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Abstract—This paper presents a novel approach for modeling
features of style and affect in human motion. Our approach is
based on inputs collected from experienced animators. For this
purpose, an interface is developed that allows for editing of motion
sequences by adding a limited number of Gaussian radial basis
functions (RBFs) to different joint trajectories in 3-D Cartesian
space. Animators are asked to alter a neutral walking sequence
to synthesize happy, sad, feminine, masculine, energetic, and tired
variants. Through consolidating the sets of collected RBFs, we
compute an expert-driven set of features that can transform neutral
walks to the mentioned variations. Moreover, details regarding
the use of posture versus movement features, the most frequently
edited body joints, as well as shapes, intensities, and distributions of
the edits are investigated and presented. Perception feedback from
a group of nonexperts validates the proposed approach and the
effectiveness, efficiency, scalability, and inversion of the proposed
models. The perception study also sheds light on several aspects of
perceiving style and affect from motion.

Index Terms—Affect, energy, expert-knowledge, gender, human
motion, inversion, movement, posture.

I. INTRODUCTION

HUMAN motion and many variations with which it can be
carried out have been widely studied. It has been broadly

shown that viewers can accurately perceive many characteristics
regarding the persons performing the actions. These perceivable
variations include identity [1], gender [2], and affect [3], among
others. For surveys on human motion analysis and perception,
see [4] and [5].

Many studies have been carried out with the aim of modeling
and describing stylistic/affective features in motion. Both com-
puting and perception studies have been widely explored. The
former, which are mostly aimed toward human–computer inter-
action and animation applications, have been based on a variety
of methods such as machine learning [17], [32], component-
based techniques [10], [11], [38], control techniques [22], [23],
inverse kinematics modeling [30], and others. The latter are
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aimed at understanding the psychology and neuroscience of
perceiving motion features and are based on subjective evalua-
tion and comparative studies of recorded/generated motion data
[35], [41]–[47]. Despite the accuracy of advanced computational
approaches, they are often complex and computationally expen-
sive. Furthermore, they require large training datasets to achieve
acceptable generalization and are also sensitive to factors such
as inclusion criteria. Comprehensive studies on perceptual out-
comes and implications of such systems have also been mostly
overlooked. On the other hand, although subjective observations
and rule-based models are simple and intuitive, they are mainly
difficult to mathematically model and apply to new data. More-
over, the relative perceptual significance and impacts of different
observed features have not been widely explored. Finally, it has
not been investigated whether subjective observations are scal-
able (in terms of intensity) or not.

This paper presents a simple, intuitive, and efficient approach
for modeling stylistic and affective features in motion. We pro-
pose and utilize low-cost and controllable Gaussian radial basis
functions (RBFs) as constructs of features in different categories
of style and affect. Accordingly, we develop an interface that
can be used to add multiple RBFs to motion sequences. Expe-
rienced animators are asked to use this interface and add up to
three RBFs per degree of freedom (DOF) to a neutral walking se-
quence with the goal of generating stylistic sequences, namely,
happy, sad, energetic, tired, feminine, and masculine walks. The
neutral input sequence is synthesized through aligning and av-
eraging multiple segmented neutral walks. This process ensures
that the input is precisely neutral and free of personal walking
styles. The aforementioned sets of RBF-based edits are recorded
and combined to achieve the feature set for each category of style
and affect. To evaluate the perceptual accuracy of the computed
sets, they are applied to the neutral sequence and user studies
are carried out. The study shows that the computed features are
perceptually effective and accurate. The study also sheds light
on how the mentioned motion variations are performed and
perceived. Analysis of the edits reveals the shape, distribution,
intensity, type, and other properties about the proposed method
and computed features.

In Section II, the related works on the existing techniques
for modeling motion features are studied. Section III presents
the general model used for describing how features of style and
affect are added onto actions, the data used in this research, and
the RBFs used to model the features. In Section IV, the interface
with which the features are recorded is described along with the
method and process of recording and summarizing the features.
Section V provides an analysis on the features and perception
results, followed by a detailed discussion in Section VI.
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II. RELATED WORK

On the topic of computational systems for modeling, syn-
thesis, or control of motion features, various interesting and
effective methods have been developed, mostly in the field of
animation. Most such techniques use examples and datasets as
an integral part of the solution. For example, in two of the
earlier works in the field, Rose et al. [6] and Bruderlin and
Williams [7] used relative editing of sequences to blend motion
styles successive to time warping. In [18], Hsu et al. presented a
method for human motion control using dynamic programming
and segments of motion sequences.

Component-based methods have been utilized to decompose
style features and actions. In [8], Liu et al. decomposed mo-
tion sequences into multiple subspaces, allowing animators to
manipulate (tune, transfer, or merge) the style subspace. Urta-
sun et al. [9] developed an extended framework using principal
component analysis (PCA) for real-time generation of motion
sequences with increased realism. Kim and Neff [10] employed
independent component analysis to decompose motion to sub-
motion style components. Extracted style components were then
applied to new motion clips.

Machine learning methods have been widely explored for
modeling or translating style features. Hsu et al. [11] proposed
a system that learned style translation models using linear time-
invariant system identification following motion warping. Lee
and Popović [12] proposed a system that used a limited number
of examples to learn behavior styles and apply them to different
scenarios. Torresani et al. [13] introduced a novel algorithm for
generating stylistic motion sequences. Laban movement anal-
ysis was used in this research to perceptually depict the mo-
tion styles. Their model learned a regression problem from mo-
tion capture data and could subsequently interpolate/extrapolate
styles. Lee et al. [14] proposed a new representation for motion
data, called motion field. Their flexible approach used prere-
corded datasets and could be used for real-time control of mo-
tion. In [15], Kwon and Shin presented an example-based online
motion synthesis system successive to an analysis of the dataset
that was used.

