) [4] later used a similar
approach to define a set of codes to control a facial
animation. 3D head models [4] and 2D image-based
methods [1] have been used in order to implement these
facial actions, usually in the form of simple components
(suitable for a specific clients such as web pages), or
stand-alone face players (see [1]).

Valentine [8] was one of the earliest researchers to
introduce the concept of a face space. In both 3D and 2D
methods, such a space is mainly a “flat” parameter space
without dynamically accessible layers of abstraction and
details [2,7]. Multi-resolution meshes [5] can reduce the
number of parameters but do not change the way we look
at the face space, e.g. feature view vs. vertex/pixel view.
A true multi-layer space should allow working with face
from higher levels like regions and their related high-
level actions, to low-level points and their movements,
depending on the application needs. MPEG-4 Group
nodes for Face Definition Parameters (FDP) are
introduced to support such head models.

Although some dedicated languages for facial
animation have been developed in the last few years (see
[1] for a quick review), most of them lack a
comprehensive set of required features such as MPEG-4
compatibility, support for external events, and temporal
relation between facial actions.

Figure 1. Hierarchical Head Model

3. FACE MULTIMEDIA OBJECT

Face Multimedia Object (FMO) encapsulates all the
functionality and data related to facial actions. It forms a
layer of abstraction on top of all the underlying details to
simplify and streamline the creation of facial animations,
including video, audio, timing and streaming-related data,
control signals and events, and possibly descriptions
(textual, metadata, etc).

From a multimedia system point of view, in addition
to obvious application-dependent features such as
Realism, we consider the following requirements for
FMO:
• Hierarchical Geometry: Face animation is dynamic

manipulation of geometry, regardless of how we
define it (e.g. pixels of a 2D image or vertices in a
3D model). The important attribute of this geometry
is meaningful relations and grouping of its elements
to form facial features and regions. Each one of these
groups provides certain amount of detail and allow
certain type of manipulation. For instance, a vertex
can be moved to any new location by itself, but
moving a feature (e.g. opening mouth) will move all
related vertices. FMO has to expose proper layers of
geometry for different types of access, mainly:
o Vertex-level (or pixel-level)
o Feature-level
o Region-level

• Timeliness: Face is a time-based object. Facial
actions need to be synchronized (parallel, sequential,
etc) with each other and external events.

• Expressiveness: FMO should be able to express a
variety of characters by personalizing the geometry
and performing speech, movements, and emotions.

• Interactivity: Just like any other software object,
FMO needs proper interfaces to expose its services to
a different types of client, such as:
o GUI applications
o HTML-based web pages
o Web service clients

• Behavioural Model: Actions of an agent (similar to
people) is mainly based on stimulus-response model.
In simplest case, behavioural rules, stored as
individual “knowledge”, determine the proper
response to any stimulus. But in a more general
context, “personality” and “mood” are also affecting
factors on behaviour. An ideal behavioural modeling
for FMO supports defining and dynamically
changing all these three factors.

4. iFACE ARCHITECTURE

4.1. Basic Structure

Interactive Face Animation – Comprehensive
Environment (iFACE) is our proposed architecture for
implementing a face multimedia object. The basic
structure of this framework is shown in Figure 2. Each
layer exposes its own interfaces for access to
encapsulated objects. Together, these interfaces form the
iFACE Application Programming Interface (FaceAPI).

Head

Regions (Mouth, Eye, Nose, etc)

Features (e.g. Lips and Teeth for Mouth)

Points (Mesh Vertices or Image Pixels)

Figure 2. Basic Structure of iFACE

iFACE Data Layer is responsible for implementing
main functional FMO components. This includes:
• Geometric Model: iFACE geometry can be defined

by 3D models or 2D images, and includes similar
region and feature layers in both cases. At the lowest
level, features and regions are associated to vertices
or image pixels.

• Scenario: Timeline of events and action in face
animation is described using Face Modeling
Language (FML) [1]. The language parser breaks the
requested facial actions to smaller moves, depending
on the number of frames.

• Video Kernel: iFACE uses texture-mapped 3D head
models or 2D image transformations [1] in order to
create video frames corresponding to desired facial
actions.

• Audio Kernel: A text-to-speech (TTS) system is used
to generate audio data based on the text to be spoken
(embedded in FML input) and also provide lip-sync
information for video kernel (number of video
frames as a function of speech length). Also, Audio
Kernel processes an input audio data to extract lip-
sync info and suggest facial expressions. This
component relies on existing software tools such as
MBROLA and OnLive.

• Behavioural Logic: The behaviour of face agent
depends primarily on the input scenario. In more
dynamic situation, this input may serve merely as an
external event, and FMO behavioural logic will
decide on proper responses. This logic relies on:
o Knowledge (global data and interaction rules)
o Personality (long term characteristics)
o Mood (short term personal characteristics)

These can be defined in the modeling part of FML
document and also dynamically change through
interactions. This part of iFACE is still at
conceptual/experimental phase.

Most of multimedia applications require audio and

video data to be used as a multimedia stream with proper
synchronization. Stream Layer has components for
reading an input script, splitting audio and video paths,
generating frames, and finally mixing them, all in a
streaming mechanism (i.e. receiving and producing
frames of data with proper timing). These components
rely on the Data Layer components and isolate them from
the higher-level applications that need streaming.

Using Data and Stream Layer components may be
hard and complicated, especially for web-based
applications where only simple scripts and HTML
commands are available. In order to simplify application
development in such cases, iFACE includes Wrapper
components that perform all the tasks and provide simple
API with commands such as LoadFMLFile and
PlayMedia.

