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ABSTRACT 
This paper proposes the results of a user study on vision-
based depth-sensitive input system for performing typical 
desktop tasks through arm gestures. We have developed a 
vision-based HCI prototype to be used for our 
comprehensive usability study. Using the Kinect 3D camera 
and OpenNI software library we implemented our system 
with high stability and efficiency by decreasing the ambient 
disturbing factors such as noise or light condition 
dependency. In our prototype, we designed a capable 
algorithm using NITE toolkit to recognize arm gestures. 
Finally, through a comprehensive user experiment we 
compared our natural arm gestures to the conventional input 
devices (mouse/keyboard), for simple and complicated 
tasks, and in two different situations (small and big-screen 
displays) for precision, efficiency, ease-of-use, 
pleasantness, fatigue, naturalness, and overall satisfaction to 
verify the following hypothesis: on a WIMP user interface, 
the gesture-based input is superior to mouse/keyboard when 
using big-screen. Our empirical investigation also proves 
that gestures are more natural and pleasant to be used than 
mouse/keyboard. However, arm gestures can cause more 
fatigue than mouse. 
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INTRODUCTION 
While the field of Human-Computer Interaction (HCI) have 
always aimed to improve the interaction by making 
computers more practical and responsive to the user's 
requests, and minimizing the incompatibility between the 
human's cognitive model and the computer's ability to 
understand and respond properly [1], lately the research in 

HCI is showing a significant focus on creating interfaces 
that are more user-friendly, by applying natural 
communication and human skills in the user interface 
design. The new wave of input systems in video game 
consoles (such as Nintendo Wii, Xbox Kinect, and 
PlayStation Move) are examples of the trend toward a more 
“natural” interfaces, where computers adapt to human 
behavior rather than the other way around. Input/output 
techniques, interaction styles, and evaluation methods are 
the challenging fields of research in such gesture-based 
improvement [2]. 

With availability of in-expensive 3D cameras, many 
researchers have improved the quality of gesture-based 
systems by incorporating depth information as well as 
employing robust computer vision methods such as those 
provided by toolkits like OpenCV. On the other hand, a 
consolidated and reliable usability analysis has not been 
fulfilled for gesture-based input systems to see how and 
where they can be used. This paper is based on a prototype 
that combines a 3D camera with advanced vision software, 
and offers a novel study of usability of such system in 
performing common desktop tasks like accessing files, 
opening and resizing windows, etc. The study has 
considered a variety of factors such as complexity of tasks, 
screen size, and human factors like pleasantness, fatigue, 
and naturalness. 

RELATED WORK 

Technical  
Recent studies have demonstrated that hand gesture systems 
are not only technical and theoretical in nature but are also 
very practical since they can be implemented into numerous 
types of application systems and environments. For 
example, Ahn et al. [3] developed a method for virtual 
environment slide show presentations.  

Another example is the study by Jain [4], which describes a 
way to estimate hand poses for mobile phones that only 
have one pointing gesture based on a vision-based hand 
gesture approach. The sign language tutoring tool 
developed by Aran et al. [5] is also very practical because it 
is designed to interact with users to teach them the 
fundamentals of sign language [6].  
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Several researchers have conducted similar studies in 
tracking, such as the Viola-Jones-based cascade classifier, 
which is typically used for face tracking in rapid image 
processing [7,8] and is regarded as more robust in pattern 
recognition against noise and lighting conditions [9]. Other 
researchers have shown that cascade classifiers can also be 
utilized to recognize hands and various parts of the human 
body [9,10,11,12,13].  

In order to detect gestures, Marcel et al. [14] proposed a 
method of hand gesture recognition based on Input-Output 
Hidden Markov Models that track variations in the skin 
color of the human body. Similarly, Chen et al. [15] applied 
the hidden Markov model in training method to enable 
systems to detect hand postures, even though it is more 
complex than Cascade classifiers in training hand gestures.  

