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Abstract— The global implementation of smart meters that 

measure and communicate residential electricity consumption 

has resulted in the creation of new energy efficiency services 

such as automated energy management systems and billing 

systems. In view of the vulnerability of smart meters to cyber 

and physical attacks, this research presents a short-term load 

prediction method that uses energy disaggregation, to detect the 

False Data Injection (FDI) attack on smart meters. This method 

is constructed of an edge detection based Non-Intrusive Load 

Monitoring (NILM) module for energy disaggregation and a 

load forecaster. In the first step, we attempt to determine when 

the appliances are switching on/off. Second, the acquired 

switching events would be utilized as an input for machine 

learning algorithms including Support Vector Regression (SVR) 

and Elman Neural Network (ENN) to improve performance of 

the load forecaster for detecting FDI attacks. Validation of the 

results based on the data collected from twenty actual UK 

houses has indicated that the recommended method is a great 

solution for detecting cyberattacks on residential smart meters. 

Keywords— Non-Intrusive Load Monitoring, load forecasting, 

FDI attacks, Support Vector Regression, Elman Neural Network 

I. INTRODUCTION  

Due to the digitalization initiatives of the energy sector, 
smart meters are currently rolled out in the electricity market 
whose extensive deployment represents the first step into 
digitalization solutions for many utilities. Smart meters record 
the consumption behavior of the end-users with a much higher 
resolution than classical electricity meters, such as in a minute 
time scale and second time scale [1-3]. The data can be utilized 
for automated energy management systems to profile high-
energy-consumption equipment, allowing them to create 
energy-saving techniques like rescheduling high-power-
demanding processes for off-peak hours. However, digital 
smart meters and communication-based smart meter networks 
are vulnerable to cyber attacks. For instance, the U.S. Federal 
Bureau of Investigation reported an organized energy theft 
attempt against AMI which could cost a utility company up to 
$400 M annually in 2009 [4]. Advanced innovations that can 
accurately detect cyberattacks on smart meter and their 
networks are in urgent need. 

Although still being in the infant, securing smart meters 
against cyberattacks has attracted increasing attentions in the 
past decades due to its significant importance. Advanced 
encryption [5] and authentication [6] have been presented to 
secure the smart meter data. However, it has been found that 
these cryptographic technologies alone may not be sufficient 
for fully sustaining the security of smart meters [7]. Innovative 
intrusion detection systems that can monitor the data and 
detect malicious behaviors in real-time or near real-time 
fashion are critical and needed to add another defense layer 
for securing smart meter data record and storage [8]. For 
example, a collaborative intrusion detection mechanism was 
proposed against false data injection (FDI) attacks for smart 

meters with the consideration of constrained computation and 
storage capacities of smart meters [9]. In [10], a model-based 
intrusion detection mechanism as well as a machine learning-
based intrusion prevention system was designed to protect the 
network against various cyberattacks on ZigBee-based Home 
Area Networks (HANs). While these methods are promising, 
they could be vulnerable to insider attacks which might be 
conducted by authorized personnel such as current and/or 
former employees [11]. In [12], customers’ consumption 
patten is used for detecting energy theft. This work is exciting, 
although it focused on protecting a network of smart meters 
and not on single residential smart meter. 

In this paper, we present a Non-Intrusive Load Monitoring 
(NILM) based electricity consumption prediction for 
detecting FDI attacks on smart meters of residential homes. 
NILM is the procedure of disaggregating electrical loads by 
just examining appliance-specific power consumption 
signatures within aggregated load data measured by a smart 
meter through a variety of signal processing or pattern 
recognition techniques [13-15]. It is worth mentioning that 
this method is considered to be non-intrusive as it avoids any 
equipment installed inside the user’s house. Attackers may be 
able to compromise the smart meter via physical or cyber 
interferences. This study applies an edge detection based 
NILM for load disaggregation, to find when an appliance is 
turned on/off based on the edges and each device's load 
signatures. Second, the load disaggregation method is 
combined with machine learning algorithms to enhance load 
pattern forecast. The NILM extract the individual load patten 
from the available historical aggregated load data and these 
new appliance-specific load pattens increase the training data 
window for the forecaster and achieve a significant 
enhancement for its prediction performance. Then, a detailed 
analysis and comparison of two forecasting algorithms 
including Support Vector Regression (SVR) and Elman 
Neural Network (ENN) based on the load disaggregation. At 
the end, the proposed NILM based electricity consumption 
prediction is applied to detected FDI attacks on smart meters 
of residential homes. 

