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Abstract—Autonomous driving is a core application that
greatly benefits from Internet of Vehicles (IoV). The calculation
of the precise positions of Connected Autonomous Vehicles
(CAVs) is mainly done using a Deep Neural Network (DNN)
which requires significant computing power. Therefore, reducing
the computational overhead and improving the efficiency are
urgent problems to be solved. In this paper, we first propose a
CAV cooperative learning architecture based on blockchain to
improve the positioning accuracy of vehicles. Then, we introduce
an error precision sharing model between CAVs. The proposed
framework enables CAVs to train vehicle positioning accuracy
models locally and exchange them via a blockchain network.
Such a distributed training architecture further reduces the com-
puting power required. Extensive simulation results show that
the proposed scheme can also significantly improve the accuracy
of the trajectory error compared to existing approaches.

Index Terms—Internet of Vehicles, Connected Autonomous
Vehicles (CAVs), Deep Neural Network (DNN), Blockchain,
Cooperative learning.

I. INTRODUCTION

For Connected Autonomous Vehicles (CAVs) applications

such as autonomous driving, Advanced Driver Assistance

Systems (ADAS) and location-based services, accurate ve-

hicle positioning is of paramount importance. At present, the

Global Positioning System (GPS) is a relatively common and

well-known vehicle positioning solution. However, the attenu-

ation of GPS positioning signals is particularly obvious in un-

derground garages and dense areas, which leads to restrictions

on the application scenarios of GPS. Generally, the accuracy

required by GPS is 15m, which is far from meeting the safety

accuracy requirements of automated vehicles. However, with

the rapid development of new sensor technologies, such as

LiDAR and camera, machine learning, and communication

technologies, vehicle positioning accuracy can be significantly

improved.

Various solutions have been proposed to improve the po-

sitioning accuracy of vehicles. In [1], the authors introduce

a blockchain-based vehicle GPS positioning error evolution

sharing framework, which aims to ensure the safety and

credibility of the vehicle positioning accuracy. Similarly, the

authors of [2] propose a new framework for the Internet

of Vehicles (IoV) supporting blockchain with Cooperative

Positioning (CP) to improve the accuracy, robustness, and

security of the vehicle GPS positioning. Authors in [3] study

the performance limits of Vehicle-to-Vehicle (V2V) relative

positioning with multiple antenna arrays. They illustrate the

importance of Angle of Arrival (AOA) and Time Difference of

Arrival (TDOA) measurements to position estimation. In [4],

a multi-vehicle (vehicle with rich sensors) coordinated posi-

tioning correction framework to improve the GPS positioning

accuracy of ordinary vehicles is introduced. The authors of [5]

combine and compare several solutions in terms of message

representation and adaptive transmission policy to reduce

overhead, channel congestion, and computational complexity.

The work in [6] first studies the advantages of a vehicle-

to-vehicle Real-time Relative Positioning (RRP) terrestrial

communication system based on the Dedicated Short-Range

Communication (DSRC). Then, it considers the position

prediction technology applicable to V2V RRP. Finally, some

existing schemes are compared.

These studies have used different methods to improve the

accuracy of vehicle positioning. However, how to reduce the

computational cost is still one of the challenges faced by

CAVs. In addition, the safety and timeliness of the positioning

scheme also need to be considered. As a result, we consider

building a new CAV framework based on blockchain and sup-

porting cooperative positioning to solve these challenges. The

underlying IoV environment is composed of multiple CAVs,

and each CAV is equipped with LiDAR to help obtain its

positioning error. The information interaction between CAVs

and Road-Side-Units (RSUs) is completed by blockchain

nodes for information sharing and transaction verification.

Here, the error accuracy model of each CAV is obtained

by the deep pruning compression algorithm [7]. Each CAV

improves and corrects its own positioning error by sharing

the error accuracy model. Moreover, we also design a smart

contract to clarify the data-sharing mechanism and security

protection mechanism between CAVs. The main contributions

are summarized below.

