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a b s t r a c t

From smartphones owned by the majority of teenage and adult populations to omnipresent closed-
circuit television systems, the ubiquity of image-capturing devices in our everyday lives ensures that
digital images of individuals are taken in the hundreds of millions on a daily basis. Many of these
images capture individuals’ faces which, through facial recognition techniques, identify the individuals
and thus represent a major privacy concern. Many countries and companies require facial obfuscation
to conform to privacy laws or policies. Since images should be useful and look realistic, a trade-off
arises between privacy and utility. The task is therefore to find a method of obfuscation that offers
a formal privacy guarantee while preserving visual quality and maintaining facial attributes deemed
acceptable for release (e.g., the pose of the head, gender, etc.). We address this task by proposing
facial identity obfuscation through the application of differential privacy to image encodings in a
generative adversarial network. We provide details on the design of the model architecture and training
process that allow for the generation of photo-realistic obfuscated images. Through the use of principal
component analysis, we control the application of noise to the model encodings in order to achieve
a favourable trade-off between privacy and utility. We demonstrate the effectiveness of our approach
through an experimental comparison against other methods of obfuscation which also offer a formal
guarantee of privacy.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Digital images are captured from a wide variety of sources in
assive quantities at an astounding rate. The number of images
ploaded daily by users of social media is in the hundreds of
illions [1]. Many of these images capture individuals’ faces, thus
roviding a strong identifier of who the individual is [2,3]. It
s often required, or at least respectful, to consider the privacy
f the parties involved before sharing images online. Images of
ndividuals are also routinely captured in large quantities from
any other sources such as public surveillance [4], visual sensor
etworks [5] and image-based services such as Google Street
iew [6]. In all of these cases, the privacy of individuals should be
arefully treated, whether it is a matter of law, company policies,
r simply social responsibility [2,3].
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ing Research Council of Canada (NSERC) [grant numbers RGPIN-2020-06482,
RGPIN-2016-06253 and CGSD2-503941-2017].
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167-739X/© 2021 Elsevier B.V. All rights reserved.
The majority of teenagers and adults in countries with ad-
vanced economies own smartphones [7] and many of them ac-
tively share images on social media platforms [8]. Facebook now
has over 2 billion users [9] with more than 350 million image
uploads per day [1] and Instagram has over 1 billion users [10]
with more than 100 million images and videos uploaded per
day [11]. There are various social motivations, such as the desire
to connect with others and share experiences, which encourage
users to consistently share images on these platforms [12]. Yet
due to the personal nature of many images, users must constantly
weigh the benefits against the risks to privacy [13]. It is clear
that users want to be able to control how, and with whom, their
images are shared [14,15]. Furthermore, individuals appearing in
images taken by others often want some say in what happens
to the images. In cases involving multiple parties, conflicts are
often resolved either through unaltered release of the image or
complete redaction [16]. Yet this type of all or nothing approach
is not ideal for handling nuanced cases and is likely unsatisfactory
for some of the parties. It is also not uncommon for strangers
to be captured in the background of images, making the issue
of privacy more complex. Requesting consent from strangers to
share images is likely to be impractical or even impossible in

some cases.
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Fig. 1. Examples of basic methods of facial obfuscation. From left to right:
redaction, pixelization, blurring.

Beyond privacy concerns regarding images being seen by oth-
rs, rapid advances in machine learning approaches to computer
ision also pose threats to privacy. Detection and identification
f faces in images are now tasks that can be accomplished with
reat accuracy. Recent neural networks have achieved over 99%
ccuracy in tasks of facial verification and classification [17,18]
nd are increasingly able to handle difficult conditions such as
ow resolution, non-frontal poses and poor illumination [19,20].
hese advances enable the development of software that can
eadily track and profile mass populations. This may, for example,
aise concerns over the ability of governments and authorities to
rack populations on a highly personal level [21]. In some areas,
losed-circuit cameras are present in the millions, capturing vast
uantities of visual data [4]. While these technologies no doubt
ave benefits such as improved quality of services [2,22] and
revention of crime [2,23] or assistance in solving crimes, these
enefits must be carefully weighed against the infringement on
ersonal privacy. Furthermore, as with other types of sensitive
nformation about individuals, the collection of visual data must
e conducted in a manner that is compliant with privacy-centric
aws such as GDPR [24,25].