The rest of the paper is organized as below: Section II 
describes the energy disaggregation system based on edge 
detection and the short-term load forecasting methods 
including SVR and ENN. Section III apply the proposed 
NILM based electricity consumption prediction to detect FDI 
attacks. Finally, we conclude in Section IV. 

II. NON-INTRUSIVE LOAD MONITORING BASED DEMAND 

PREDICTION 

The basic concept of the algorithm is to automatically 
break down the total power usage to device level by utilizing 
data collected from the smart electricity meter and then 
forecast the loads for the next days. In the following sections, 
we will first define the general idea and concept of the NILM 
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algorithm based on edge detection and then the description of 
how to estimate the load of the next day is provided. 

A. NILM Algorithm

The consumption of power in a household varies over time
depending on how particular devices are employed by the 
occupants. The change in electricity consumption due to the 
operation of the devices is represented by the difference in real 
power (dP). The key concept of this algorithm is to utilize 
these differences (dPs) to recognize device-switching events 
in the load curve based on an appliance signature database. 

To begin, we locate time points in the load curve where 
major changes between two levels of power consumption 
occur. Then, once an edge has been detected, the differences 
in various physical variables between these subsequent stages 
were computed, and then the shift as a possible appliance-
switching event was identified. Finally, we compare each of 
these changes to a known set of differences from an appliance 
signature database, then we map the edge to a specific device 
based on its load characteristics. Fig .1 illustrates the overview 
the algorithm. The above-mentioned steps are explained 
specifically in this section: 

Fig. 1. Block diagram for the NILM load forecasting technique. 

• Edge Detection

The apparent power was utilized as an input vector to find
edges in the recorded electricity consumption data that 
correspond to the appliance switching events in this study. The 
proposed algorithm computes the absolute values of the 
differences in the apparent power between two consecutive 
values in the data series. If the absolute value of a difference 
is greater than a pre-defined threshold, the value may be 
considered an edge. However, there can be much more 
potential edges than appliance-switching events which would 
result in a high number of spurious events. The use of a 
smoothing filter can aid in the removal of these false 
detections. In order to decrease the number of spurious events, 
we tested a median filter. It is worth mentioning that the most 
significant positive point of the median filter is the ability to 
remove outliers. In this study utilizing a median filter 
decreases the number of potential edges significantly without 
missing a true device-switching event. 

• Power Level and Delta Level

The next stage is to extract power levels that connect two
edges in the smoothened signal after the relevant edges have 
been found. The algorithm retrieves the delta vectors that are 
used to match the edge to a specific device from two 
consecutive power levels separated by an edge. 

• Recognition and Labeling

The algorithm's recognition section tries to match known
appliance signatures from the signature database with delta 
vectors extracted in the previous phase. First, the algorithm 
calculates the Euclidean distance in the two-dimensional 
vector space. If this is less than a pre-determined length of 

value plus an oscillation value, a potential match is found. The 
oscillation term is the length of a vector with the first 
component being the maximum of the standard deviation in 
real power at level x or x+1. Following that, each distance is 
connected with a collection of possible recognition candidates 
from the signature database. It is worth noting that this set of 
possible associated recognitions could be empty as well. The 
relevant distance, in this case, could not be linked to a known 
signature. This could be caused by a detected edge that does 
not correspond to an appliance switching event, or by the 
database not having a corresponding signature that matches 
distance. Second, the nearest neighbor match is done on all 
potentially matching distances that have been connected with 
the appliance. Finally, the algorithm labels the load profile 
with the device names that correspond to it. The schematic of 
the steps is shown in Fig .2. 

Fig. 2. Overview of the steps of the proposed NILM algorithm. 

B. Short Term Load Forecasting

Support Vector Regression (SVR) and Elman Neural
Network (ENN) were employed for a short-term load 
forecasting goal in this work. For better energy management 
and demand-side management, load forecasting for 
households must be combined with energy disaggregation 
methods. 