4.2. Head and Face Geometry

iFACE head model uses an abstracted hierarchy
consisting of Head as the top object, Regions, Feature
Lines and Points, and Physical Points, as shown in Table
1. The features include all the feature points defined by
MPEG-4 FDPs in addition to extra points and also line
objects.

Region Feature Types
Face Cheek, Forehead, Chin (points)
Eye Brow, Lid, Iris, Pupil (lines and points)
Nose Corner, Tip, etc (lines and points)
Mouth Lip, Tooth, Tongue (lines and points)
Ear Top, Bottom, etc (points)
Hair Top, Center, Corner, etc (points)

Table 1. Head Regions and Features

Head, Regions, and Features form a higher layer of
abstraction on top of the physical model which can be a
3D mesh or one or more 2D images. The model-making
tool assigns Regions and Features to certain vertices or
pixels. Abstract objects allow model-independent control
of animation by exposing proper interfaces for different
animation movements and also model modification
(resizing, reshaping, etc).

Each abstracted object also belongs to one or more
“transform group” that defines interdependencies of facial
areas (e.g. in movements). It is also possible to define a
HeadBase region that includes all regions except Eye,
Nose, and Mouth to simplify some animations.

Data Layer
Geometry, Scenario, Behaviour Logic,

Audio and Video Kernels

Stream Layer
Reader, Splitter, Media Streamer

Wrapper Layer
ActiveX, Applet, etc

Application Layer
Web Service Client, GUI Application,

Web Browser (HTML Page)

4.3. Face Modeling Language

Face Modeling Language (FML) [1] is a Structured
Content Description mechanism based on eXtensible
Markup Language (XML). The main ideas behind FML
are:
• Hierarchical representation of face animation (from

frames to simple moves, to meaningful actions, and
finally stories)

• Timeline definition of the relation between facial
actions and external events (parallel and sequential
actions, and also choice of one action from a set
based on an external event)

• Defining capabilities, behavioural templates, and
models (FML is independent of the type of model but
provides means of defining it.)

• Compatibility with MPEG-4 (MPEG-4 FAPs are
supported explicitly, and FDPs implicitly by general-
purpose model definition mechanisms.)

• Compatibility with XML and related web
technologies

Following is a sample FML document that defines an

external event in the <model> part and uses that to
choose fromtwo possible actions, in <story>.

<model><event id=”user” val=”-1” /></model>
<story><ser>
 <talk>Hello </talk>
 <excl ev_id=”user”>
 <talk ev_val=”0”>Ali</talk>
 <talk ev_val=”1”>Steve</talk>
 </excl></ser></story>

Figure 3. Sample Output Images

5. IMPLEMENTATION

iFACE Data Layer components use Microsoft Direct3D,
DirectSound, and .NET framework to allow interfacing
through web services and other distributed components.
Stream Layer components are built based on DirectShow
technology in order to use the built-in streaming
functionality. They are DirectShow media filters that
encapsulate Data Layer objects in streaming situations.

The default Wrapper component is an ActiveX called
iFACEPlayer that wraps all DirectShow filters required
for typical streaming scenarios, i.e. reading and parsing
input stream, activating audio and video frame generators
and mixing and transmitting final stream. .NET web
controls and Java applets can also be used for
compatibility purposes.

A simple JavaScript code to use iFACEPlayer on a
web page is shown below. Typical visual outputs (using
3D and 2D methods) are shown in Figure 3.

function onPageLoad() {
 iFPlayer.InputFile = “SampleFml.xml";
 iFPlayer.CreateMedia();
 iFPlayer.Play();}
function onUserChange() {
 SFPlayer.SetEvent(USER,User.selected);}

6. CONCLUSION

The growing demand for “face-centric” multimedia
applications makes it necessary to define and develop a
Face Multimedia Object (FMO) that encapsulates all the
media types and required services for facial animation.
This paper proposes iFACE framework for a face
multimedia object. iFACE integrates proper objects to
implement all FMO functionality, and also interfaces for
a variety of application types.iFACE objects are
developed in three main layers: Data (for core
functionality), Stream (for streaming purposes), and
Wrapper (for ease of use).

7. REFERENCES

[1] Arya, A., and Hamidzadeh, B., "ShowFace: A Framework
for Personalized Face Animation," IEEE/EURASIP Intl
Workshop RichMedia, 2003.

[2] DiPaola, S., "FaceSpace: A Facial Spatial-Domain Toolkit",
Proceedings of Sixth International Conference on Information
Visualisation, 2002.

[3] Ekman, P., and W.V. Friesen, Facial Action Coding System,
Consulting Psychologists Press Inc., 1978.

[4] Lee, W. S., et al., "MPEG-4 Compatible Faces from
Orthogonal Photos," IEEE Conf Computer Animation, 1999.

[5] Luebke, D.P., "A Developer’s Survey of Polygonal
Simplification Algorithms," IEEE Computer Graphics &
Applications, May, 2001.

[6] McNeill, D., The Face, Little-Brown, 1998.

[7] Parke, F.I., "Parameterized models for facial animation
revisited," ACM SIGGRAPH Facial Animation Tutorial Notes,
1989.

[8] Valentine, T., "A Unified Account of the Effects of
Distinctiveness, Inversion and Race in Face Recognition,"
Quarterly Journal of Experimental Psychology, 43A, 161-204.