A simple Human-Computer Interactive system that could 
detect predefined hand gestures for the numbers 0 to 6 was 
proposed by Liu et al. [6]. This system could better 
implement the Number Input Management in Word 
documents. The AdaBoost algorithm was revised and used 
to automatically recognize a user’s hand from the video 
stream, which is based on Haar-like features as a 
representation of hand gestures. A Multi-class Support 
Vector Machine was employed  to train and detect  the hand 
gesture based on Hu invariant moments features and the 
Human Computer Conversation was then implemented for 
hand gesture interaction instead of a traditional mouse and 
keyboard.  

The other research, by Yu et al. [17], proposes a hand 
gesture feature extraction method (with a dataset of 3500 
images) that employs multi-layer perception. By binarizing 
the image and enhancing the contrast, the silhouette and 
distinct features of the hand are accurately and efficiently 
extracted from the image. The Gauss-Laplace edge 
detection approach has been utilized to get the hand edge. A 
feature vector that can recognize hand gestures is developed 
from combinational parameters of Hu invariant moment, 
hand gesture region and Fourier descriptor.  

In above mentioned related works, accuracy and usefulness 
of gesture recognition software have remained a 
challenging issue. Noise, inconsistent lighting, items in the 
background, distinct features, and equipment limitations 
can also be named as the constraints associated with some 
of those image-based gesture recognition systems. 
Technological incompatibility may also cause difficulties in 
the general usage to match various image-based gesture 
recognition systems. For instance, a calibrating algorithm 
for one camera might not work properly for another 
different camera. Kinect camera uses some more stable 
methods and very useful techniques such as: background 
removal, image segmentation, depth and connectivity 
detection, and hand gesture recognition. Last but not least, 
Kinect also works well in an extensive variety of lighting 
conditions which itself helps in reducing the need for a high 
power of CPU. Having all these features enables Kinect to 

simulate a number of controllers properly. Using Kinect 
unit enables us to identify the depth of every single pixel in 
the frame and ultimately conserve the developing (no need 
for making samples and efforts in training, and testing 
sessions) and running time comparing to the learning-based 
traditional methods that have been used in the above 
mentioned related works. Moreover, applying a depth 
thresholding removes the wrist and its unwanted defects 
from the depth map, based on Z (creates a binary image). 
Cropping the wrist out of the frame can also help in 
improving accuracy. On the other hand, OpenNI and NITE 
secure the system with a high stability and efficiency by 
decreasing the effect of ambient disturbing factors such as 
noise and improper light conditions. In addition, 
programming with NITE provides some gesture detector 
options, e.g. Velocity or Angle features in a push detector 
in order to make a desirable setting for the push gesture 
recognition. 

Usability  
As for the multimodal interfaces, Cabral et al. [18] discuss 
numerous usability issues associated to the use of gestures 
as an input mode. A simplistically strong 2D computer 
vision based gesture recognition system was introduced by 
the authors and was successfully used for interaction in VR 
environments. Three different scenarios were employed to 
test the interface: as a regular pointing device in a GUI 
interface, as a navigation tool, and as a visualization tool. 
Their results illustrated that it is more time consuming, as 
well as more fatiguing to complete simple pointing tasks 
than using a mouse. However, several advantages are 
revealed by the use of gestures as a substitute in multimodal 
interfaces. These include immediate access to computing 
resources using a natural and intuitive way, and that 
balances properly to joint applications, where gestures can 
be used infrequently. 

A proposition by Villaroman et al. [19] suggests that using 
Kinect to classroom training on natural user interaction 
creates a prospect and innovative method. Examples are 
presented to demonstrate how Kinect-assisted instruction 
can be utilized to accomplish certain learning results in 
Human Computer Interaction (HCI) courses. Moreover, the 
authors have confirmed that OpenNI, in addition to its 
accompanying libraries, are adequate and beneficial in 
enabling Kinect-assisted learning activities. For students, 
Kinect and OpenNI offer a hands-on experience with its 
gesture-based, natural user interaction technology. 

In a study on 3D applications using Kinect, Kang et al. [20] 
introduced a control method that naturally regulates the 
application with the use of distance information and joints’ 
location information. Furthermore, the recognition rate was 
more successful, as well as the use of the proposed gestures 
in the 3D application, which was 27% quicker than a 
mouse. 