• We design a distributed vehicle trajectory accuracy error

model that leverages the permissioned blockchain due

to its low-cost, low-latency, and low-bandwidth-intensive

characteristics. The proposed system aims to improve the

accuracy, system timeliness and system security of the

trajectory accuracy error positioning.
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Fig. 1: The proposed framework with blockchain.

• We apply a pruning compression algorithm on deep neu-

ral network compression on each local training model.

The algorithm improves the speed of local training by

reducing unnecessary convolution kernels.

• Finally, we design a smart contract for vehicle trajec-

tory accuracy error model sharing. Furthermore, a new

transaction sorting mode is designed to ensure that the

data requester obtains the transaction with the highest

error accuracy. While the permissioned blockchain sys-

tem ensures high performance and better scalability of

the system architecture, the smart contracts ensure the

security of the sharing mechanism.

The rest of this paper is organized as follows. Section II

introduces the system model and Section III explains how

deep compression neural networks are used for local training.

In Section IV, we explain the cooperative learning method

in CAV and report the performance of the architecture in

Section V. Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

A. Position Trajectory Error Model for CAV

As shown in Fig. 1, the IoV subsystem is composed of

Traffic Sign (TS), RSU, and CAVs in the same road section,

and mainly realizes the sharing of positioning accuracy be-

tween CAVs. Specifically, each RSU has sufficient storage

space and computing power to process vehicle data requests,

data selection, and data transmission initiated by the vehicle,

reducing the amount of calculation for CAV local training.

CAV nodes are connected to each other through DSRC

communication. The blockchain subsystem, composed of

RSUs, is responsible for processing corresponding transaction

verification and accounting in a trusted and secure manner.

As shown in Fig. 2, we place a CAV in the center

of the two-dimensional coordinate system. To evaluate the

authenticity of the actual trajectory of the vehicle, we use a

straight line (Ax + By + C = 0) to represent the trajectory

of the vehicle. In this framework, the precise location of

the TS is set by the specific method installed in the preset

location (i.e., the coordinates of the RSU are known), and

Fig. 2: The simplified calculated model of CAV.

all the location coordinate values (including GPS, LiDAR

and TS) are based on this reference coordinate system (the

GPS position coordinate value of the vehicle can be obtained

through the corresponding coordinate transformation). Since

the trajectory of the CAV is a horizontal road, we only focus

on the position error in the X and Y directions.

For the straight line, we perform least-squares fitting to

calculate the parameter A corresponding to the CAV location.

First, the points of the vertical distance to the line are the

sample points, which are defined as (xz, yz), and the number

of samples is set to Z. We establish the variance error e of

the fitting straight line: e =
∑Z

z=1(yz −Axz −B)2.

To minimize e, we take the partial derivatives of

A to make them equal to zero. Therefore, we have
∂
∑Z

z=1(yz−Axz−B)2

∂A = 0.

Therefore, A can be obtained from the equation below:

A =

Z∑
z=1

x2
z

Z∑
z=1

yz −
Z∑

z=1
xz(

Z∑
z=1

xzyz)

Z
Z∑

z=1
x2
z − (

Z∑
z=1

xz)2
(1)

We define the distance from a CAV to the TS as dCT , and

the coordinates of the position of TS j in the two-dimensional

coordinate system as PTj (pTjx , pTjy ). The coordinates of

CAV i are P j
V i (pjVix

, pjViy
), and the position coordinates of

vehicle i are measured by the on-board LiDAR based on the

known position coordinates of TS j. P j
V i is expressed as:{

pjVix
= pTjx − dCT · cos(α+ β)

pjViy
= pTjy − dCT · sin(α+ β)

(2)

Here, α is the angle between the TS and the CAV driving

track, which can be measured by the on-board LiDAR. β is

the auxiliary angle, which is used to determine the position

of the CAV (P j
V i). The slope of the trajectory can be obtained

from (1), so the angle β can be expressed as β = arctan(A).