Samadani et al. [51] utilized probabilistic graphical models
and dimensionality reduction along with different classifiers to
model affective movements. Min et al. [16] proposed a model
for synthesis and editing styles in human motion data. Their
approach utilized preregistered samples from a database and
could be used for style translation as well as synthesis of new
styles. Probabilistic models proposed by Brand and Hertzmann
[17] used a rich motion dataset to learn interpolated/extrapolated
styles using a cross-entropy optimization framework for dance
movements. Kingston and Egerstedt [49] also utilized optimiza-
tion along with estimators to model and control expressed prefer-
ences in synthetic motions. Optimal control was used by LaViers
and Egerstedt [50] in order to determine stylistic parameters for
motion and analyze the quality. Last but not least, Pullen and
Bregler [21] used keyframed data along with motion capture
data to generate natural and “textured” motion. Their approach
was based on intercorrelations of body motion.

Physics-based or control-based methods for modeling and
control of motion have also been widely explored. Liu et al. [22]

used dynamic simulations with motion capture data to model
contact forces on characters based on user-indicated bounds.
de Lasa et al. [23] developed motion controllers. Their method
could model different types of actions and was robust towards
changes in body parameters.

Interactive or user-driven editing of motion is a topic that
closely relates to the study presented in this paper. Bruderlin
and Calvert [24] developed a hybrid rule-based dynamic control
system for gait generation. They also proposed a knowledge-
driven set of procedures for synthesizing different styles of hu-
man running [25]. Amaya et al. [33] developed a model for
making edits to movement for generating affect. Witkin and
Popovic [26] proposed a framework in which animators could
interactively apply edits in the form of deformations or warps to
motion to create variations of input sequence. Neff and Kim [27]
introduced a platform for stylistic editing of motion particularly
focusing on wrists, ankles, center of mass, and pelvis. Arikan
et al. [19] proposed a framework for synthesizing user-driven
motion sequences based on a dataset of preannotated motion
data. In [20], Arikan and Forsyth used a cut-and-paste approach
for generating human motion data. Naturally, this approach was
based on existing sequences. Challenges such as smooth transi-
tions and natural-looking motion were addressed in this study.

As mentioned in Section I, we utilize Gaussian functions
for the purpose of modeling style and effect. Gaussian pro-
cesses have been previously used for motion processing. Wang
et al. [28] employed Gaussian process latent variable model
(GPLVM) for motion synthesis. Urtasun et al. [29] proposed
locally linear GPLVM for learning stylistic motion and transi-
tions. Grochow et al. [30] proposed and used scaled GPLVM
for generating a variety of poses based on inverse kinematics.

The aforementioned computational techniques are valuable
tools for modeling motion and affective/stylistic features. Nev-
ertheless, despite their accuracy, they are not necessarily per-
ceptually accurate or computationally efficient and often do not
provide much insight into how the features impact the base mo-
tion and what their degrees of importance are. Rule-based and
expert-driven systems, on the other hand, despite their intuitive
nature and perceptual validity, are usually hard to mathemati-
cally model and quantify. Through the following sections, we
present our method, which consolidates the advantages of both
approaches.

III. OVERVIEW AND THEORY

A. Overview

Our approach for modeling and understanding style and affect
in motion is based on a linear model describing the relationship
between the action component of the motion and the stylistic
features. This is described in the following subsection. The pro-
posed method for modeling specific stylistic/affective features is
based on having animators provide Gaussian RBFs that convert
a neutral base motion into several stylistic variations. The RBF
edits are collected and subsequently summarized to develop a
feature set. The feature set is then applied to a neutral walking
sequence and evaluated through a user perception study. A quan-
titative analysis of the feature set is also carried out, illustrating
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several informative traits with respect to each stylistic/affective
variation and body part.

B. Linear Additive Model for Affective/Stylistic Motion

In human motion, the main action class is referred to as pri-
mary actions and the affects, styles, or attributes associated with
the actor performing the actions are referred to as secondary
themes [31], [32]. Accordingly, for a recorded sequence of mo-
tion, the set of spatiotemporal features that compose a primary
theme is called primary features, and those responsible for gen-
erating the themes are called secondary features (SFs). Based
on this definition, the following model has been proposed for
describing the sets of primary and SF in motion [31, 32]:

Y = P +
r∑

i=1

wi .Si (1)

where Y is the action as perceived, P and S are the primary and
secondary themes (or features) respectively, r represents the
number of secondary themes, and w is the weight associated
with each secondary theme. In order to simplify the problem,
it is often assumed that r = 1. In other words, combinational
secondary themes such as young-tired or energetic-feminine
are disregarded [32]. Therefore, from (1), we obtain Y = P +
w.S. The most accurate representation of primary and secondary
themes is achieved through this model when the two themes are
in the null-spaces of one another [48].

C. Motion Data

Based on the described theory, a stylistic motion sequence
is composed of a neutral action and an added and scaled style
component. Here, we use a neutral walking sequence as the input
to which experts add affective/stylistic features. As a result, for
the input, the primary theme P corresponds to walking and
contains zero or very little amount of SF; in other words, S = 0.
The notion of neutral actions has been well explored before
[7], [33].

To compute the neutral input in this research, we use motion
capture data from the HDM05 dataset. This dataset contains
motion data recorded using a marker-based Vicon motion cap-
ture system. The system utilizes 6–12 cameras to track 40–50
light-reflective markers located on a body suit. The cameras
have very high temporal (up to 240 Hz) and spatial (less than
1 mm) resolutions. Five actors have performed multiple actions,
among which are sequences of neutral walks. To the best of our
knowledge, details regarding the age and gender of the actors
are not disclosed. A detailed documentation for the dataset is
available in [34].