Code Space, introduced by Bragdon et al. [21], is a system 
that combines touch + air gesture hybrid interactions to 
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jointly carry small developer group meetings. This method 
enables access, control and sharing of information through 
several different devices such as multi-touch screen, mobile 
touch devices, and Microsoft Kinect sensors. In a formative 
study, professional developers were positive about the 
interaction design, and most felt that pointing with hands or 
devices and forming hand postures are socially acceptable. 

A gesture user interface application, Open Gesture, is 
available for standard tasks, for instance making telephone 
calls, operating the television, and executing mathematical 
calculations. This prototype uses a television interface to 
carry out various tasks by using simple hand gestures. 
Based on a usability evaluation, Bhuiyan and Picking [22], 
recommend that this technology can improve the lives of 
the elderly and the disabled users by creating more 
independence while some challenges still remain to be 
overcome. 

During a study, on touch-free navigation through 
radiological images, analyzed by Ebert et al. [23], ten 
medical professionals tested the system by rebuilding a 
dozen images from a CT data. The experiment measured 
the response period and the practicality of the system 
compared to the mouse/keyboard control. An average of ten 
minutes was required for the participants to be at ease with 
the system. The response time was 120 ms, and the image 
recreation time using gestures was 1.4 time longer than 
using mouse/keyboard. However it does remove the 
potential for infection, for both patients and staff.  

In a usability study, in order to have more accurate results, 
it is suggested to design a simple and minimalistic as 
possible simulated desktop interface with neutral colors to 
reduce user error or bias, while focusing on common 
desktop tasks to be relatively general. Moreover, we believe 
that studying more features in a usability study than those 
have been studied in above mentioned related works 
develops the models and theories of interaction. 

METHODOLOGY 
Our research aims as verifying the following hypothesis: 
On a WIMP (Windows, Icons, Menus, Pointers) user 
interface, the gesture-based input is superior to 
mouse/keyboard when using with a big-screen, but not on a 
small screen. In order to verify this hypothesis, we (1) 
designed a simple yet effective simulated WIMP interface, 
(2) defined a set of criteria for evaluation, (3) selected 
natural gestures, (4) implemented a gesture recognition 
engine, and (5) performed usability studies. 

User Interface and Gesture Recognition Modules 
This project uses a simulated WIMP interface. The design 
is kept as simple and minimalistic as possible, with neutral 
colors to reduce user error or bias (Figure 1). The simulated 
desktop includes icons with operations such as selecting, 
opening/closing, moving and resizing.  

 
Figure 1. User interface. 

Tables 1 and 2 show our chosen gestures and their 
corresponding mouse/keyboard events. We have used a 
combination of Kinect sensor, OpenCV, Allegro graphics 
library, OpenNI, and NITE to create the simulated desktop 
interface and interact with users. 

Processes Arm 

Selecting/Running/Closing 

Hand pushing 

 

Moving curser 

Hand moving 

 

Grabbing/Resizing 

Hand circling 

 

Table 1. Final design for arm/hand set. 

Arm Gestures Mouse Actions 

Push Dbl-click Run/close objects 

Circle + move + 
push Drag & drop Move/resize 

Table 2. Arm gestures’ definitions, mouse analogies, and 
actions. 

The details of the gesture recognition engine are not within 
the scope of this paper that is focused on usability study. 
Figure 2 illustrates our gesture-based UI algorithm. 
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Figure 2. The algorithm controlling UI using arm gestures 

recognition. 

User Experiments  
In our usability experiments we have focused on common 
desktop tasks to be relatively general, and have included 
ratings by typical university users and also objective 
measures by observation, such as number of trials, errors, 
etc. 

The experiment process has the following sessions: 

Training session  
Training consists of thirty minutes of practicing the 
"simple" tasks, including selecting desktop objects (icons 
and windows), opening and closing, moving and resizing. 
Complex tasks are combination of 5 simple ones through a 
script. 