One approach to ensure the privacy of individuals while still
llowing for the release of images is to selectively redact portions
f the image by placing a solid rectangle over top of individuals
Fig. 1-a). While this addresses the issue of privacy, it produces
mages that are found to be visually unappealing [26,27]. Less
evere methods such as pixelization (Fig. 1-b) or blurring (Fig. 1-
) may be employed, but it is difficult to find a good trade-off
etween the aspects of privacy protection, visual appeal and
nformation sufficiency [27,28]. In some cases, it may also be
esirable to allow for the automatic extraction of information
rom images for machine learning tasks such as marketing and
etail analytics [22,29]. In such cases, information sufficiency is
specially important since machine learning algorithms typically
ely on the ability to detect certain features in the images.

The balance between privacy protection and image quality
nd utility is further exacerbated by the fact that many ad hoc
ethods of privacy protection have been shown to ultimately
e ineffective. The human visual system has remarkable robust-
ess against blurring in images, allowing for recognition of faces
gainst all but the most extreme applications of blurring [30,
1]. Furthermore, super-resolution techniques can offer realistic
eversals of pixelization [32] and machine learning algorithms
ave been shown to effectively defeat obfuscation via blurring
s well as other forms effective against human recognition such
s strong pixelization [33,34]. Although more recent approaches
o privacy protection in facial images have improved greatly in
his respect, many of them fail to offer a formal privacy guar-
ntee (i.e., a mathematically provable guarantee such as k-same
bfuscation [34] or differential privacy — described in Section 4.1)
r suffer from susceptibilities to certain types of attacks [35]. In
his work, we improve upon these issues by providing a method
or the obfuscation of facial identity (i.e., the visual depiction
359
of identity in facial images) which offers photo-realistic images
of faces and is backed by the formal guarantee of differential
privacy.

1.1. Contributions and paper outline

Our intent is to design a Generative Adversarial Network
(GAN) that can obfuscate the facial identity in given input images
while preserving certain types of information deemed acceptable
for release such as the pose of the head (henceforth referred to
simply as pose) and gender. To this end, we set out the following
three goals:

1. The obfuscated images must be protected by a formal pri-
vacy guarantee.

2. The model must produce photo-realistic images and must
have the ability to preserve targeted facial attributes (e.g.,
pose, gender, etc.).

3. The input images must be largely unconstrained with re-
spect potential variability over aspects such as pose and
image background.

To the best of our knowledge, differential privacy has not pre-
viously been applied via a GAN-based model for the obfuscation
of facial identity in novel images fed to the trained model. A
straight-forward application of differential privacy to GAN image
encodings results in distorted, low-quality obfuscated images,
as we demonstrate in Section 5. To achieve realistic obfuscated
output that preserves desirable aspects in images, it is necessary
to carefully consider the model design and training process as
well as the method by which noise is applied to the encodings.
To this end, we make the following contributions:

• We propose an approach that achieves the three goals we
have specified for the task of facial obfuscation. For this,
we provide architecture and training details that allow for
differential privacy to be enforced on GAN image encodings
in a manner resulting in realistic obfuscated images. We
provide insight into how to carefully control the addition
of noise to the image encodings such that visual quality is
preserved.
• We propose a method to improve the preservation of utility

in obfuscated images through an application of Principal
Component Analysis (PCA) to distance-generalized differen-
tial privacy. To the best of our knowledge, ours is the first
work to combine PCA with distance-generalized differential
privacy. We explain how to apply noise to PCA-basis encod-
ings to achieve the generalized privacy guarantee and how
to adapt the GAN training process to produce high quality
obfuscated images from noisy PCA-basis encodings.
• We provide details on both theoretical and practical inter-

pretations of the formal privacy guarantee that we achieve
for obfuscated images. We relate our instantiation of the
privacy guarantee to that of standard differential privacy
(for databases) and offer intuition for the interpretation of
the privacy parameter ϵ as used in our setting.
• We provide an experimental evaluation of our work in

which we empirically study the level of privacy achieved
and compare our approach to others with respect to privacy-
utility trade-offs.
• We demonstrate that our proposed approach achieves a

strong level of privacy protection while preserving
favourable levels of utility in the obfuscated images.

