

Face Animation: A Case Study for

Multimedia Modeling and Specification Languages

Ali Arya and Babak Hamidzadeh

Dept. of Electrical & Computer Eng., Univ. of British Columbia,
2356 Main Mall, Vancouver, BC, Canada V6T 1Z4,

Phone: (604) 822-9181, Fax: (604) 822-5949, Email: {alia,babak}@ece.ubc.ca

Abstract

This chapter will discuss the multimedia modeling and specification methods,
especially in the context of face animation. Personalized Face Animation is and/or can
be a major User Interface component in modern multimedia systems. After reviewing
the related works in this area, we present the ShowFace streaming structure. This
structure is based on most widely accepted industry standards in multimedia
presentation like MPEG-4 and SMIL, and extends them by providing a higher level
Face Modeling Language (FML) for modeling and control purposes, and also by
defining image transformations required for certain facial movements. ShowFace
establishes a comprehensive framework for face animation consisting of components
for parsing the input script, generating and splitting the audio and video “behaviors”,
creating the required images and sounds, and eventually displaying or writing the data
to files. This component-based design and scripted behavior make the framework
suitable for many purposes including web-based applications.

Keywords: Face Animation, Talking Head, Multimedia, Modeling, Language,

Structured Content Description, XML, FML, MPEG-4, SMIL, FML.

INTRODUCTION

Specifying the components of a multimedia presentation and their spatial/temporal
relations are among basic tasks in multimedia systems. They are necessary when a
client asks for a certain presentation to be designed, when a media player receives
input to play, and even when a search is done to retrieve an existing multimedia file.
In all these cases, the description of the contents can include raw multimedia data
(video, audio, etc) and textual commands and information. Such a description works
as a Generalized Encoding, since it represents the multimedia content in a form not
necessarily the same as the playback format, and is usually more efficient and
compact. For instance a textual description of a scene can be a very effective
“encoded” version of a multimedia presentation that will be “decoded” by the media
player when it recreates the scene.

Face Animation, as a special type of multimedia presentation, has been a challenging
subject for many researchers. Advances in computer hardware and software, and also
new web-based applications, have helped intensify these research activities, recently.
Video conferencing and online services provided by human characters are good
examples of the applications using face animation. Personalized Face Animation

includes all the information and activities required to create a multimedia presentation
resembling a specific person. The input to such system can be a combination of
audio/visual data and textual commands and descriptions. A successful face animation
system needs to have efficient yet powerful solutions for providing and displaying the
content, i.e. a content description format, decoding algorithms, and finally an
architecture to put different components together in a flexible way.

Although new streaming technologies allow real-time download/playback of
audio/video data, but bandwidth limitation and its efficient usage still are, and
probably will be, major issues. This makes a textual description of multimedia
presentation (e.g. facial actions) a very effective coding/compression mechanism,
provided the visual effects of these actions can be recreated with a minimum
acceptable quality. Based on this idea, in face animation, some researches have been
done to translate certain facial actions into a predefined set of “codes”. Facial Action
Coding System (Ekman and Friesen, 1978) is probably the first successful attempt in
this regard. More recently, MPEG-4 standard (Battista, et al, 1999) has defined Face
Animation Parameters to encode low level facial actions like jaw-down, and higher
level, more complicated ones like smile.

Efficient use of bandwidth is not the only advantage of multimedia content
specifications like facial action coding. In many cases, the “real” multimedia data
does not exist at all, and has to be created based on a description of desired actions.
This leads to the whole new idea of representing the spatial and temporal relation of
the facial actions. In a generalized view, such a description of facial presentation
should provide a hierarchical structure with elements ranging from low level
“images”, to simple “moves”, more complicated “actions”, to complete “stories”. We
call this a Structured Content Description, which also requires means of defining
capabilities, behavioural templates, dynamic contents, and event/user interaction.
Needless to say, compatibility with existing multimedia and web technologies is
another fundamental requirement, in this regard.

Having a powerful description and specification mechanism, also is obviously
powerful in search applications that currently suffer when looking for multimedia
content. MPEG-7 standard (Nack and Lindsay, 1999) is the newest arrival in the
group of research projects aiming at a better multimedia retrieval mechanism.

Considering three major issues of Content Delivery, Content Creation, and Content
Description, following features can be assumed as important requirements in a
multimedia presentation system (Arya and Hamidzadeh, 2002):

1- Streaming, i.e. continuously receiving/displaying data
2- Structured Content Description, i.e. a hierarchical way to provide information

about the required content from high level scene description to low level moves,
images, and sounds

3- Content Creation (Generalized Decoding), i.e. creating the displayable content
based on the input. This can be decoding a compressed image or making new
content based on the provided textual description.

4- Component-based Architecture, i.e. the flexibility to rearrange the system
components, and use new ones as long as a certain interface is supported.

