
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

An Anonymity Vulnerability in Tor
Qingfeng Tan , Member, IEEE, Xuebin Wang , Wei Shi , Member, IEEE,

Jian Tang , Fellow, IEEE, and Zhihong Tian , Senior Member, IEEE

Abstract— Privacy is currently one of the most concerned
issues in Cyberspace. Tor is the most widely used system in the
world for anonymously accessing Internet. However, Tor is known
to be vulnerable to end-to-end traffic correlation attacks when
an adversary is able to monitor traffic at both communication
endpoints. In this paper, we present a set of novel Trapper Attacks
that can be used to deanonymize user activities by both AS-level
adversaries and Node-level adversaries in a Tor network. First,
AS-level adversaries can exploit the occasional failures of cen-
sored network to selectively control entry guards of the Tor users.
Second, the adversaries can exploit poor reliability of the Tor
communication (e.g., natural churn) to compromise the exiting
nodes and the anonymous path. Once the adversaries gain control
of the routes, they can identify and inspect any traffic entering
and leaving the Tor network, consequently, deanonymize a Tor
user’s activity in the network. To demonstrate the effectiveness
and feasibility of this attacks, we implemented a tool that can
launch the proposed Trapper Attacks to automatic reveal com-
munication relationships between a Tor user and its destinations
running on a live Tor network. We also present a formal analysis
framework to evaluate the integrity of the Tor network. With
this framework, we successfully obtained quantitative estimates
of Tor’s security vulnerability. The proposed Trapper Attacks are
also designed to scale up in real-world Tor networks. Namely,
it allows an adversary to perform deanonymization in honey
relays effectively, and compromise the anonymity of Tor clients
in real time. Our experimental results show that the proposed
attacks succeed in less than 40 seconds achieving a 100%
accuracy rate and a false positive rate close to 0.

Index Terms— Tor, traffic analysis, deanonymization, denial-
of-service attacks.

I. INTRODUCTION

NOWADAYS, with the fast development of Internet,
the emergence of Internet-of-Things (IoT) and cyber-

physical systems (CPS) have drastically changed our daily

Manuscript received September 26, 2021; revised March 11, 2022 and
May 4, 2022; accepted May 6, 2022; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor M. Caesar. This work was supported
in part by the National Natural Science Foundation of China under Grant
61972105 and Grant U20B2046, in part by the Higher Education Innovation
Group under Grant 2020KCXTD007, in part by the Guangzhou Higher
Education Innovation Group under Grant 202032854, and in part by the
Guangdong Province Universities and Colleges Pearl River Scholar Funded
Scheme in 2019. (Corresponding author: Zhihong Tian.)

Qingfeng Tan and Zhihong Tian are with the Cyberspace Institute of
Advanced Technology, Guangzhou University, Guangzhou 510006, China
(e-mail: tianzhihong@gzhu.edu.cn).

Xuebin Wang is with the Institute of Information Engineering, Chinese
Academy of Sciences, Beijing 100093, China.

Wei Shi is with the School of Information Technology, Carleton University,
Ottawa, ON K1S 5B6, Canada.

Jian Tang is with Midea Group, Foshan 528311, China.
Digital Object Identifier 10.1109/TNET.2022.3174003

life and impacted individuals, societies and industries.
Nevertheless, security and privacy issues are the main chal-
lenges in the pervasive Internet environment. For instance,
most Apps collect personal information during Internet users’
online activities from IoT devices, such as cell phones and
other embedded devices. Users’ personal information may be
leaked and their privacy may be compromised.

In the past few decades, many anonymous communica-
tion systems have been designed and developed, aiming at
protecting user identities from being revealed by untrusted
destinations and third parties on Internet. Tor [1] is one
of the most popular low-latency anonymous communication
systems. As of early 2020, the Tor network comprises more
than 7000 Tor routers operated by volunteers all around the
world and carries terabytes traffic daily [2]. Millions of users
around the world use Tor to protect their communication
anonymity, including law-enforcement, intelligence agencies,
whistle-blowers, journalists as well as ordinary citizens wor-
ried about the privacy of their online communications.

Anonymous communication techniques have received great
attention, however are exploited by the adversaries in various
ways. They face increasing growth of abuses for various illegal
purposes such as having drug trading, hiding the executing of
botnet command and control (C&C) servers, and sending spam
over Tor. For example, WannaCry worm communicates with
C&C servers hosted on Tor network to provide hidden service
and avoid traceback.

A. Challenges in Tor Deanonymizing

Deanonymizing Tor network means recognizing commu-
nication relationship between a Tor user and his/her traffic
destination (e.g. a web service or a website) in Tor network.
Previous research works have presented various attacks to
deanonymize Tor network through controlling guard relays so
as to compromise routing path, or by correlating the underly-
ing network communications. Unfortunately, all existing traffic
correlation attacks assume that an adversary will be able to
monitor Tor traffic that lies on the forward path or reverse
path between source and destination. These studies make
hypotheses about user settings, adversary capabilities, and
the nature of the Tor network that are not able to meet the
practical scenarios. More importantly, Tor’s increasing scale
(over 7000 Tor routers) and geographical distribution of Tor’s
nodes across many countries lead to the fact that the network
flows from Tor clients to Internet destinations are often across
wide area networks (e.g. the client to guards and exit to
destination lie on different countries respectively).

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9758-3470
https://orcid.org/0000-0002-0809-6014
https://orcid.org/0000-0002-3071-8350
https://orcid.org/0000-0003-4418-0114
https://orcid.org/0000-0002-9409-5359

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

To defend against deanonymization attacks, Tor introduced
entry guard as its first-hop router to its core network. In this
case, each Tor client maintains a fix list of guard relays and
chooses one of them as the first hop whenever a new circuit
is created. As presented in Tor guard specification [3], the
guard list of a Tor client does not change within 120 days
as long as all guards remain reachable. Therefore, even
with the continuous growth of a Tor network, a relay node
compromised by an adversary is less likely to be selected
according to the guard selection algorithm. Further more,
Elahi et al. [4] and Johnson et al. [5] suggest that the main
impediment of deanonymization attacks for an adversary is to
fully compromise the guard list of a given user.

Therefore, how many guard relays an adversary can control
is the key challenge on Tor network for deanonymization
attacks. These controlled guard relay nodes can either be an
existing guard relay that is compromised by an adversary or
a Honey Relay injected into a Tor network by an adversary.
We say this list of adversary controlled guard relays are Known
to the adversary.

B. Observation and Goals

In Tor’s current defence model, it assumes that an adversary
can manipulate a fraction of the onion routers and monitor
traffics at the forward path or reverse path on the network,
but Tor’s routing algorithm ensures that it is difficult for
adversaries to observe all the relays on a given routing path.
A key observation on this model is that adversaries need
to successfully compromise the two endpoints of a new Tor
client’s connections: guard and exit relay. In fact, the existing
Tor network is a volunteer-operated overlay network, the Tor
network evolves dynamically over time as new onion routers
constantly join while others leave. Hence, an adversary can
inject fake onion routers onto paths that are supposed to be
on censored networks with Internet destinations. Or in other
words, if the adversary can force the targeted Tor client traffic
on to honey relays without their explicit collaboration, we can
then selectively affect the reliability of Tor circuits.

On the other hand, such an attack can be easily misper-
ceived as poor reliability of the Tor network communica-
tion. An adversary can stealthily perform it, which does not
require the attacker’s capable of controlling the multitude
of Autonomous Systems (ASes), but to inject several honey
relays. In addition, Trapper Attacks can also be combined with
other attacks, such as Tor’s path selection attacks on multiple
ASes.

In this paper, we focus on the scenarios in which adversary
is able to monitor only one endpoint of communication. The
main goal of the adversaries could be either to compromise as
many circuits as possible for a given class of users (e.g., lie on
a censored network), or to deanonymize Tor clients accessing
to a given destination (or a set of Internet destinations) during
a time period.

To understand the severity of the proposed Trapper Attacks
on a live Tor network, in this paper, we investigate the prac-
tical Trapper Attacks that are capable of improving tremen-
dously the efficiency and accuracy over existing attacks on

deanonymizing a Tor network. We also implement our attack,
using honey relays, which takes input from a range of IP
addresses of potential Tor users or a list of targeted websites.
To demonstrate the effectiveness of the proposed Trapper
Attack, we have built a live Tor network and performed
tests on it.