Motion capture data can be represented by a number of con-
secutive multidimensional postures variable with time. Each
posture is characterized with a finite number of markers cor-
responding to different regions or joints of the body to create
a motion matrix. The motion matrix can either be character-
ized through the location of markers at each frame or instance
of time, joint angles, or other means. We represent the motion

Fig. 1. 54 DOF model used for the human body in this study. This posture
is from the neutral walk generated by warping and averaging multiple neutral
walks from the HDM05 dataset.

matrix by

D = [R1R2 . . . Rn ] (2)

where Rj = [R(1)
j R

(2)
j . . . R

(m )
j ]T , R ∈ R. Rj represents the

jth DOF of the motion sequence with a length of m frames
or time instances, and n represents the number of DOFs in
the motion matrix. The model used for the HDM05 data is
composed of 96 DOFs, some of which belong to fingers and toes.
We modified and removed these extra joints from the model,
reducing it to 54 DOFs.

To record a neutral action sequence, actors are often asked to
display minimal affective and stylistic behavior. Complete con-
cealment of SFs, however, is not fully achievable. To maximize
the neutrality of an action sequence and eliminate the personal
walking styles of the actors, we propose averaging multiple
neutral sequences. Accordingly, we manually segmented and
extracted 16 two-step neutral walks from the HDM05 dataset.
The length of these walk cycles were sufficient for correct per-
ceptual studies [35]. We then aligned the segmented cycles using
correlation optimized time warping (CoTW) [36], [37]. This
time warping method has shown characteristics such as peak
preservation and low distortion, making it superior to alterna-
tive methods commonly used for motion data. By averaging the
segmented cycles, an average neutral walk was obtained. Fig. 1
illustrates a posture from this sequence where the 54 DOF model
is observed. The sequence is 100 frames long. The accompa-
nying video clip shows the neutral walk cycle. As seen in the
video, there are no artefacts and the quality of the sequence is
on par with the video of the average walker created in [38].
To further ensure the quality of this sequence, it is perceptually
validated in Section V.

D. Radial Basis Functions as Constructs for Secondary
Features

One approach to editing motion is to apply ad-hoc and free-
style transforms to existing motion trajectories. However, due to
the highly varying nature of this approach, consolidation, anal-
ysis, and interpretation of such processes are very difficult if
not impossible. To overcome this obstacle, we propose the use
of standard mathematical functions, namely Gaussian RBFs as
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constructs for SFs. These functions are highly controllable and
easy to analyze and study. Moreover, when presented in para-
metric format, Gaussian RBFs maintain low dimensionality.
Such properties make RBFs perfect candidates for generation
of SFs by animators. Moreover, it has previously been demon-
strated that they are both numerically and perceptually suitable
for modeling SFs [32].

A radial function φ (r) , φ : Rs → R is defined as a univariate
function, where r = ‖t2‖, and ‖.‖2 is a norm operator such as
the Euclidean norm. Accordingly, a Gaussian RBF is defined by

ϕ
(
t;μ, σ2) = φ (‖t − μ2‖) = exp

{
−‖t − μ‖2

2

2σ2

}
(3)

where μ is the mean, and σ2 is the variance. We can model the
SF trajectory of the ith DOF with a weighted sum of M RBFs,
resulting in

Φi =
M∑

j=1

αjϕ
(
t;μj , σ

2
j

)
. (4)

where j denotes the RBF index, and α is the amplitude or
intensity. Hence, the SF set for the m-frame long n-dimensional
motion sequence is represented by {Φ1 ,Φ2 , . . . ,Φn}T

n×m or
by the n × 3M parameter set matrix:

Q =

⎡

⎢⎢⎢⎣

{
α, μ, σ2

}1
1 · · ·

{
α, μ, σ2

}1
M

...
. . .

...
{
α, μ, σ2

}n

1 · · ·
{
α, μ, σ2

}n

M

⎤

⎥⎥⎥⎦ . (5)

In this model, the larger the M , the more accurate the mod-
eled SF will be. However, there will be little added perceptual
and numerical return after a certain point. It is, therefore, im-
portant to maintain an acceptable balance between complexity
(number of RBFs) and accuracy. The variable is also dependant
on the complexity of both action class and SF. A previous study
[32] has shown that for the action class of walking and for SFs
such as those studied in this work, three RBFs per DOF are
sufficient for achieving a perceptually valid and numerically ac-
curate model for SFs. We, therefore, utilize the notion and limit
M ≤ 3. Nonetheless, for more complex actions and secondary
themes, larger values of M might be required.

IV. INTERFACE AND DATA COLLECTION

To facilitate the process of collecting the Q feature matrices
from animators, a user interface capable of generating the RBFs
and adding them to corresponding DOFs of motion was required.
To the best of our knowledge, such a platform did not exist at
the time that this study was being conducted. Subsequently, we
developed an interface for this purpose. For simple integration
and easier analysis of the results, the interface was developed in
MATLAB using the guide functionality.

A snap shot of the graphical user interface (GUI) is presented
in Fig. 2. Using the system, users can browse and load motion
capture data in the form of bvh files (top-left section of the inter-
face). A loaded motion capture file can then be animated (right
side of the interface). For manipulating the motion, a particular

Fig. 2. The GUI developed and used to generate the features is depicted. The
interface enables loading of motion capture files, generating RBFs, adding them
to the sequence, and animating the original or modified sequence.

skeleton joint and an accompanying Cartesian axis (correspond-
ing to a DOF of the motion matrix) can be selected. The selected
joint is highlighted in red as opposed to the other joints displayed
in blue. For each DOF, up to three RBFs can be generated in
Cartesian space. The three parameters (α, μ, σ2) for each gen-
erated RBF are tuned using sliders and the corresponding RBF
is interactively plotted (left side of the interface). Each set of
generated RBFs can be summed to create a single curve. The
sum of RBFs can then be applied to the animated motion se-
quence. When a set of RBFs has already been synthesized for
a selected DOF, reselecting that DOF displays those RBFs for
the user for possible further modification. Previously saved sets
of RBFs can also be loaded and modified. Upon completion of
a task, the parameter set (Q) can be saved.