5- Compatibility, i.e. the ability to use and work with widely accepted industry
standards in multimedia systems.

6- Minimized Database of audio/visual footage.

The technological advances in multimedia systems, speech/image processing, and
computer graphics, and also new applications specially in computer-based games,
telecommunication, and online services, have resulted in a rapidly growing number of
publications regarding these issues. These research achievements, although very
successful in their objectives, mostly address a limited subset of the above
requirements. A comprehensive framework for face animation is still in conceptual
stages.

The ShowFace system, discussed later, is a step toward such a framework. It is based
on a modular structure that allows multimedia streaming using existing technologies
and standards like MPEG-4, Windows Media and DirectX/DirectShow
(http://www.microsoft.com/windows/directx), and XML (http://www.w3.org/XML).
The components independently read and parse a textual input, create audio and video
data, and mix them together. Each component can be replaced and upgraded as long
as it conforms to the ShowFace Application Programming Interface (SF-API). SF-
API also allows other programs like web browsers to connect to ShowFace
components directly or through a wrapper object called ShowFacePlayer. The system
uses a language specifically designed for face animation applications. Face Modeling
Language (FML) is an XML-based structured content description language that
describes a face animation in a hierarchical way (from high level stories to low level
moves), giving maximum flexibility to the content designers. Receiving FML scripts
as input, ShowFace generates the required frames based on a limited number of
images and a set of pre-learned transformations. This minimizes the image database
and also computational complexity which are issues in existing approaches, as
reviewed later.

In Section 2, some of the related works will be briefly reviewed. This includes
different approaches to multimedia modeling and specification (content description in
general), multimedia systems architectures to support those specification mechanisms,
and eventually, content creation methods used in related multimedia systems. The
basic concepts and structure of ShowFace system will be discussed in Section 3 to 5.
This includes the proposed Face Modeling Language (FML) and the system structure
and components for parsing the input and creating the animation. Some experimental
results and conclusions will be the topics of Sections 6 and 7, respectively.

RELATED WORK

Multimedia Content Description
The diverse set of works in multimedia content description involves methods for
describing the components of a multimedia presentation and their spatial and temporal
relations. Historically, one of the first technical achievements in this regards were
related to video editing where temporal positioning of video elements is necessary.
The SMPTE (Society of Motion Picture and Television Engineers) Time Coding
(Ankeney, 1995, Little, 1994) that precisely specifies the location of audio/video
events down to the frame level is base for EDL (Edit Decision List) (Ankeney, 1995,

Little, 1994) that relates pieces of recorded audio/video for editing. Electronic
Program Guides (EPGs) are another example of content description for movies in
form of textual information added to the multimedia stream.

More recent efforts by SMPTE are focused on Metadata Dictionary that targets the
definition of metadata description of the content (see http://www.smpte-ra.org/mdd).
These metadata can include items from title to subject and components. The concept
of metadata description is base for other similar researches like Dublin Core
(http://dublincore.org), EBU P/Meta (http://www.ebu.ch/pmc_meta.html), and TV
Anytime (http://www.tv-anytime.org). Motion Picture Expert Group is also another
major player in standards for multimedia content description and delivery. MPEG-4
standard that comes after MPEG-1 and MPEG-2, is one of the first comprehensive
attempts to define the multimedia stream in terms of its forming components (objects
like audio, foreground figure, and background image). Users of MPEG-4 systems can
use Object Content Information (OCI) to send textual information about these objects.

A more promising approach in content description is MPEG-7 standard. MPEG-7 is
mainly motivated by the need for a better more powerful search mechanism for
multimedia content over the Internet but can be used in a variety of other applications
including multimedia authoring. The standard extends OCI and consists of a set of
Descriptors for multimedia features (similar to metadata in other works), Schemes
that show the structure of the descriptors, and an XML-based Description/Schema
Definition Language.

Most of these methods are not aimed at and customized for a certain type of
multimedia stream or object. This may result in a wider range of application but limits
the capabilities for some frequently used subjects like human face. To address this
issue MPEG-4 includes Face Definition Parameters (FDPs) and Face Animation
Parameters (FAPs). FDPs define a face by giving measures for its major parts, as
shown in Figure 1. FAPs on the other hand, encode the movements of these facial
features. Together they allow a receiver system to create a face (using any graphic
method) and animate based on low level commands in FAPs. The concept of FAP can
be considered a practical extension of Facial Action Coding System (FACS) used
earlier to code different movements of facial features for certain expressions and
actions.

After a series of efforts to model temporal events in multimedia streams (Hirzalla, et
al, 1995), an important progress in multimedia content description is Synchronized
Multimedia Integration Language (SMIL) (Bulterman, 2001), and XML-based
language designed to specify temporal relation of the components of a multimedia
presentation, specially in web applications. SMIL can be used quite suitably with
MPEG-4 object-based streams.

