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Abstract Retrieval and comparative editing/modeling of
motion data require temporal alignment. In other words,
for such processes to perform accurately, critical features of
motion sequences need to occur simultaneously. In this paper,
we propose correlation-optimized time warping (CoTW) for
aligning motion data. CoTW utilizes a correlation-based
objective function for characterizing alignment. The method
solves an optimization problem to determine the optimum
warping degree for different segments of the sequence. Using
segment-wise interpolated warping, smooth motion trajecto-
ries are achieved that can be readily used for animation. Our
method allows for manual tuning of the parameters, resulting
in high customizability with respect to the number of actions
in a single sequence as well as spatial regions of interest
within the character model. Moreover, measures are taken to
reduce distortion caused by over-warping. The framework
also allows for automatic selection of an optimum refer-
ence when multiple sequences are available. Experimental
results demonstrate the very accurate performance of CoTW
compared to other techniques such as dynamic time warp-
ing, derivative dynamic time warping and canonical time
warping. The mentioned customization capabilities are also
illustrated.
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1 Introduction

As a direct result of recent advancements in computer hard-
ware and software, recorded or live streams of humanmotion
data are being extensively exploited. From interactive gam-
ing systems such as Kinect for Xbox (http://www.xbox.com/
en-US/Kinect) to 3D virtual environments and animated
movies, all deal with this type of data. Subsequently, retrieval
and modeling sequences of human motion have attracted
many researchers [1].

Generally, humans perform actions differently with res-
pect to one another. It has been previously shown that factors
such as gender, age, energy, health, ethnicity, and affect, influ-
ence the way we carry out actions [2]. As a result, even when
motion data contain similar content, they vary in style, and
these variations are manifested as spatiotemporal misalign-
ments. On the other hand, in many cases, processing human
motion requires motion data to be perfectly aligned. For
example, it has been demonstrated that altering [3], blending
[4], extraction [5], and translation [6] of style features require
aligned motion data.

To tackle the issue of misalignment in time series, var-
ious techniques have been proposed based on application
and context. For example, dynamic time warping (DTW)
was proposed to align speech signals [7], while canoni-
cal time warping (CTW) [8] and iterative motion warping
(IMW) [9] were proposed for motion data. In this paper,
we propose correlation-optimized time warping (CoTW) for
aligning motion sequences. The method proposed in this
paper is inspired by correlation-optimized warping, which
was initially developed for aligning chemometric data [10].
We briefly introduced the concept in [11] and utilized it in
[5,6,12]. In this paper, we further develop the technique,
study the parameters involved, and take a deep look into
its performance, especially with respect to existing time-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-014-1034-2&domain=pdf
http://dx.doi.org/10.1007/s00371-014-1034-2
http://www.xbox.com/en-US/Kinect
http://www.xbox.com/en-US/Kinect


1570 S. A. Etemad, A. Arya

warpingmethods. In addition to robust alignment, CoTWhas
several advantages overmost other time-warping techniques:
(a) it uses a more effective objective function that is based
on correlation; (b) it allows for alignment to be customized
both temporally and with respect to spatial regions of inter-
est within the character model; (c) it reduces artifacts such
as distortion and does not employ still frames that appear in
existing methods for timing adjustments; (d) optimal refer-
ence is automatically selected when multiple sequences are
being warped. While some of the previous works partially
address these issues, to the best of our knowledge there is
no warping technique that attends to them all. In the follow-
ing sections, we study the related work, present the proposed
method, study the parameters and the details of the method
and perform rigorous experiments showing the robustness of
the method.

2 Related work

Uniform scaling [13], or uniform time warping (UTW), is
naturally themost simple and possibly themost naïvemethod
for aligning sequences. This technique is useful for length
matching of two or more time series and is not capable of
aligning particular features in the process. However, this
operation is used as one of the major components of our
proposed method.

DTW [7] is one of the first non-linear warping techniques,
which finds the similarity between two time series. This is
done through calculating the corresponding instances in the
series by minimizing a distance objective function. Multi-
ple variations and extensions of this method [14–17] such
as derivative dynamic time warping (DDTW) [14] have also
been proposed. Generalized time warping (GTW) [18] has
been proposed byZhou andDeLaTorre as an effective exten-
sion to DTW. The extensions involve the capability of work-
ing with multiple modalities, for example motion capture
data as well as recorded videos, more warping flexibility,
and reduction in computational complexity.

Component-based approaches have also been explored
for alignment. In this category, we can name methods that
utilize independent component analysis (ICA) [19,20] and
weighted principal component analysis (wPCA) [21]. Prob-
abilistic methods [22] andMarkov models [23–25] have also
been utilized for aligning time series. In suchmethods, align-
ment is usually carried out in a testing phase through utiliza-
tion of previously learned dynamic models.

The animation community has shown great interest in
time warping for aligning motion capture data. For exam-
ple, Bruderlin and Lance Williams [26] used DTW for inter-
polating between sequences. The motion warping method
by Witkin and Popovic [27] is a variation of Bruderlin and
Williams’, and is intended to add small yet smooth changes

to motion. The method proposed by Rose et al. [4] manu-
ally selects key frames that need to be aligned, according
to which in-between frames are aligned. Gleicher [28] used
spatial constraints and inverse kinematics to preserve qual-
ity, while retargeting motion. The methods used by Kovar
and Gleicher [29,30] find correspondences between frames
using distance minimization. Müller et al. [31] used DTW
toward their retrieval method. This was done successive to
segment-wise alignment using a proposed index. Müller and
Röder [32] employed DTW to derive motion templates used
in the classification and retrieval of motion capture data.
Zhou et al. [33] used DTW in their proposed aligned cluster
analysis that segmented motion capture data. Kim et al. [34]
employed Laplacian curve manipulation to perform warping
based on user-defined constraints. Raptis et al. [35] utilized
DTW in their gesture classification algorithm. Cimen et al.
[36] used DTW prior to extracting affective descriptors from
motion. To address the problem of style translation, Hsu et al.
[9], proposed iterative motion warping (IMW). Style trans-
lation is the process of transferring the style of one particular
motion sequence onto another. This process requires accu-
rately aligned sequences. IMW is composed of space and
time-warping procedures (based on DTW) to address the
problem. Finally, Hsu et al. [37] utilized pose-, velocity-,
and acceleration-based feature vectors in their time warp
objective function. Based on the above, most of the warp-
ing methods used in field of animation are built on UTW or
DTW techniques.