C. Our Approach

In this study, we investigate on ways to alter Tor’s guard
selection algorithm. We modify the algorithm in order to alter
Tor’s path selection so that the nodes fall on the selected path
are known to the adversary. Our approach includes three steps.
First, we perform injections of several honey relays as guard
relays and exit relays into the Tor network. Second, we propose
techniques to force Tor path selection to select nodes that are
known to the adversary. The idea of such techniques is to deny
a Tor users’ connections to trustworthy onion routers so that
the user’s traffics move toward the injected honey relays.

Finally, we can identify and inspect each traffic entering or
leaving the honey relays, and then make correlation between
a user (i.e. his/her IP) and a Internet destination (i.e. a web
server IP), therefore, achieve deanonymization. Therefore, the
key idea behind the proposed Trapper Attacks are to provide an
adversary the ability to observe Tor users’ traffic information
on both ends of the communication with a high probability.

Our results show that Trapper Attacks can deanonymize a
Tor user with a 100% accuracy rate and the false positive
rate of almost 0 within 40 seconds on the live Tor network
examined. The results also show that Trapper Attacks can
increase the chance of compromising Tor users by up to 90%
within 4 hours through deploying honey relays, in which
100 are guard relays and 20 are exit relays.

Furthermore, when the proposed Advanced Trapper Attacks
are also combined with Tor’s relay selection algorithm,
it accelerates the speed of updating a Tor client’s list of guard
relays. The final result indicates that the time interval a client
updates its guard relays is 3 minutes on average. This time
interval is shortened from 3-6 months to 3 minutes, which
greatly accelerates the process of compromising the guard-
relays-list of a targeted client.

D. Our Contributions

In this paper, we investigate the severity and the security
implications of the proposed Trapper Attacks on the Tor
network. We comprehensively study the efficiency, accuracy
and feasibility of the proposed attack as well as validate it
with experiments carried out on a live Tor network. The main
contributions of this paper are presented as follows:

i) We present a set of new attacks, called Trapper Attacks,
that can provide an adversary the ability to selectively control
Tor’s routing path. Such an attack degrades the Tor path
selection of a Tor user from probabilistic node selection to
deterministic node selection.

ii) We then present a detection evasion study conducted
on honey relays against Sybilhunter [6] and DannerDetec-
tor [7], which can significantly increase the survivability of
the injected honey relays.

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAN et al.: ANONYMITY VULNERABILITY IN Tor 3

iii) We explain a proof-of-concept implementation of our
proposed approach based on Trapper Attack that results in
communication deanonymization.

iv) We have conducted a thorough evaluation on the prac-
ticality of the proposed attacks, ranging from compromising
the list of guards of a given Tor client to carrying out attacks
affecting the network as a whole. We present our evaluation
results that are based on both large-scale simulations and real-
world experiments performed on a live Tor network.

II. RELATED WORK

In the past few decades, various methods of deanonymiza-
tion attacks have been proposed against Tor. In this section,
we focus on the most relevant works for such attacks in the
literature which we will review below.

A. Path Selection Attacks

Tor path selection algorithm aims to help Tor clients avoid
an adversary to monitor any direction of the traffic at both
endpoints of the communications [8], [9].

Pappas et al. [10] proposed an attack which is called
packet spinning, where an adversary built circular paths with
target relay pass through the Tor network to keep the relay
“busy”. In this case, the adversary can force Tor users to
select target relay with less probability. Jansen et al. [11]
proposed the sniper attack based on a loophole of Tor, where
an adversary could terminal an arbitrary relay in consensus list
just in several minutes. Bauer et al. [12] proposed low-resource
routing attacks against Tor network to replace all entry nodes
with attackers’ relays by falsifying the advertised bandwidth
capacity. Borisov et al. [13] presented a selective DoS attack
that malicious onion routers might choose only to facilitate
connections with colluding relays by forcing the client to build
new circuits. Tan et al. [14] proposed an Eclipse attacks on
Tor hidden services that allow adversaries with an low cost to
block arbitrary Tor hidden services.

We improve on previous research works in three significant
ways: i) we explore in depth Tor’s routing algorithm to
evaluate how the proposed Trapper Attacks can decrease Tor
user’s anonymity. ii) we also propose an anti-detection policy
to prevent the injected honey relays from being detected by
current detection methods. Moreover, we set up a group of
experiments to validate the effectivity of the proposed anti-
detection policy. iii) our proposed Trapper Attacks can be
executed by both AS-level adversaries [15], [16] and Node-
level adversaries [17]. In addition, we implement the proposed
attacks on a live Tor network in order to estimate their effect.

B. Traffic Analysis Attacks

Traffic analysis make use of traffic metadata, such as packet
size or timings, to correlate the flows of the communicating
end points [18]. In 2007, Murdoch et al. [19] showed that
Internet-exchange-level adversaries can use sampled NetFlow
data in IXes to launch traffic analysis attacks on the Tor
network. Murdoch and Danezis presented a low-cost traffic
analysis techniques that allow adversaries to infer which

routers are being used to relay the anonymous streams [20].
Mittal et al. [21] showed that the use of throughput fin-
gerprinting about the Tor relays in a circuit could be used
to fingerprint Tor relays. Hopper et al. [22] studied network
latency as a side channel to compromise the anonymity of Tor
clients, and this information leaks can be used to associate
two different flows to the same circuit by measuring the round
trip time when a client connected to a pair of colluding Web
sites. Johnson et al. [5] proposed a new metric for analyzing
the security of the Tor network against AS-level adversaries.
Zhen Ling et al. [23] presented a new cell counting attack
against Tor to disclose anonymous communication relationship
among users. Recent work by Sun et al. [24] showed, via an
AS-level attack combining BGP hijacks and interceptions, that
asymmetric traffic correlation can exactly deanonymize Tor
users with up to 90% accuracy in 300 seconds.

III. THREAT MODEL

We present in this section a threat model in Tor network
under Trapper attacks. A Tor anonymous communication
network is an overlay network over the transport layer. Thus
Tor is known to be vulnerable against adversaries that are
able to monitor networking traffic entering and exiting the
Tor communication channel. Simply by correlating traffics
observed, the adversary can identify the user and his/her mes-
sage destination, completely subverting the protocols security
goals. We consider the adversaries as organizations (e.g., ISP)
capable of controlling Tor relays as honey relays and also
allow adversaries to monitor all the targeted Tor user’s incom-
ing and outgoing connections. We suppose that the underlying
network protocols are secure, however, the types and amounts
of honey routers that an adversary controls to launch an
deanonymizing attack is only limited.

We consider that adversaries can observe, alter, or drop
a communication connection. For example, China simply
blocked access to the IP addresses of each of those known
entry nodes in Tor [25], [26]. Such an adversary has the
ability to selectively block entry nodes and can therefore force
targeted user traffic going through its entry nodes. Thus, the
routing-capable adversaries are able to control the routing
path between two endpoints of the commnications. Once on
the path, the adversary can launch various end-to-end traffic
correlation attacks. We discuss types and amounts of adversary
resources under the following set of assumptions.

For an end-to-end traffic correlating attacks, an adversary
that controls two endpoints of Tor users’ connections are
of primary importance since they have full visibility to Tor
circuits. Thus, we assume that the adversary has some band-
width and computing resources and the node-level adversary
functions can run their own Tor routers or collude with
some Tor routers. The network-level adversary function may
control one or several ASes and is assumed in that case to
monitor, alter, or drop any traffic entering or exiting the Tor
network. A network-level adversary function may be interested
in investigating who is accessing a specific destinations. Thus
a user’s entry nodes are an attractive target for the Trapper
Attack.

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Under some conditions, such an attacker can selectively
block Tor connections from by observing all the TCP connec-
tions between the Tor client and her entry guards. By blocking
the user’s entry nodes, the adversary can force the user
choose an adversarial relay. This process is repeated until
an adversarial relay finally chosen. This selectively Denial-
of-Service attack provides the adversary with a better circuit
visibility which will dramatically improve the effectiveness of
our proposed attack.

IV. THE PROPOSED TRAPPER ATTACKS

In this section, we develop a set of Trapper Attacks against
the Tor network that can be used to compromise users’ circuit
by forcing users to choose injected honey relays as guards
and exit relays. To facilitate an understanding of the attack
methodology, we firstly describe the basic Trapper Attacks
which can mount by both Node-level adversaries and AS-level
adversaries. We then describe a much safer variant that further
protects honey relays from being detected by existing detection
algorithms. Finally, we evaluate extensively the effectiveness
of the proposed Trapper Attacks in detail.