There have also been different languages in the fields of Virtual Reality and computer
graphics for modeling computer-generated scenes. Examples are Virtual Reality
Modeling Language (VRML, http://www.vrml.org) and programming libraries like
OpenGL (http://www.opengl.org).

Another important group of related works are behavioural modeling languages and
tools for virtual agent. BEAT (Cassell, et al, 2001) is an XML-based system,

specifically designed for human animation purposes. It is a toolkit for automatically
suggesting expressions and gestures, based on a given text to be spoken. BEAT uses a
knowledge base and rule set, and provides synchronization data for facial activities,
all in XML format. This enables the system to use standard XML parsing and
scripting capabilities. Although BEAT is not a general content description tool, but it
demonstrates some of the advantages of XML-based approaches. Other scripting and
behavioural modeling languages for virtual humans are considered by other
researchers as well (Funge, et al, 1999, Kallmann, and Thalmann, 1999, Lee, et al,
1999). These languages are usually simple macros for simplifying the animation, or
new languages which are not using existing multimedia technologies. Most of the
times, they are not specifically designed for face animation.

Multimedia Content Creation
In addition to traditional recording, mixing, and editing techniques in film industry,
computer graphics research has been long involved in multimedia and specially
image/video creation. Two main categories can be seen in these works: 3D
geometrical models (Blanz and Vetter, 1999, Lee, et al, 1999, Pighin, et al, 1998) and
2D image-based methods (Arya and Hamidzadeh, 2002, Bregler, et al, 1997, Ezzat
and Poggio, 1998, Graf, et al, 2000).

The former group involves describing the scene using 3D data (as in VRML and
OpenGL) and then rendering the scene (or sequence of frames) from any point of
view. These techniques need usually complicated 3d models and data and also
computation, but are very powerful in creating any view provided the model/data is
inclusive enough. Due to the way images are generated, and inability to include all the
details, most of these methods do not have a very realistic output. In case of face
animation, 3D techniques are used by many researchers (Blanz and Vetter, 1999, Lee,
et al, 1999, Pighin, et al, 1998). To reduce the size of required data for model
generation, some approaches are proposed to create 3D model based on few (two
orthogonal) 2D pictures (Lee, et al, 1999).

It is shown that any view of a 3D scene can be generated from combination of a set of
2D views of that scene or by applying some transformations on them (Arya and
Hamidzadeh, 2002, Ezzat and Poggio, 1998). This fact is base for the latter group of
techniques i.e. 2D image-based. In a Talking Head application, Ezzat, et al (Ezzat and
Poggio, 1998) use view morphing between pre-recorded visemes (facial views when
pronouncing different phonemes) to create a video corresponding to any speech.
Optical flow computation is used to find corresponding points in two images, solving
the correspondence problem for morphing. Bregler, et al, (Bregler, et al, 1997)
combine a new image with parts of existing footage (mouth and jaw) to create new
talking views. Both these approaches are limited to a certain view where the
recordings have been made. No transformation is proposed to make a talking view
after some new movements of the head. In a more recent work based on MikeTalk,
(Graf, et al, 2000), recording of all visemes in a range of possible views is proposed,
so after detecting the view (pose) proper visemes will be used. This way talking heads
in different views can be animated but the method requires a considerably large
database.

Defining general image transformations for each facial action and using facial feature
points to control the mapping, seem to be helpful in image-based techniques.

TalkingFace (Arya and Hamidzadeh, 2002) combines optical flow and facial feature
detection to overcome these issues. It can learn certain image transformations needed
for talking (and potentially expressions and head movements) and apply them to any
given image. Tiddeman, et al, (Tiddeman, et al, 2001) show how such image
transformations can be extended to include even facial texture.

Multimedia Systems Architectures
Different architectures are proposed for multimedia systems. They try to address
different aspects of multimedia, mostly streaming and playback. The main streaming
systems, aimed at web-based transmission and playback, are Microsoft Windows
Media, Apple QuickTime, and Real Networks RealVideo (Lawton, 2000).

Different architectures are also proposed to perform facial animation, especially as an
MPEG-4 decoder/player (Pandzic, 2001). Although they try to use platform-
independent and/or standard technologies (e.g. Java and VRML), they are usually
limited to certain face models and lack a component-based and extensible structure,
and do not propose any content description mechanism more than standard MPEG-4
parameters.

STRUCTURED CONTENT DESCRIPTION IN SHOWFACE

Design Ideas
Describing the contents of a multimedia presentation is a basic task in multimedia
systems. It is necessary when a client asks for a certain presentation to be designed,
when a media player receives input to play, and even when a search is done to retrieve
an existing multimedia file. In all these cases, the description can include raw
multimedia data (video, audio, etc) and textual commands and information. Such a
description works as a Generalized Encoding, since it represents the multimedia
content in a form not necessarily the same as the playback format, and is usually more
efficient and compact. For instance a textual description of a scene can be a very
effective “encoded” version of a multimedia presentation that will be “decoded” by
the media player when it recreates the scene.