It is important to point out that the vehicle-mounted LiDAR

in this article is on the top of the vehicle. We define the

distance between the LiDAR and the GPS of the same vehicle

as a constant dLG. Therefore, we can get the relative precise
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positioning pji (p
j
ix, p

j
iy) of CAV i as:{
pjix = pjVix

pjiy = pjViy
+ dLG

(3)

Based on the above definition, the trajectory error ΔT j
i

of CAV i is determined by the GPS positioning accuracy

PGi and relative precise positioning pji . Hence, we obtain

ΔT j
i = ||PGi−pji ||. Considering the directionality of vehicle

position, the vector of
−−→
ΔT j

i is the value of the trajectory error

ΔT j
i and its direction information.

We define that there are M traffic signs in the proposed

framework, that is R = {R1, R2, ..., Rj , ..., RM}. Hence, the

average trajectory error of CAV i can be defined as:

−−→
ΔT j

i =

∑M
j=1 ΔT j

i

M
(4)

III. DEEP COMPRESSION METHOD FOR LOCAL DISTANCE

PREDICTION

As mentioned above, the CAV uses its mounted LiDAR

to obtain its position through TS (e.g. traffic signal) and

compute its GPS track positioning error. Here, the key point

that may affect positioning accuracy is the distance (dCT ) be-

tween CAV and TS. The optimal distance with the minimum

trajectory positioning error can be determine through DNN

training.

A. CNN Architecture

Considering that the proposed framework is mainly for

straight-line driving trajectories, the distance dCT between

the vehicle and the TS depends on the driving speed, CAV’s

acceleration, the slope of the two-dimensional space, the

driving time, and the location of the TS. We set the parameters

as follows: input matrix Sinput (we treat the input matrix as

a picture of N ×N pixels): the position of the TS PTj
(pTjx

,

pTjy ) on the road; the driving speed vCi ; the spatial straight

line slope a; CAV’s acceleration, and the CAV driving time

ti. In particular, the driving time of a vehicle refers to driving

in the TS road section. Sinput feeds to the first convolution

layer that convolves the input image with 32 filters, kernel size

2x2, stride size 1, and the same padding method. The output

of the first convolution layer is convolved by the second

convolution layer with 48 filters and the same stride size and

padding method. The rectifier nonlinearity activation function

(ReLU) is used as the activation function for two convolution

layers. Moreover, the two max-pooling layers are connected

to the first and second convolution layers. The fully connected

layers that are used as two neural networks of all 512 units

are designed to connect with the second max-pooling layer.

Finally, the distance dCT is returned by the output layer.

B. Pruning Filters Applied in CNN for Distance Prediction

In this paper, we directly remove the convolution kernel

that has little effect on the accuracy of CNN. For the Sinput,

the number of input channels of the convolutional layer m
is characterized as Dm. wm and hm are the width and

height of the input feature map, respectively. When the

convolutional layer receives the feature map with the input

dimension Em ⊂ RDm×hm×wm , it extracts the feature map

with the dimension Em+1 ⊂ RDx+1×hm+1×wm+1 and takes

it as input for the next layer. In particular, the multiplication

and addition (MAdds) of the convolution kernel with the

size of Dm+1 × Dm × k × k in the convolutional layer

m is Dm+1 × Dm × k2 × hm+1 × wm+1. In the deep

compression neural network used in our architecture, a certain

convolution kernel in convolutional layer m is pruned, then

the features extracted by this convolution kernel are also

pruned at the same time, thereby reducing the number of

computations to Dm × k2 × hm × wm. Furthermore, since

the output feature map of the previous layer is cropped, the

number of input channels of the next layer of convolution

is reduced, so the number of the reduced computation is

Dm+2 × k2 × hm+2 × wm+2. By analogy, we can conclude

that if the convolution kernel with the smallest absolute

value is cut, the dimension of the convolution kernel of

this layer will be reduced accordingly, which will reduce

the number of input channels to the next layer. Finally,

deep pruning compression algorithm in our framework can

effectively reduce the number of local training computations.