As one of the more recent techniques, Zhou and De La
Torre also proposed CTW and local canonical time warping
(LCTW) [8] based on canonical correlation analysis (CCA)
andDTW.Evaluatedwith synthetic, facial expression videos,
and motion capture data, the method was shown to outper-
form other DTW-based techniques including IMW, DTW,
and DDTW.

Finally, different approaches have been developed for
alignment in the computer vision community. Homography
computations are popular means in this regard [38–40]. Sim-
ilar to techniques developed for motion capture data, most
computer vision methods of alignment rely on DTW. For
example, Junejo et al. [41] utilized self-similarity matrix and
proposed a video alignment technique based on DTW. As
another example, Lu and Mandal [42] proposed a method
based on computation of the trajectory of object of interest
and correspondence calculation using DTW.

Our proposed method, based on [10], has previously
illustrated good performance in different aspects such as
peak shape and area preservation [43], and has been widely
explored and developed in the fields of chemistry [44–46].
The method has been used in image processing and biomed-
ical image analysis [47] in addition to the initial application
of chemometrics forwhich it was proposed. To the best of our
knowledge, thismethod has not been the basis of anywarping
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techniques for human motion data. We believe further devel-
oping and tailoring this technique for human motion data
can provide a new and robust method for aligning multiple
motion sequences while addressing some of the shortcom-
ings in currently available techniques.

3 Methodology

3.1 Algorithm

Temporalmodifications canbe carried out linearly. For exam-
ple, a motion trajectory with temporal length m (i.e. m
frames) can be linearly compressed or stretched to new length
m′. This correction may or may not align the critical features
that are of importance. For instance, a fatigued walk, which
is slower than a normal walk, can be compressed to take
the same temporal length as the regular walk. The strides,
however, will not necessarily be aligned. This process, also
referred to as uniform time warping (UTW), will be useful to
simply length match motion sequences. However, UTW can
be used as a major building block in piece-wise or non-linear
warping methods.

Given a motion matrixD = [θ1 θ2 . . . θn] with n degrees
of freedom (DOFs), the i th joint angle trajectory θ i with

m frames is defined by θ i =
{
θ

(t)
i : t = 1, . . . ,m ∈ N

}
.

Accordingly for θ i , the uniformly warped trajectory θUTW,i

is calculated using θUTW,i = θTi W, where θUTW,i ={
θ

(t)
UTW,i : t = 1, . . . ,m′ ∈ N

}
andW is them×m′ warping

matrix populated using linear interpolation factors required
to warp θ i to achieve temporal length m′. If m′ > m, the
trajectory is stretched, and where m′ < m the trajectory is
compressed. In addition to linear interpolation, non-linear
methods can also be used for calculatingW. A sample com-
pressing and stretching is illustrated in Fig. 1 where linear
interpolation is used.

Our proposed method uses UTW in two different stages.
First, CoTW linearly warps the input trajectory using
UTW to length match the trajectory with respect to the
reference. The input is then divided into a number of
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Fig. 1 Linear stretching and compressing of a motion trajectory

equal segments. Accordingly, θ i is rearranged as θ i =[
θ

(1:λ)
i θ

(λ:1+2λ)
i . . . θ

(cλ+1:m)
i

]T
where we have c segments,

each with a length of λ ∈ N. Given θ i with a length ofm, the
number of segments is calculated using c = m/λ, c ∈ N.

In addition to the segment size, a different parameter called
slack size is introduced. We denote slack size by δ ∈ N. This
parameter determines how much each segment is permitted
towarp in either direction. In other words, each segment of θ i
will have a temporal length in the range of [λ − δ, λ + δ] after
warping. Specifically, segment i is warped by the number of
time instances ηi , where |ηi | < δ. Accordingly, for assigned
λ and η1:c, the input θ i is warped using:

θCoTW,i =
[
θ

(1:λ)
i W1 θ

(λ:1+2λ)
i W2 . . . θ

(cλ+1:m)
i Wc

]T
, (1)

where W1 to Wc are warping matrices with dimensions
λ × (λ + ηi ). The entries of Wi are populated with values
required to linearly warp the designated segment to match
the required length. We combine the segment-wise warping
matrices to create the m × m global warping matrix:

Wg =

⎡
⎢⎢⎣
W1 . . . 0
...

. . .
...

0 . . . Wc

⎤
⎥⎥⎦ , (2)

where θTi Wg warps the entire input θ i in segment-wise fash-
ion. Since the input has already been length matched with
the reference, CoTW only allows combinations of warping
degrees that result in the output having the length of m, in
other words

∑c
i=1 ηi = 0.

Figure 2 illustrates the process where the original input is
first uniformly warped (UTW) and length matched with the
reference. The input is then divided into a number of seg-
ments. Each segment is warped by ηi < δ. The objective
function, which is described in the following sections, uti-
lizes segments of the input and corresponding segments of
the reference, and optimizes the set of ηi .While the optimiza-
tion process is carried out linearly, as each sequence is sliced
into a number of segments, and each segment is warped sep-
arately and differently, a global non-linear warp is achieved.
The amount of non-linearity can simply be increased if the
length of segments (λ) is decreased and different warps (η)

are utilized. A schematic of the entire warping system and its
different components is illustrated in Fig. 3. Other compo-
nents of the system are described into the following sections.

3.2 Objective function

Most existing warping techniques such as DTW and CTW
utilize distance-based objective functions. While distance is
often used to quantify similarity between sequences, addi-
tional steps are sometimes taken to ensure such measures
correctly represent similarity in motion data [30,48]. In fact,
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Fig. 2 An input trajectory is
divided into a number of
segments. Each segment is
allowed to warp, using UTW, by
a bounding slack parameter.
Warping is carried out with the
aim of achieving maximized
correlation with respect to the
corresponding segments of
reference

Fig. 3 The overall schematic of
the system is presented

it has been previously observed that distance-based mea-
surements alone are not necessarily the best indicators of
perceptually similar motion sequences [49]. Such objective
functions analyze the proximity of entries of two trajecto-
ries at corresponding time instances (frames). Nevertheless,
humans are known to look for shapes, forms, and patterns
rather than investigate individual entries [50,51]. Accord-
ingly, this property needs to be taken into account when aim-
ing to achieve perceptually sound processed motion trajec-
tories.