Test session  
Test sessions include two tasks (simple and complex), two 
devices (mouse and gesture), and two types of screen 
(desktop and big-screen), i.e. eight units.  

Questionnaire and observation 
During the test sessions the users are requested to rate their 
satisfaction on a scale of 1 to 5 (1 for absolutely unsatisfied 
and 5 for extremely satisfied) on eight respective task 
tables, and to answer some extra questions on the 
questionnaire while the testing persons measure the 
observations. 

RESULTS AND DISCUSSIONS 
This study is conducted using 20 participants (10 males and 
10 females) and in the age range of 11 to 40 (average of 29 
years old). Nineteen participants were right-handed and one 
was left-handed.  

Hypotheses and Analyses 
For the different factors being studied, 3-way repeated 
analysis of variances (ANOVA) is carried out for three 
independent variables:  

1- Difficulty (simple task vs. complex task)  
2- Input device (mouse vs. arm gestures) 
3- Output device (desktop vs. big-screen)  
All analysis are concluded at p < 0.05 significance level and 
for 20 participants. Our ANOVA analysis is accompanied 

by an extra t-test analysis particularly for naturalness and 
fatigue. This redundancy is carried out in order to confirm 
our multi-factor analysis with a single-factor analysis. The 
results of the t-test support the ANOVA analysis. 

Notation: In the following analyses, we show the mean and 
standard deviation for different variables in the forms of 
Mvariable (e.g. Msimple is the mean for simple task) and 
SDvariable (e.g. SDgesture is the standard deviation for arm 
gestures). Moreover, F(df,MS) is the test statistic (F-ratio) 
in which df and MS are the degree of freedom and mean 
square respectively for the variables (within variables when 
more than one, and within subjects). The F-ratio is 
calculated using MSvariable(s)/MSerror(s) and P is the 
probability value. 

Time (duration of test session): 
Hypothesis- using a mouse is faster than using arm gestures 
as inputs. 
The analysis illustrates that for variable 1, F(1,2504.306) = 
66.994, P = 0.0000 (Msimple = 17.83, SDsimple = 7.67 vs. 
Mcomplex = 25.74, SDcomplex = 9.80). This illustrates that task 
complexity has significant effect on time. This effect is as 
expected since the two tasks were initially designed to 
illustrate different difficulty levels for using the system. 

 
Figure 3. Temporal MAX/MIN/MEAN/ST DEV facts 

(D≡desktop, B≡big-screen). 

For variable 2, F(1,3820.070) = 41.163, P = 0.0000 (Mmouse 
= 16.90, SDmouse = 7.0868 vs. Mgesture = 26.67, SDgesture = 
9.3749), which implies that using gestures also has 
significant effect on time. For variable 3, F(1,10.404) = 
0.646, P = 0.4316 which illustrates that the screen type does 
not have a significant effect on time. Moreover, the analysis 
shows no significant effect on time for variables 1 and 2 
combined F(1,29.929) = 1.371, P = 0.2562, variables 1 and 
3 combined F(1,28.392) = 1.641, P = 0.2156, and finally 
variables 2 and 3 combined, F(1,37.056) = 1.131, P = 
0.3008. Combination of the three variables (1, 2, and 3) 
F(1,0.121) =  0.006, P = 0.9370 also do not show any 
significant effect on time. Based on the above, the initial 
hypothesis is confirmed meaning gesture inputs are 
significantly slower than using a mouse (as shown also in 
Figure 3).  