A. Basic Attack

Tor network is known to be blocked in China, however,
Ensafi’s research works reveal that failures in the Great
Firewall of China (GFC) occur throughout the entire country
without any conspicuous geographical patterns [25], [26].
The approximate amount of directly connecting Tor users
rarely exceeds 3000. Consequently, the adversary can leverage
the occasional failures to selectively control Tor’s routing
path.

In this section, we consider two representative experimental
scenarios for our Trapper Attack, we assume the attacker has
several honey relays with high-bandwidth and high-uptimes
deployed in the Tor network. In order to deanonymize the
Tor network, adversaries are capable of launching honey
relays, that selectively affect reliability of Tor nodes so as to
dramatically increase the visibility of the adversary. We also
assume that Trapper Attacks can be combined with AS-level
adversaries, which are ASes, or an organization with the
cooperation of ASes. The details of Trapper Attacks on Tor
network are presented as follows:

1) Guard Relay Capture (GRC) Attack: Tor’s relay selection
algorithms attack allows an ISP to manipulate Tor’s routing
path by deviating from the real guard relays. That is after
Hijacking Tor’s relay selection, the traffic is routed to the
honey relays automatically. Such an attack allows the adver-
sary to monopolize all responsible entry guards of a particular
Tor client during a given time period. Our observation is that
the entry guards are likely to be updated in Tor’s virtual circuit
construction as soon as one of the guard relay in its guard
list is not available. In this case, AS-level adversaries can
attack Tor’s relay selection algorithms to force a Tor client
to choose a honey relay as a guard relay for all their circuits.
The attack causes all Tor client traffics re-routed to the honey
guards, consequently become visiable by the adversary. The
GRC attack steps are described as follows:

i) Identify the entry guards of a Tor user;
ii) Test if the Tor user selected an adversarial relay as an

entry guard. If not, selectively block the user’s connections;
iii) Repeat i)ii) until an adversarial relay is selected as an

entry guard.
AS-level adversaries can deploy a percentage of exit and

entry routers, and then whitelist a set of such onion routers
(IP addresses) at ISPs or in the locations that are under
the adversaries’ control. Since Tor chooses the entry guards
roughly at random weighted on bandwidth, for every entry
guard of Tor users, the adversary can use both deep packet
inspection (DPI) and active probing in order to observe and
recognize the traffic of Tor protocol, e.g., the fingerprints of
SSL/TLS handshakes, including a list of supported cipher
suites, packet-size distributions, etc. Recent works have shown
that obfuscation protocols of Tor are vulnerable to machine
learning attacks and entropy-based tests [27], [28].

Consequently, the ISP can observe the traffics, and retrieve
the entry guards of a new Tor connection. if the Tor user don’t
select an adversarial relay as a responsible guard, then the ISP
will block Tor’s corresponding connections. Upon noticing this
chosen guard not being available (as a result of the previous
block of connection) in Tor, the Tor client will consequently
be forced to choose a new entry guard.

This attacking process continues until a new entry guard
node is added to the guard list. By blocking all the pre-
vious guard relays while keeping the malicious guard relay
available, all entry guards of the Tor client’ circuits used for
communication will be under the adversary’s control. The AS-
level adversaries can implement such routing path attacks to
control Tor’s traffic, past work has shown that such attacks
occasionally fails. Consequently, the GRC attack appears to
be fairly innocuous to Tor users, therefore has a high survival
rate without being detected.

2) Controlling User’s Exit Node: GRC attack discussed
above allows the adversary to take control the entry guard of
a Tor client, however, in order to succeed a deanonymization
attack, an adversary needs to observe a Tor users’ traffic at
both ends of the communication channel. Therefore, we use
Tor Circuit Selective Destruction (TCSD) attack to force both
the entry and exit relays of a Tor client onto the honey relays.

Upon choosing an entry guard, a Tor client process will
automatically build a three-hop circuit and rebuild such a
three-hop circuit every 10 minutes, by default. In the case that
a given exit node is not a honey relay, we need to destruct
this circuit immediately and repeat such process until the
selected exit node is one of the honey relays. Consequently,
an adversary controls both the entry and exit guards of the
communication which is sufficient to achieve an end-to-end
traffic correlation attack. More specifically, the adversaries
can collect the throughput fingerprint and circuit construction
sequence through fast traffic analysis, which starts with com-
puting the correlation coefficient on each pair of controlled
entry guard and exit node of the circuits.

To achieve this, we exploit the ability of CMD_INTERRUPT
command mechanism in Tor that can precisely destruct a
Tor circuit using a given circuit ID. Upon receiving a
CMD_INTERRUPT command given by the entry guard of

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAN et al.: ANONYMITY VULNERABILITY IN Tor 5

a client, Tor client instance is forced to destruct the current
circuit and reconstruct a new three-hop circuit with a new
exit node. More specifically, a Circuit Controller is created to
help decide whether a circuit should be destructed. In order to
destruct a circuit, the circuit controller sends a command to
the honey relays via Tor control protocol [29]. The honey relay
that runs a modified Tor instance (based on Tor-0.4.0.5) has
a CMD_INTERRUPT controller command added that can be
used to destruct a circuit with a specific circuit ID given. The
two specific ways of destructing/interrupting a circuit using
CMD_INTERRUPT command is explained in detail in IV-C.2.

This attack eventually allows both the entry and exit nodes
of a Tor client’s three-hop circuit to be on honey relays. Such
honey routers can then observe a large amount of targeted
client traffic, e.g, the guard node can observe the Tor client
IP address, and the exit can observe information about the
Internet destination.

By forcefully destruct a circuit, an adversary accelerates
the Tor circuit reconstruction process that greatly increases
the probability of gaining control of an exit node in a timely
fashion.

B. The Advanced Attacks With Anti-Attack-Detection
Mechanisms

We now turn to discussing anti-detection policies that
can improve the survivability of the proposed basic Trapper
Attacks by preventing the injected honey relays from being
detected. In order to prevent selective DoS attacks, some
studies have succeeded to detect malicious relays in Tor
network. Beyond what are represented in Sybilhunter [6],
a deterministic method is proposed by Danner [7] (we use
DannerDetector to refer to Danner’s method in the following
sections).

Sybilhunter is the system for detecting Sybil relays based
on their appearance and behavior, such as configuration and
uptime sequences. The more honey relays we inject into Tor
network, the easier of Sybilhunter to find out our honey relays.
DannerDetector aims to detecting selective DoS relays in Tor
network. It could find out all honey relays within several
rounds of execution. On each round, the detector established
multiple testing circuit according to its policy through every
relays for downloading a large file. If the circuit is interrupted
when the file is downloading, the detector would suspect the
existence of honey relays in the circuit.

However, we discovered an anti-detection policy that can
bypassed the above-mentioned detecting policy. The anti-
detection policy is comprised of three tactics: i) obfuscating
deployment; ii) deferral decision and iii)collaborative filter-
ing. Obfuscating deployment aims to bypass the Sybilhunter
through varying the configuration of Tor instance. Deferral
decision and collaborative filtering are proposed to conceal
our honey relays from DannerDetector. In the following
subsection, we describe these three tactics in detail.

1) Obfuscating Deployment: To simplify the management
of dozens of honey relays, the reported detection operators
tend to administrate their relays simultaneously, such as reboot
all of them at the same time or use the same configuration file

for each honey relays. Consequently, detectors like Sybilhunter
would analyze the appearance and behavior of all relays,
such as uptime matrix, fingerprint and the nearest neighbour
ranking. And it is easy to find out the honey relays owned by
a same administrator in Tor network.

In order to bypass the detection of Sybilhunter, we propose
the obfuscating deployment method. Obfuscating deployment
can significantly obfuscate the characteristic of Tor instance’s
appearance and uptime matrix of the honey relays. The
key insight of obfuscating deployment is to randomly inject
honey relays into Tor network and, in the meantime, keeping
the attribute distribution of the Tor network. Obfuscating
deployment contains two part: obfuscating appearance, and
obfuscating behavior.

To obfuscate the appearance, we randomize the Tor instance
in four dimensions: IP address, nickame, port and software
version. For the IP address randomization, we randomly
choose the geographical location of VPS from operators such
as Amazon, Azure, Linode, etc. For the nickname, port and
software version, we calculate the distribution of according to
the average of the past 5 days, and then generate the configure
file according to the calculated distribution.