From a computational perspective, let us assume two
hypothetical joint angle trajectories θ1 and θ2 with lengths
m. Using two typical distance-based objective functions such

as ‖θ1 − θ2‖2 or
∑m

i=1

∣∣∣θ(i)
1 − θ

(i)
2

∣∣∣, two identical trajecto-

ries with only one or few relatively distant entries can result
in an average distance identical to two trajectories where
all of their entries are different (different shapes). However,
semantically and perceptually, the first two trajectories are
more similar than the latter. Fig. 4a shows an example where
the pair shown in the bottom is more similar than the pair at
the top, while the distances of the two pairs are similar. To
illustrate another computational shortcoming, let us assume
two identical trajectories, to one ofwhich noise is introduced.
If the magnitude of this noise is relatively small with respect
to themagnitude of the trajectory, the overall shape of the tra-
jectory will not be affected and the two trajectories remain
relatively similar. Meanwhile, a distance-based analysis will
point to the two being quite dissimilar. Fig. 4b illustrates the
situation where a calculated distance is relatively large, but
the two trajectories are perceptually similar. This can be seen

as an extension to the previous case. Finally, given two iden-
tical trajectories, one of which is spatially shifted, a distance-
based measurement will indicate dissimilarity (based on the
magnitude of the offset). Nevertheless, the two trajectories,
especially from a motion perspective, as well as from a per-
ceptual standpoint, are identical. Fig. 4c illustrates this situ-
ation where a relatively large distance is computed, whereas
the trajectories are identical in shape and form.

Different approaches have often been proposed to over-
come the limitations of Euclidean distance. For example,
towards human motion tracking and segmentation, Wang
et al. [52] utilized orientation information alongside distance
for path optimizing in spatiotemporal domain. Based on ear-
lier arguments, and similar to [10], we suggest and utilize
Pearson’s linear correlation coefficient (PCC), which is a
numerical determinant of dependence of two variables or
how similar the shapes of two trajectories are. We derive an
objective function based on PCC as the means of quantify-
ing alignment. Specifically, for two motion trajectories θ1
and θ2 with m frames, the correlation coefficient is calcu-
lated as ρ(θ1, θ2) = cov(θ1, θ2)/

√
(var(θ1)var(θ2)). The

objective function is based on ρ as given by:

ρ(θ1, θ2) =
∑m

t=1(θ
(t)
1 − μθ1)(θ

(t)
2 − μθ2)√∑m

t=1(θ
(t)
1 − μθ1)

2
∑m

t=1(θ
(t)
2 − μθ2)

2
, (3)

where μ represents the mean.
Revisiting the three cases where distance failed to rep-

resent similarity, we observe that in Fig. 4a PCC calculates
ρ = −0.0587 for the top pair, which indicates dissimilar
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(a)                        (b) (c)

Fig. 4 Three hypothetical situations where the distance between the
two trajectories fails to indicate similarity. In a, from a shape and form
standpoint, the pair at the bottom is more similar than the pair at the
top. However, the norm-2 distances between trajectories in each pair are

equal. In b relatively large distance is calculated for the pair, while they
are quite similar in shape. The blue trajectory is the noisy version of the
red one. Finally, in c the distance between the pair is quite large given
an added spatial offset. The two trajectories, however, are identical
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Fig. 5 Correlation matrices between two sequences of motion before
a and after b warping. Each entry is the correlation value between pos-
tures of the two sequences at a given frame. Increased correlation entries

on the diagonal line indicate that alignment increases correlation values
between corresponding frames

trajectories, while for the bottom pair ρ = 0.8231, indicating
that the two are relatively similar. For Fig. 4b, ρ = 0.8231,
again pointing to the two trajectories being similar, while
distance measurements will calculate large values. Finally
in Fig. 4c, the calculated distance is very large while PCC
calculates ρ = 1.0, pointing to identical shapes.

Another significant advantage of using a correlation-based
function is that PCC is a normalized value (maximum = 1).
Therefore, the calculated results for different motion repre-
sentations such as Euclidean displacement vectors and joint
angle trajectories will be comparable and can fit the same
framework. This cannot be said about warping methods that
utilize distance-based objective functions.

Figure 5 illustrates the correlation matrices between two
sequences of motion before (a) and after (b) alignment. In
thesematrices, each entry is the correlation between postures
of the two sequences at given time instances. The diagonal
line denotes a one-to-one correspondence between postures

of the two sequences at the corresponding frames. Evidently,
the sum of all correlation values between corresponding pos-
tures significantly increased after alignment. This is a testa-
ment that a correlation-based objective function can accu-
rately represent motion alignment.

Our objective function calculates PCC for each segment
of the length-matched input trajectory with respect to its cor-
responding section from the reference. The goal is to cal-
culate the set of η that maximizes this function. For warp-
ing multi-dimensional data, one approach is to warp each
DOF separately. Using CoTW, despite being bound by δ,
each segment will be warped by a different warping degree.
As a result, synchronization between different DOFs of the
motion sequence will be lost. To prevent this from happen-
ing, we calculate and combine the objective function for each
of the n DOFs. Accordingly, for length-matched input and
reference motion data,Din andDre f , maximizing objective
function,
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Table 1 The dynamic
programming optimization used
in CoTW

Ju =
n∑

i=1

ρ
(Din,i ,Dre f,i |sk

)
, for k = 1 : c, (4)

results in a uniform warping of all DOFs, where i represents
the DOF, s the segment, and k the segment number.

Using Eq. (4), all DOFs maintain uniform and equal sig-
nificance in the overall warping of the sequence. Incorporat-
ing a weight parameter in the objective function will result
in alignment of motion sequences with more emphasis on
particular DOFs. For example, warping with the aim of only
aligning the arms/hands (and not the head or the feet) could
be carried out using a weighted sum of ρ, where the weights
of joints other than arms/hands are set to zero. Accordingly,
Eq. (4) will be updated as:

J =
n∑

i=1

wi · ρ(Din,i ,Dre f,i |sk), for k = 1 : c, (5)

where wi is the weight associated with the i th DOF,
and arg maxη J calculates the set of segment-wise warping
degrees η.