In machine learning, Support Vector Regressions (SVR) 
are considered as supervised learning models that uses an 
algorithm to identify the relationship between dependent and 
independent variables. The purpose of the SVR [16] algorithm 
for the linear case is to find a linear regression function that is 
as flat as possible while best approximating the actual output 

vector � with an error tolerance �. However, linear function
approximation is of limited practical use in most real-world 
problems. The solution is to map the input data into a higher-
dimensional feature space where the training data may be 
linear, and then perform linear regression in this feature space. 
The following convex optimization problem can be 
represented as a solution to the regression problem for the 
linear case:

⎩⎪
⎪⎪
⎨
⎪⎪⎪
⎧min 12 � �� − �����

�,���
��� − ����〈�� . ��〉 +

� ��� + �����
���

− � ���� − �����
���

�.   � �� − ����       0 ≤ �� ≤ $  ∀&                       0 ≤ ��� ≤ $   ∀&
�

���

(1) 
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where  〈�� . ��〉 is the inner product of ��  and �� . In addition, ��  and  ��� are Lagrange multipliers. 
Therefore, the approximate function can be expressed as: 

'��� = � −�� + �����
�,���

〈�� . ��〉 + ) 

(2) 

The data about the inside of the � -insensitive tube is 

represented by the values −�� + ����, which are zero. As a 
result, the final decision function only considers the remaining 

nonzero coefficients of  �� + ���� and the data with nonzero 
Lagrange multipliers are referred to as support vectors.  As a 
result, support vectors are made the definition of the 
approximate function, while other data can be considered 
redundant. Finally, we may rewrite the approximate function 
as follows: 

'��� = ��* + ��*��
���

〈�� . ��〉 + )  
+ = 1,2, … - 

(3) 

where �* denotes the support vector and - denotes the total 
number of support vectors. 

Elman introduced the ENN, a simple recurrent neural 
network, in 1990 [17]. This network has three layers: an input 
layer, a hidden layer, and an output layer. It is analogous to a 
three-layer feed-forward neural network in this regard. It does, 
however, include a context layer that feeds back the hidden 
layer outputs from previous time steps. The neurons in each 
layer are used to transfer information from one layer to the 
next. The following is the dynamics of the change in hidden 
state neuron activation in the context layer [18,19]: 

�� � = .� /�*�* − 1� + � 0��1� − 1�2
���

3
*��

� 

(4) 

where �* � and 1� � denote the output of the context state 

and input neurons, respectively; /�*  and 0��  denote their 

corresponding weights, and .� is a sigmoid transfer function. 
Fig. 3 shows a simple structure of an ENN. As can be seen, 

the context neurons receive input from the hidden layers and 
pass their output to the hidden layers. The context layers 
always store the output from the hidden layer and relay this 
information in the next iteration. This behavior allows them to 
form a sort of short-term memory. 
 

 
Fig. 3. The architecture of Elman Naural Network 

 
 

III. APPLICATION IN SMART METER ATTACK DETECTION 

The energy consumption of each household must be 
available to apply Energy Disaggregation (ED) to improve 

household forecasting performance. As a result, the UK 
dataset for 20 households [20] was employed. This is one of 
the first publicly available datasets collected primarily to 
promote ED research. The REFIT electrical load 
measurements dataset includes whole-house aggregate loads 
and nine individual appliance measurements at 8-second 
intervals per house, the data collected continuously from 20 
houses over a two-year period. During the monitoring, the 
occupants went about their daily activities. In this work, we 
will concentrate on only household number one. Table. I sums 
up the appliances in the first house and their real power 
consumption range measured by separate energy sensors. 

TABLE. I. DETAILS OF HOUSE #1 APPLIANCES 

Appliances Range of consumptions (W) 

Fridge (Hot Point) 12-2056 

Freezer (Beko) 21-1071 

Freezer (Unknown) 66-1094 

Washer dryer (Creda) 10-2710 

Washing Machine (Beko) 10-2664 

Dish Washer (Bosch) 30-2525 

Computer (Lenovo) 23-58 

Television Site (Toshiba) 57 

Electric Heater (GLEN) 1-2076 

 

A. On/Off Status Detection of Applicances 

The first objective of the experiment is to identify when 
the devices are on/off. During the experiment, the algorithm 
successfully detected the on/off events of all devices except 
the Electric Heater. This can be explained that the electric 
heater is considered as controllable load and is always on 
during the experiment. The maximum number of appliances 
that are working together is three. In addition, we use the 
lowest boundary to ensure that the algorithm recognizes the 
edges accurately because sometimes the median filter may 
cancel the actual small changes [21]. The daily data is sampled 
per 10 minutes. The real power consumption for one day and 
the detected switching events before and after applying the 
median filter is shown in Fig. 4.  
As can be seen in Fig.4 utilizing a median filter reduces the 
number of potential edges by up to 70% without missing a 
true device-switching event. In addition, Fig. 5 provides an 
overview of the identified devices that are operating 
simultaneously. 