Twenty-seven subjects in two groups participated in this
study. The first group was composed of 11 participants who
were experienced with animation. They were either graduate
students with related experience or employees of the private
sector, working for related companies. Their mean age was 25.8
with a standard deviation of 4.2; nine were males and two were
females. They were provided with paper-based description of
the process and interface. Their task was to convert the average
neutral walk (described earlier) to happy, sad, energetic, tired,
feminine, and masculine styles using the interface. They were
first asked to practice with the interface to ensure proper uti-
lization of its different functionalities. They were then asked to
convert the loaded neutral walk to each of the mentioned themes.
They were instructed to use as many RBFs (up to three) per DOF,
and modify as many DOFs as they felt required to complete the
task. They could use the GUI to play the animation at any time in
order to evaluate the synthesized and added features. Correcting
or deleting of added features was permitted. Upon conversion
of the neutral walk to each of the themes, the added features
were saved and the interface was reset. The order in which the
themes were generated by different users was randomized to
prevent arrangement bias. The feature collection process was
quite time consuming (between 90 and 120 min). Participants
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TABLE I
VALIDATION OF THE GENERATED INPUT NEUTRAL WALK

Neutral Happy Sad Energetic Tired Feminine Masculine

75.0% 6.25% 6.25% 0.0% 6.25% 0.0% 6.25%

were compensated for their time. The second group of partici-
pants consisted of 16 individuals, 5 of whom were females and
11 were males. Their average age was 29.8 with a standard de-
viation of 10.9. They took part in providing perceptual feedback
on the generated results for analyzing the different parameters
involved in this study. They were naive toward human motion
studies. A seven-point forced-choice paper-based questionnaire
was used. The MATLAB-based interface as well as the animated
sequences were presented on a desktop computer with 3 GB of
RAM, a 2.8-GHz processor, and a 23.6-in 1080 HD LED screen.
Ethics approval was secured from the Research Ethics Board of
Carleton University for both components of the study.

V. RESULTS

Successive to data acquisition from the animators, based on
(5), the feature set created by participant i for SF type j is
denoted by Qi,j , where i = 1 . . . 11 and j = 1 . . . 6 ({Happy,
Sad, Energetic, Tired, Feminine, Masculine}). The Q matrices
are then averaged across the 11 animators (i). Since participants
were given the choice of utilizing one, two, or three RBFs per
up to 54 DOFs, some elements of Qi,j can be zeros (some users
chose not to modify a particular DOF or not to use all three
RBFs at their disposal). As a result, averaging Qi,j for a given
j across all i will depend on the order of the three RBFs. To
address this issue, we sort each Qi,j matrix based on μl values
in ascending order prior to the averaging step. In other words,
the RBFs are sorted such that μk

1 < μk
2 < μk

3 , where k denotes
the DOF. αk

l and σ2k
l are rearranged along with the associated

μk
l values. This will ensure that the temporal order of the RBFs

is maintained and averaging is meaningful. The output matrix
is then used to analyze the features and create a single feature
set for each secondary theme, which can be added to the neutral
sequence to achieve a stylistic/affective sequence.

A. Validating the Input

As the first step toward analyzing the results, the second group
of participants mentioned in Section IV validated the neutrality
of the averaged input sequence. The goal is to ensure that the
input sequence does not contain significant features belonging
to any of the six secondary themes of interest, which could lead
to skewing of the final results. Table I presents the perception
outcome for the input. The sequence is mostly recognized as
neutral, and the false classifications being distributed across
different themes, points to the absence of a particular dominant
secondary theme in the input.

B. Distribution

The animators were not asked to modify every DOF of the
motion sequence. As a result, only the DOFs that they perceived

to be more essential towards generation of the themes were
modified. Fig. 3 illustrates the percentages of animators who
modified each section of the body. We observe that except for
sadness, in which all 11 animators modified the shoulders and
neck, no other section of the body drew this kind of consensus
for any theme. When generating sadness, the frequency for the
head, upper torso, elbows, and wrists followed. For generating
the happy, energetic, and tired themes, shoulders drew the most
attention. Wrists, knees, neck, head, and elbows followed. For
the energetic theme, elbows, wrists, knees, and head came next.
In generating the tired theme, ankles, neck, head, and wrists
came after the shoulders. For the feminine theme, hip, thighs,
and ankles are modified the most, followed by the knees and
lower torso. Finally, for the masculine theme, knees, ankles,
shoulders and elbows drew the most attention. Among all six
themes, no body part was left unmodified. We performed two-
factor repeated measures analysis of variances (ANOVA) on the
number of edits performed by the animators, with body parts
and secondary themes as independent variables. The analysis
showed significant effects for both body parts (F (10, 100) =
9.83, p = 3 × 10−10) and secondary themes (F (5, 50) = 4.15,
p = 0.003), indicating that the features significantly differ with
either factor. The analysis also shows significant interaction
between the two factors (F (50, 500) = 2.73, p = 2 × 10−7 ).

We observe that for happy, sad, energetic, tired, and masculine
the distribution of added RBFs per body part weighs in favor of
upper-body regions, with sadness having the most upper-body to
lower-body advantage. The only exception of the six categories
is feminine in which the lower-body drew more attention com-
pared to upper-body regions. A two-factor repeated measures
ANOVA for upper versus lower body and theme shows sig-
nificant effect for upper versus lower body (F (1, 10) = 21.78,
p = 0.0009) as well as theme (F (5, 50) = 4.15, p = 0.003),
with significant interaction (F (5, 50) = 4.62, p = 0.002).

In terms of left/right half of the body, animators chose to treat
shoulders, elbows, wrists, thighs, knees, and ankles (which are
composed of left and right sides) symmetrically, meaning in all
cases where these joints were altered, both left and right joints
were modified. A two-factor repeated measures ANOVA for left
versus right sides of the body and theme shows no significant
effect for left/right (F (1, 10) = 0.50, p = 0.50), indicating the
two sides were not altered differently. The effect of theme was
significant (F (5, 50) = 5.71, p = 0.0003), and no interaction
was observed (F (5, 50) = 0.50, p = 0.78).