Ad hoc means can be used to determine the weights, wi .
In gaits, for example, the importance of fingers and toes is
significantly less than that of other limbs and joints. In sign
language, on the other hand, the fingers are of critical impor-
tance. These considerations, among others, can be integrated
into the process using the weight parameter. In the Results
section, we suggest and test weights for aligning different
regions of interest. Previous studies such as [53] have inves-
tigated the relative importance of different joints in animation
of human motion, which can provide suitable guidelines for
tuning wi .

3.3 Optimization

Given length-matched input and reference motionsDin and
Dre f , and a set of assigned warping parameters (λ, δ), the
optimal warped output sequence needs to be computed.
Accordingly, the optimal warping degree (η) for each seg-
ment needs to be calculated and utilized. In other words,
all possibilities of η within −δ ≤ η ≤ δ must be inves-
tigated for each segment. Dynamic programming is often
used to solve problems that would require a very large num-
ber of iterations if it were to be solved exhaustively. We use a
2-step backward–forward dynamic programming algorithm.
The algorithm is derived from [10] and necessary modifica-
tions have been made based on descriptions provided earlier
in this paper. The pseudo code of the algorithm is presented
in Table 1. In this algorithm, c is the number of segments,
m′ is the new segment length successive to the initial UTW
of the input which results in the length-matched version, F
is a matrix which is populated using cost function values,
v is the sum of objective function values, U is the lookup
matrix containing the parameter values, and Y is the solution
matrix. In this algorithm, all possible positions of a given
segment are first inspected based on possible orientations of
previous segments and the optimum alignment is calculated.
Iteratively, permutations that result in suboptimal alignment
are ruled out. As a result, the process always finds the set of
warping degrees that best align the trajectory with respect to
the reference.

4 Parameters and distortion

In this section, the impact of segment and slack sizes on
the warped outputs are investigated. Given m′ and λ, after
dividing the trajectory into c segments, an extra segment may
remainwith the length ofm′−m′/λ×λ. This situation occurs
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Fig. 6 CoTW outputs for a λ = 23 and different values of δ; b different values of λ and δ = λ − 4

when m/λ �= m/λ. There are two possible approaches for
dealing with this residual segment: (a) counting it as a sepa-
rate segment or (b) adding it to the last segment, making the
cth segment a bit longer. Using the first approach, the length
of the residual segment may become considerably smaller
than other segments or the slack for that matter. In this case,
warping it by larger values of η may cause significant distor-
tion. We therefore use the second approach.

Figure 6a illustrates warping of a trajectory with λ = 23
and different δ sizes. The reference is a sinusoid and the
input is a sum of sinusoids. The boundaries of segments are
displayed. Misalignment is seen as the peaks and valleys of
reference and input occurs at different time instances. It is
evident that for δ = 1, warping is minimal. As δ increases to
δ = 7, the alignment improves. Beyond this value, however,
there is no significant change in alignment. This is because,
in this particular case, optimum warping occurs at η = 7;
therefore, alignment remains unchanged for δ > 7. Thus, we
suggest thatwhenmanually tuning thewarping parameters, it
would always be safe to set δ to themaximumpossible length.
The method’s boundary conditions do not allow δ > λ − 4
and, so, the maximum possible length of slack is δ = λ − 4.
Using themaximum δ, however, despite resulting in optimum
warping,maynot always be suitable as it can cause distortion.
The notion of distortion is described later in this section.

With regard to the segment length, let us initially assume
that the entire trajectory is one segment, meaning λ = m′.
This yields that the trajectory is not permitted to warp, since
the post-warp length must remain unchanged. Moreover, for
m′/2, as discussed earlier, the residual segment will be added
to its previous segment. Therefore, we conclude that only
segment lengths of λ ≤ m′/2 will result in practical warp-

ing. As λ decreases, the process will have more segments to
warp to achieve greater correlation. Figure 6b illustrates the
effect of segment size where for λ = 45 > m/2, no warping
occurs. As the number of segments increases (λ decreases),
alignment is improved. However, since decreasing the seg-
ment length results in constraining δ and hence η, it does
not always result in better alignment. For instance, in this
example, the best alignment is achieved for λ = 10 where
the fourth local maximum of the input is aligned with that of
the reference.

To select λ and δ, we suggest an iterative exhaustive opti-
mization problem, where for all combinations of λ and δ,
the correlation of the output is calculated with respect to the
reference. To further integrate the notion of joint customiza-
tion, a weighted sum of DOF correlations, similar to Eq. (5),
can be utilized. This step results in a correlation matrix ρ as
illustrated in Fig. 7. The figure depicts the correlations of an
actual joint rotation trajectory from a tired walk aligned with
respect to an energetic walk. Here, the parameters resulting
in the highest peak, λ = 16 and δ = 12, achieve the best
alignment.

Although maximum correlation can be achieved using the
optimized parameters, the output motion could be distorted
due to excessive warping. The algorithm by design employs
two constraints with regard to the amount of warping applied
to segments: (a) the sum of warping degrees of all segments
is equal to zero, since the length of the motion will remain
unchanged due to the initial length matching (

∑c
i=1 ηi = 0);

(b) the slack parameter bounds the warping degree of each
segment (η ≤ δ). Nevertheless, should δ be relatively large,
it is possible for a segment to bewarped excessively. This can
cause themotion to seem unnaturally slow or fast in the dura-
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Fig. 8 A motion trajectory warped without a and with b taking the
distortion factor into account

tion of that segment, as the slope of the trajectories would
be affected significantly. An example of this is illustrated in
Fig. 8 (top) where the arrows point to two such instances.
These and other artifacts have been points of concern in the
literature aswell. For example, in videowarping and retarget-
ing, to avoid issues such as waving and squeezing artifacts,
Wang et al. [54] performed optimized cropping and warping
using motion information and distortion minimization.