Therefore, the pruning compression strategy of CNN in

this article cuts out m convolution kernels from the ith

convolutional layer as follows: 1) For each km (convolution

kernel), calculate the sum of its weight absolute values

sa =
∑Dm

m=1

∑ |ηm|. Here, ηm represents the weights in the

mth convolutional kernel and Dm represents the number of

input channels of the mth convolutional layer. 2) Sort by Ka;

3) Cut the m convolution kernels with the smallest sum of

absolute weights and the corresponding feature maps. 4) A

new weight matrix for layer m and m + 1 layer is created,

and the remaining weight parameters are copied to the next

layer model.

IV. BLOCKCHAIN AND SMART CONTRACTS

A. Details of Blockchain in Proposed Framework

1) Format of Each Block: The block body records the

transaction with the block confirmation. This paper records

one type of transaction, referred to as the data demand and

sharing records between CAVs.

2) Redundant Byzantine Fault Tolerance (RBFT) Consen-
sus Mechanism: In our proposed framework, each RSU in

the blockchain subsystem can act as a consensus node to

participate in the verification of newly generated blocks. The

primary RSU node packages the transaction into blocks and

then verifies it and writes the verification result into the

Pre−Prepare message for network-wide broadcast so that

it can include both sorting transaction information and the

result of the block verification. The RSU node first checks the

validity of the message after receiving the Pre − Prepare
message from the primary node. After the check is passed,

the Pre−Prepare message is broadcast to indicate that the

node agrees with the ordering result of the primary node. The

slave node will only start to verify the block after receiving the
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Fig. 3: Transaction sorting process.

Pre−Prepare message. The verification result is compared

with the primary node. If the comparison result is consistent,

the broadcast Commit message indicates that the node agrees

with the verification result of the primary node. Otherwise,

it directly initiates V iewChange to indicate that the node

believes that the master node has abnormal behavior. The

RBFT consensus mechanism ensures that the smart contract

can be carried out safely and effectively, ensuring the sharing

of positioning accuracy between CAV nodes.

3) Transaction sorting process: The CAV data requester

submits the transaction to the blockchain system, and the

ordering service node (primary node in RBFT) creates trans-

action blocks. These transaction blocks will eventually be

distributed to all replica nodes for final verification and

submission. In particular, the job of the ordering service node

is to arrange the submitted transactions into batches then pack

them into blocks in the order of error accuracy from high to

low. The sorting process is shown in Fig. 3.

B. Smart Contracts

In our proposed architecture, different CAVs are mainly

used to share the CAV positioning error of blockchain verifi-

cation. If the CAV directly uploads the locally trained DNN

model parameters (positioning accuracy), other nodes can

easily use their data maliciously and cannot guarantee their

own interests. Therefore, we designed a set of smart contracts

to reduce the negative impact of malicious nodes, thereby

improving the security of the system. The Smart Contract for

Local Model Parameter (SCLMP) sharing is shown in Fig. 4.

The contents of SCLMP are as follows:

1) Data request: In our proposed architecture, some CAV

nodes that have poor training results can request the nearest

RSU node to obtain the best trained DNN model parameters.

The request message includes the required data type, public

key, and reward with their private signature.

2) Data sharing rights competition: After receiving a

request, the RSU node broadcasts this request to other par-

ticipating CAV nodes, which consequently encapsulate their

local training results into transactions and upload them to the

blockchain system. The primary node performs transaction

sorting. If a consensus is reached, the node with the highest

error accuracy in the transaction sequence will share its data.

Fig. 4: Smart contract for local model parameter sharing.

3) Data sharing: When the RSU node receives a parameter

message from the data provider, the RSU node sends the

public key of the data requester to the data provider. The

data provider uses the public key to encrypt the trained DNN

model parameters and sends them to the RSU node.

4) Data reception and reward: When the data requester

receives a message sent by a RSU, the encrypted data will be

decrypted by the data requester with the private key to obtain

the required DNN parameters. In particular, once the data

requester uses the link, the link will automatically become

invalid to prevent abuse by other nodes. Meanwhile, the RSU

node immediately sends the reward to the data provider.