C. Feature Properties

1) Common Shapes: The sets of RBFs created and used by
the animators for modifying different DOFs of the motion can
be categorized into four major types or shapes. Fig. 4 illustrates
these four commonly used features. Features types 1 and 2
are composed of one single RBF, while feature types 3 and
4 are composed of two. The blue and green curves show the
individual RBFs while the red represents the sum. While shapes
other than these were also observed in the results, such features
were nonrecurring.

In general, feature type 1 is utilized to add a spatial offset
to a motion trajectory of a particular DOF. These features often
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Fig. 3. The histograms show the percentage of animators that have modified each part of the body.

Fig. 4. The most common shapes throughout the feature set are presented.

modify the body posture and not motion trajectories. An applied
example of this is when the head is tilted down. Feature type 2
is utilized when the animator intends to change the movement
of a particular joint by increasing and subsequently decreasing
it during a certain time period, or vice versa. In other words, this
feature can be used to add local maxima/minima where none
exists, or to increase/decrease the amplitude of existing min-
ima/maxima. For example, this feature can be used to increase
the movement of the right elbow. Similarly, feature type 3 is
used to repeat this process at two different points. For example,
in a two-step walk, like the one being used as the input in this
study, feature type 3 can be used to add two forward sways to
the head, one with each step. Finally, feature type 4 is utilized
to add opposing extrema to a trajectory. For example, it can be
used to add sway to the hip joint where with the right step, the
hip shows increased movement toward the left, and with the left
step, it sways toward the right. For mirroring of the features for
left/right joints, vertically mirrored (−α) versions of the four
types of features are used.

2) Posture Versus Movement: The use of feature type 1 ver-
sus the other three types requires further analysis. In biological

TABLE II
PERCENTAGE OF MOVEMENT VERSUS POSTURE FEATURES USED BY

ANIMATORS TO GENERATE DIFFERENT THEMES

Happy Sad Energetic Tired Feminine Masculine

% Movement 71.4 24.5 86.0 22.9 59.0 67.3
% Posture 28.6 75.5 14.0 87.1 41.0 32.7

motion studies, style and affect are reported to be composed
of two general types of spatiotemporal features, namely pos-
ture and movement (dynamics) [39], [40]. Additionally, speed
or uniform time need to be considered, which we will discuss
in Section VI. Posture features are those that often remain un-
changed throughout the sequence. In effect, they alter the initial
posture of the body with which the motion is carried out. Move-
ment features are changes to the motion trajectories that vary
throughout the sequence. Table II presents the percentage of
DOFs of the neutral walk that have been modified using pos-
ture features (type 1) versus movement features (type 2, type
3, and type 4). We observe that sad and tired sequences, which
are in fact quite similar to each other, are mostly generated
with posture features while the rest are mostly created by move-
ment features. The maximum relative percentage of movement
features is utilized for energetic while the maximum relative
percentage of posture features is used for tired walk.

3) Features: Table III presents the ten most frequently gen-
erated features for each theme. As discussed, two general fea-
ture types, posture and movement, are used, which we refer to
in the table as tilted along and increased/decreased swing along
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TABLE III
TOP TEN FREQUENTLY USED FEATURES FOR GENERATION OF THE THEMES

Themes

Happy Sad Energetic Tired Feminine Masculine

Common
features

1 Shoulders: increased
swing along Z

Shoulders: tilted along –Y Knees: increased swing
along Y

Shoulders: tilted along –Y Hip: increased swing
along X

Shoulders: increased
swing along Z

2 Wrists: increased swing
along Z

Head: tilted along –Y Head: tilted along +Y Head: tilted along –Y Ankles: tilted, R along
+X, L along –X

Knees: tilted, R along –X,
L along +X

3 Knees: increased swing
along Y

Neck: tilted along –Y Elbows: increased swing
along X

Ankles: decreased swing
along Z

Knees: tilted, R along
+X, L along –X

Ankles: tilted, R along
–X, L along +X

4 Head: increased swing
along X

Shoulders: decreased
swing along Z

Elbows: increased swing
along Z

Head: tilted along +Z Torso L: increased swing
along X

Elbows: tilted, R along
–X, L along +X

5 Wrists: increased swing
along X

Wrists: decreased swing
along Y

Shoulders: increased
swing along Y

Wrists: tilted along –Y Thighs: tilted, R along
+X, L along –X

Ankles: increased swing
along Y

6 Hip: increased swing
along X

Torso U: tilted along –Y Shoulders: increased
swing along Z

Ankles: decreased swing
along Y

Torso U: increased swing
along X

Knees: increased swing
along Y

7 Knees: increased swing
along X

Head: tilted along +Z Wrists: increased swing
along Z

Neck: tilted along –Y Thighs: increased swing
along Y

Head: increased swing
along Z

8 Neck: tilted along +Y Neck: tilted along +Z Wrists: increased swing
along X

Neck: tilted along +Z Shoulders: tilted along –Y Neck: increased swing
along Z

9 Head: tilted along +Y Elbows: tilted along –Y Thighs: increased swing
along Z

Torso L: tilted along +Z Elbows: increased swing
along X

Shoulders: increased
swing along Z

10 Head: tilted along –Z Hip: tilted along –Y Thighs: increased swing
along Y

Torso U: tilted along +Z Wrists: increased swing
along X

Elbows: increased swing
along Z

Fig. 5. Normalized intensities of features from Table III. The numbers in the
cells represent the shape of feature based on Fig. 4 (some numbers appear in
white for readability purposes given their dark backgrounds).

respective axis. R and L denote left or right joints. Utilizing all
of the features mentioned in Table III and other less frequently
used ones (that are not mentioned in this table) results in suc-
cessful generation of the intended themes. However, we suggest
that generating the themes can be achieved using only a few of
these features.