Tomeasure this distortion, the inverse of the signal to noise
ratio (SNR−1) can be utilized as SNR−1 = Pnoise

Psignal
, where P

represents the classical definition of power. In the context of
this study, for input sequence Din which is length matched
with the reference, this definition will translate to:

SNR−1 = ‖Din,CoTW − Din‖
‖Din‖ , (6)

where Din,CoTW is the same sequence after CoTW warp-
ing. Note that we use the length-matched version of the input
sequence for computing the noise. This is to calculate the dis-
tortion caused by the non-uniform changes in the sequence
rather than the changes that occur as a result of the initial
length matching. Eq. (6) indicates that to acquire minimum
SNR−1, Din,CoTW must approach Din . As a result, mini-
mizing this measurement during the warping process tends
to cancel out the attempts made to carry out the non-uniform
segment-wisewarps.Moreover, our experiments showed that
when SNR−1 with the described definition is minimized dur-
ing the warping process, almost no warping occurs. As a
result, we investigated with several variations of Eq. (6) to
find a practical substitute formeasuring distortion. For exam-
ple, we used first and second derivatives of the components
in Eq. (6). We also experimented with using the difference
of the norms instead of the norm of differences. Eventually,
we concluded that the following, which we denote by h, is
the most suitable means of quantifying distortion without
countering the warping process:

h =
(∥∥∥∥

�Din,CoTW

�t

∥∥∥∥ −
∥∥∥∥
�Din

�t

∥∥∥∥
)

.

∥∥∥∥
�Din

�t

∥∥∥∥
−1

. (7)

This measurement entails that distortion is minimized
when the norm of the slopes ofDin,CoTW andDin converge.
In other words, minimizing h preventsDin,CoTW from hav-
ingdrastic changes in slope, andhence less distortion. Similar
to the ρ matrix, the distortion caused by different combina-
tions of λ and δ can populate a matrix, which we denote by h.
A weighted sum of the distortions of the DOFs can be used.
Accordingly,

argmax
λ,δ

ρ − α · |h| (8)

calculates the optimum λ and δ for warping the input where α

is aweight factor for distortion. For applicationswhere reduc-
ing the distortion is more central, larger values of α are used.
As the trade-off for minimization of distortion, suboptimal
parameters are used, and the best possible alignment may not
be achieved. Nevertheless, the warped motion appears more
natural. Figure 8 (bottom) presents CoTWwarping, taking h
into account with α = 0.5.We observe that the two instances
of distortion are prevented. Yet on the other hand, suboptimal
alignment is achieved. For example, distortion minimization
counters the alignment of the localminimaat the 100th frame,
where they were previously aligned with α = 0. Figure 9a
shows the distortion matrix (h) for the same trajectories used
in Figs. 7 and 8. Figure 9b illustrates the correlation matrix
with minimized distortion (ρ − h).

In addition to calculation of the optimum parameters,
λ and δ can be manually tuned. In many cases, the input
sequence is composed of multiple actions and the goal of
warping is to align each action with the corresponding action
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Fig. 9 Distortion (a) and subtraction of distortion from correlation (b) matrices for permutations of λ and δ

from the reference. In such cases, the number of actions in
the input sequence can be a good determinant of the number
of segments. For example, assuming the sequence is com-
posed of two jumps and a kick, the number of segments can
be set to three. In other cases, the goal of warping may be to
align sub-actions (sub-components of actions). In this case,
the number of segments can be determined by the number of
these components. For example, for a sequence consisting of
a single jump, the number of segments can be set to two.Here,
segment 1 will correspond to the first half of the jump where
the actor leaves the ground and reaches the maximum height
of the jump. Segment 2 will then correspond to the second
part of the jump during which the actor lands. This approach
can significantly increase runtime due to leaving out the time-
consuming exhaustive search. Moreover, the user can exer-
cise this option to customize the warping process based on
particular applications.

5 Automatic reference selection

When warping two sequences, the selection of the refer-
ence depends on the application. In the event that multiple
sequences need to be aligned, for example when training a
classifier, selection of the reference trajectory can be a diffi-
cult and influential issue. Furthermore, in multi-dimensional
data, warping each DOF individually and with respect to a
separate reference is one possible approach. Using DOFs
of different sequences as references will cause the warped
sequence to lose its synchronization among joints. In such
cases, eachDOFof thewarped sequencewill seem to bemov-
ing independent of others. To avoid this artifact, we combine
the information regarding the differentDOFs of all sequences

to select a single sequence as reference. In other words, we
select a single sequence and use all its DOFs as references
for the respective DOFs of all other sequences.

To select a reference sequence, several approaches are pos-
sible. In addition to manual selection, which can be a valid
approach based on the application, other techniques can be
used. Skov et al. [46] mention several methods for this pur-
pose. We utilize a similarity index. For a set of sequences,
F , where Di, j is the i th DOF of the j th length matched
sequence, and wi is the weight set described earlier, we cal-
culate the similarity index through:

P = p
n∑

i=1

⎛
⎝wi

∏
j∈{F}−r

∣∣ρ(Di,r ,Di, j )
∣∣
⎞
⎠ . (9)

Accordingly, arg maxr P determines the sequence that is
most similar to all other sequences. Using this sequence
will decrease the need for warping, potentially decreasing
the imposed distortion. Note that we blended the similar-
ity indexes of different DOFs using the same weight set
described in previous sections to take into account the sig-
nificance of each DOF.

We investigate the effectiveness of this index by compar-
ing it with other techniques for selecting a reference. These
methods include using the average trajectory, median, max-
imum of all, and minimum of all. Figure 10 presents motion
trajectories from the x th axis of the right foot from 15 male
walkers. To add differently shaped trajectories, we included
heavily smoothed versions of three of these trajectories as
well. Smoothing was carried out using low-pass filtering.
The trajectories computed as reference are shown in red
for each method. It is observed that the mean, median, and
similarity index select the smoothest references, while min-
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Fig. 10 Different methods of determining a reference when multiple
trajectories are available. The first five figures show the different possi-
blemethods, one of which is the proposed similarity index. In each case,

the calculated reference is shown in red. The last figure presents the tra-
jectories after warping (CoTW) with respect to the reference selected
using the proposed similarity index

imum and maximum methods select trajectories with many
local extrema. It is generally preferred that the reference
be smooth, as well as being one of the original trajectories
rather than a calculated trajectory based on others (mean or
median). Figure 10 also illustrates all the trajectories warped
with respect to the reference selected using the proposed sim-
ilarity index.