104



Easiness (how easy to interact with the UI): 
Hypothesis- Using arm gestures as inputs is easier than 
mouse. 
Analyzing the feedback from participants regarding 
easiness of experiments given the 3 variables defined earlier 
shows that the only significant effect is caused by variable 
2, F(1,19.600) = 23.059, P = 0.0001 (Mmouse = 4.3750, 
SDmouse = 0.8325 vs. Mgesture = 3.6750, SDgesture = 0.9517). 
This means that according to participants, the only variable 
with significant effect on easiness is the input device 
(mouse vs. gesture). For variable 1, F(1,0.100) = 0.134, P = 
0.7181 and for variable 3, F(1,1.225) = 2.730, P = 0.1149. 
For combination of variables 1 and 2, F(1,0.100) = 0.409, P 
= 0.5303, variables 1 and 3, F(1,0.225) = 0.371, P = 0.5497, 
variables 2 and 3, F(1,4.225) = 4.219, P = 0.0540, and 
finally for variables 1, 2, and 3, F(1,0.225) = 0.609, P = 
0.4449 which indicates that there is no significant effect. 
According to the provided statistics, the initial hypothesis is 
rejected which indicates that using a mouse is significantly 
easier than using arm gestures. 

Fatigue (how fatiguing to interact with the UI): 
Hypothesis- Using arm gestures produces more fatigue 
compared to mouse. 
In this experiment the participants have been asked to rank 
higher if more fatigue is experienced. The feedback 
obtained from participants indicates that similar to easiness, 
variable 2 is the only one with significant effect F(1,45.156) 
= 31.813, P = 0.0000 (Mmouse = 1.4000, SDmouse = 0.7730 vs. 
Mgesture = 2.4625, SDgesture = 0.9929). This indicates that the 
input device is the only determining parameter in fatigue. 
For variable 1, F(1,1.406) = 3.065, P = 0.0961 and for 
variable 3, F(1,0.506) = 1.351, P = 0.2595 respectively. For 
combination of variables 1 and 2, F(1,0.006) = 0.015, P = 
0.9050, variables 1 and 3, F(1,0.006) = 0.018, P = 0.8949, 
variables 2 and 3, F(1,0.756) = 0.657, P = 0.4276, and 
finally variables 1, 2, and 3, F(1,0.756) = 1.322, P = 0.2645. 
Based on the above mentioned figures, the initial 
hypothesis is approved, meaning arms gestures significantly 
causes more fatigue compared to using a mouse. Table 3 
shows an extra t-test analysis for fatigue which supports the 
ANOVA analysis. 

Phase 
Mean 

Mouse        Arm 
p-value 

Simple/Desktop 1.10            2.45 3.756e-06 

Simple/Big-screen 1.5              2.3 0.002506 

Complex/Desktop 1.45            2.50 0.002502 

Complex/Big-screen 1.55            2.60 0.002173 

Table 3. Fatigue and results of t-test. 

Naturalness (how natural/intuitive to interact with the UI): 
Hypothesis- Using arm gestures is more natural than using 
a mouse. 

For this factor, none of the variables shows any significant 
effect. 
The calculated statistical values for variable 1, F(1,0.000) = 
0.000, P = 1.0000, for variable 2, F(1,10.000) = 4.153, P = 
0.0557, and for variable 3, F(1,0.225) = 0.851, P = 0.3679. 
These results indicate that variables 1, 2, and 3 do not have 
any significant impact on naturalness of tasks. However, 
combination of variables 2 and 3 show significant effect 
F(1,5.625) = 6.628, P = 0.0186 (Mmouse-desktop = 3.4500, 
SDmouse-desktop = 1.1082, vs. Mmouse-bigscreen = 3, SDmouse-bigscreen 
= 1.1983, vs. Mgesture-desktop = 3.5750, SDgesture-desktop = 0.9306, 
vs. Mgesture-bigscreen = 3.8750, SDgesture-bigscreen = 0.8530). This 
means that the input device when combined with a 
particular output device will show significant effect on 
naturalness. Multiple one-way ANOVAs further indicate 
that mouse when used on desktop is significantly more 
natural than mouse used on big-screen. Moreover, gestures 
used on big-screen are significantly more natural than 
mouse used on both desktop and big-screen. Combination 
of variables 1 and 2, F(1,0.400) = 0.910, P = 0.3520, 
variables 1 and 3, F(1,0.225) = 0.533, P = 0.4744, and 
finally variables 1, 2, and 3 , F(1,0.625) = 1.067, P = 
0.3145, show no significant effect. According to the above 
mentioned figures, the hypothesis is rejected, meaning arm 
gestures as inputs do not feel significantly more natural 
compared to mouse. However, it is shown that using arm 
gestures on big-screen is significantly more natural than 
using a mouse on both the desktop and the big-screen. 
Table 4 shows an extra t-test analysis for naturalness which 
supports the ANOVA analysis. 