Fig. 5 illustrates the intensities (amplitudes) of the features
mentioned in Table III, normalized by the height of the averaged
input walker. Normalization is carried out since the height of
the walker can affect the magnitude of added features. For ex-
ample, increased arm swing for a tall walker is greater than that
of a short one. The figure shows that the most frequent features
do not necessarily have the highest intensities. We observe that
increased wrist swing along Z in happy, decreased ankle swing

Fig. 6. Frames from the generated affective/stylistic sequences.

along Z in tired, and increased ankles swing along Y in mas-
culine have the greatest intensities. This observation is logical
since movement features are spatiotemporally (but not necessar-
ily perceptually) dominant compared to posture features. As a
result, modifying them would require stronger RBFs. Moreover,
the three mentioned features belong to wrists and ankles, which
generally show the most spatiotemporal movement in walking
[41]. Furthermore, the numbers in Fig. 5 present the shapes of
features according to Fig. 4.

The accompanying video clip shows the input and the affec-
tive/stylistic walks generated using the 10 features. Fig. 6 illus-
trates a frame from the neutral input walk and the corresponding
frames after addition of the RBF-based features. Subjectively,
high-quality animation is achieved.

D. Perception and Scalability

As mentioned in Section IV, to evaluate the performance and
parameters of the proposed method, a second group of sub-
jects participated in this study. The same group provided the
information required for validating the input neutral sequence
(see Section V-A). They were asked to rate the amount of af-
fect or style in the displayed sequences generated using the
computed feature sets. Given the premise that the animators
produced the secondary themes in question, a forced-choice
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Fig. 7. Perception ratings for the two variables: weight and number of features. Error bars represent standard errors.

TABLE IV
RESULTS FOR TWO-WAY REPEATED MEASURES ANOVA WITH WEIGHT AND

NUMBER OF FEATURES AS THE TWO INDEPENDENT VARIABLES

Factor

Weight Number of features Interaction

F(3,45) p F(3,45) P F(9,135) p

Themes Happy 24.60 <0.0001 39.49 <0.0001 1.54 n.s.
Sad 63.89 <0.0001 18.46 <0.0001 2.32 <0.05
Energetic 88.62 <0.0001 23.84 <0.0001 2.17 <0.05
Tired 33.39 <0.0001 21.22 <0.0001 1.61 n.s.
Feminine 79.52 <0.0001 17.53 <0.0001 0.79 n.s.
Masculine 102.56 <0.0001 14.11 <0.0001 2.70 <0.001

approach was use. The sequences were generated when one,
four, seven, and ten features were used. The weight parameter
(w) from (1) was another variable in this experiment with the
values of w = 0.4, 0.7, 1.0, 1.3. Fig. 7 illustrates the results. Er-
ror bars represent standard errors (SD/

√
n). Generally, a direct

relation between the two factors and the perceptual ratings is
observed. We performed two-factor repeated measures ANOVA
for weight and number of features. The outcome is presented
in Table IV, where for very theme, both weight and number of
features show significant effect at the p < 0.0001 level. There
is no significant interaction between the two factors for happy,
tired, and feminine themes, while sad, energetic, and masculine
showed significant interaction at p < 0.05, p < 0.05, and p <
0.001 levels, respectively. This analysis shows that the features
are scalable and can be used to develop different levels of style
and affect. Moreover, it indicates that while utilizing a subset of

the features can produce the desired secondary theme to some
extent, larger subsets result in more accurate representations.

E. Inversion

To further investigate the proposed method and the com-
puted set of features, we tested negative w values. Surprisingly,
we noticed the appearance of features belonging to the oppo-
site themes. For example, when a negative weight was applied
to happy features, indicators of sad motion were observed. It
should be noted that the negative weight parameter only inverts
α and not the other parameters.

We further tested this concept by applying a weight of
w = −0.7 to all the ten features and collected perceptual ratings.
Similar to validating the results with positive weights, given the
premise of scalability and the notion of inversion in the litera-
ture [35], a forced-choice approach was used. The audience were
asked to select a rating between −7 to +7, with +7 denoting
the maximum original theme, 0 denoting neutral, and −7 de-
noting the maximum opposite theme. The results are presented
in Fig. 8 where the audience perceived the opposite theme in
all cases. Error bars represent standard errors. For some themes,
this inversion effect seemed to be stronger. This inversion ef-
fect was especially stronger in masculine, happy, and feminine
compared to energetic and tired themes.

VI. DISCUSSION

A. Features and Perception

The main goal of this research was to develop a set of fea-
tures that model the affective and stylistic variations with little
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Fig. 8. Perceptual ratings for negative weights show theme inversion. Error
bars represent standard errors.

computational effort and from a perceptual standpoint. We vali-
dated the results using perception feedback from inexperienced
participants (see Section V-D). We have shown that only a subset
of the features can induce the desired perception for the audi-
ence, which, compared to existing style translation or synthesis
techniques that often use complex machine learning methods,
is significantly low cost in terms of computational complex-
ity. Moreover, the features are scalable and can be tuned to in-
crease/decrease the induced perception of the themes. Our study
also describes the nature of the features in terms of significance,
distribution across the body, type, and shape.

There have been many studies in the literature attempting
to describe features responsible for presentation and percep-
tion of affects/styles in motion. For example, it was observed
in [41] that the following features are present in happiness: in-
clination of shoulders, lateral movements of hands/arms, arms
being stretched out frontal, arms being crossed in front of chest,
opening/closing of hands, and sideway positioning of back of
the hands, while for sadness: collapse of the upper body, down-
ward bending of the head, sideways bending of the head, lateral
movements of hands/arms, and sideway positioning of back of
the hands were reported. The study also suggests that in happy
motion, more movement features are present compared to pos-
ture features. These features do not contradict our findings and
our proposed feature sets. Identical features in both happy and
sad themes reported in the mentioned study, seem unusual, and
the number of reported features are low, as features related to
legs and feet are ignored. Nevertheless, there are reports that
suggest that emotions are mostly conveyed by the upper body
[39]. Our results point to a similar dominance of upper body
features for happiness and sadness.