6 Results and discussions

6.1 Performance and alignment

The proposed algorithm is implemented in MATLAB. To
subjectively and quantitatively evaluate the results, other
popular warping techniques, namely UTW, DTW, DDTW,
and CTW are used. We use motion capture data from the
Carnegie Mellon University motion dataset (http://mocap.
cs.cmu.edu/). Six different action classes are used. Complex
actions such as climbing a ladder, dribbling a basketball, side
twists, and kicking a ball as well as more simple actions such
as jumping and walking are utilized. In most cases, the num-
ber of steps or actions in the input and reference vary, making
it a relatively difficult alignment problem. The parameters
have been optimized as discussed earlier. The mean λ is 25
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Fig. 11 Means and standard deviations of normalized distance and
correlations for different actions warped using UTW, DTW, DDTW,
CTW, and CoTW

frames and the standard deviation is 13. δ is always set to
λ − 4.

Figure 11 illustrates how the absolute distances per frame
per DOF compare for different warpingmethods and actions.
Since for different sequences, the range of distances can
significantly vary, they are normalized with respect to the
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maximum distance for each action class. In all cases, the
maximum distance was observed for UTW; hence, all UTW-
normalized distances are equal to one. Generally, DTW,
DDTW, and CTW are not too different in terms of distance,
while CoTW shows reduced distance. Similarly, for corre-
lation, CoTW outperforms the others, followed by DDTW,
CTW, and DTW. To further investigate the results, we per-
formed post hoc analysis using t test between the correla-
tions and normalized distances achieved using CoTW vs the
other methods. For normalized distance, CoTW (MCoTW

= 0.65, SDCoTW = 0.15) is significantly superior to UTW
(MUTW = 1, SDUTW = 0), at the p < 0.001 level with t(10)
= 5.86. While CoTW is also superior to DTW (MDTW =
0.76, SDDTW = 0.16), DDTW (MDDTW = 0.73, SDDDTW =
0.13), andCTW(MCTW =0.76, SDCTW =0.16), the reduced
distance is not statistically significant at the p < 0.05 level.
For increased correlation, however, CoTW (MCoTW = 0.75,
SDCoTW = 0.08) is significantly superior to UTW (MUTW =
0.20, SDUTW = 0.23) at p < 0.001 with t(10) = 5.53, DTW
(MDTW = 0.47, SDDTW = 0.17) at p < 0.01 with t(10) =
3.46, DDTW (MDDTW = 0.52, SDDDTW = 0.22) at p <

0.05 with t(10) = 2.37, and CTW (MCTW = 0.48, SDCTW =
0.18) at p < 0.01 with t(10) = 3.45.

In addition to DTW, DDTW, and CTW, as mentioned
in Sect. 2, GTW is another relatively recent technique for
warping. However, the method is still under development,
and unresolved converging and local minima issues persist.
Most importantly, the number and types of basis functions
(monotonically increasing base sets), using which warping is
performed, need to be selected manually. The basis functions
significantly impact thewarping output, and as a result a com-
parison between our method and GTWwould not provide an
accurate account of the relative performance of CoTW vs
GTW. We tried several combinations of basis functions for
GTW. Accordingly, the best performance resulted in a post-
warping normalized distance of approximately 0.8 and corre-
lation of approximately 0.4, meaning that CoTW has signifi-
cantly better performance. Nonetheless, automated learning
of the basis functions may result in more accurate results for
the GTW.

Video clip 1 accompanying this manuscript shows the
actual warping of the sequences using different methods.
In general, DTW, DDTW, and CTW work well for align-
ing sequences. CoTW, however, shows more accurate align-
ment. In Fig. 12, we illustrate the performance of CoTW,
where accurate alignment is achieved. In the climb ladder
sequences, the input contains two extra steps. Interestingly,
in the warped output, the character first climbs in an aligned
fashion with respect to the reference, and then to make up
for the extra steps, intensely slows down, almost to the point
of stopping. The stop goes on for the duration of the excess
steps in the reference. The climb then resumes after this cor-
rection. While this may seem abnormal at first glance, it is

in fact the best possible solution for such cases where the
number of actions differs. The alternative solution is for the
excess steps to be spread out through the entire sequence.
This would result in misalignment in all sub-actions. As seen
in the video, the warped output behaves very naturally and
accurate alignment with respect to the reference is achieved.
The dribble sequences are composed of two different main
actions, namelywalking and dribbling.Weobserve that in the
output, correction ismostly applied to the armswhile the legs
are only partially aligned. This is natural as uniform weights
have been utilized for alignment and, as a result, the max-
imized correlation enforces the warping process, regardless
of the spatial regions. Had the weights been selected to high-
light only specific regions of the body, warping would have
been focused on specific joints. We test this in the following
paragraphs of this section. In the sideway twist motions, the
last few frames of each twist appear to be misaligned in the
output. This is not, however, actual misalignment. The two
characters simply twist with different degrees. As a result,
they appear to be misaligned, whereas from a relative stand-
point, alignment is achieved. Moreover, it should be noted
that CoTW does not alter spatial variations, rather only the
timing of actions. So the turning degree of the twist cannot be
altered. In the walk sequences, the first and last frames of the
output and reference differ and have not been aligned. While
in most examples, the input and reference motions start and
end with similar poses, the walking input and reference start
and end during the walk and with different poses. Referring
back to the algorithm andFig. 6 as an example,we see that the
first and last frames remain temporally unchanged afterwarp-
ing. Accordingly, these postures cannot be aligned through
the proposed method. The rest of the sequence, however, is
aligned. Similar to the climb ladder, rapid changes in veloc-
ity, this time in the form of increase, are observed. This is
because the input contains two extra steps with respect to the
references, and to compensate faster strides are necessary.