Although new streaming technologies allow real-time download/playback of
audio/video data, but bandwidth limitation and its efficient usage still are, and
probably will be, major issues. This makes a textual description of multimedia
presentation (in our case facial actions) a very effective coding/compression
mechanism, provided the visual effects can be recreated with a minimum acceptable
quality.

Efficient use of bandwidth is not the only advantage of facial action coding. In many
cases, the “real” multimedia data does not exist at all, and has to be created based on a
description of desired actions. This leads to the whole new idea of representing the
spatial and temporal relation of the facial actions. In a generalized view, such a
description of facial presentation should provide a hierarchical structure with elements
ranging from low level “images”, to simple “moves”, more complicated “actions”, to
complete “stories”. We call this a Structured Content Description, which also requires
means of defining capabilities, behavioural templates, dynamic contents, and

event/user interaction. Needless to say, compatibility with existing multimedia and
web technologies is another fundamental requirement, in this regard.

 Story Action Moves

Time

Fig. 1. FML Timeline and Temporal Relation of Face Activities

Face Modeling Language (FML) is a Structured Content Description mechanism
based on eXtensible Markup Language. The main ideas behind FML are:

• Hierarchical representation of face animation
• Timeline definition of the relation between facial actions and external events
• Defining capabilities and behaviour templates
• Compatibility with MPEG-4 FAPs
• Compatibility with XML and related web technologies

FACS and MPEG-4 FAPs provide the means of describing low-level face actions but
they do not cover temporal relations and higher-level structures. Languages like SMIL
do this in a general purpose form for any multimedia presentation and are not
customized for specific applications like face animation. A language bringing the best
of these two together, customized for face animation, seems to be an important
requirement. FML is designed to do so.

Fundamental to FML is the idea of Structured Content Description. It means a
hierarchical view of face animation capable of representing simple individually-
meaningless moves to complicated high level stories. This hierarchy can be thought of
as consisting of the following levels (bottom-up):

• Frame, a single image showing a snapshot of the face (Naturally, may not be
accompanied by speech)

• Move, a set of frames representing linear transition between two frames (e.g.
making a smile)

• Action, a “meaningful” combination of moves
• Story, a stand-alone piece of face animation

The boundaries between these levels are not rigid and well defined. Due to
complicated and highly expressive nature of facial activities, a single move can make
a simple yet meaningful story (e.g. an expression). The levels are basically required
by content designer in order to:

• Organize the content
• Define temporal relation between activities

• Develop behavioural templates, based on his/her presentation purposes and
structure.

FML defines a timeline of events (Figure 1) including head movements, speech, and
facial expressions, and their combinations. Since a face animation might be used in an
interactive environment, such a timeline may be altered/determined by a user. So
another functionality of FML is to allow user interaction and in general event
handling (Notice that user input can be considered a special case of external event.).
This event handling may be in form of:

• Decision Making; choosing to go through one of possible paths in the story
• Dynamic Generation; creating a new set of actions to follow

A major concern in designing FML is compatibility with existing standards and
languages. Growing acceptance of MPEG-4 standard makes it necessary to design
FML in a way it can be translated to/from a set of FAPs. Also due to similarity of
concepts, it is desirable to use SMIL syntax and constructs, as much as possible.

Primary Language Constructs
FML is an XML-based language. The choice of XML as the base for FML is based on
its capabilities as a markup language, growing acceptance, and available system
support in different platforms. Figure 2 shows typical structure of an FML.

<fml>
 <model> <!-- Model Info -->
 <model-info />
 </model>
 <story> <!-- Story Timeline -->
 <action>
 <time-container>
 <move-set>
 < . . . >
 <move-set>
 < . . . >
 </time-container>
 < . . . >
 </action>
 < . . . >
 </story>
</fml>

Fig. 2. FML Document Map; Time-container and move-set will be replaced by FML
time container elements and sets of possible activities, respectively.

An FML document consists, at higher level, of two types of elements: model and
story. A model element is used for defining face capabilities, parameters, and initial
configuration. A story element, on the other hand, describes the timeline of events in
face animation. It is possible to have more than one of each element but due to
possible sequential execution of animation in streaming applications, a model element
affect only those parts of document coming after it.

Face animation timeline consists of facial activities and their temporal relations.
These activities are themselves sets of simple Moves. The timeline is primarily
created using two time container elements, seq and par representing sequential and
parallel move-sets. A story itself is a special case of sequential time container. The
begin times of activities inside a seq and par are relative to previous activity and
container begin time, respectively.