5) Transaction record: The RSU node records the sum-

mary of each transaction simultaneously. Then, the recorded

transaction summary is periodically packaged into blocks and

broadcast to the blockchain subsystem for further verification.

If the blockchain system reaches a consensus, these blocks

will be added to the blockchain.

V. SIMULATION RESULTS AND DISCUSSIONS

We first evaluate the trajectory error accuracy of the pro-

posed scheme. We then compare our results against Multi

TS Cooperative Error Evaluation (MTCEE) [2] and GPS. We

also analyze the timeliness and security performance.

A. Comparison of the Trajectory Error Accuracy

In CNN, the pruning strategy is set to start at 2,000 and end

at 4,000 steps. We set a binary mask variable at each selected

layer. On the premise that the shape of the weight tensor is

consistent, the role of the mask variable is to determine the

tensor participating in the weight update. In the Tensorflow

training process, the update of the mask is done by adding a

special operator. Its purpose is to control the CNN’s selected

layer weight sorting rules based on absolute values. When

Tensorflow training is updated, the mask value whose absolute

value of the weight is less than the threshold is set to 0.

The mask will also be used in the back-propagation gradient

descent, and the weight with a mask value of 0 will not

update the weight value in the gradient descent. We control

the absolute value of the weights and sort them by setting the
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TABLE I: DNN Settings

Parameter Value Parameter Value

Convolutional layer 4 Pooling layer 4
Batch size 32 Learning rate 0.00001
Discount factor 0.9 Total training steps 4000
Traffic sign number 4

Fig. 5: Simulation structure of the proposed architecture.

mask variable. Table I shows the parameter settings that were

used.

As shown in Fig. 5, the communication between each RSU

(blockchain node) and the blockchain framework (including

the establishment of smart contracts) is done via Remote Pro-

cedure Call (RPC). It contains the mapping of each account

(inside the neighbor RSU) to messages, exchanges, and labels.

Among them, ImplementSCLMP.py is a smart contract script

that is used to extract the TensorFlow-based LocalCAVtrain.py
file (local training results) into the contract script, and at

the same time transmit the content of the contract to the

blockchain node; CNNWithPruning.py aims to use a deep

compression architecture to greatly reduce the computational

cost and training delay of local training.

As shown in Fig. 6, the traditional positioning error that

relies solely on GPS is the largest. The remaining solutions

improve the accuracy of the trajectory error. We can see

that our proposed scheme (SCLMP) performs better than

existing schemes in terms of error accuracy. The reasons can

be summarized as follows: 1) Our proposed scheme uses

convolutional nerves on the basis of existing schemes. The

network can more accurately identify local features (i.e., po-

sitioning accuracy parameters), thereby further improving the

position information of TS and RSU, so the error accuracy is

better. 2) Our local error accuracy training part introduces the

pruning compression method. We aim to reduce the impact

of parameter redundancy on the training effect, accelerate the

network convergence, and have a higher accuracy rate. 3) In

the blockchain consensus part, we adopted the permissioned

consensus algorithm (RBFT). This consensus algorithm is

faster. At the same time, the authority consensus algorithm

requires that the identities of all participating nodes are

known, ensuring accuracy and security in the accuracy sharing

process. In summary, the proposed scheme has an average

error of 2.87 meters as compared to 4.03 meters for MTCEE.

In order to further clarify the performance of the posi-

tioning accuracy, we respectively compared the positioning
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Fig. 6: Trajectory error accuracy comparison between differ-

ent approaches.
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Fig. 7: Trajectory error accuracy comparison with respect to

different vehicle speeds.

error accuracy of the three schemes at 20, 30, 40, 50, and

60km/h vehicle speeds. According to Fig. 7, as the driving

speed increases, the local training speed between CAVs and

the speed of interaction with the blockchain decreases. This

also affects the calculation accuracy of the trajectory error.