Video clip 1 illustrates the input motions warped using
UTW, DTW, DDTW, and CTW along with CoTW. While
DTW, DDTW, and CTW are practical, fast, and gener-
ally accurate, for presented samples, misalignments persist.
Reasons for the misalignments can be the use of distance-
based objective functions as well as the complexity and non-
equal number of actions in the sequences. These misaligned
instances are clearly seen in the video. In Fig. 13,we illustrate
sample frames where DTW, DDTW, and CTW failed, while
CoTW has performed well. Moreover, it should be pointed
out that in sequences such as climb ladder and walk where
the number of actions significantly differs, instead of decel-
erating/accelerating the input to compensate for the timing
differences, DTW, DDTW, and CTW use still frames where
particular frames are repeated. Moreover, DTW, DDTW, and
CTWproduce awarped version of the reference, with respect
to which the input is aligned. This can be avoided, but will
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Fig. 12 Snapshots from different actions being aligned using CoTW

result in very fast jumps in the input sequence for it to catch
up with the reference.

6.2 Customization

As described earlier, one of the main advantages of CoTW
is its customizability. Here, we illustrate how the weight
parameter can be adjusted to efficiently and accurately warp

different regions of interest in the input sequence. As an
example, we use dribbling, an action that is composed of
two separate regions performing different actions, namely
the arms dribbling and the legs walking. Ad hoc means
are used to determine the weights presented in Table 2.
Previous studies such as [53] have studied joints that are
critical in motion animation and proposed weights for
their significance, which can be utilized in our system. In
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Fig. 13 Snapshots from where
DTW and CTW have failed to
perfectly align the sequences.
As shown in Fig. 12 and in the
accompanying Video clip 1,
CoTW has correctly aligned
these instances

DTW misalignment

Climb ladder Dribble Kick ball

DDTW misalignment

Climb ladder Dribble Kick ball

CTW misalignment

Climb ladder Dribble Kick ball

Table 2 Suggested for different regions of the body

DOF Full Legs/feet Arms/hands

Global displacement 1.00 1.00 0.00

Global orientation 1.00 1.00 1.00

Hips 1.00 1.00 0.00

Shoulders 1.00 0.00 1.00

Thighs 1.00 1.00 0.00

Spine 1.00 0.00 0.50

Arms 1.00 0.00 1.00

Legs 1.00 1.00 0.00

Hands 1.00 0.00 1.00

Feet 1.00 1.00 0.00

Neck 1.00 0.00 0.00

Head 1.00 0.00 0.00

Fingers 0.00 0.00 0.00

Toes 0.00 0.00 0.00

Table 2, we used the semantic names of the joints rather
than the exact names used in the CMU dataset files. For
example, the name “Thigh” is used instead of “UpLeg”.
Figure 14 and Video clip 2 illustrate that when customiz-
ing the alignment process using CoTW, different joints
can be accentuated with different significance levels. When
the weights are uniformly distributed, a combination of
a two-region alignment is achieved, partially aligning the
walk and partially aligning the dribble. When the regions

of interest are the shoulder, arms, and hands, the process
is performed with these regions being completely aligned
while the legs are not. A similar observation is made
when the regions of interest are the thighs, legs, and
feet.

Another customization capacity with CoTW is manual
selection of segment and slack lengths. Previously, we illus-
trated that when a walking sequence is warped, using the
optimum λ and δ results in accurate alignment. Figure 15
and Video clip 2 illustrate that when we manually assign the
segment length to that of one step, the steps are aligned with
acceptable precision.

With regard to the parameter α, which determines the sig-
nificance of distortion minimization, we observed that gen-
erally, values of around α = 0.5 are suitable for maintain-
ing a good balance between minimization of distortion and
increasing alignment (correlation). Nonetheless, the assign-
ment of α depends on the application at hand. If align-
ment is more critical compared to the distortion caused as
a result of the warp, lower values for α should be utilized.
On the other hand, if naturally appearing motion is prior-
itized over the accuracy of the alignment, higher α values
should be used. The amount of initial misalignment between
the sequences can also be a determining factor. For exam-
ple, the side twist action in this paper contains significant
misalignment with respect to the reference. Thus, more sig-
nificant warps are needed to correct the misalignments. In
cases like this, lower values of α will allow for reasonable
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Fig. 14 Customization of CoTW is presented. The input dribbling
motion is warpedwith uniformweights, as well as the regions of interest
such as the walking or the dribbling

alignment to be achieved, while higher α values might cause
the misalignments to persist.

6.3 Style translation

Style translation is the process of transferring style features
from one sequence of motion onto another [2]. This proce-
dure can often be carried out using interpolation or extrap-
olation [4]. However, sequences contain relative misalign-
ments, which cause artifacts such as footskating [55] when
style translation is carried out without proper alignment. As
a result, style translation can be used for evaluating warping
methods. We use neutral, macho, and marching style walks
to perform this test. To also test the automatic reference
selection, two neutral walks are employed. The similarity
index selects one of the two neutral walks as the reference.
The other normal walk and the macho walk are warped with
respect to the selected reference. By subtracting the stylis-

tic walks from the reference and adding the resulting style
features to the other neutral walk, style is transferred from
one sequence onto another. Figure 16 (from Video clip 2)
illustrates frames of input (neutral) and output (macho and
marching) sequences, following alignment and style trans-
lation. While it is routine to perform post-processing and
cleanup successive to style translation [2,9] due to the signif-
icant footskating that is caused as a side effect of the process,
our output video demonstrates very little artifacts. As a result,
despite the need for cleanup, the required post-processing is
not significant.

6.4 Summary of advantages

The proposed CoTW algorithm achieves robust alignment of
sequences and outperforms UTW, DTW, DDTW, and CTW,
especially when the number of actions in the input and refer-
ence is different. Additionally, CoTW demonstrated several
advantages over existing warping techniques. While some
previous works have addressed some of these issues, to the
best of our knowledge, a single system that incorporates all
of them does not exist. In the following, the advantages of
our method are summarized:

(1) CoTW uses correlation as a measure of similarity
between motion trajectories which, based on our earlier
arguments, is significantly better compared to Euclid-
ean, Manhattan, or some other distance functions that
are often used.WhileDDTWslightly outperformsDTW
and CTW due to the use of the derivative of the trajecto-
ries, our method still shows more accurate results. The
reason for this is that even though differentiation will
consider the trend of the trajectories rather than similar-
ity between the trajectories themselves, the trend (dif-
ferentiation) used in DDTW is instantaneous, while in
CoTW, the trend (correlation) is global.

