
 1

Abstract—This paper proposes FML, an XML-based face

modeling and animation language. FML provides a structured
content description method for multimedia presentations based
on face animation. The language can be used as direct input to
compatible players, or be compiled within MPEG-4 XMT
framework to create MPEG-4 presentations. The language
allows parallel and sequential action description, decision-
making and dynamic event-based scenarios, model configuration,
and behavioural template definition. Facial actions include
talking, expressions, head movements, and low-level MPEG-4
FAPs. The ShowFace and iFACE animation frameworks are also
reviewed as example FML-based animation systems.

Index Terms— Face Animation, Modeling, XML, MPEG,
XMT, Language.

I. INTRODUCTION

ODERN multimedia presentations are no longer a one-
piece pre-recorded stream of audio-visual data but a
combination of processed and/or synthesized

components. These components include traditional recordings,
hand-made animations, computer-generated sound and
graphics, and other media objects to be created and put
together based on certain spatial and temporal relations. This
makes the content description one of the basic tasks in
multimedia systems.

Advances in computer graphics techniques and multimedia
technologies have allowed the incorporation of computer
generated content in multimedia presentations and
applications such as online agents and computer games. Many
techniques, languages, and programming interfaces are
proposed to let developers define their virtual scenes.
OpenGL, Virtual Reality Modeling Language (VRML), and
Synchronized Multimedia Integration Language (SMIL) are
only a few examples that will be briefly reviewed in Section 2.
Although new streaming technologies allow real-time
download/playback of audio/video data, effective content
description provides major advantages, mainly:
• Dynamic creation of new content as opposed to

Manuscript received July 3, 2005.
A. Arya is with the School of Information Technology, Carleton

University, Ottawa, ON, K1S5B6 Canada (phone: 613-520-2600x4184; fax:
613-520-6623; e-mail: arya@ carleton.ca).

S. DiPaola is with the School of Interactive Arts and Technology, Simon
Fraser University, Surrey, BC, Canada (e-mail: sdipaola@sfu.ca).

transmission and playback of pre-recorded material
• More efficient use of bandwidth by transmitting only a

description to be created on demand (if possible)
• Increased capability for content search and retrieval

The behaviour of a virtual online agent or a character in a

computer game, for example, would be considerably improved
if instead of relying on limited “footage”, the animator could
“describe” the desired content needed in response to possible
events. Such content could then be created dynamically,
provided we had a sufficiently powerful animation engine. In
face animation, this means that not only we do not need to
create the content off-line; we are also able to apply the same
“scenario” to different virtual characters and have new
characters perform previously defined actions.

In the area of facial animation, some research has been
done to represent and describe certain facial actions with
predefined sets of “codes”. Facial Action Coding System [1]
is probably the first successful attempt in this regard (although
not directly a graphics and animation research). More
recently, the MPEG-4 standard [2],[3] has defined Face
Definition and Animation Parameters (FDP and FAP) to
encode low level facial actions like jaw-down, and higher
level, more complicated actions like smile. It also provides
Extensible MPEG-4 Textual format (XMT) as a framework
for incorporating textual descriptions in languages like SMIL
and VRML. MPEG-4 face parameters define a low-level
mechanism to control facial animation. Although very
powerful, this mechanism lacks higher levels of abstraction,
timing control and event management. In other words, MPEG-
4 face parameters do not provide an animation language
whereas XMT languages do not include any face-specific
features, yet.

In this paper we propose a language specifically designed
for face animation and modeling. Face Modeling Language
(FML) is based on Extensible Markup Language (XML,
http://www.w3.org/xml) which allows re-use of existing XML
tools and products. FML provides a hierarchical structured
content description for facial animation; from high level
stories to low level face movements, giving maximum power
and flexibility to content authors. It is compatible with
MPEG-4 FAPs and makes them easier to use by creating a
higher level of abstraction, and can be incorporated into
MPEG-4 XMT framework, filling the empty space of a face
animation language. FML combines the advantages of XML-
based multimedia languages and MPEG-4 face parameters

Face Modeling and Animation Language for
MPEG-4 XMT Framework

Ali Arya, Senior Member, IEEE, Steve DiPaola

M

 2

into a hierarchical structure dedicated to facial animation.
Although the animation engine can use a variety of methods
for content creation (such as 3D models for pure synthetic
data or photographs for “modified” imagery), FML provides a
data type-independent mechanism for controlling the
animation.

The authors have developed two facial animation systems
which use FML as a possible content description mechanism.
ShowFace [4]-[6] is the older (and simpler) system that uses
image transformations applied to photographs to create
animation. iFACE [7],[8] is the newer system that isolates
low-level graphics data (2D or 3D) from the rest of the system
so it can be used for either 2D photographs or 3D synthesized
data with limited replacement of low-level modules.

In Section 2, some of the related works in multimedia
content description will be briefly reviewed. The basic
concepts and structure of FML, some case studies, and our
facial animation systems will be discussed in Sections 3 to 5.
Although the main focus of this paper is on content
description, in Section 5 we quickly review some approaches
to content creation in order to make the study of FML and the
discussed facial animation systems self-sufficient. Some
conclusions will be the topic of Sections 6. FML specification
(including details on language constructs, elements, and their
attributes) can be found online [9].