However, at different speeds, SCLMP consistently receives

fewer positioning errors than MTCEE.

B. Other Performance Analysis

1) Security: We analyze the security by analyzing the

data security of the proposed architecture and the influence

of malicious nodes on the system. First, the trained CAV

nodes need to provide their trajectory accuracy error to the

blockchain system and obtain the right to provide data through

competition (SCLMP), thereby protecting the security of

the data requested by the data holder. Second, if there are

malicious nodes that provide false trajectory error accuracy,

due to the nature of the blockchain, the data written to the

blockchain cannot be tampered with. Therefore, false data

providers can be directly removed from the blockchain system

to ensure data accuracy and security.

2) Robustness: Fig. 8 illustrates the comparison of the

positioning accuracy of the different schemes with 4 TSs,

a speed of 50km/h and different numbers of data providers

(collaborators). From the figure, we can see that with the

increase of the number of data providers, the positioning

accuracy obtained by the data requester has been improved

to varying degrees. Obviously, as the number of collaborators

increases, the data requester can correct its errors by multi-

point cooperation in the positioning accuracy. However, our

proposed SCLMP scheme can obtain more precise localiza-

tion errors than the other two schemes. According to Fig. 8,
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Fig. 9: Trajectory error accuracy comparison between differ-

ent number of RSUs.

when the number of data requesters is reduced from 6 to 5,

the positioning error accuracy of GPS and MTCEE increases

to 7.57m and 5.03m respectively. However, our proposed

SCLMP scheme provides a better accuracy with 4.15m. In

summary, for the same number of cooperations, SCLMP has

better error accuracy than GPS and MTCEE, indicating that

the scheme has strong adaptability to environmental changes

and maintains high robustness.

Fig. 9 demonstrates the correlation between the system po-

sitioning accuracy and the number of consensus nodes (RSUs)

under a fixed speed of 50km/h, 4 TSs and 6 cooperators.

The increase in the number of consensus nodes (RSUs) in

the blockchain leads to an increase in system delay, energy

consumption between nodes, and the positioning accuracy of

the system is also be affected, which leads to a negative

impact to the blockchain system. However, according to Fig. 6

to Fig. 9, the strong advantages of the blockchain system

in terms of robustness, security and adaptability cannot be

ignored. SCLMP outperforms the two existing schemes on

error accuracy even when the latency is increased, which

demonstrates its high robustness.

3) Timeliness: Fig. 10 shows the total training set of

MTCEE and SCLMP where the corresponding curves con-

verge above 90%. The training latency rests on the number

of training episodes. From this figure, we can see that the

training delay of our proposed SCLMP scheme is always

lower than MTCEE. Our proposed solution demonstrates two

improvements on its timeliness: i) local training speed is

increased due to the deep compression scheme performed;

ii) a CAV can request the pre-trained CNN model parameters

through the blockchain, therefore, eliminating a long training

delay. This figure further confirms that our proposed cooper-
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Fig. 10: Training latency comparison.

ative learning scheme leads to a shorter delay.

According to Figs. 8 and 9, the accuracy of the SCTPE

scheme is very close to the one of SCTPE method without

pruning. This is because the pruning compression scheme

adopted by the local training of SCTPE can recover the

accuracy through a short-term retraining (less than the original

training time). As shown in Fig. 10, the applications of

pruning and compression leads to great reduction on the

computing cost of the RSU and improvement on the training

efficiency, thereby ensuring the superiority of the overall

performance of the proposed SCTPE system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new framework based on

blockchain to improve the accuracy of CAV positioning. The

architecture includes the blockchain subsystem and the CAV

subsystem. In addition, we propose a local distance prediction

method based on the deep compression method to get the tra-

jectory error accuracy model of a CAV. Finally, we combined

the characteristics of the blockchain and proposed SCLMP

that shares the error model between CAVs. Compared with

traditional methods, the experiments show the effectiveness

and accuracy of our proposed method. For future work, we

plan to apply the proposed framework in embedded or mobile

systems such as Internet of Things.
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