(2) CoTW can be customized both spatially and temporally.
Through the former, aweight set is applied to the charac-

Fig. 15 Manual tuning of λ and
δ results in relatively acceptable
alignment. Here, λ is assigned
as the approximate length of a
single stride and δ = λ − 4

reference

input

CoTW
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Fig. 16 Style translation where
a neutral input is converted to
marching and macho walks Normal
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Fig. 17 Warping methods such as DTW use frame-wise correspondence and use still frames to achieve alignment. Initial trajectories are shown
in a, the calculated alignment (correspondence) path is presented in b, and c shows the warped trajectories

ter model, resulting in more alignment in specific joints
or motion DOFs. The latter allows the user to select the
length of segments of the sequence that will eventually
be aligned. Nevertheless, optimum segment length and
slack constraints can be automatically calculated and
utilized.

(3) CoTW prevents over-warping of motion that causes
distortion. As a result, CoTW outputs more naturally
appearing warped sequences. It should be noted, how-
ever, that other warping techniques have also enforced
constraints. While these modifications have often been
imposed with the purpose of increasing efficiency and
speeding up the procedures, they can serve toward pre-
vention of over-warping. For example, slope constraints
[15], weight factors [7], and path constraints [7,16] have
been proposed.

(4) Most techniques such as DTW, DDTW, and CTW com-
pute an alignment path, which determines the corre-
spondence between instances of the input and refer-
ence trajectories. Figure 17 illustrates an example. Uti-
lizing this correspondence function for warping does not

produce smooth curves. Rather, identical consecutive
frames (still frames) are often used to compensate for
timing where needed (see Fig. 17c). The examples of
this are the vertical and horizontal paths in Fig. 17b. To
remedy this, post-processing in the form of smoothing
or interpolation is required. CoTW, however, produces
readily smooth trajectories that can be used for anima-
tion purposes.

(5) When multiple sequences are available, the process
allows for automatic selection of a reference that
will most likely demand the least warping from other
sequences. This process can especially be useful when
aligning a dataset for different purposes, such as train-
ing a classifier. Moreover, this modality too can be cus-
tomized to allow more emphasis on particular motion
DOFs.

6.5 Limitations

A computational limitation of CoTW occurs when one or
more segments of a motion trajectory, whether input or refer-
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Table 3 Average and standard deviations of runtimes for different warping techniques. The six sequences presented earlier were used

Warping UTW DTW DDTW CTW CoTW

Time (s) 0.02 ± 0.01 0.08 ± 0.04 0.09 ± 0.06 1.25 ± 0.59 10.01 ± 7.61

ence, have zero variance. Based on Eq. (4) and subsequently
Eq. (3), the objective function cannot be calculated for zero-
variance segments. This limitation does not exist in most
distance-based objective functions.

Another limitation of CoTW is that based on the proposed
algorithm, the first and last frame remain unchanged. To the
best of our knowledge, this is the case with other existing
methods such as DTW as well. Nevertheless, this property
entails that should two motion sequences start or end with
different poses, warping cannot correct these frames.

In Video clip 1 we see that when using CoTW, the output
motion accelerates/decelerates at certain times. This is espe-
cially visible in the climb ladder and walk sequences. While
such instances seem unnatural, as the number of actions (for
example, number of steps in the walk) are different between
reference and input, parts of the input need to be acceler-
ated/decelerated to compensate for and correct the timing
differences. Although the distortion minimization modality
can reduce these changes in speed, alignment will be com-
promised as a trade-off.

Another limitation of the proposed method is the run-
time. Since for a given segment and slack, different values of
slack are evaluated, the runtime can grow rapidly, especially
for large slack values. Even though dynamic programming
prevents extremely long runtime, UTW, DTW, DDTW, and
CTW are all faster than CoTW. Another reason for increased
runtime of our method is that measuring correlation is com-
putationally more demanding compared to measuring dis-
tance.Moreover, the exhaustive search for the optimumpara-
meters will definitely further increase the runtime. For the
six sequences presented earlier, Table 3 presents the average
and standard deviations of runtimes for λ = 40 and δ = 20.
The results show that CoTW is the slowest among the tested
approaches. The lengths of the six sequences were 310, 166,
155, 328, 228, and 102 frames.

7 Conclusion and future work

We proposed a new warping technique for aligning human
motion data. The correlation-optimized time warping
(CoTW) divides the input trajectories into segments, each
of which is permitted to warp by a maximum of a warping
degree also called slack. Thiswarping technique uses correla-
tion as opposed to distance for quantifying alignment. Using
dynamic programming, the optimumwarpingdegree for each
segment is calculated and utilized in warping. Additionally

through exhaustive means, the segment and slack parame-
ters that maximize correlation while minimizing distortion
are computed. CoTW is highly customizable with regard to
regions of interest in the character model, or in other words
the motion DOFs. Finally, we presented a similarity index,
using which the optimum reference can be measured where
multiple trajectories were available.

We illustrated the accurate and robust performance of
CoTW through multiple experiments. Both distance was
minimized and correlation was maximized when CoTW as
compared to uniform time warping (UTW), dynamic time
warping (DTW), and canonical time warping (CTW). More-
over, warped sequences were animated, visualizing the per-
formance of CoTW. The animations showed accurate and
artifact-free alignments for our test cases. Moreover, cus-
tomization capabilities of CoTW were demonstrated. We
performed style translation to further test the performance
of CoTW. No violation of kinematic constraints, and thus
no requirement for any post-processing, points to the robust
performance of the proposed method.

For future work, faster computing algorithms and more
efficient programming can be used. The parallel computing
library inMATLABcanbeutilized to reduce runtime.Lower-
level programming such as MEX files in association with
MATLAB, or complete C/C++ implementations, can signif-
icantly increase the speed. Finally, GPU implementations are
known to speed up exhaustive search problems by more than
ten times [56]. This approach can provide a practical solution
for the runtime issue of CoTW, which can be explored in the
near future. In addition to runtime improvement, the notion
of non-equal segment lengths, which can lead to even better
alignment, can be investigated in the future.
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