To obfuscate the behavior, we randomize the uptime of
Tor instance using Poisson distribution. Before we run the
Tor instance each hour, we calculate the λfloat and λstable
each hour. λfloat represents the average number of relays
joining into the Tor network each hour of the past 3 hours.
λstable represents the average number of relays joining into
the Tor network each hour of the past 5 days. Then we set
λ← λstable − λfloat, and the num of Tor instance run in one
hour nrun complying with Poisson distribution:

P (nrun = k) =
e−λλk

k!
a) Deferral decision: DannerDetector can download a

self-owned file through testing circuit which contains the
honey relays. If the circuit is not compromised, the honey relay
of basic Trapper Attacks would interrupt the circuit almost in a
certain time. As a result, DannerDetector could easily discover
the honey relays.

To solve this problem, we propose a method named deferral
decision. Honey relays would delay deciding whether to
interrupt the circuit in a random time wt. where

wtmin < wt < wtmax

Consequently, the lifetime of each interrupted testing circuit
would not be similar. Additionally, honey relays can be
automatically/semi-automatically deployed by an automation
tool or a Python script. The tool will automatically enable
and start a tor daemon by getting the configuration, such as
uptime, nickame, port and software version, etc. as its current
settings and variables.

2) Collaborative Filtering: In order to find out each honey
relays in Tor network, DannerDetector test many rounds to
increase the accuracy of its algorithm. In each testing round,
DannerDetector firstly picks two relays from consensus to
play the part as guard and exit node. Then it rotates the
rest of nodes as middle node to construct the testing circuit.

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

For each testing circuit, DannerDetector downloads a large
file through the circuit. Honey relays tend to interrupt the
uncompromised testing circuit and that would result to the fail-
ing of file downloading. However, normal relays perform well
while the testing circuit is downloading the file. Therefore,
DannerDetector can recognize the honey relays via analyzing
the result of downloading at last.

Fortunately, we have developed a Collaborative Detec-
tion (CD) algorithm to protect honey relays from being
detected by DannerDetector (see algorithm 1). All instances
of the honey relays work together and dynamically change
the value of its parameter to bypass the testing circuit which
has regular patterns created by DannerDetector. The process
is shown as the following: i) We describe the behavior of
the honey relays as (pdropping , paccepting), where pdropping
and paccepting are the probabilities of killing and permitting
about un-compromised and compromised circuits. ii) All of the
honey relays build a history pattern list listhist which contains
the historical circuit pattern pt discovered by all honey relays
in a sliding time window. iii) For each circuit established
on honey relays, the Circuit Controller (See IV-C.2) extract
its circuit fingerprint f , guard node nodeg and exit node
nodee as circuit pattern pt, and then storage the pt into
listhist. iv) The Circuit Controller find out the pattern list
contains patterns which is similar with current circuit in
listhist (we define pt1 is similar with pt2 means that the
guard and exit node of pt1 is same with pt2’s and the Pearson
correlation coefficient between the fingerprint f of pt1 and
pt2 is larger than 0.7), and halve the parameter (pdropping,
paccepting) of honey relays on current circuit according to the
number of patterns in pattern list. v) The Circuit Controller
decide whether interrupting the current circuit according to
the modified parameter (pdropping, paccepting). As a result,
honey relays could mount the Trapper Attacks on normal users
and conceal themselves when DannerDetector create testing
circuit on them.

In practical application, we consider the following three
kinds of detecting scenario based on the algorithm of
DannerDetector.

a) Scenario 1 - both guard node and exit node are honey
nodes: In this scenario, honey relays lie as the guard and exit
nodes of each testing circuit. And Circuit Controller would
judge each testing circuit as compromised circuit. According
to the anti-detection policy, honey relays would extract the
circuit fingerprint f , guard node nodeg and exit node nodee
as circuit pattern,

pattern← (nodeg, nodee, f)

and dynamically change the value of paccepting referring to the
number of patterns which are similar with pattern in listhist.

paccepting =
paccepting

2ψ(pattern,listhist)

Where ψ(pattern, listhist) returns the number of patterns
which are similar with pattern in listhist. So not all the
testing circuit would success in a testing round, As a result, the
honey relays on guard and exit would not exposed according
to the algorithm of DannerDetector.

Algorithm 1 Collaborative Detection Algorithm
Input:

Shoney is the set of honey relays;
Cguard,Cmiddle,Cexit is the guard, middle and exit

nodes of the circuit established on honey relays;
trun is the running time since discovering the circuit.

Output:
cmddropping : interrupt the circuit;
cmdaccepting : do not kill the circuit

listhist = {}
Tdelay ← ramdom(wtmin,wtmax)
while Trun < Tdelay do

recording throughput

/* generate a random number range
from 0 to 1 */
random_num← random(0, 1)
Sge ← Cguard ∪ Cexit
if |Sge ∩ Shoney| = 1 then

/* one of guard and exit node is
honey node */
if random_num < pdropping then

/* interrupt circuit according to
the probability */
return cmddropping

else
return cmdaccepting

else if |Sge ∩ Shoney| = 2 then
/* both guard node and exit node are
honey nodes */
pattern← (nodeguard, nodeexit, f)
count← ψ(pattern, listhist)
listhist += pattern
if random_num <

paccepting

2count then
/* permit circuit according to the
probability */
return cmdaccepting

else
return cmddropping

else
/* both guard node and exit node are
not honey nodes */
/* the middel relay of circuit is
honey relay */
pattern← (nodeprev, nodenext, f)
count← ψ(pattern, listhist)
listhist += pattern
if random_num <

pdropping

2count then
/* interrupt circuit according to
the probability */
return cmddropping

else
return cmdaccepting

b) Scenario 2 - both guard node and exit node are normal
nodes: In this scenario, honey relays lie as the middle node
of each testing circuit. Circuit Controller would judge each

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAN et al.: ANONYMITY VULNERABILITY IN Tor 7

Fig. 1. Attack scenarios for the trapper attacks.

testing circuit as non-compromised circuit when the middle
node is honey relay. According to the anti-detection policy,
honey relays would extract the circuit fingerprint f , guard node
(previous hop) nodep and exit node (next hop) noden as circuit
pattern,

pattern← (nodep, noden, f)

and dynamically change the value of pdropping referring to the
number of patterns which are similar with pattern in listhist.

pdropping =
pdropping

2ψ(pattern,listhist)

Where ψ(pattern, listhist) returns the number of patterns
which are similar with pattern in listhist. So the honey relays
at the rear of each testing round would interrupt the testing
circuit with a small probability. And this could dramatically
protect the part of honey relays in the rear according to the
algorithm of DannerDetector.

c) Scenario 3 - one of the guard node and exit node is
a honey node: In this scenario, testing circuits are interrupted
according to the fixing parameter pdropping , and the detectors
could not exactly distinguish whether middle node or edge
node (guard node or exit node) should take responsibility for
the circuit failing. For the detecting policy mentioned in the
paper [7], detectors will misdeem the middle node as honey
relay when the circuit is interrupted in this scenario.

C. Deanonymization in Tor

1) The Trapper Attacks Prototype: In this section, we dis-
cuss the affect of the proposed Trapper Attacks on a real Tor
network. We consider a representative experimental scenarios
for our Trapper Attacks illustrated in Fig. 1. In our attack,
we assume the adversary has several honey routers with high-
bandwidth and high-uptimes deployed in Tor network. In order
to deanonymize the Tor Network, adversaries are capable of
launching Trapper Attacks that selectively affect reliability of
Tor nodes so as to dramatically increase the visibility of the
adversary. We also assume that the attacks can be combined
with AS-level adversaries, which are ASes, or an organization
with the cooperation of ASes. The proposed Trapper Attacks
offer a novel deanonymization that allows the adversaries to
compromise the guard and exit relays both at AS-level and
Node-level.

Here we use an example to present the basic idea. Let us
suppose that a Tor user is communicating to a Web server.
Existing traffic correlation analysis only considers the scenario
that adversary can monitor any direction of the traffic at both

Fig. 2. System architecture.

communicating endpoints. However, network flows from Tor
clients to Internet destinations often across wide area networks,
the paths between the client-to-entry may lie on censored
network, but the paths between the exit relay and the Web
server may lie on another country. In addition, Tor clients
use a fixed entry guards during a period of time, which will
decrease the visibility of the adversaries, thus, the adversary
may not be able to monitor the network flows on the both
paths between Tor clients and Internet destinations.