We emphasize that the work in this paper differs from the
task of privacy-preserving machine learning, in which machine
learning models are trained in a manner that offers privacy pro-
tection for sensitive information in the training data. In contrast
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o this, we use training data that is publicly available, resulting
n a trained model that is devoid of sensitive information. All
nteractions with sensitive data occur after training, when the
odel is applied to accept private images as input and produce
bfuscated versions as output.
The remainder of the paper is structured as follows. We re-

iew literature from the fields of study relevant to our work in
ection 2 and provide a discussion on the works that achieve a
ormal privacy guarantee in Section 3. We then provide greater
etail and notation for the works we build upon in Section 4.
n Section 5, we cover the architecture and training details for
ur proposed GAN model for differentially private obfuscation of
acial images. In Section 6, we show how to incorporate the use
f PCA into the obfuscation pipeline in order to improve utility. In
ection 7, we provide information on the interpretation of privacy
n obfuscated images, both in the context of differential privacy
nd in more general terms. Finally, we provide an experimental
valuation of our work in Section 8 and conclude the paper in
ection 9.

. Literature review

Early approaches to facial obfuscation consisted of ad hoc
ethods such as pixelization [36] and blurring [37]. It has been
hown that such ad hoc methods are often easily defeated by
arrot attacks in which a machine learning algorithm is trained
n instances of images that have been subjected to the targeted
ethod of obfuscation [33,34]. As a result of this, the provision
f a formalized guarantee of privacy has become an important
spect in methods of obfuscation.
To protect against parrot attacks, k-same obfuscation [34]

ffers a formal privacy guarantee which states that for each ob-
uscated image, at least k potential identities are equally probable
to be the true identity. This is achieved by partitioning a gallery
of images into clusters, each with cardinality at least k of visually
similar images, and then averaging the images in each cluster to
create obfuscated instances. This concept was first implemented
using calculations in pixel-space [34] and was later applied to the
parameter-space of Active Appearance Models (AAMs) [38,39] to
improve the visual quality of the obfuscated images.

More recent advances in the field of facial obfuscation have
largely turned to the usage of generative neural networks for
the creation of obfuscated images. While k-same obfuscation
and variants thereof have remained a popular choice for the
privacy guarantee, other formalized approaches (e.g., redaction
with in-painting [40,41] and differential privacy [35,42]) have
recently been applied as well. We note that another direction
of study, adversarial perturbation [43,44], has aimed to protect
against machine learning recognition while still allowing humans
to easily identify the images. However, in our work, we focus on
obfuscation that protects against identification both by humans
and machines.

2.1. Generative neural networks for images

As neural networks are becoming an increasingly popular
tool for image processing, methods of facial obfuscation are now
making use of them. These networks are able to offer impres-
sive visual quality, often at a photo-realistic level, and provide
convenient ways to manipulate parts of images while preserving
desired aspects. We provide a brief review of relevant networks.

While not a particularly new area of study, convolutional
neural networks have recently enjoyed a number of advances
that have greatly improved their effectiveness in computer vi-
sions tasks such as classification of images [45]. These networks,
primarily consisting of a layered combination of convolutional
360
filters and non-linear activation functions, accept an image as
input and produce a compact encoding that is well-suited for
the intended task. Recent variations on this concept have essen-
tially inverted the architecture by using transpose convolutions to
take encodings as input and produce images as output. This has
been applied to generate novel images having specific properties,
potentially in combinations not seen in the training data [46].
This type of architecture has also been extended by pairing the
generator network with a discriminator network that aims to
distinguish between real or generated images [47]. The model,
referred to as a Generative Adversarial Network (GAN), uses an
adversarial training scheme in which the two networks compete
in a minimax game, forcing the generator to learn how to produce
realistic instances from a targeted distribution in order to fool the
discriminator.

The concept of GANs has spawned a rich body of work on
the generation and manipulation of highly realistic images. The
DCGAN [48] architecture improved training stability, allowing for
deeper network architectures and better image quality. DCGAN
was also applied to demonstrate the ability to generate novel
images by performing interpolation and arithmetic in the latent
encoding space. Conditional GANs [49] extended the training
process by teaching the network to generate images from a
conditional distribution, allowing for the specification of desired
properties in the generated images.

The concept of an encoder network was later introduced,
allowing GANs to take an image as input and produce an encoding
that could then be decoded (by the generator) back to an approxi-
mation of the input image [50,51]. This concept enabled the use of
GANs for image editing tasks. Networks such as StarGAN [52] and
AttGAN [53] have shown impressive results in the modification
of specific features in facial images while preserving all other
information in the images. It is these types of networks that are
particularly useful for approaches to facial obfuscation.

2.2. Facial obfuscation using generative networks

The advances in generative neural networks, particularly those
applied in the context of facial images, have provided a highly
convenient tool for the task of facial obfuscation which has been
explored in a number of recent works. By operating on the rep-
resentation of an image within the encoding space of a neural
network model, it is possible to generate realistic output of novel
faces.