II. RELATED WORK
The diverse set of works in multimedia content description

involves methods for describing the components of a
multimedia presentation and their spatial and temporal
relations. Historically, the first technical achievements in this
regard were related to video editing where temporal
positioning of video elements is necessary. The SMPTE
(Society of Motion Picture and Television Engineers) Time
Coding [10],[11] that precisely specifies the location of
audio/video events down to the frame level is the basis for
EDL (Edit Decision List) [10],[11] that relates pieces of
recorded audio/video for editing. Electronic Program Guide
(EPG) is another example of content description for movies in
the form of textual information added to the multimedia
stream.

More recent efforts by SMPTE are focused on Metadata
Dictionary that targets the definition of a metadata description
of the content (see http://www.smpte-ra.org/mdd). These
metadata can include items from title to subject as well as
components. The concept of metadata description is the basis
for other similar researches like Dublin Core
(http://dublincore.org), EBU P/Meta
(http://www.ebu.ch/pmc_meta.html), and TV Anytime
(http://www.tv-anytime.org). Motion Picture Expert Group
(MPEG) is also another major player in standards for
multimedia content description and delivery. The MPEG-4
standard that came after MPEG-1 and MPEG-2, is one of the
first comprehensive attempts to define the multimedia stream

in terms of its forming components (objects like audio,
foreground figure, and background image). Users of MPEG-4
systems can use Object Content Information (OCI) to send
textual information about these objects.

A more promising approach in content description is the
MPEG-7 standard [12]. MPEG-7 is mainly motivated by the
need for a better, more powerful search mechanism for
multimedia content over the Internet but can also be used in a
variety of other applications including multimedia authoring.
The standard extends OCI and consists of a set of Descriptors
for multimedia features (similar to metadata in other works),
Schemes that show the structure of the descriptors, and an
XML-based Description/Schema Definition Language.

Most of these methods are not aimed at and customized for
a certain type of multimedia stream or object. This may result
in a wider range of applications but limit the capabilities for
some frequently used subjects like human face. To address
this issue MPEG-4 includes Face Definition Parameters
(FDPs) and Face Animation Parameters (FAPs) [3],[13],[14].
FDPs define a face by giving measures for its major parts and
features such as eyes, lips, and their related distances. FAPs
on the other hand, encode the movements of these facial
features. Together they allow a receiver system to create a
face (using any graphics method) and animate that face based
on low level commands in FAPs. The concept of FAP can be
considered a practical extension of Facial Action Coding
System (FACS) used earlier to code different movements of
facial features for certain expressions and actions.

It should be noted that FAPs do not need to be used with a
synthetic face and geometric models. They are independent of
animation method and simply define the desired movements.
They can be used to apply pre-learned image transformations
(based on detected location of facial features) to a real 2D
picture in order to create a visual effect like talking, facial
expression, or any facial movements [4],[5],[15].

MPEG-4 FDPs and FAPs do not provide an animation
language but only a set of low-level parameters. Although
they are powerful means in facial animation, the content
providers and animation engines still need higher levels of
abstraction on top of MPEG-4 parameters to provide group
actions, timing control, event handling and similar
functionality usually provided by a high-level language.

After a series of efforts to model temporal events in
multimedia streams [16], important progress was made in
multimedia content description with Synchronized Multimedia
Integration Language (SMIL) [17], an XML-based language
designed to specify temporal relationships of components in a
multimedia presentation, specially in web applications. SMIL
can coexist quite suitably with MPEG-4 object-based streams.
SMIL-Animation is a newer language
(http://www.w3.org/TR/smil-animation) based on SMIL
which is aimed at describing animation pieces. It establishes a
framework for general animation but neither of these two
provide any specific means for facial animation. There have
also been different languages in the fields of Virtual Reality
and computer graphics for modeling computer-generated

 3

scenes. Examples are Virtual Reality Modeling Language
(VRML, http://www.web3d.org) and programming libraries
like OpenGL (http://www.opengl.org).

Fig. 1. Interoperability in XMT [18]
The MPEG-4 standard includes eXtensible MPEG-4

Textual format (XMT) framework [18] to represent scene
description in a textual format providing interoperability with
languages such as SMIL and VRML. It consists of two levels
of textual formats. XMT-A is a low-level XML-based
translation of MPEG-4 contents. XMT-Ω is a high-level
abstration of MPEG-4 features, allowing developers to create
the scene description in languages like SMIL and VRML.
These descriptions can then be compiled to native MPEG-4
format to be played back by MPEG-4 systems. It can also be
directly used by compatible players and browsers for each
language, as shown in Fig. 1.

None of these languages are customized for face animation,
and they do not provide any explicit support for it, either. The
absence of a dedicated language for face animation, as an
abstraction on top of FACS AUs or MPEG-4 FAPs, has been
evident especially within the XMT framework. Recent
advances in developing and using Embodied Conversational
Agents (ECAs), especially their web-based applications, and
growing acceptance of XML as a data representation
language, have drawn attention to markup languages for
virtual characters [19]-[22]. The basic idea is to define
specific XML tags related to agents’ actions such as moving
and talking. Virtual Human Markup Language (VHML) [21]
is an XML-based language for the representation of different
aspects of “virtual humans,” i.e. avatars, such as speech
production, facial and body animation, emotional
representation, dialogue management, and hyper and
multimedia information (http://www.vhml.org). It comprises a
number of special purpose languages, such as EML (Emotion
Markup Language), FAML (Facial Animation Markup
Language), and BAML (Body Animation Markup Language).
In VHML, timing of animation-elements in relation to each
other and in relation to the realization of text is achieved via
the attributes “duration” and “wait”. These take a time value
in seconds or milliseconds and are defined for all elements in
EML and FAML, i.e. for those parts of VHML concerned
with animation. A simple VHML/FAML document looks like
this:
<vhml>
<person disposition=”angry”>
<p>