To deanonymize Tor network in the wild, we present a
system architecture illustrated in Figure 2. It includes three key
components: a circuit controller module, a fast traffic analysis
module and a traffic correlation module. The circuit controller
module can selectively affect reliability of Tor circuits so as
to dramatically increase the visibility of the honey relays.
The fast traffic analysis module automatically analyzes each
circuit, which extracts the features of its high-level protocol
features, e.g., total size of incoming and outgoing cells per
second, and then summarizes them into the Tor users’ feature
vectors respectively. Once feature vectors have been extracted,
the traffic correlation module then works on these features
to correlate (i.e. finding a user-destination pair) any traffic
entering or leaving the honey relays.

2) Circuit Controller: In a Tor network, the onion router
uses specific cells to communicate with each other and with
Tor users. There are two different types of cells: control
cells and relay cells. Control cells are always interpreted
at the receiving nodes, which can issue commands such as
create, created, destroy or padding. Relay cells are used to
carry end-to-end TCP stream data. And a relay cell has an
additional header. The additional header contains streamID,
end-to-end checksum, length of relay payload and relay
commands. There are numerous types of relay commands,
including RELAY_BEGIN, RELAY_DATA, RELAY_END,
RELAY_SENDME, RELAY_DROP, RELAY_RESOLVE,
etc. Tor control protocol is used for other programs to
communicate with a locally running Tor instance (onion
routers), the controller and Tor instance can send typed
messages to each other over the underlying stream via Tor
control protocol.

For every possible entry and exit traffic flow combination,
the Circuit Controller first tests whether a Tor circuit needs to

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I

CIRCUIT-BASED FINGERPRINTING FEATURES

be destroyed according to the Pearson correlation coefficient ρ.
If the ρ < t (suggests t = 0.7), then the Circuit Controller
can send CMD_INTERRUPT command (which is a control
cell) to the honey relay for destroying a given Tor circuit.
Once received a CMD_INTERRUPT command from Circuit
Controller, an entry guard (on a honey relay) could interrupt
the circuit in two ways: i) Modify one random bit of data
cell which is carried by the target circuit. The modified data
cell will cause the failure of decryption at the edge of a
circuit. As a result, the circuit would be interrupted by the
guard relay or exit relay of that circuit. ii) Directly send a
CMD_DESTROY cell to the adjacent relay in circuit. Conse-
quently, the circuit would be destroyed recursively. The circuit
controller would randomly choose one method to interrupt the
circuit in practice.

Additionally, a circuit controller could mount the deferral
decision and collaborative filtering to protect the honey relays
not to be detected as part of the anti-detection policy proposed
in this advanced Trapper Attacks.

3) Fast Traffic Analysis: In this section, we discuss the fast
traffic analysis techniques that can be used by an adversary
to determine whether two circuits share a common path.
We do so by monitoring high-level protocol features and
using a statistical correlation algorithm to determine if their
flow pattern is correlated. To this end, fast traffic analysis
translates each raw cell into pattern vectors that can facilitate
further traffic correlation. First of all, given a collection Ai =
(ai,1, . . . , ai,n) of n cells at circuit i, where ai,k represents
the kth cell on circuit i. Next, given a cell ai,k, feature
extraction module translates each raw cell into pattern vector
X = {x1, . . . , xm}T , where m is the number of features. For
instance, a cell can be represented with the following pattern
vector:

< direction, type, sip, sport, dip, dport, circid, time >,

where direction is the incoming or outgoing direction of a
Tor circuit, type is the cell type, < sip, sport, dip, dport > is
the origin-destination pair of Tor circuits, circid is Tor circuit
identifier (unique in both directions). Table I illustrates the
above-defined features.

4) Traffic Correlation: Traffic correlation aims to deter-
mine, from the recorded circuits’ fingerprints, if two sets of
packets belong to the same user. However, Tor multiplexes
more than one TCP streams along a single circuit that can
involve traffic exit to a server from hundreds of other client
entering the traffic flows constantly. Thus, it is difficult to
correctly correlate the flows of Tor users.

Algorithm 2 Traffic Correlation Algorithm
Input:

Fg is the set of circuit-based fingerprints at Guard
nodes;

Fe is the set of circuit-based fingerprints at Exit nodes;
t is the threshold of Pearson correlation coefficient.

Output:
P is the set of an origin-destination pair of Tor users.

/* flag potential origin-destination
pairs for every possible entry and exit
traffic flow combination using Tor
circuit construction sequences. */
foreach fg ∈ Fg do

foreach fe ∈ Fe do
Pcandidate ← predicPath(fg, fe)

foreach p ∈ Pcandidate do
/* for each potential
origin-destination pairs, extract its
throughput fingerprinting pattern at
the Guard and Exit node,
respectively. */
patternpg ← (nodeg, fpg)
patternpe ← (nodee, fpe)
/* the time T is divided into
adjacent time windows W, the time
windows W = 1s, by default. */
foreach W ∈ T do

/* for each window, calculate
Pearson correlation coefficient.
*/
ρ ← Pearson(patternpg, patternpe)
if ρ > t then
P ← (p, ρ)

return P

In this section, we present our correlation analysis
approach to perform exact deanonymization of Tor users
(see algorithm 2). The input to traffic correlation algorithm
is a sequence of the circuit-based fingerprinting generated
by the previous stage. The output of this algorithm is an
origin-destination pair of Tor circuits identified by the Trap-
per Attack, where each origin-destination pair symbolizes a
communication relationship of a Tor user.

Our approach uses a two-stage correlation to improve accu-
racy. The first stage uses the way of Tor circuit construction
to flag origin-destination pairs as potentially resulting from
a targeted Tor user. The circuit fingerprints of all potential
origin-destination pairs is then pushed to a backend system
that asynchronously performs a statistical correlation analysis.
In order to exploit the circuit construction algorithm, we cor-
relate the timing of each Tor’s circuit building stage and
recognize the patterns of the cells, e.g. the number, type and
direction of the cells over time. In this stage, the adversary
can easily reconstruct the potential routing path of a Tor
user’s connection. In the second stage, we use throughput

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAN et al.: ANONYMITY VULNERABILITY IN Tor 9

fingerprinting of a Tor circuit by computing the amount of
cells that a circuit transfers per unit time. Once receiving cell
sequence information of a Tor circuit, we build a vector of all
unique circuit identifiers. We next divide time into windows
of W seconds, and then compute the number of cells xi and
yi during the ith window for every possible entry-exit pair.
Finally, we rely on Pearson Correlation Coefficient to identify
the closest matching flows for our correlation analysis. Below
we briefly discuss the Pearson correlation coefficient we use
in this work.

Pearson Correlation Coefficient is a nonparametric mea-
sure of the linear correlation between two variables X and Y ,
It is widely used to assess the degree of linear dependence
between two random variables. The Pearson correlation coef-
ficient can be computed from following formula:

ρ =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

. (1)

where, ρ is the Pearson correlation coefficient, x̄, ȳ are the
means of the two observation X and Y , n is the number of
windows in each data set.

For each pair of observed Tor clients, we can calculate
the Pearson’s correlation coefficient ρ between the pattern
vector of circuit-based fingerprinting features over time. If the
server flows match a Tor client with the highest correlation
coefficient, then the IP address pair is added to the final origin-
destination pair, that is, if the correlation coefficient ρ for each
entry-exit pair exceeds some threshold t (suggests t = 0.7 as
producing the best results), we recognize the communication
relationship of Tor users.

V. EVALUATION

To evaluate the effectiveness of our proposed attacks and
understand their security implications, we present a group of
experiments on the proposed Trapper Attacks, both on the cost
of the attacks and the survivability of the honey relays.

A. Effectiveness of Trapper Attacks

In this section, we first explain a group of experiments
that are used to perform the effectiveness evaluation on the
proposed Trapper Attacks. To achieve this goal, we modified
the source code of Tor-0.4.0.5, which allows us to start logging
information on Tor’s circuits. Our network clients run at
10 vantage points. In each vantage point, 20 Tor clients can
run concurrently. At the beginning of the attack, we sample
10, 20, 50, 100, 150, 200 guards and exit nodes from Tor
consensus as our controlled honey relays to validate the catch
probability of the guard and exit nodes. Then, the clients
running at these vantage points are forced to choose honey
relays as entry nodes for all their circuits under the proposed
attack. We use Linux’s iptables rules to simulate Tor’s relay
selection hijacking between Tor clients and guard nodes, then
record the guard and exit nodes selected by clients on each
circuit.