Using a model that learns facial features that are invariant
to pose and illumination, k-same obfuscation has been applied
to generate obfuscated faces from averaged clusters of facial
features [54]. The authors propose an autoencoder-style architec-
ture (i.e., a network that encodes and decodes images) such that
the k-same algorithm can be applied to the intermediate image
encodings. The concept of k-same obfuscation using a neural
network has also been proposed via a transpose convolutional
architecture [55]. Under this architecture, the network directly
learns encodings for a set of training images. The authors there-
fore propose to use a mapping process from clusters of input
images to clusters of training set images such that the encodings
of the training image clusters can be averaged in a k-same fashion
and used as the obfuscated replacements for the input images.
The network architecture provides high visual quality and main-
tains separate features for facial expressions in order to allow
for control and preservation of expressions in the obfuscated im-
ages. While k-same implementations have improved greatly over
the years in visual quality, all such methods remain vulnerable
to composition attacks and background knowledge, as this is a
deficiency of the underlying privacy guarantee [35].

To provide a stronger level of privacy than what k-same offers,
generative networks have been applied to achieve other types
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f formal privacy guarantees. The syntactic privacy guarantees
f l-diversity and t-closeness have been applied over a set of
inary facial attributes controlled via a GAN [56]. These privacy
uarantees strengthen the k-same guarantee by additionally plac-
ng requirements over the distribution of attributes in order to
ender inferences about the original data more difficult. How-
ver, the proposed algorithm modifies only a predefined set of
ttributes while leaving all other information encoded from the
mage untouched, potentially leaking identifiable information.

Alternatively, privacy can be guaranteed by completely remov-
ng faces from images and then applying a generative network
o in-paint the redacted area such that it produces a novel face.
ne such approach employs a pair of autoencoders, one to gen-
rate facial landmarks for a redacted facial image and the other
o transform the generated landmarks and redacted image into
n in-painted image displaying a new face matching the facial
andmarks [57]. Although the redaction of a bounding box around
he face guarantees perfect protection of the targeted area, the
ounding box excludes most of the ears and hair, and in some
ases, parts of the chin and forehead. The in-painting relies on this
on-redacted contextual information to produce visual output of
igh quality. However, these excluded portions of the head may
eak identifiable information. This information leakage can be
mpirically observed through the reported experiments in which
acial re-identification was achieved at 5.6% accuracy over a set
f 257 identities (much higher than the expected accuracy of
oughly 0.4% for random guessing if all relevant information had
een replaced). The concept of redaction and in-painting has also
een applied using a conditional GAN [40]. Once again, facial
andmarks are generated and these are provided along with the
edacted image as the conditional information inputs to a GAN
hich generates an in-painted facial image. This work also uses
tight redaction bounding box that excludes much of the facial
ontour. Although re-identification accuracy is not reported in
he original paper, we demonstrate the leakage of identifiable
nformation in our own experiments in the present paper.

A variation on the in-painting approaches substitutes the use
f facial landmarks for a parametric representation of a 3D facial
odel [41]. In this approach, a tightly cropped area around the

ace is first redacted, then 3D facial model parameters are gener-
ted from the redacted image using an autoencoder. Following
his, a larger bounding box covering the full head is redacted
nd a second autoencoder is used to perform in-painting using
he new redacted image and 3D model parameters as input. The
edaction of the larger area addresses concerns of leakage of iden-
ifiable information through non-redacted facial contours. Further
o this, many of the 3D model parameters passed to the second
utoencoder are replaced with new values to prevent leakage of
dentifiable information though this channel. However, a subset
f these parameters are allowed to keep their original values
n order to ensure good visual quality during in-painting. These
reserved parameters values have the potential to leak identifi-
ble information, as seen by the reported facial re-identification
ccuracy of 7.1% over a set of 257 identities.
A more extreme method of redaction involves complete re-

lacement of the original image with a newly generated facial
mage from a GAN [58]. In this approach, the authors first gen-
rate a facial image at random using the DCGAN architecture and
hen apply a feature editing GAN to modify basic facial features
uch as gender and hair colour to match the original image. This
nsures that identifiable information is only revealed through the
elected attributes. However, the approach suffers in its ability
o preserve useful information in the obfuscated images. Aspects
uch as image background and pose are lost, and without a
ontrollable privacy parameter, there is no means to adjust the

egree of obfuscation.