First I speak with an angry voice and
look very angry,
<surprised intensity=”50”>
but suddenly I change to look more
surprised.
</surprised></p></person></vhml>

Multimodal Presentation Markup Language (MPML) [22]

is another XML-based markup language developed to enable
the description of multimodal presentation on the WWW,
based on animated characters (http://www.miv.t.u-
tokyo.ac.jp/MPML/en). It offers functionalities for
synchronizing media presentation (reusing parts of the
Synchronized Multimedia Integration Language, SMIL) and
new XML elements such as <listen> (basic interactivity),
<test> (decision making), <speak> (spoken by a TTS-system),
<move> (to a certain point at the screen), and <emotion> (for
standard facial expressions). MPML addresses the
interactivity and decision-making not directly covered by
VHML/FAML, but both suffer from a lack of explicit
compatibility with MPEG-4 (XMT, FAPs, etc).

Another important group of related works are behavioural
modeling languages and tools for virtual agent. BEAT [23] is
an XML-based system, specifically designed for human
animation purposes. It is a toolkit for automatically suggesting
expressions and gestures, based on a given text to be spoken.
BEAT uses a knowledge base and rule set, and provides
synchronization data for facial activities, all in XML format.
This enables the system to use standard XML parsing and
scripting capabilities. Although BEAT is not a general content
description tool, it demonstrates some of the advantages of
XML-based approaches.

Other scripting and behavioural modeling languages for
virtual humans are considered by other researchers as well
[13],[24],[25]. These languages are usually simple macros for
simplifying the animation, or new languages which are not
using existing multimedia technologies. Most of the time, they
are not specifically designed for face animation. Lee, et al [13]
have proposed the concept of a hierarchical presentation of
facial animation but no comprehensive langugae for animation
and modeling is proposed.

Table I summarizes major methods and languages that may
be used for facial animation, and their supported features. The
need for a unifying language specifically designed for facial
animation that works as an abstraction layer on top of MPEG-
4 parameters is the main motivation in designing FML as
described in the next section.

III. FACE MODELING LANGUAGE

A. Design Ideas
Fig. 2 illustrates a series of facial actions. A “wink”

(closing eye lid and lowering eyebrow), a “head rotation”, and
a “smile” (only stretching lip corners, for simplicity). To play
back a multimedia presentation of this sequence, we can
record a “live action”, transfer it if necessary, and finally play

 4

the file. This requires:
• Availability of a character to record the scene

• Storage of multimedia data for each action
• High bandwidth transfer

TABLE I
CONTENT DESCRIPTION METHODS AND FACIAL ANIMATION FEATURES

FACS MPEG-4 SMIL VRML FAML MPML BEAT

Face-specific Parts
Yes Yes No No Yes Yes Yes

MPEG-4 Compatible
No Yes No No No No No

Timing Control No No Yes Partial Yes Yes Yes

Decision-making No No Yes Partial No Yes Partial

XML-based No No Yes Yes Yes Yes Yes

High-level Face
Components No Partial No No Partial Partial Partial

Behavioural Modeling
No No No No No No Yes

(a) (b) (c) (d)

Fig. 2. Series of facial actions: (a) start, (b) wink, (c) head rotation, (d) smile

As we mentioned before, a simple description like wink-
yaw-smile (with some more details) can achieve the same
result with no pre-recorded data or massive data transfer
(assuming the character is modeled and we have a sufficiently
powerful graphics system). For instance, these actions can be
done by following MPEG-4 FAPs, as shown in the first action
of Fig. 3 (see MPEG-4 documentations [3] for a list of FAPs):

• Wink
FAP-31 (raise-l-i-eyebrow)
FAP-33 (raise-l-m-eyebrow)
FAP-35 (raise-l-o-eyebrow)
FAP-19 (close-t-l-eyelid)

• Head Rotation
FAP-49 (head-rotation –yaw, i.e. horizontal)

• Smile
FAP-6 (stretch-l-lipcorner)
FAP-6 (stretch-r-lipcorner)

The first problem with this approach is lack of parameters

at facial component level (e.g. one eye-wink instead of four
FAPs) and proper timing mechanism. The situation will be
even more complicated when we want the animation to pause
after this action series, wait for some external event and then
start a proper response. Grouping, time, and events are out of

the scope of MPEG-4 parameters and need to be addressed by
a higher-level language that abstracts on top of MPEG-4
parameters. Languages that provide timing and other
animation control mechanism are not compatible with MPEG-
4 or do not have face-specific features (as discussed in the
previous section).

The analysis in the previous section provides us with a set
of features (illustrated in the above example) that a face
animation language needs to support, collectively. FML is an
XML-based language that is designed to do this, filling the
gap in XMT framework for a face animation language. So the
main ideas behind FML are:
• Timeline definition of the relation between facial actions

and external events
• Defining capabilities and behaviour templates
• Compatibility with MPEG-4 XMT and FAPs
• Compatibility with XML and related web technologies

and existing tools
• Allowing customized and facial component-level

parameters
• Independence from content generation (animation)

methods and data types (2D vs. 3D)

The first action of Fig. 2 can be done by an FML script

 5

such as the following lines (elements are discussed later;
details omitted):
<param type=”eye-wink”/>
<hdmv type=”yaw”/>
<expr type=”smile”/>