For theoretical analysis of catch probability, we assume m
honey relays are injected into the Tor network. According to
the different tags that Tor authoritative directory servers assign

to each onion router, Tor relays can be divided into four types:
guard, exit, both guard and exit routers, and neither guard
nor exit routers, whose total bandwidth is denoted as BG,
BE , BGE and BNGE respectively. Let b be the bandwidth
advertised by adversarial guards. Then the probability that a
Tor client selects adversarial Tor routers as the guards can be
calculated as:

PG(b) =
b

BG +BGE ∗WE
, (2)

where the weight WE can be expressed as

max{0, 1− BG +BE +BGE + BNGE
3 ∗ (BE +BGE)

}.

In addition, let b̂ be the bandwidth of Tor exit routers of
an adversary. Then, the probability that the Tor exit router are
chosen for a circuit can be derived from:

PE(b̂) =
b̂

BE +BGE ∗WG
, (3)

where the weight WG can be expressed as

max{0, 1− BG +BE +BGE + BNGE
3 ∗ (BG + BGE)

}.

Now we discuss the time it takes to deny services to trust-
worthy onion routers so that the honey relays are selected
by the Tor client. Assuming adversaries have a budget for
bandwidth, that is, the adversary can afford to run a percentage
of decoy routers. Denote B as total bandwidth of our Tor
guard routers. Assuming a Tor client tries to create a three-
hop circuit to communicate with a server through Tor network.
After n updates for choosing the entry guard, the probability
that at least one circuit select the honey router as guard can
be calculated by

PG(B, n) = 1− (1− PG(B))n. (4)

We can also derive the exit compromising probability with the
total bandwidth of the Tor exits B̂ and the number of Tor exit
rotation m based on Equation (2).

PE(B̂,m) = 1− (1 − PE(B̂))m. (5)

Recall that if the first and last router in a three-hop circuit
will be colluded, the Tor’s routing path can be compromised.
Consequently, the compromising probability that the honey
routers are chosen as both entry guard and exit routers for a
three-hop circuit can be approximately derived by

Pn,m(B, B̂) = PG(B, n) ∗ PE(B̂,m). (6)

Based on the theoretical analysis, we can obtain the probability
that a Tor client chooses the guards and exits.

Figure 3 illustrates the impact of the number of guard nodes
controlled by the attacker on the probability of getting the first
compromised node chosen as a guard node. Figure 4 illustrates
the impact of the attacker-controlled guard bandwidth ratio on
the number of updates required to get a first compromised
node chosen (i.e. the first time a honey node is chosen as a
guard), Figure 4 also shows that an adversary can compromise
the first guard of the Tor client after blocking 47 Tor circuit

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. The impact of the number of guards controlled by the attacker on
the probability of getting the first compromised node chosen as a guard node.

Fig. 4. The impact of the attacker-controlled guard bandwidth ratio on the
number of updates required to get a first compromised guard chosen.

Fig. 5. The impact of the number of attacker-controlled exits on the number
of circuit rotations (destroy and rebuilt) required to get a first compromised
node chosen as an exit.

creation attempts, when the attacker controls 100 Guard nodes.
The time interval used for a client to update its guard relays
decreases from 3-6 months to less than 3 min on average.
Figure 5 illustrates the impact of the number of attacker-
controlled exit nodes presents in the Tor network on the
number of circuit rotations (destroy and rebuilt) required to
get a first compromised node chosen as an exit. Figure 6
illustrates that the probabilities of an attacker successfully
compromising both a Tor user’s guard and exit (i.e. a Tor
user’s guard and exit both are on honey nodes), and the number
of circuit recreations, Figure 6 also shows that an adversary
can compromise the routing path of a Tor client with 90%
probability after blocking 400 Tor circuit creation attempts
when 100 guards and 20 exits nodes are controlled. The result
indicates that the adversary has a more than 90% chance of

Fig. 6. The success rate of obtaining a compromised Tor circuit (guard
and exit) when trying different number of circuits creations with 100 Guards
and 20 Exits controlled by attackers.

Fig. 7. New churn rate of Tor network.

deanonymization within 4 hours against roughly 100% of users
in locations under the adversary’ control by 100 guard relays
and 20 exit relays.

B. Advanced Trapper Attacks Survivability Evaluation

In order to explore the effectiveness of survivability pro-
vided by our anti-detection policy under the circumstance of
the current detection policy, we experiment with our simula-
tion implementation of the Advanced Trapper Attack. In this
section, we compare the performance of our Advanced Trapper
Attacks under Sybilhunter and DannerDetector detections
respectively.

To evaluate the effectiveness of our anti-detection policy
under Sybilhunter, we generate relay-descriptor files from
2020-01-01 to 2020-08-30 using different policy. For com-
parison, we use three data sets: origin set (kind 1), honey set
without Trapper Attacks (kind 2) and honey set with Trapper
Attacks (kind 3). The origin set is the relay-descriptor file from
2020-01-01 to 2020-08-30 downloaded from Tor Collector
Project. For the second kind of honey set, we simulate an
attacker to randomly launch several honey relays in Tor
network without applying our obfuscating method. The third
kind of honey set is the relay-descriptor which generated by
our anti-detection policy.

First, we calculate the network churn rate of the joining
or leaving relays using the formula mentioned in [6] on the
three data sets. Figure 7 and Figure 8 illustrate the network
churn rates during ten days in August 2020. We found an
unexpectedly high churn rate without applying the obfuscating
method in 2020-08-20. The high new or gone churn rate means

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAN et al.: ANONYMITY VULNERABILITY IN Tor 11

Fig. 8. Gone churn rate of Tor network.

TABLE II

RESULT OF UPTIME DETECTION BY SYBILHUNTER

that many relays joined or left the Tor network as also revealed
in Sybilhunter. Figure 7 and Figure 8 also show that the
difference of network churn rate between kind 1 and kind 3
is small. The injected honey relays do not cause an obvious
change on the network churn rate.

Through running Sybilhunter on the origin datasets and
honey datasets, we can evaluate the effectiveness of the
Trapper Attacks before and after applying the obfuscating
method. The result (see Table II) of detection shows that we
can inject 209 honey relays per month on average with our
obfuscating method and about 94.28% of them could not be
detected by Sybilhunter. However, the survival rate is only at
5.58% without applying our proposed obfuscating method.

To demonstrate the effectiveness of our anti-detection policy
under DannerDetector, we simulate our anti-detection policy
under the detection algorithm to calculate the average testing
times until the last honey relay is detected. We define the
lifetime of policy as average testing times when the last honey
relay is detected by DannerDetector. We set up three kinds
of honey relays which has different behavior parameters. The
first kind of honey relays (kind 1) interrupt every circuits
that are not compromised, which could be represented as
(pdropping = 1.0, paccepting = 1.0). The second kind of
honey relays (kind 2) interrupt the circuits according to a
predefined probability value, which could be represent as
(pdropping = 0.9, paccepting = 0.9). The third kind of honey
relays (kind 3) interrupt the circuits complying with deferral
decision and collaborative filtering, and the initial parameter
of honey relays is (pdropping = 0.9, paccepting = 0.9).

We simulate the behavior of these three kinds of honey
relays under the detection algorithm with N = 10000,

Fig. 9. Lifetime of different policy under DannnerDetector.

i = 1, 2, 3 and k = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.
Figure 9 shows the lifetime, in logarithmic form, of these
three kind of honey relays when different policy under Dan-
nerDetector are applied. It demonstrates that the lifetime of
honey relays with deferral decision and collaborative filtering
is i) about 85 times more than the lifetime of honey relays
with random interrupt policy when we have 100 honey relays;
and ii) about 235 times more than the lifetime of honey relays
which interrupt each uncompromised circuit.

In conclusion, the experiments show that the anti-detection
policy drastically increase the anti-detection ability of the
injected honey relays under the detection method of both
Sybilhunter and DannerDetector.