Phase 
Mean 

Mouse        Arm p-value 

Simple/Desktop 3.30            3.65 0.2804 

Simple/Big-screen 3.05            3.90 0.006697 

Complex/Desktop   3.6             3.5 0.7647 

Complex/Big-screen 2.95           3.85 0.01963 

Table 4. Naturalness and results of t-test. 

Pleasantness (how pleasant to interact with the UI): 
Hypothesis- Using arm gestures as inputs is more pleasant 
than using mouse. 
When analyzing the participant feedback for pleasantness, a 
similar trend to that of naturalness is observed. Variable 1, 
F(1,0.006) = 0.016, P = 0.9020, variable 2, F(1,6.806) = 
3.824, P = 0.0654, and variable 3, F(1,0.506) = 1.351, P = 
0.2595 show no significant effect. Combination of variables 
1 and 2, F(1,1.056) = 3.055, P = 0.0966, variables 1 and 3, 
F(1,0.306) = 1.347, P = 0.2601, and variables 1, 2, and 3, 
F(1,0.506) = 1.572, P = 0.2251 show no significant effect as 
well. Similar to naturalness, the only set of variables which 
illustrate an effect are combination of factors 2 and 3, 
F(1,8.556) = 7.716, P = 0.0120 (Mmouse-desktop = 3.7250, 
SDmouse-desktop = 0.9868 vs. Mmouse-bigscreen = 3.1500, SDmouse-
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bigscreen = 1.0266, vs. Mgesture-desktop = 3.6750, SDgesture-desktop = 
0.8590, vs. Mgesture-bigscreen = 4.0250, SDgesture-bigscreen = 
0.8317). Therefore there is significant interaction between 
input and output device when pleasantness is being 
analyzed. Multiple one-way ANOVAs further indicate that 
mouse when used on desktop is significantly more pleasant 
than mouse used on big-screen. Furthermore, arm gestures 
used on big-screen is significantly more pleasant than 
mouse used on desktop, mouse used on big-screen, and arm 
gestures used on desktop. 

Based on these results, similar to naturalness, the initial 
hypothesis is rejected. But again, it is revealed that the 
hypothesis does hold true on big-screens, meaning using 
arm gestures is significantly more pleasant than mouse 
when performed on big-screens. Also it is shown that arm 
gestures used on big-screen is significantly more pleasant 
compared to when it is used on desktop. 

Overall Satisfaction (how overall satisfactory to interact with 
the UI): 
Hypothesis- Overall, using arm gestures as inputs is a more 
popular experience compared to mouse. 
In the overall ranking obtained from participants, no 
particular variable shows significant effect. This can be due 
to the fact that while some parameters such as naturalness 
are ranked higher for gesture on the big-screen, the fatigue 
level is increased at the same time. This experience, we 
believe leads to an overall insignificant ranking. The 
calculated values are as follows: For variable 1, F(1,0.006) 
= 0.019, P = 0.8928, for variable 2, F(1,0.306) = 0.341, P = 
0.5662, and for variable 3, F(1,0.306) = 0.721, P = 0.4063. 
Similarly for combination of variables, no effect is 
observed since for variables 1 and 2, F(1,0.156) = 0.704, P 
= 0.4120, variables 1 and 3, F(1,0.006) = 0.022, P = 0.8833, 
variables 2 and 3, F(1,3.906) = 4.249, P = 0.0532, and 
finally for all three variables 1, 2, and 3, F(1,0.006) = 0.035, 
P = 0.8531. Based on this analysis, the hypothesis is 
rejected, meaning neither input hold a significant popularity 
over the other. 