The choice of XML as the base for FML is based on its

capabilities as a markup language, growing acceptance, and
available system support in different platforms. FML supports
a hierarchical view of face animation, i.e. representing simple
individually-meaningless moves to complicated high level
stories. This hierarchy consists of the following levels
(bottom-up):
• Frame, a single image showing a snapshot of the face

(Naturally, may not be accompanied by speech)
• Move, a set of frames usually representing transition

between key frames (e.g. making a smile)
• Action, a “meaningful” combination of moves
• Story, a stand-alone piece of face animation

FML defines a timeline of events (Fig. 3) including head

movements, speech, and facial expressions, and their
combinations. Temporal combination of facial actions is done
through time containers which are XML tags borrowed from
SMIL (other language elements are FML-specific). Since a
face animation might be used in an interactive environment,
such a timeline may be altered/determined by a user. So
another functionality of FML is to allow user interaction and
in general event handling (notice that user input can be
considered a special case of an external event.). This event
handling may be in form of:
• Decision Making; choosing to go through one of possible

paths in the story
• Dynamic Generation; creating a new set of actions to

follow

Fig. 3. FML Timeline and Temporal Relation of Face Activities
A major concern in designing FML is compatibility with

existing standards and languages. Growing acceptance of
MPEG-4 standard makes it necessary to design FML in a way
it can be translated to/from a set of FAPs. Also due to
similarity of concepts, it is desirable to use SMIL syntax and
constructs, as much as possible. Satisfying these requirements
make FML a good candidate for being a part of MPEG-4

XMT framework.

B. FML Document Structure
Fig. 4 shows the typical structure of FML documents. An

FML document consists, at the higher level, of two types of
elements: model and story. A model element is used for
defining face capabilities, parameters, and initial
configuration. This element groups other FML elements
(model items) described in next sub-section.
<fml>
 <model> <!-- Model Info -->
 <model-item />
 </model>
 <story> <!— Story TimeLine -->
 <action>
 <time-container>

<FML-move>
 </time-container>
 </action>
 </story>
</fml>

Fig. 4. FML Document Map; model-item, time-container, and FML-move
represent parts to be replaced by actual FML elements.

A story element, on the other hand, represents the timeline
of events in face animation in terms of individual Actions
(FML act elements). The face animation timeline consists of
facial activities and their temporal relations. These activities
are themselves sets of simple Moves. Sets of these moves are
grouped together within Time Containers, i.e. special XML
tags that define the temporal relationships of the elements
inside them. FML includes three SMIL time containers excl,
seq and par representing exclusive, sequential and parallel
move-sets. Other XML tags are specifically designed for FML

FML supports three basic face moves: talking, expressions,
and 3D head movements. Combined through time containers,
they form an FML act which is a logically related set of
activities. Details of these moves and other FML elements and
constructs will be discussed in the next sub-sections.

C. Modeling Elements
The model element encloses all the face modeling

information. As described in FML specification, some
important model elements are:
• character: The personality being animated; This element

has one attribute name.
• img: An image to be used for animation; This element has

two major attribute src and type. It provides an image
and tells the player where to use it. For instance the image
can be a frontal or profile pictures used for creating a 3D
geometric model.

• range: Acceptable range of head movement in a specific
direction; It has two major attributes: type and val
specifying the direction and the related range value.

• param: Any player-specific parameter (e.g. MPEG-4

 6

FDP); param has two attributes name and val .
• event: external events used in decision-making; described

later.
• template: defines a set of parameterized activities to be

recalled inside story using behavior element.

Fig. 5 shows a sample model module. FML templates will

be extended in later versions to include advanced behavioural
modeling.

D. Story-related Language Constructs
The FML timeline, presented in Stories, consists primarily

of Actions which are a purposeful set of Moves. The Actions
are performed sequentially but may contain parallel Moves in
themselves. Time Containers are FML elements that represent
the temporal relation between moves. The basic Time
Containers are seq and par corresponding to sequential and
parallel activities. The former contains moves that start one
after another and the latter contains moves that begin at the
same time. The Time Containers include primitive moves and
also other Time Containers in a nested way. The repeat
attribute of the Time Container elements allows iteration in
FML documents.

Similar to SMIL, FML also has a third type of Time
Containers, excl, used for implementing exclusive activities
and decision-making as discussed later.

FML supports three types of primitive moves plus MPEG-4
FAPs and some other move elements:
• talk is a non-empty XML element and its content is the

text to be spoken if a Text-To-Speech module is
available. It can also act as an empty element where
attribute file specifies speech data.

• expr specifies facial expressions with attributes type and
val. Every FML-compatible animation system has to
support standard MPEG-4 expression types, i.e. smile,
anger, surprise, sadness, fear, disgust, and normal. Other
expression types can be used depending on the underlying
animation system.

• hdmv handles 3D head rotations. Similar to expr, this
move is an empty element and has the same attributes.

• fap inserts an MPEG-4 FAP into the document. It is also
an empty element with attributes type and val.

• param inserts a custom parameter depending on the
underlying animation system. It is also an empty element
with attributes type and val.

• wait pauses the animation. It is also an empty element
with only timing attributes.

• Other controls (Play, Capture, Save, etc.)

All story elements have four timing attributes repeat,

begin, duration, and end. In a sequential time container,
begin is relative to start time of the previous move, and in a
parallel container it is relative to the start time of the
container. In case of a conflict, duration of moves is set
according to their own settings rather than the container. The

repeat attribute is considered for defining definite (when
having an explicit value) or indefinite loops (associated with
events). Fig. 6 illustrates the use of time containers and
primitive moves. It should be noted that the current version of
FML does not include any mechanism for enforcing the
timing (such as audio-video synchronization). It is the
responsibility of underlying animation system to handle these
issues.