<seq begin=”0”>
 <talk begin=”0”>Hello World</talk>
 <hdmv begin=”0” end=”5” type=”0” val=”30” />
</seq>
<par begin=”0”>
 <talk begin=”1”>Hello World</talk>
 <exp begin=”0” end=”3” type=”3” val=”50” />
</par>

Fig. 3. FML Primary Time Container

FML supports three basic face activities: talking, expressions, and 3D head
movements. They can be a simple Move (like an expression) or more complicated
(like a piece of speech). Combined in time containers, they create FML Actions. This
combination can be done using nested containers, as shown in Figure 4.

<action>
<par begin=”0”>
<seq begin=”0”>
 <talk begin=”0”>Hello World</talk>
 <hdmv begin=”0” end=”5” type=”0” val=”30” />
</seq>
 <exp begin=”0” end=”3” type=”3” val=”50” />
</par>
</action>

Fig. 4. Nested Time Container

FML also provides the means for creating a behavioral model for the face animation.
At this time, it is limited to initialization data such as range of possible movements
and image/sound database, and simple behavioral templates (subroutines). But it can
be extended to include behavioral rules and knowledge bases, specially for interactive
applications. A typical model element is illustrated in Figure 5, defining a behavioral
template used later in story.

Event Handling and Decision Making
Dynamic interactive applications require the FML document to be able to make
decisions, i.e. to follow different paths based on certain events. To accomplish this
excl time container and event element are added. An event represents any external
data, e.g. the value of a user selection. The new time container associates with an

event and allows waiting until the event has one of the given values, then it continues
with action corresponding to that value.

<model>

 <range dir=”0” val=”60” />
 <template name=”hello” >
<seq begin=”0”>
 <talk begin=”0”>Hello</talk>
 <hdmv begin=”0” end=”5” dir=”0” val=”30” />
</seq>
 </template>
</model>
<story>
 <behavior template=”hello” />
</story>

Fig. 5. FML Model and Templates

<event id=”user” val=”-1” />
<excl ev_id=”user”>
 <talk ev_val=”0”>Hello</talk>
 <talk ev_val=”1”>Bye</talk>
</excl>

Fig. 6. FML Decision Making and Event Handling

Compatibility
The XML-based nature of this language allows the FML documents to be embedded
in web pages. Normal XML parsers can extract data and use them as input to an
FML-enabled player, through simple scripting. Such a script can also use XML
Document Object Model (DOM) to modify the FML document, e.g. adding certain
activities based on user input. This compatibility with web browsing environments,
gives another level of interactivity and dynamic operation to FML-based system, as
illustrated in Section 5.

Another aspect of FML is its compatibility with MPEG-4 face definition/animation
parameters. This has been achieved by:

• Translation of FML documents to MPEG-4 codes by the media player.
• Embedded MPEG-4 elements (fap element is considered to allow direct

embedding of FAPs in FML document)

Case Studies
1. Static Document
The first case is a simple FML document without any need for user interaction. There
is one unique path the animation follows. The interesting point in this basic example
is the use of loop structures, using repeat attribute included in any activity.

The event element specifies any external entity whose value can change. The default
value for repeat is 1. If there is a numerical value, it will be used. Otherwise, it must
be an event id, in which case the value of that event at the time of execution of
related activity will be used. An FML-compatible player should provide means of
setting external events values. ShowFacePlayer has a method called SetFaceEvent,
which can be called by the owner of player object to simulate external events.

<event id=”select” val=”2” />
< . . . >
<seq repeat=”select”>
 <talk begin=”0”>Hello World</talk>
<exp begin=”0” end=”3” type=”3” val=”50” />
</seq>

Fig. 7. Repeated Activity. Using event is not necessary

2. Event Handling
The second example shows how to define an external event, wait for a change in its
value, and perform certain activities based on the value. An external event
corresponding to an interactive user selection is defined, first. It is initialized to –1
that specifies an invalid value. Then, an excl time container, including required
activities for possible user selections, is associated with the event. The excl element
will wait for a valid value of the event. This is equivalent to a pause in face animation
until a user selection is done.

It should be noted that an FML-based system usually consists of three parts:

• FML Document
• FML-compatible Player
• Owner Application

In a simple example like this, it could be easier to simply implement the “story” in the
owner application and send simpler commands to a player just to create the specified
content (e.g. face saying Hello). But in more complicated cases, the owner application
may be unaware of desired stories, or unable to implement them. In those cases, e.g.
interactive environments, the owner only simulates the external parameters.

3. Dynamic Content Generation
The last FML example to be presented illustrates the use of XML Document Object
Model (DOM) to dynamically modify the FML document and generate new
animation activities.

Fig. 8. Dynamic FML Generation

function onLoad()
{
 facePlayer.ReadFML(“test.fml”);
 facePlayer.Run();
}

function onHelloButton()
{
 facePlayer.SetFaceEvent(
 “user”, 0);
}

function onByeButton()
{
 facePlayer.SetFaceEvent(
 “user”, 1);
}

Fig. 9. JavaScript Code for FML Event shown in Figure 6

The simplified and partial JavaScript code for the web page shown in Figure 8 looks
like this:

function onRight()
{
 var fml = fmldoc.documentElement;
 var new = fmldoc.createElement(“hdmv”);
 new.setAttribute(“dir”,”0”);
 new.setAttribute(“val”,”30”);
 fml.appendChild(new);
}

More complicated scenarios can be considered, using this dynamic FML generation,
for instance, having a form-based web page and asking for user input on desired
behavior, and using templates in model section of FML.