 

 
Fig. 4. Detected switching events for aggregated data during one day before 

and after the implementation of the median filter 
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Fig. 5. Operation period and switching time of each appliance 

 

B. SVR and ENN Based Load Predictions 

      Given this initial response from the NILM algorithm, we 
combined supervised machine learning algorithms to forecast 
the next 24 hours consumption and their switching events. In 
this study, the Support Vector Regression is utilized as the first 
forecaster. We implement 70% of the data from the first three 
days for training and 30% for evaluation. Because the linear 
SVR method is used, the linear kernel function is 

implemented. Besides, � is set 7.0423 with the bias of 6.4197. 
Elman Neural Network is employed as the second 

forecaster to compare with SVR. The Elman Neural network 
uses 8 input nodes, 10 hidden layers, and 8 output nodes to 
forecast aggregated power demand and each appliance's 
switching demand for one day ahead. These input data are 
inputs from the disaggregation stage as well as inputs from the 
aggregated demand of the home for the current and previous 
hours of historical data for a total of 144 reduced scenarios. 
These eight inputs nodes represent the load changes for the 
eight major appliances listed in table 1. Fig.6 shows training 
vectors for both SVR and ENN.  

 
Fig. 6. Training vectors for SVR and ENN 

 
Fig.7 show the actual load and forecasted load for the first 

home using SVR and ENN methods. The metrics root mean 
squared error (RMSE) are used to assess the performance of 
the proposed methods in forecasting residential household 
demand. This metrics describe the performance of the 
forecaster. The RMES is useful for calculating average error 
while taking error direction into account. In other words, 

regardless of the direction of the error, the RMSE can provide 
an estimate of the average error between the predicted and 
actual signal. The formula for RMSE metrics is as below: 

45�6 = 7∑ �9: − �9�;���� -  

(5) 

where �<9  denotes the estimated output, �9  denotes the actual 

output, and - denotes the number of data points. 
Fig. 8 and Fig. 9 show the performance of the SVR and 

ENN according to the RMSE metrics. The results show that 
ENN outperforms SVR. However, it is worth mentioning that 
the training time for the ENN is almost double the training 
time of the SVR due to the feedback input in the context layer. 

 

 

 
Fig. 7. Next day load forecasting via SVR and ENN 

 

 
Fig. 8.  RMSE metrics for SVR 

 
Fig. 9. RMSE metrics for ENN 

C. Application for FDI Attack Detection in Smart Meter 

Although FDI attacks can modify the smart meter data via 
physical or cyber interferences. However, it is difficult to 
attack appliance-specific power consumptions as there are 
not submeters installed due to NILM is used in this work. The 
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entire home load predication is done via NILM and therefore 
it will be resilient to cyberattacks. A pre-defined RSME 
threshold (RMSE=1.5 for SVR) can be used to detect 
malicious meter data. Three FDI attack cases are considered. 
Case 1: meter data from time step 25 to 35 are modified to a 
constant 200 W; Case 2: meter data from time step 65 to 77 
are modified to a constant 2000 W; Case 3: meter data from 
time step 85 to 95 are modified to random integers within [0, 
1000] W. Fig. 10 illustrates the effectiveness of FDI attack 
detection by applying the SVR based load predictions on 
disaggregated appliance-specific data. 

 
Fig. 10. Detection of FDI attacks on smart meter data 

IV. CONCLUSION 

To detect cyberattacks on residential smart meters, we 
present a load disaggregation-based energy consumption 
prediction method that allows for automatic recognition of 
electric appliance switching events and forecasting the load 
demand based on the predicted appliances’ on/off statuses. 
Compared to the prediction without energy disaggregation, 
the NILM extract the individual appliance consumption patten 
from the aggregated load data and these new appliance-
specific load pattens increase the training data window for the 
forecaster and improve its prediction performance. Support 
vector regression (SVR) and Elman neuro network (ENN) are 
used to perform house energy forecast for detecting FDI 
attacks. Case studies on the obtained metering data of UK 
households verify the effectiveness of the load 
disaggregation-based demand prediction for detecting FDI 
attacks on smart meters.  
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