<model>

 <range type="left" val="60" />
 <template name="hi" >
 <seq begin="0">
 <talk>Hello</talk>

 <hdmv type=”0” begin="0"
 end=”3s” val="30" />
 </seq>

 </template>
</model>
<story>
 <behavior name="hi" />
</story>

Fig. 5. FML Model and Templates

<action>
 <seq begin=”0”>
 <talk>Hello</talk>
 <hdmv end=”5s” type=”0”
 val=”30” />
 </seq>
 <par begin=”0”>
 <talk>Hello</talk>
 <expr end=”3s” type=”3”
 val=”50” />
 </par>
</action>
Fig. 6. FML Time Containers and Primitive Moves

<!-- in model part -->
<event name=”user” val=”-1” />

<!-- in story part -->
<excl ev_name=”user”>
 <talk ev_val=”0”>Hello</talk>
 <talk ev_val=”1”>Bye</talk>
</excl>
Fig. 7. FML Decision Making and Event Handling

E. Event Handling and Decision Making
Dynamic interactive applications require the FML

document to be able to make decisions, i.e. to follow different
paths based on certain events. To accomplish this excl time
container and event element are added. An event represents
any external data, e.g. the value of a user selection. The new
time container associates with an event and allows waiting

 7

until the event has one of the given values, then it continues
with exclusive execution of the action corresponding to that
value, as illustrated in Fig. 7.

The FML Processor exposes proper interface function to
allow event values to be set in run time. event is the FML
counterpart of familiar if-else constructs in normal
programming languages.

F. Compatibility
The XML-based nature of this language allows the FML

documents to be embedded in web pages. Normal XML
parsers can extract data and use them as input to an FML-
enabled player, through simple scripting. Such a script can
also use XML Document Object Model (DOM) to modify the
FML document, e.g. adding certain activities based on user
input. This compatibility with web browsing environments,
gives another level of interactivity and dynamic operation to
FML-based system, as illustrated in Section 4.

Another major aspect of FML is its compatibility with
MPEG-4 XMT framework and face definition/animation
parameters. This has been achieved by using XML as the base
for FML and also sharing language concepts with SMIL. As
the result, FML fits properly within the XMT framework.
FML documents can work as an XMT-Ω code and be
compiled to MPEG-4 native features, i.e. FDPs and FAPs.
FML is a high level abstraction on top of MPEG-4 Face
Animation Parameters. FAPs are grouped into visemes,
expressions, and low-level facial movements. In FML,
visemes are handled implicitly through the talk element. The
FML processor translates the input text to a set of phonemes
and visemes compatible with those defined in MPEG-4
standard. A typical Text-To-Speech engine can find the
phonemes and using the tables defined in MPEG-4 standard
these phonemes will be mapped to visemes. FML facial
expressions are defined in direct correspondence to those in
MPEG FAPs. For other face animation parameters, the fap
element is used. This element works like other FML moves,
and its type and val attribute are compatible with FAP
numbers and values. As a result, FML processor can (and
will) translate an FML document to a set of MPEG-4
compatible movements (and also 3D head rotations) to be
animated by the player components.

IV. CASE STUDIES
FML can be used in a variety of ways and applications. It

can be used as a high-level authoring tool within XMT
framework to create MPEG-4 streams (after translation), or be
used directly by compatible players for static or interactive
face animation scenarios. Here we discuss three sample cases
to illustrate the use of FML documents.

A. Static Document
The first case is a simple FML document that does not need

any user interaction. There is only one unique path the
animation follows. The interesting point in this basic example
is the use of iterations, using repeat attribute.

An example of this case can be animating the image of a
person who is not available for real recording. The img
element specifies the frontal (base) view of the character and
the story is a simple one: saying hello then smiling (Fig. 8).
To add a limited dynamic behaviour, the image, text to be
spoken, and the iteration count can be set by an interactive
user and then a simple program (e.g. a script on a web page)
can create the FML document. This document will then be
sent to an FML-compatible player to generate and show the
animation.

<fml>
 <model>

 </model>
 <story>
 <act>
 <seq repeat=”2”>
 <talk begin=”0”>
 Hello</talk>
 <expr begin=”0” end=”2s”
 type=”smile” val=”80” />
 <expr begin=”0” end=”1s”
 type=”normal” />
 </seq>
 </act>
 </story>
</fml>
Fig. 8. Static Repeated FML Document

B. Event Handling
The second case shows how to define an external event,

wait for a change in its value, and perform certain activities
based on that value (i.e. event handling and decision making).
An external event corresponding to an interactive user
selection is defined first. It is initialized to –1 that specifies an
invalid value. Then, an excl time container, including required
activities for possible user selections, is associated with the
event. The excl element will wait for a valid value of the
event. This is equivalent to a pause in face animation until a
user selection is done.

A good example of this case can be a virtual agent
answering users’ questions online. Depending on the selected
question (assuming a fixed set of questions), a value is set for
the external event and the agent speaks the corresponding
answer. The FML document in Fig. 9 uses two events: one
governs the indefinite loop to process the user inputs, and the
second selects the proper action (replying to user question in
the mentioned example).