CONTENT CREATION IN SHOWFACE

Feature -based Image Transformation (FIX)
FML parser component of ShowFace system determines the visual activities required
in the face. These activities are transitions between certain face states like a viseme or
expression. In a training phase, a set of image-based transformations is learned by the
system, which can map between these face states. Transformations are found by
tracking facial features when the model is performing the related transitions, and then
applied to a given image, as illustrated in Figure 10. A library of transformations is
created based on following facial states:

• Visemes in full-view
• Facia l expressions in full-view
• Head movements

For group 1 and 2, mappings for all the transitions between a non-talking neutral face
and any group member are stored. In group 3, this is done for transitions between any
two neighbouring states (Figure 11).

 (a) (b)

 (c) (d)

Fig. 10. Facial Features and Image Transformations, (a) model state 1, (b) model state
2, (c) target character in state 1, (d) target character in state 2

Each transformation is defined in form of T=(F,M) where T is the transformation, F is
the feature set in the source image, and M is the mapping values for features. Source
image information is saved to enable scaling and calibration, explained later. The
feature set for each image includes face boundary, eyes and eye-brows, nose, ears,
and lips. These feature lines, and the facial regions created by them are shown in
Figure 12.

The solid lines are feature lines surrounding feature regions, while dashed lines define
face patches. The patches are defined in order to allow different areas of the face to be
treated differently. Covisibility is the main concern when defining these face patches.
Points in each patch will be mapped to points in the corresponding patch of the target
image, if visible.

Fig. 11. Moving Head States. The same three states exist for rotating to left,
in addition to a full-view image, at the center.

 (a) (b)

Fig. 12. Facial Regions are defined as areas surrounded by two facial feature lines,
e.g. inside eyes or between lower lip and jaw. Some face patches are removed from
(b) for simplicity.

The transformations are done by first applying the mapping vectors for the feature
points. This is shown in Figure 13. Simple transformations are those which have
already been learned, e.g. T12 and T13 (assuming we only have Image-1) Combined
transformations are necessary in cases when the target image is required to have the
effect of two facial state transitions at the same time, e.g. T14.

Due to non-orthographic nature of some head movements, combined transformations
involving 3D head rotation can not be considered a linear combination of some
known transformations. Feature mapping vectors for talking and expressions (which
are learned from frontal view images) need to be modified when applied to “moved”
heads.

T14 = a T12 + b T’13
T’13 = f p(T12, , T13) = T24

where fp is Perspective Calibration Function, and a and b are coefficients between 0
and 1 to control transition progress. T13 will also be scaled based on face dimensions
in source/target images.

When the Image-2 is given, i.e. the new image does not have the same orientation as
the one used in learning, the required transformation is T24 which still needs
scaling/perspective calibration based on T13 and T12.

Fig. 13. Feature Transformation. Tij is the transformation between Image-i and Image-
j.

Facial Region Transformation
The stored transformations only show the mapping vectors for feature lines. Non-
feature points are mapped by interpolating the mapping values for the feature lines
surrounding their regions. This is done based on the face region to which a point
belongs.

Face regions are grouped into two different categories:

• Feature islands, surrounded by one or two “inner” feature lines
• Face patches, covering the rest of the face as shown in Figure 4-b.

The mapping vector for each point inside a group-1 region is found using the
following formula:

dr,c = w(du,c , dl,c)

where the function w is a weighted average with distance as the weights, r and c are
row and column in image for the given point, u and l are the row number for top and
bottom feature points, and d is the mapping vector.

Face patches are defined based on covisibility, i.e. their points are most likely to be
seen together. Defining the patches is necessary in order to preserve the geometric
validity of the transformation. The mapping vector of each point in a patch is the
weighted average of mapping of all the patch corners. Extra checking is performed to
make sure a point inside a patch will be mapped to another point in corresponding
patch of target image.

Sample Images
Figure 14 shows some sample outputs of the image transformations.

 (a) (b) (c)

 (d) (e) (f)

Fig. 14. Transformed Faces, mapped from 7-a. frown (a), smile (b), visemes for
sounds “oo” and “a” in “root” and “talk” (c and d), rotate to right (e), and non-frontal
talking (f)

Speech Synthesis
To achieve the best quality with minimum database requirements, ShowFace uses a
concatenative approach to speech synthesis. Diphones (the transitions between the
steady-state of a phoneme to the steady-state of another) are used as the basis of this
approach. An off-line diphone-extraction tool is designed to create a database of
diphones from existing audio footage. This database is normalized for power and
pitch to provide a smooth initial set. The diphones are then dynamically connected
based on the phoneme list of a given text to be spoken.