C. Accuracy of Deanonymization Attacks

To evaluate the accuracy of deanonymization attacks, we set
up three typical usages of Tor network on the live Tor network
at 7 vantage points to simulate the realistic Tor users: a web
browsing client, and an IRC client, and a bulk transfer client.
The three client types work as follows:

i) Web browsing client: We use the iMacros Firefox plu-
gin [30] to automate the recording of web browsing by
controlling the functionality of Tor. We first randomly picks a
group websites from the list of the top 500 websites reported
by Alexa [31]. Then we use the client from each vantage point
starts browsing these web pages one by one during a period of
time. With this method, we can automatically collect realistic
traffic of web browsing clients from a list of the open-world
URLs.

ii) IRC client: In order to generate realistic IRC traffics,
we implement a simple IRC bot with our python script.
We randomly pick a few IRC channels from popular IRC
Wiki directories and then configure the IRC bot to login IRC
channel and do things automatically based on our scripts.

iii) Bulk transfer client: In order to simulate bulk transfer
client, we use the Vuze BitTorrent client [32] to generate
P2P file sharing traffic by configuring Vuze over the Tor
proxy. We randomly choose a few torrent files from popu-
lar torrent websites, which include music, movies,and open
source applications, and then download these torrent files one
by one.

Additionally, we launched 3 guard and 5 exit nodes as
honey relays, and force Tor to explicitly use specific guard
and exit nodes when visiting certain destinations. To collect

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 10. The accuracy of the attack over time.

Fig. 11. The FPR of the attack over time.

experimental results, we record the cell sequence information
of Tor circuits on multiple honey relays. To achieve this
goal, we modified the source code of Tor-0.4.0.5, which
allows us to log out the information about Tor’s circuits
establishing command sequences and data transfer sequences.
Once logging the information about each observed circuit,
we build a vector of all unique circuit identifiers found from
the log file. Further, for each circuit, we compute total lifetime
of a circuit that is the time between the circuit creation and
circuit destruction. We also compute the total active time of
a circuit that is the time from the first to the last relay cells.
We next remove outliers by the interquartile range that satisfy
the following inequality.

λ < 300 seconds, or λ̂ ≤ 3 seconds

where λ is the circuit total lifetime, and λ̂ is the circuit active
time. Then, we periodically push all pattern vectors of Tor
circuit fingerprints to central server using Kafka that is an
open source message broker software.

Finally, we analyze the accuracy and false positive rate as
reported in Figure 10 and Figure 11. These figures show that
we can detect a user’s source IP and destination IP within 30s
with 100% accuracy and less than 1% false positive rate.

VI. DISCUSSION

After demonstrating the threat of Trapper Attacks against
Tor network, we now discuss how the proposed attacks
would affect the anonymity in other systems and possible
countermeasures.

A. Understanding Trapper Attacks and Anonymity
Implications

Low-latency anonymous communication systems, such as
Tor, are inherently weak to end-to-end traffic analysis attacks,
because an attacker can observe traffic pattern on both ends
of the communications. However, with the continuous growth
of the Tor network, the probability of a particular user chosen
both attacker-controlled entry and exit nodes in a Tor circuit
remains extremely low. Additionally, the guard mechanism
was also designed to mitigate several deanonymizing attacks,
e.g, predecessor attack, end-to-end traffic correlation attacks,
by decreasing the chance for an attacker to be the entry node
of a given user.

The proposed Trapper Attacks can provide an adversary
the ability to selectively control a Tor’s routing path. Such
an attack degrades the Tor path selection algorithm from
probabilistic node selection to deterministic node selection.
If a client has chosen a compromised guard, the client’s entry
node will be the compromised guard in every circuit for up to
3-6 months, it poses an imminent privacy and security risk to
Tor users.

Other low-latency anonymous communication systems, such
as I2P, freenet, also have the volunteer-operated relays.
If AS-level adversaries control a fraction of the relay nodes,
the proposed Trapper Attacks can then affect path selection
algorithm, compromise the client’s entry and exit nodes,
and launch end-to-end traffic analysis attacks. However, the
severity and the security implications on these low-latency
anonymous networks should be carefully assessed in relation
to the potential impacts of Trapper Attacks in the future.

B. Mitigation of Trapper Attacks

In the following, we propose two possible countermeasures
to make Tor path selection more robust: (i) Limit the num-
ber of exposed guard nodes. The key challenges for the
successful deployment of a Trapper Attack is that adversaries
should selectively control Tor’s routing path, such that an
adversary has high chance of directing traffic to honey relays.
Trapper Attacks exploit the vulnerability of Tor path selection
algorithm, that is, entry guards are likely to be updated in
Tor circuit construction when the guard in its guard list is not
available. There are two possible ways to minimize the chance
that the attacker-controlled guards become a Tor user’s entry
guard. The first is to limit the number of updated guard nodes:
if a client can only choose a limited number of entry guards
in a given period of time, the chance of choosing one of the
attacker-controlled guards will be greatly reduced. The second
is to use circumvention tools for getting around compromised
guards. For example, use Tor over a VPN: the circumvention
tools encryption will prevent the attackers from seeing Tor
traffic. (ii) Monitoring behavior of Tor relays. Recall that
the Trapper Attacks need to manipulate Tor circuit. If the
manipulated Tor circuits are detected, the effectiveness of such
attack could significantly decrease. A key challenge in this
case is to find out which router is responsible for tearing down
a particular circuit on an anonymous path. In particular, when
a Tor circuit is destroyed, it is difficult to identify whether the

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAN et al.: ANONYMITY VULNERABILITY IN Tor 13

circuit is destroyed intentionally or it is due to a node/network
failures. One naive way to avoid this is to design a reputation
system that monitors the behavior of each Tor router in order
to detect the presents of an unreliable router.

VII. CONCLUSION

In this paper, we present novel deanonymization attacks:
the Trapper Attacks that allow adversaries to effectively and
accurately identify the anonymous communication over Tor.
We demonstrate through experiment that, with the proposed
attacks, an adversary gains the capability of controlling routing
path either through selectively affecting the reliability of
Tor circuits, or hijacking Tor’s relay selection, consequently,
deanonymizing user communications.

In particular, our approach is to deny service on the trust-
worthy onion routers so that users’ data move toward our
injected honey relays. Such attacks can drastically increase
the knowledge of an adversary. The feasibility, survivabil-
ity and effectiveness of the proposed Trapper Attacks are
demonstrated through the experiment conducted on a live
Tor network in the presence of two different honey relay
detection softwares. Results show that our proposed attacks
can deanonymize a real world Tor network in near real time
with a very high survival rate in the presence of honey relay
detection softwares. Finally, we also present a formal analysis
framework to quantitative assess the severity of the proposed
attacks on the live Tor network and its security implications.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proc. 13th Conf. USENIX Secur. Symp.,
Berkeley, CA, USA, vol. 13, 2004, p. 21.

[2] T. T. Project. (Jun. 2020). Tor Metrics Portal. [Online]. Available:
https://metrics.torproject.org/

[3] I. Lovecruft, G. Kadianakis, O. Bini, and N. Mathewson, “Tor
guard specification,”. [Online]. Available: https://gitweb.torproject.
org/torspec.git/tree/guard-spec.txt, Jun. 2020.

[4] T. Elahi, K. Bauer, M. AlSabah, R. Dingledine, and I. Goldberg,
“Changing of the guards: A framework for understanding and improving
entry guard selection in Tor,” in Proc. ACM Workshop Privacy Electron.
Soc., 2012, pp. 43–54.

[5] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users
get routed: Traffic correlation on Tor by realistic adversaries,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2013, pp. 337–348.

[6] P. Winter, R. Ensafi, K. Loesing, and N. Feamster, “Identifying and
characterizing Sybils in the Tor network,” in Proc. USENIX Secur. Symp.,
2016, pp. 1169–1185.

[7] N. Danner, S. Defabbia-Kane, D. Krizanc, and M. Liberatore, “Effec-
tiveness and detection of denial-of-service attacks in Tor,” ACM Trans.
Inf. Syst. Secur., vol. 15, no. 3, pp. 1–25, Nov. 2012.

[8] K. Kohls, K. Jansen, D. Rupprecht, T. Holz, and C. Pöpper, “On the
challenges of geographical avoidance for Tor,” in Proc. 26th Symp. Netw.
Distrib. Syst. Secur. (NDSS), Feb. 2019.

[9] R. Jansen, T. Vaidya, and M. Sherr, “Point break: A study of bandwidth
denial-of-service attacks against Tor,” in Proc. 28th USENIX Conf. Secur.
Symp., 2019, pp. 1823–1840.