The FML-compatible player reads the input, initializes the
animation (by showing the character in initial state) and when
it reaches this action, waits for user input because the select
event does not match any of the values inside excl. After the

 8

event is set through the proper API (see Section 5 and Error!
Reference source not found.), the related action is
performed. This will continue until the quit event, used by
repeat, is set to a non-negative value. If the value is zero, it
stops, otherwise continues for the defined number of times.
<event name=”quit” val=”-1” />
<event name=”select” val=”-1” />
< ... >
<action repeat=”quit”>
 <excl ev_name=”select”>
 <seq ev_val=”0”>
 <talk>Text One</talk>
 <expr type=”smile”
 val=”100” end=”2s” />
 </seq>
 <seq ev_val=”1”>
 <talk> Text Two</talk>
 <expr type=”smile”
 val=”100” end=”1s” />
 </seq>
 </excl>
</action>
Fig. 9. Events and Decision Making in FML

function onAdd()
{
 //fmldoc is FML (XML) document
 //loaded at startup

 //get the root (fml) element
 var fml =
 fmldoc.documentElement;

 //find the proper element by
 var fmlnode;
 . . . //details not shown

 //create/add a new element
 var new =
 fmldoc.createElement(“hdmv”);
 new.setAttribute(“type”,”0”);
 new.setAttribute(“val”,”30”);
 fmlnode.appendChild(new);
}
Fig. 10. JavaScript Code for FML Document Modification

C. Dynamic Content Generation
The last FML case to be presented illustrates the use of

XML Document Object Model (DOM) to dynamically modify
the FML document and generate new animation activities. For
instance, a new choice of action can be added to the previous
example, on-the-fly. Fig. 10 shows a sample JavaScript code
that accesses an XML document, finds a particular node, and
adds a new child to it. Since this case uses standard XML
DOM features, we do not discuss that in more details. It only
shows how the use of XML as the base language can be
helpful in FML documents.

The same DOM methods can be accessed from within the

FML Player to modify the document while/before playing it.
The FML Player can expose proper interface functions to
provide these capabilities to users/applications in an easier
way.

V. ANIMATION SYSTEMS

A. Background
Video streaming systems [26] usually do not have specific

facilities for face animation. Traditionally, animating human
faces is done through synthetic computer generated images
with 3D head models [13],[27],[28]. Although powerful in
creating a variety of facial states, these methods require
relatively complex and time-consuming computation and the
output may not be very realistic. Another approach to facial
animation uses image processing techniques applied to 2D
data (normal photographs) [5],[15],[29],[30]. This is usually a
simple morphing between a library of key frames which
means animation requires a large database of photographs
[15], but the computational complexity is lower and the results
seem more realistic.

The authors have been involved in two face animation
research projects that used FML as a content description
method. Arya and Hamidzadeh [4]-[6] developed ShowFace
as a simple streaming system that could create facial
animation streams. ShowFace uses a 2D method but reduces
the database requirement by learning image transformations
from a set of training images. More recently, Arya and
DiPaola [7],[8] have proposed Interactive Face Animation –
Comprehensive Environment (iFACE) as a more general
approach to facial animation, based on the concept of Face
Multimedia Object [7], discussed later. iFACE uses a
hierarchical geometry where data type (2D or 3D) is
considered only at the lowest level. This is combined with a
behavioural model consisting of Knowledge, Personality, and
Mood. iFACE can be used as a “face engine” for a variety of
face-based applications. Both iFACE and ShowFace systems
are MPEG-4 compatible.

Fig. 11. Parameter Spaces for Face Multimedia Object

B. Face Multimedia Object (FMO)
For a large group of applications, facial presentations can

be considered a means of communication. A “communicative
face” relies and focuses on those aspects of facial actions and
features that help to effectively communicate a message. We
believe that the communicative behaviour of a face can be

 9

considered to be determined by the following groups (spaces)
of parameters (Fig. 11):
• Geometry: This forms the underlying physical appearance

of the face. Creating and animating different faces and
face-types are done by manipulating the geometry that
can be defined using 2D and/or 3D data (i.e. pixels and
vertices).

• Knowledge: Behavioural rules, stimulus-response
association, and required actions are encapsulated into
Knowledge. In the simplest case, this can be the sequence
of actions that a face animation character has to follow. In
more complicated cases, knowledge can be all the
behavioural rules that an interactive character learns and
uses.

• Personality: Different characters can learn and have the
same knowledge, but their actions, and the way they are
performed, can still be different depending on individual
interests, priorities, and characteristics. Personality
encapsulates all the long-term modes of behaviour and
characteristics of an individual. Facial personality is
parameterized based on typical head movements,
blinking, raising eye-brows and similar facial actions.

• Mood: Certain individual characteristics are transient
results of external events and physical situation and
needs. These emotions (e.g. happiness and sadness) and
sensations (e.g. fatigue) may not last for a long time, but
will have considerable effect on the behaviour.

Face Multimedia Object (FMO) is a high-level multimedia

data type encapsulating all the functionality of a
communicative face. It exposes proper interfaces to be used
by client objects and applications, and can be used as a “face
engine” for face-based applications such as computer games
and online agents. iFACE system provides an implementation
of FMO in addition to other required tools.

C. iFACE System
iFACE [7] is a parameterized face animation system, i.e.

animation is defined and created through activation of groups
of parameters interacting with each other as illustrated in Fig.
11. Geometry is the foundation of facial animation. iFACE
uses a hierarchical model that provides different layers of
abstraction (such as Features, Components) on top of head
data, each with their own interfaces exposing functionality
related to that layer. The system will translate higher-level
functions and commands to lower-level ones, and eventually
to point-level manipulation. This means that animators and
programmers do not need to be involved in details unless they
want to override the default behaviour of the system.