An FFT-based comparison of diphones finds the best connection point for two
diphones at run time. This results in a dynamic time length calculation for diphones
and words which will then be used to find the necessary duration of the corresponding
visual transitions and the number of frames to be generated, in order to achieve a lip-
synchronized audio-visual stream.

SHOWFACE FRAMEWORK

System Architecture

The basic structure of ShowFace system is illustrated in Figure 15. Five major parts of
this system are:

• Script Reader, to receive an FML script from a disk file, an Internet address,
or any text stream provider.

• Script Parser, to interpret the FML script and create separate intermediate
audio and video descriptions (e.g. words and viseme identifiers)

• Video Kernel, to generate the required image frames
• Audio Kernel, to generate the required speech
• Multimedia Mixer, to synchronize audio and video streams

Fig. 15. Component-based ShowFace System Structure

ShowFace relies on the underlying multimedia technology for audio and video
display. The system components interact with each other using ShowFace Application
Programming Interface, SF-API, a set of interfaces exposed by the components and
utility functions provided by ShowFace run-time environment. User applications can
access system components through SF-API, or use a wrapper object called
ShowFacePlayer , which exposes the main functionality of the system, and hides
programming details.

ShowFace system is designed and implemented with the concept of openness in mind.
By that we mean the ability to use and connect to existing standard components and
also independent upgrade of the system modules. To make most use of existing
technologies, ShowFace components are implemented as Microsoft DirectShow
filters.

Applications (GUI, Web Page, …)

SF-API
Script
Reader

Video
Kernel

Splitter

Multimedia
Mixer

Audio
Kernel

Underlying Multimedia Framework

ShowFa

ce
Player

ActiveX

DirectShow is a multimedia streaming framework, which allows different media
processing to be done by independent objects called filters, which can be connected
using standard Component Object Model (COM) interfaces. DirectShow will be
installed as part of many application programs like browsers and games, and comes
with a set of filters like audio and video decoders and renderers. This allows
ShowFace objects to access these filters easily and rely on multimedia streaming
services provided by DirectShow, e.g. receiving data from a URL reader or MPEG-4
decoder and sending data to a video player or file writer.

The ShowFacePlayer wrapper object is implemented as an ActiveX control, which
can be easily used in web pages and other client applications. An off-line tool,
ShowFace Studio , is also developed to assist in detecting the features, creating the
maps, and recording the FML scripts. Some samples of transformed faces are shown
in Figure 4.

CONCLUDING REMARKS

Reviewing the most important works in the area of multimedia specification
and presentation, it's been shown that a comprehensive framework for face
animation is a requirement which has not been met. Such a framework needs to
provide:

• a structured content description mechanism,
• an open modular architecture covering aspects from getting input in

standard forms to generating audio/video data on demand,
• efficient algorithms for generating multimedia with minimum use of

existing footage and computational complexity.

An approach to such a framework, ShowFace System, is proposed. Unlike most
of existing systems, ShowFace is not limited to an off-line application or a
media player object, but provides a complete and flexible architecture. The
component-based architecture uses standard interfaces to interact internally
and also with other objects provided by underlying platform, making maximum
use of existing technologies like MPEG-4, XML, and DirectX. These components
can be used separately, or in a combination controlled by the animation
application.

An XML-based Face Modeling Language (FML) is designed to describe the
desired sequence of actions in form of a scenario. FML allows event
handling, and also sequential or simultaneous combination of supported face
states, and will be parsed to a set of MPEG-4 compatible face actions. Main
contributions of FML are its hierarchical structure, flexibility for static
and dynamic scenarios, and dedication to face animation. Compatibility with
MPEG-4 and use XML as a base are also among the important features in the
language. Future extensions to FML can include more complicated behaviour
modeling and better coupling with MPEG-4 streams.

The image-based transformations used in the video kernel are shown to be
successful in creating a variety of facial states based on a minimum input
images. Unlike 3D approaches, these transformations do not need complicated

modeling and computations. On the other hand, compared to usual 2D
approaches, they do not use a huge database of images. They can be extended
to include facial textures for better results, and the system allows even a
complete change of image generation methods (e.g. using a 3D model), as long
as the interfaces are supported.

Better feature detection is a main objective of our future work, since any error in
detecting a feature point can directly result in a wrong transformation vector. This
effect can be seen in cases like eyebrows where detecting the exact corresponding
points between a pair of learning images is not easy. As a result, the learned
transformation may include additive random errors which causes non-smooth
eyebrow lines in transformed feature set and image.