In [43], it was illustrated that head inclination (posture) is
central for sadness and that, otherwise, movement features are
dominant for emotions. Table III in this paper shows a similar
trend.

In [44], regression analysis and PCA were used to analyze
emotions in recorded sequences. It was reported that posture
features are more dominant in sadness compared to happiness.

In terms of movement, for happiness, shoulders showed the most
change followed by elbows, while for sadness, the same order
was observed followed by the hips. Using PCA, for happiness,
elbows displayed the only significant change, while for sadness
the knees were dominant followed by hips.

For energy-related features, we were unable to find suitable
studies that investigate motion features. For gender-related fea-
tures, however, Troje [38] illustrated that movement-related fea-
tures are generally more critical compared to posture-related
ones. Increased hip sway in feminine and head sway in mascu-
line walks have been suggested in [45]. It has been illustrated
that body sway and lateral movements are dominant compared
to posture changes and that increased sway of hip for feminine
and shoulders for masculine are dominant features [46]. Our
method reconfirms and expands on these observations.

In regard to the impact of the number and weight of features
(see Section V-D), as the number of features increases, the per-
ceptual ratings increase as well. In most cases, the increase in
the ratings is more evident in the first few number of features
and approaches a steady state as the number of features grows.
This steady state corresponds to the maximum achievable aver-
age rating, in most cases approximately 0.9. The ratings are a
bit lower for the happy theme (maximum of approximately 0.8).
The reason for the existence of a steady state, we believe, is the
fact that the features are arranged in the order of frequency, i.e.
perceptual significance. This means that higher order features
are less important and convey less information regarding the
themes, resulting in insignificant changes to perception ratings.
Similarly, the ratings increased with the increase of w. In most
cases, the difference between w = 0.4 and w = 0.7 is greater
than the difference between other consecutive pairs of weights,
for example, w = 10 and w = 1.3. This property can be asso-
ciated with the ratings for larger values of w approaching the
maximum possible, i.e., 1.0. The 16 participants, however, in-
dicated a decrease in visual quality for w = 1.3 and, in some
cases, even for w = 1.0. This is due to the fact that the anima-
tors sometimes exaggerated in generation of the features. As a
result, we opt for weights of approximately two-third for ani-
mation purposes. For example, w = 0.7 was used in Fig. 6 and
the accompanying video clip. In addition, for analysis of the
inversion effect, the same weight was utilized.

Regarding the loss of visual quality for larger values of w, an
interesting observation was that as w approached values greater
than 1, the audience stressed more loss of visual quality for
happy, energetic, feminine, and masculine themes compared
with sad and tired. The reason for this can be the fact that most
features used for the former themes are movement-based. Ex-
aggerating movement features results in unbound and unnatural
motion, which can become distracting and unappealing. Posture
features, on the other hand, when exaggerated, do not seem as
unappealing as movement features since they only bring about
changes in the structure.

For a broader analysis of posture versus movements features,
we draw on the notion of activation and pleasantness in motion.
We refer the reader to Russell’s model or circumplex for af-
fect, which uses activation and pleasantness as its two axes [42].
This model only discusses affects and not energy or gender.
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However, we can assume that, despite energetic actions often
being associated with pleasant moods, an exclusively energetic
action does not necessarily vary on the pleasantness axis while
being positive on the activation axis. The same can be said about
a tired action where it is negative on the activation axis and does
not convey any information in terms of pleasantness given a
happy-tired person can easily be realized. Similarly, for fem-
inine and masculine, pleasantness does not play a role, and a
particular judgment on activation is hard to make. However, due
to exaggerated features, as well as being associated with faster
gait cycles [35], slightly positive activation can be assumed for
gender-related themes. In Table II, we observed that happy, en-
ergetic, feminine, and masculine variations are dominant in the
use of movement features, while sad and tired variations make
more use of posture features. Accordingly, we can conclude
that, generally, themes with high activation are mostly gener-
ated using movement features whereas in themes that are low
on activation, posture has a more important role. From a differ-
ent standpoint, we can argue that activity requires movement. It
is, therefore, logical for themes associated with higher activity
to be associated with and represented by movement features.
Where motion appears inactive, on the other hand, it is logi-
cal for the alternative type of feature, i.e., posture, to take the
dominant role.

B. Time

All of the synthesized affective/stylistic actions had the same
temporal length as the neutral input. In other words, the timing
of the output sequences were not controllable through the GUI.
Generally, there are two types of time features: uniform and
nonuniform (also referred to as nonlinear). It has been previ-
ously shown that nonuniform temporal features are manifested
as changes in movement [40]. Let us assume that a motion tra-
jectory (or sequence) is altered such that its first half is linearly
compressed by x frames and its second half is linearly stretched
by the same number of frames (x). While the overall length
of the resulting trajectory is preserved, there will be nonlinear
temporal modifications applied to the trajectory. These nonlinear
modifications can be interpreted as a spatiotemporal curve, i.e.,
movement feature. This type of time feature has been taken into
account through the process of this research since movement
changes in motion have been collected and analyzed. A uniform
or linear time feature, on the other hand, is available when the
entire trajectory is linearly stretched or compressed to achieve
a new length. This type of time feature is simple to calculate or
even estimate. Stylistic and affective variations of motion that
are positive on the activation axis of Russell’s model of affect
[42] are often faster (shorter) compared to the neutral version,
while lower activation motions are slower (longer). Moreover, it
has been previously documented that viewers can easily recog-
nize emotions of speed-matched affective sequences [44], [47]
as posture and movement features alone provide sufficient cues
for perception. It is, therefore, safe to conclude that the set of fea-
tures derived in this study, or a subset of them, can successfully
be employed to synthesize scalable affective/stylistic features,
and speed alterations can subsequently be applied to the derived

sequences [40] using linear operations such as uniform time
warping [37].