Knowledge, Personality, and Mood are designed as
components around the Geometry, exposing their own
interfaces for access by the application programs. Knowledge
receives the input script and external events, and holds the
rules of interaction. All of these are applied to Geometry in
the form of parameters at the appropriate layer of abstraction.

Personality (which can be configured through input scripts or
interactively) suggests facial gestures and states based on the
explicit actions requested by Knowledge. For example, if the
script requires a piece of speech, Knowledge translates this to
a set of phonemes and visemes and their timing, so the
Geometry can animate the face. Meanwhile, Personality
suggests certain head movements, facial gestures, visemes and
expressions that are attributes of the chosen character's
personality, based on the content of speech and energy level.
Mood applies a base facial state to all the facial actions.

iFACE includes an off-line design environment,
iFaceStudio, for creating animations and configuring the head
objects, and a wrapper control, FacePlayer, that can be easily
used in web forms and similar GUI applications. A normal
scripting language can control the animation by accessing the
object methods and properties. More about iFACE and sample
animations and FML scripts can be found online [31].

D. ShowFace System
ShowFace [4]-[6] is a simple modular system for streaming

facial animation. It includes components for receiving input
stream (MPEG-4 descriptions or FML scripts), parsing them
in order to provide a list of video and audio actions, objects
for generating the multimedia content, and finally a mixer that
creates the final output stream. Ituses Feature-based Image
Transformation (FIX) [5]. In a training phase, a set of image-
based transformations is learned by the system, which can
map between these face states (e.g. transform a neutral face to
a smiling one). Transformations are found by tracking facial
features when the model is performing the related transitions,
and then they are applied to a given image, in order to find the
new location of feature points and lines. The facial regions are
then mapped according to their closest feature points. FIX
allows the ShowFace system to perform a 2D version of
MPEG-4 FAP operations.

VI. CONCLUSIONS
XML-based Face Modeling Language (FML) is proposed

to describe the desired sequence of actions in facial animation.
FML allows event handling, and also sequential or
simultaneous combination of supported face states, and can be
converted to a set of MPEG-4 Face Animation Parameters. It
uses a similar structure to SMIL which makes the language a
good candidate for being part of MPEG-4 XMT framework.

The main contributions of FML are its hierarchical
structure, animation configuration and modeling, flexibility
for static and dynamic scenarios, and dedication to face
animation. FML fully supports MPEG-4 FAPs using high-
level constructs which can be translated to FAPS and also
direct FAP embedding. Compatibility with MPEG-4 XMT
and use of XML as a base are also among the important
features in the language. Future extensions to FML can
include more complicated behaviour modeling and better
coupling with MPEG-4 streams.

FML covers a wide range of applications including but not

 10

limited to authoring tools for MPEG-4 streams, input to
standalone animation programs, and animation components
for web pages. Such applications can be used in video
conferencing, games, visual effects, and online services with
animated agents. FML can be used in a compatible player or
in combination with MPEG-4 presentations. ShowFace and
iFACE are briefly discussed, as examples of FML-compatible
facial animation systems. The FML-based iFACE system has
been successfully used by animators to create animation
pieces as illustrated on the web site [31]. It provides the
animators with the ease of use and full control at the same
time, and allows for authoring control mixed with
programming control which is highly useful in high-end
games and other interactive applications.

REFERENCES
[1] P. Ekman and W. V. Friesen, Facial Action Coding System, Consulting

Psychologists Press Inc., 1978.
[2] S. Battista, F. Casalino, and C. Lande, “MPEG-4: A Multimedia

Standard for the Third Millennium”, Part 1 and 2, IEEE Multimedia, vol.
6, no. 4, pp 74-83, and vol. 7, no. 1, pp 76-84, October 1999 and
January, 2000.

[3] I. S. Pandzic and R. Forchheimer (Editors), MPEG-4 Facial Animation:
The Standard, Implementation and Applications, John Wiley & Sons,
2002.

[4] A. Arya and B. Hamidzadeh, "Personalized Face Animation in
ShowFace System," Int. Journal of Image and Graphics,, Special Issue
on Virtual Reality and Virtual Environments, vol. 3, no. 2, pp 345-363,
World Scientific Publishing, 2003.

[5] A. Arya and B. Hamidzadeh, “FIX: Feature-based Image
Transformations for Face Animation,” IEEE Conf IT in Research and
Technology (ITRE), Newark, NJ, August 12-14, 2003.

[6] A. Arya and B. Hamidzadeh, “ShowFace MPEG-4 Compatible Face
Animation Framework”, IASTED Int. Conf Computer Graphics and
Imaging (CGIM)¸ Hawaii, August 12-14, 2002.

[7] A. Arya, S. DiPaola, L. Jefferies, and J. T. Enns, "Socially
communicative characters for interactive applications," 14th
International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG-2006), University of West
Bohemia, Plzen, Czech Republic, January 30 - February 3, 2006.

[8] S. DiPaola and A. Arya, "Socially Expressive Communication Agents: A
Face-centric Approach," European Conference on Electronic Imaging
and the Visual Arts, EVA-2005, Florence, Italy, March 17-18, 2005.