Combination of pre-learned transformations is used to create more complicated facial
states. As discussed, due to perspective nature of head movements, this may not be a
linear combination. Methods for shrinking/stretching the mapping vectors as a
function of 3D head rotation are being studied and tested. Another approach can be
defining the mapping vectors in term of relative position to other points rather than
numeric values. These relational descriptions may be invariant with respect to
rotations.

REFERENCES

1. Ankeney, J. (1995). "Non-linear Editing Comes of Age", TV Technology, May
1995.
2. Arya, A., and Hamidzadeh, B. (2002). “ShowFace MPEG-4 Compatible Face
Animation Framework”, Int. Conf Computer Graphics and Image Processing (CGIP)¸
Hawaii, 2002.
3. Battista, S., et al (1999). “MPEG-4: A Multimedia Standard for the Third
Millennium”, IEEE Multimedia, October 1999.
4. Blanz, V., and Vetter, T. (1999). "A Morphable Model For The Synthesis Of 3D
Faces", ACM SIGGRAPH, 1999.
5. Bregler, C., et al (1997). "Video Rewrite: Driving Visual Speech with Audio",
ACM Computer Graphics, 1997.
6. Bulterman, D. (2001). “SMIL-2,” IEEE Multimedia, October 2001.
7. Cassell, J., et al (2001). “BEAT: the Behavior Expression Animation Toolkit”,
ACM SIGGRAPH, 2001.
8. Ekman, P., and Friesen, W.V. (1978). Facial Action Coding System, Consulting
Psychologists Press Inc., 1978.
9. Ezzat, T., and Poggio, T. (1998). "MikeTalk: A Talking Facial Display Based on
Morphing Visemes", IEEE Conf Computer Animation, 1998.
10. Funge, J., et al (1999). “Cognitive Modeling: Knowledge, Reasoning, and
Planning for Intelligent Characters", ACM SIGGRAPH, 1999.
11. Graf, H.P., et al (2000). "Face Analysis for the Synthesis of Photo-Realistic
Talking Heads", IEEE Conf Automatic Face and Gesture Recognition, 2000.
12. Hirzalla, N., et al (1995). "A Temporal Model for Interactive Multimedia
Scenarios", IEEE Multimedia, Fall 1995.
13. Kallmann, M., and Thalmann, D. (1999). "A Behavioral Interface to Simulate
Agent-Object Interactions in Real Time", IEEE Conf Computer Animation, 1999.
14. Lawton, G. (2000). "Video Streaming", IEEE Computer, July 2000.
15. Lee, W. S., et al (1999). "MPEG-4 Compatible Faces from Orthogonal Photos",
IEEE Conf Computer Animation, 1999.
16. Little, T.D.C. (1994). "Time-based Media Representation and Delivery," in
Multimedia Systems, J.F. Koegel Buford (ed)., ACM Press, 1994.
17. Nack, F., and Lindsay, A.T. (1999). "Everything You Wanted To Know About
MPEG-7", IEEE Multimedia, July 1999.
18. Pandzic, I.S. (2001). “A Web-based MPEG-4 Facial Animation System”, Int Conf
Augmented Virtual Reality& 3D Imaging, 2001.
19. Pighin, F., et al (1998). "Synthesizing Realistic Facial Expressions from
Photographs", ACM SIGGRAPH, 1998.
20. Tiddeman, B., et al (2001). “Prototyping and Transforming Facial Textures for
Perception Research”, IEEE CG&A, September 2001.

Photo and Biography
Ali Arya

Ali Arya received a B.S. degree in Electrical Engineering from
Tehran Polytechnic, Iran, in 1990, and currently is a Ph.D.
Candidate at the Department of Electrical and Computer
Engineering, University of British Columbia, Canada. He has
worked as research engineer, system analyst, and project
manager in different research centers and industry-related
companies, including Tehran Cybernetic Arm Project, Iran, and
Honeywell-Measurex, Canada. His research interests include
multimedia, computer graphics, real-time systems, and web-
based applications. He is also an instructor for “Systems
Software Engineering” and “Software Project Management” in
UBC.

Photo and Biography
Babak Hamidzadeh

Babak Hamidzadeh received M.S. and Ph.D. degrees in
Computer Science and Engineering from The University of
Minnesota in Minneapolis, in 1989 and 1993, respectively. In
that period, he also worked as a research associate at The
Systems and Research Center of Honeywell Inc., and as a
research scientist at The Research and Technology Center of
Alliant Techsystems Inc. for over 3 years. From 1993 to 1996
he was an Assistant Professor of Computer Science and
Computer Engineering at The Hong Kong University of
Science and Technology. Currently, he is an Associate
Professor of Electrical and Computer Engineering at The
University of British Columbia. He is also a member of IEEE
Computer Soc iety, a Fellow of the BC Advanced Systems
Institute and the holder of a Canada Research Chair in
Information Technology. His areas of research include resource
management and scheduling, real-time computing, parallel and
distributed processing, database systems, multimedia, and
communication networks.