C. Inversion

The illustrated inversion effect can have significant implica-
tions for psychophysics and multimedia applications. Similar
effects have been previously addressed in the literature. For
example, Barclay et al. [35] illustrated that a feminine walker
is perceived as male, and vice versa, when the stimuli is in-
verted. Our approach slightly differs, however, since: 1) the
affect/style features alone are inverted rather than the entire se-
quence (along with the walker); 2) features of each joint are
inverted along their local axis and not the global axis. While
deriving a detailed and accurate neural or psychological model
that can describe this phenomenon requires in-depth study of
the brain and its functionality, we can speculate that the exis-
tence of some inverted features in opposing themes can partially
explain this phenomenon (see Table III). This would especially
seem sensible for opposing posture features, rather than move-
ment features. For example, in energetic and tired themes, we
have tilted head along +Y and tilted head along -–Y, respec-
tively. These features will convert to one another should they be
spatially inverted. For increased/decreased swing (movement)
features, further investigation is required.

D. Generalization

One of the benefits of the studied set of features is that it uses
notions of increased/decreased swing and tilt, which are descrip-
tions derived from the mathematical RBF-based feature set. The
use of only two general and time-independent features increases
the generalization of the models to actions other than walking.
Nevertheless, the precise values of the parameters (α, μ, σ2) will
most likely need to be computed accordingly.

E. Keyframing

While our approach bears some similarities to keyframing,
there are certain advantages to our approach. By restricting the
animators to utilizing a limited number of controlled edits in
the form of RBFs, features can be consolidated. As a result,
conclusions regarding the nature of the features as a whole
can be drawn that help with better understanding as well as
generalization of the feature set. Moreover, our approach results
in scalable features, which would not necessarily apply to a
keyframing approach.

F. Limitations and Future Work

It should be pointed out that our method is founded on a
perceptual approach and is not motion-data-driven. This means
that our proposed feature set is not necessarily the same set
of features that a feature extraction method would discover.
Traits that are observed in generic stylistic motions are often
the result of complex biological or evolutionary behaviors in-
fluenced by factors such as individual characteristics, culture,
context, and more [4]. However, our study presents a set of fea-
tures that, when applied to walking motion, can synthesize and
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convey the desired secondary themes based on what animators
perceive to be crucial features. Further investigation of the cor-
relations or differences between our proposed feature sets and
those extracted from motion datasets can shed some light on the
biological significance of the presented work.

As the proposed features are in the form of spatiotemporal
transforms in Cartesian space, a limitation of our approach is
that bone lengths are not necessarily preserved after the edits
are applied. Nevertheless, the animated output sequences did
not show any significant violations of bone lengths. This is per-
haps because animators have taken the necessary measures to
use edits that do not cause bone length variations, thus synthe-
sizing naturally appearing sequences. Similarly, should differ-
ent skeleton models or builds be used, adjustments might be
required to achieve natural and perceptually valid motion. How-
ever, the underlying concepts of the features can be generalized
and extended to other skeleton models (for example increased
shoulder swing along Z). The proposed method only utilized
walking as the action class. Therefore, while the general con-
cepts of the proposed features would most likely be applicable
to other action classes as discussed in the previous subsection,
further investigation is required to determine the modifications
required for the approach to apply to other action classes.

Another limitation of our proposed work is that if the input
motion sequence contains a pre-existing secondary theme, the
proposed feature set may not necessarily generate the desired
output style. We believe further investigation is required to ex-
plore whether or not the proposed set of features can successfully
synthesize the respective secondary themes with pre-existing
secondary themes.

As described earlier, forced-choice questions were used in
the validation step of the study, which might have influenced
(most likely reduced) the divergence of the perception results.
Alternatively, open questions or multiple forced-choice scales
per question could be used, which would determine whether
other themes are perceived from the produced sequences or not,
and if so, to what extent.

For future work, we will investigate the use of the proposed
features on different skeleton models and different actions to
evaluate the methodological feasibility and perceptual signifi-
cance of the results. The notion of pre-existing secondary themes
will be investigated as well. Finally, in addition to analyzing
this work with respect to a data-driven approach, we will utilize
the proposed feature set to develop an automated classifier for
recognition and retrieval of motion sequences. Comparing such
a classification system with systems developed using motion
datasets can shed light on the basis of the proposed perceptual
features, as well as their generalization with respect to recorded
motion sequences.

VII. CONCLUSION AND SUMMARY

We have proposed and implemented a method for recording
expert-driven features for synthesis of happy, sad, energetic,
tired, feminine, and masculine variations in motion. A user in-
terface was developed using which edits in the form of Gaussian
RBFs could be synthesized and applied to motion. A group of

experienced animators converted a neutral walk into the men-
tioned variations. The features were recorded and compiled to
derive a feature set. The advantages of our proposed method are
as follows.

1) There have been many studies on the subject of mod-
eling affect/style in motion, which are mostly based on
recorded sequences and machine intelligence techniques.
Our method, on the other hand, is based on opinions of
experienced animators, making the proposed models effi-
cient while very effective.

2) To the best of our knowledge, ranking or relative signif-
icance for reported features in affective/stylistic motion
is not available in the literature, especially to the depth
presented in this paper. This property allows for the most
important features to be utilized for effective and efficient
synthesis of affective/stylistic features.

3) Our proposed system presents mathematical and tunable
basis for creating affect/style features and the model al-
lows for scaling of the reported features. Furthermore,
utilizing a subset of the proposed set of features leads to
high-perception ratings.

4) Our approach is simple to expand to other classes of af-
fect/style as well as actions.

5) Analysis of the findings adds to the existing body of
knowledge on execution and perception of affect and
style in motion. Details regarding body-wise distribution
of features, types, intensities, frequencies, and shapes of
features, are presented and discussed.

6) Our model explores and partially describes the inversion
effect. However, we believe further studies are required in
this regard.
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