Hypotheses Verification 
According to the provided statistical analyses, we 
summarize our hypotheses verification as follows:  

The time and the fatigue factors analyses support our initial 
hypotheses, meaning gesture inputs are significantly slower 
and more fatiguing than using a mouse. The initial 
hypotheses for the easiness and overall satisfaction factors 
are rejected which indicate that using a mouse is 
significantly easier than using arm gestures while neither 
inputs hold a significant popularity over the other. For the 
naturalness and the pleasure factors, the hypotheses are 
rejected as well, meaning arm gestures as inputs do not feel 
significantly more natural or more fun to use compared to 
mouse. However, it is revealed that using arm gestures on 
big-screen is significantly more natural and more pleasant 
than using a mouse on both the desktop and the big-screen. 
Also it is shown that arm gestures used on big-screen is 

significantly more pleasant compared to when it is used on 
desktop. 

Extra Observations 

Timing: 
Using mouse on big-screen is slower than on desktop. As 
expected, due to not being familiar with controlling a UI 
using gestures, the result with mouse is faster than with 
gestures. However, we believe that having more practice 
and getting used to the gesture application, allows the users 
to perform the tasks almost as fast as using a mouse. 

Satisfaction: 
Most of the participants preferred “equally use of mouse 
and gesture” as a combination of gesture and mouse inputs. 

 
Figure 4. Satisfaction comparison (s≡simple, c≡complex, 

m≡mouse, g≡gesture, d≡desktop, b≡big-screen). 

Figure 5. Best/Worst satisfactions (s≡simple, c≡complex, 
m≡mouse, g≡gesture, d≡desktop, b≡big-screen). 
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As shown in Figures 4 and 5, doing simple-task with 
gestures on desktop caused more fatigue than on big-screen, 
although it is reverse in doing complex-task. Performing 
simple-task, using mouse on desktop is the easiest and the 
lightest (least fatigue) and on big-screen is the least pleasant 
and the least overall satisfactory, while using gestures on 
big-screen is the most natural, and the most pleasant. In 
addition, the complex-task using gestures on desktop is the 
most difficult and the least overall satisfactory. In other 
words, a short time usage of mouse on big-screen, and a 
long term usage of gesture on desktop have the least 
popularity from users’ feedback. Doing complex-task, using 
mouse on desktop is the most overall satisfactory and on 
big-screen is the least natural, while using gesture on big-
screen is the heaviest (most fatigue). 

Based on the results, opening a window (Running action) 
using gesture was the easiest task overall.  

This study compared arm gestures with mouse/keyboard in 
two different settings (desktop and large-scale displays), 
and two different task difficulties (simple and complex). 
Based on the participants’ feedback, multimodal UI makes 
more attentive and immersive than the conventional UI. 
There are still remaining issues to solve such that users feel 
fatigue while using arms in the air.  

CONCLUSION 
A new gesture-based interface has been presented and 
compared with traditional input systems for typical desktop 
tasks. Through an efficient implementation using Kinect 3D 
camera and computer vision software libraries, and with 
comprehensive user experiments, we compared our defined 
arm gestures to the conventional input devices 
(mouse/keyboard), in two different settings (desktop and 
big-screen displays), and during two sets of tasks (simple 
and complex) for precision, efficiency, easiness, 
pleasantness, fatigue, naturalness, and overall satisfaction to 
verify the following hypothesis: the gesture-based input is 
superior to mouse/keyboard when using big-screen. Our 
experiment has analytically showed that using gestures on a 
big-screen display is more natural and pleasant than using a 
mouse/keyboard in a HCI. On the other hand, arm gestures 
are more fatiguing than mouse.  

There are a few efforts that can be undertaken to improve 
our prototype system. The current prototype only supports 
single hand gestures for interaction. Hence, multiple hands 
gesture interaction can be proposed in order to have more 
gestures available, reduce the error rate, and ultimately 
increase the accuracy, speed rate, and user satisfaction, 
while more hand postures will be selected to support the 
controlling activities. However, a robust approach in hand 
gesture recognition is necessary since the multiple hands 
increase the computational costs and complexity of the 
system. Using other types of body gestures and studying 
other types of tasks are among our objectives for further 
research. 
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