[10] V. Pappas, E. Athanasopoulos, S. Ioannidis, and E. P. Markatos, “Com-
promising anonymity using packet spinning,” in Proc. Int. Conf. Inf.
Secur., 2008, pp. 161–174.

[11] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann, “The sniper
attack: Anonymously deanonymizing and disabling the Tor network,” in
Proc. NDSS, 2014.

[12] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low-
resource routing attacks against Tor,” in Proc. ACM Workshop Privacy
Electron. Soc. (WPES), 2007, pp. 11–20.

[13] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial of service
or denial of security?” in Proc. 14th ACM Conf. Comput. Commun.
Secur. (CCS), 2007, pp. 92–102.

[14] Q. Tan, G. Yue, J. Shi, X. Wang, B. Fang, and Z. Tian, “Toward a
comprehensive insight into the eclipse attacks of Tor hidden services,”
IEEE Internet Things J., vol. 6, no. 2, pp. 1584–1593, Apr. 2019.

[15] R. Nithyanand, O. Starov, A. Zair, P. Gill, and M. Schapira, “Measuring
and mitigating AS-level adversaries against Tor,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2016, pp. 1–12.

[16] L. Vanbever, O. Li, J. Rexford, and P. Mittal, “Anonymity on quicksand:
Using BGP to compromise TOR,” in Proc. 13th ACM Workshop Hot
Topics Netw., 2014, p. 14.

[17] G. Wan, A. Johnson, R. Wails, S. Wagh, and P. Mittal, “Guard placement
attacks on path selection algorithms for Tor,” Proc. Privacy Enhancing
Technol., vol. 2019, no. 4, pp. 272–291, Oct. 2019.

[18] M. Nasr, A. Bahramali, and A. Houmansadr, “Deepcorr: Strong flow
correlation attacks on Tor using deep learning,” in Proc. 2018 ACM
SIGSAC Conf. Comput. Commun. Secur., 2018, pp. 1962–1976.

[19] S. J. Murdoch and P. Zieliński, “Sampled traffic analysis by internet-
exchange-level adversaries,” in Proc. 7th Int. Conf. Privacy Enhancing
Technol., Ottawa, ON, Canada. Berlin, Germany: Springer-Verlag, 2007,
pp. 167–183.

[20] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
Proc. IEEE Symp. Secur. Privacy, May 2005, pp. 183–195.

[21] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov, “Stealthy
traffic analysis of low-latency anonymous communication using through-
put fingerprinting,” in Proc. 18th ACM Conf. Comput. Commun.
Secur. (CCS), 2011, pp. 215–226.

[22] N. Hopper, E. Y. Vasserman, and E. Chan-Tin, “How much anonymity
does network latency leak?” ACM Trans. Inf. Syst. Secur., vol. 13, no. 2,
p. 13, 2010.

[23] Z. Ling et al., “A new cell-counting-based attack against Tor,”
IEEE/ACM Trans. Netw., vol. 20, no. 4, pp. 1245–1261, Sep. 2012.

[24] Y. Sun et al., “RAPTOR: Routing attacks on privacy in Tor,” in Proc.
24th USENIX Secur. Symp. (USENIX Secur.), 2015, pp. 271–286.

[25] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver, and V. Paxson,
“Examining how the great firewall discovers hidden circumvention
servers,” in Proc. Internet Meas. Conf., Oct. 2015, pp. 445–458.

[26] R. Ensafi, P. Winter, A. Mueen, and J. R. Crandall, “Analyzing the
great firewall of China over space and time,” Proc. Privacy Enhancing
Technol., vol. 2015, no. 1, pp. 61–76, Apr. 2015.

[27] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and T. Shrimpton, “Seeing
through network-protocol obfuscation,” in Proc. 22nd ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2015, pp. 57–69.

[28] S. Frolov, J. Wampler, and E. Wustrow, “Detecting probe-resistant
proxies,” in Proc. 27th Symp. Netw. Distrib. Syst. Secur. Symp., 2020,
pp. 1–17.

[29] T. T. Project, Tor Control Protocol, Tor Project, Jun. 2020. [Online].
Available: https://gitweb.torproject.org/torspec.git/tree/control-spec.txt

[30] Ipswitch. (Jun. 2020). Imacros for Firefox. [Online]. Available:
https://addons.mozilla.org/en-U.S./firefox/addon/imacros-for-firefox/

[31] Alexa. (Jun. 2020). The Top 500 Sites on the Web. [Online]. Available:
http://www.alexa.com/topsites

[32] I. Azureus Software. (Jun. 2020). Vuze Bittorrent Client. [Online].
Available: http://www.vuze.com/

Qingfeng Tan (Member, IEEE) received the Ph.D.
degree in information security from the University
of Chinese Academy of Sciences, Beijing, China,
in 2017. He is currently an Associate Professor with
the Cyberspace Institute of Advanced Technology,
Guangzhou University, Guangzhou, China. He has
published over 30 articles in reputable conferences
and journals. His current research interests include
computer networks and network security. He is a
member of the China Computer Federation.

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Xuebin Wang was born in 1986. He is currently
pursuing the Ph.D. degree with the University of
Chinese Academy of Sciences, Beijing, China. He is
also with the Institute of Information Engineering,
Chinese Academy of Sciences, and a member of
the China Computer Federation. His current research
interests include information security and cryptocur-
rencies privacy.

Wei Shi (Member, IEEE) received the bachelor’s
degree in computer engineering from the Harbin
Institute of Technology, China, and the master’s and
Ph.D. degrees in computer science from Carleton
University, Ottawa, ON, Canada. She is currently a
Professor with the School of Information Technol-
ogy, Faculty of Engineering and Design, Carleton
University. She is specialized in algorithm design
and analysis in distributed systems, such as distrib-
uted data center and clouds, edge networks, mobile
agents and actuator systems, and wireless sensor

networks. She has also been conducting research in data privacy and big
data analytics. She has published over 80 articles in reputable conferences
and journals. She is a professional engineer licensed in Ontario, Canada.

Jian Tang (Fellow, IEEE) received the Ph.D. degree
in computer science from Arizona State University
in 2006. He is currently with Midea Group. He has
published over 170 papers in premier journals and
conferences. His research interests include AI, the
IoT, wireless networking, mobile computing, and
big data systems. He is an ACM Distinguished
Member. He received an NSF CAREER Award in
2009. He also received several best paper awards,
including the 2019 William R. Bennett Prize and
the 2019 Technical Committee on Big Data (TCBD)

Best Journal Paper Award from the IEEE Communications Society (ComSoc),
the 2016 Best Vehicular Electronics Paper Award from the IEEE Vehicular
Technology Society (VTS), and the Best Paper Awards from the 2014 IEEE
International Conference on Communications (ICC) and the 2015 IEEE
Global Communications Conference (Globecom). He has served as an Editor
for several IEEE journals, including IEEE TRANSACTIONS ON BIG DATA
and IEEE TRANSACTIONS ON MOBILE COMPUTING. He has also served as
a TPC Co-Chair for a few international conferences, including the IEEE/ACM
IWQoS 2019, MobiQuitous 2018, and IEEE iThings 2015; the TPC Vice
Chair for the INFOCOM’2019; and an Area TPC Chair for INFOCOM
2017–2018. He is also an IEEE VTS Distinguished Lecturer and the Chair of
the Communications Switching and Routing Committee of IEEE ComSoc.

Zhihong Tian (Senior Member, IEEE) is currently
a Professor and the Dean of the Cyberspace Institute
of Advanced Technology, Guangzhou University,
Guangdong, China. He is also a Distinguished Pro-
fessor at Guangdong Province Universities and Col-
leges Pearl River Scholar. He is a part-time Professor
at Carlton University, Ottawa, Canada. Previously,
he served in different academic and administrative
positions at the Harbin Institute of Technology. His
research has been supported in part by the National
Natural Science Foundation of China, the National

Key Research and Development Plan of China, the National High-Tech
Research and Development Program of China (863 Program), and the National
Basic Research Program of China (973 Program). He has authored over
200 journals and conference papers in these areas. His research interests
include computer networks and cyberspace security. He is a Senior Member
of the China Computer Federation. He has served as a member, the chair, and
the general chair of a number of international conferences.

Authorized licensed use limited to: Carleton University. Downloaded on September 13,2022 at 19:54:29 UTC from IEEE Xplore. Restrictions apply.