[9] http://img.csit.carleton.ca/iface/fml.html
[10] J. Ankeney, "Non-linear Editing Comes of Age", TV Technology, May

1995.
[11] T. D. C. Little, "Time-based Media Representation and Delivery," in

Multimedia Systems, J.F. Koegel Buford (ed)., ACM Press, 1994.
[12] F. Nack and A. T. Lindsay, "Everything You Wanted To Know About

MPEG-7", IEEE Multimedia, vol. 6, no. 3, pp 65-77, July 1999.
[13] W. S. Lee, M. Escher, G. Sannier, and N. Magnenat-Thalmann, "MPEG-

4 Compatible Faces from Orthogonal Photos", IEEE Conf Computer
Animation, 1999.

[14] I. S. Pandzic, “A Web-based MPEG-4 Facial Animation System”, Int
Conf Augmented Virtual Reality& 3D Imaging, 2001.

[15] T. Ezzat and T. Poggio, "MikeTalk: A Talking Facial Display Based on
Morphing Visemes", IEEE Conf Computer Animation, 1998.

[16] N. Hirzalla, B. Falchuk, and A. Karmouch, "A Temporal Model for
Interactive Multimedia Scenarios", IEEE Multimedia, vol. 2, no. 3, pp
24-31, Fall 1995.

[17] D. Bulterman, “SMIL-2,” IEEE Multimedia, vol. 8, no. 4, pp 82-88,
October 2001.

[18] M. Kim, S. Wood, and L. T. Cheok, “Extensible MPEG-4 Textual
Format (XMT)”, ACM Conf Multimedia, 2000.

[19] Y. Arafa, K. Kamyab, E. Mamdani, S. Kshirsagar, N. Magnenat-
Thalmann, A. Guye-Vuillème, and D. Thalmann, "Two Approaches to
Scripting Character Animation," First Intl Conf Autonomous Agents &

Multi-Agent Systems, Workshop on Embodied Conversational Agents,
Bologna, Italy, July 2002.

[20] B. DeCarolis, M. Bilvi, and C. Pelachaud, "APML, a Markup Language
for Believable Behaviour Generation," First Intl Conf Autonomous
Agents & Multi-Agent Systems, Workshop on Embodied Conversational
Agents, Bologna, Italy, July 2002.

[21] A. Marriott and J. Stallo, "VHML: Uncertainties and Problems. A
discussion," First Intl Conf Autonomous Agents & Multi-Agent Systems,
Workshop on Embodied Conversational Agents, Bologna, Italy, July
2002.

[22] H. Prendinger, S. Descamps, and M. Ishizuka, "Scripting Affective
Communication with Life-like Characters in Web-based Interaction
Systems," Applied Artificial Intelligence, vol.16, no.7-8, 2002.

[23] J. Cassell, H. H. Vilhjálmsson, and T. Bickmore, “BEAT: the Behavior
Expression Animation Toolkit”, ACM SIGGRAPH, 2001.

[24] J. Funge, X. Tu, and D. Terzopoulos, “Cognitive Modeling: Knowledge,
Reasoning, and Planning for Intelligent Characters", ACM SIGGRAPH,
1999.

[25] M. Kallmann and D. Thalmann, "A Behavioral Interface to Simulate
Agent-Object Interactions in Real Time", IEEE Conf Computer
Animation, 1999.

[26] G. Lawton, "Video Streaming", IEEE Computer, vol. 33, no. 7, pp 120-
122, July 2000.

[27] V. Blanz and T. Vetter, "A Morphable Model For The Synthesis Of 3D
Faces", ACM SIGGRAPH, 1999.

[28] F. I. Parke and K. Waters, Computer Facial Animation, A. K. Peters,
2000.

[29] C. Bregler, M. Covell, and M. Slaney, "Video Rewrite: Driving Visual
Speech with Audio", ACM Computer Graphics, 1997.

[30] H. P. Graf, E. Cosatto, and T. Ezzat, "Face Analysis for the Synthesis of
Photo-Realistic Talking Heads", IEEE Conf Automatic Face and
Gesture Recognition, 2000.

[31] http://img.csit.carleton.ca/iface

Ali Arya (S’95-M’98-SM’06) received a
B.Sc. degree in electrical engineering from
Tehran Polytechnic, Iran, in 1990, and his
Ph.D. degree in computer engineering from
the Department of Elec. and Computer Eng.,
University of British Columbia, Canada, in
2004.

He has worked as research engineer,
system analyst, and project manager in
different research centers and leading
companies, including Tehran Cybernetic Arm
Project, Iran, and Honeywell, Canada, and

also as instructor and post-doctoral fellow at the University of British
Columbia and Simon Fraser University, both in Vancouver, Canada. Since
August 2006, he has been an assistant professor at the School of Information
Technology, Carleton University, Ottawa, Canada. His research interests
include social user interfaces, interactive multimedia systems, computer
graphics and animation, real-time systems, and web-based applications.

Steve DiPaola received a B.Sc. degree in
computer science from State University of
New York at Stony Brook, NY, in 1981, and
a M.A. degree in computer graphics from
New York Institute of Technology, NY, in
1991.

He is currently an Associate Professor in
Simon Fraser University’s newest school - the
School of Interactive Arts and Technology, in
Surrey, BC, Canada, which actively combines
technology, science and the arts using online
and collaborative methods. There, he directs

of the iVizLab (ivizlab.sfu.ca) which conducts research on ‘Socially-based
Interactive Visualization’. He has research interests in human centered design,
computer graphics and animation, and interactive systems. He had published
(papers and book chapters) extensively in the area of character and avatar
based 3D virtual communication technologies and has given presentations
worldwide. DiPaola has been a teacher and researcher at such institutions as
Stanford University and the Computer Graphics Lab at New York Institute of
Technology.