361
The ability of neural networks to realistically manipulate facial
features has also been exploited in contexts outside of formal
privacy guarantees. Examples include the use of a training ob-
jective function that promotes changes in facial identity [59] and
the application of a transformation to image encodings that in-
duces large changes to identity-specific features while preserving
certain desirable attributes [60]. Another informal approach to
privacy protection in facial images is the concept of face swap-
ping [61] which has recently been applied using neural networks
to perform the transfer and blending process [62–64]. While these
approaches may empirically demonstrate low re-identification
risk in specific attack settings, their lack of a formal guarantee
of privacy leaves uncertainty in their resilience and reliability
against other types of attacks.

2.3. Differential privacy and facial obfuscation

Originally developed for usage on statistical databases, differ-
ential privacy [65] has become a widely accepted framework to
achieve provably robust privacy guarantees on sensitive informa-
tion about individuals. By adding controlled noise to responses for
queries posed on sensitive data, a privacy guarantee is enforced
which limits the distinguishability between potential query re-
sponses that could have led to the noisy response. The differential
privacy guarantee has since been generalized to allow for its
application to other domains beyond statistical databases [66].

Recently, differential privacy has been applied in the context
of obfuscation of images. Through the addition of sufficient noise
to pixel intensities, uncertainty is induced regarding the original
content of the image [67]. The author proposes a method to
determine the degree of noise required based on the maximum
possible difference in the sum of pixel intensities over a window
of pixels considered to cover a sensitive piece of information such
as a face. Through a coarsening of image detail via pixelization, it
is shown that the required noise can be reduced while achieving
the same level of privacy. However, direct modification of pixels
in this way leads to severe visual distortions in the images,
rendering them highly unnatural. The visual quality has been
improved slightly through the use of an invertible transformation
applied to images via Singular Value Decomposition (SVD) [42].
Using this method, an image is decomposed into a product of
three matrices, one of which contains the singular values that
are said to encode the magnitude of geometric features in the
decomposed image. Noise is then added to the singular values and
the decomposition is inverted to produce an obfuscated image as
output. This process, however, leaves the other two matrices un-
altered, potentially leaking identifiable information. Even under a
parameterization for a very strong level of privacy, experimental
results show that re-identification accuracy remains at 17.5%
over a set of 40 identities. Furthermore, although visual quality
is improved over direct modification of pixels, the obfuscated
images still do not resemble realistic human faces.

Photo-realistic visual quality has recently been achieved
through the application of differential privacy to the image en-
codings learned by a transpose convolutional neural network [35].
The network, trained to produce realistic faces from noisy en-
codings, generates obfuscated faces through the alteration of
high-level facial features. A separation of specific facial attributes
from the image encodings also allows for the preservation of
gender and facial expression, if desired. While the original ap-
proach is limited to obfuscation of identities contained in the
network training data, a later extension allows for obfuscation of
arbitrary identities [68]. This is achieved through the use of linear
programming to approximate the encodings of novel identities.
Noise is then applied to the approximated encodings and they
are passed through the neural network to generate obfuscated
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acial images. However, the approach is still limited in its practical
pplicability due to a requirement for images taken in a heavily
ontrolled setting (e.g., only frontal facing images against a solid
hite background).
In independent and concurrent work to our own, the concept

f applying differential privacy to facial image encodings has also
een treated in the context of using a GAN as the generative
odel.1 One approach involves a pipeline of an image encoder
etwork, followed by the application of differential privacy to
he encoding, followed by the use of a GAN to generate the
bfuscated output image from the noisy encoding [69]. However,
he authors provide only an empirical estimate of the sensitivity
hat is required to configure a differentially private mechanism.
his implies that privacy is not actually guaranteed. Furthermore,
he values of the privacy parameter ϵ used in the reported ex-
eriments are in the range of tens of thousands, making them
ar too high to offer an acceptable level of privacy. A similar
pproach using an encoder and a GAN has also been taken with an
dded step in the pipeline to optimize the image encoding prior
o adding noise in order to better capture the features in the orig-
nal image [70]. In this work, the authors additionally enforce a
ound on the maximum difference between encoding features in
rder to calculate an exact sensitivity and achieve the differential
rivacy guarantee in obfuscated output. However, the values of
he privacy parameter ϵ used in the reported experiments also
range from thousands to tens of thousands, again making them
too high for acceptable levels of privacy.

Our work advances the concept of differentially private facial
obfuscation via generative models by proposing an effective ap-
proach to design and train an encoder-based GAN architecture,
allowing for high quality facial obfuscation for largely uncon-
strained image settings. Through the integration of PCA into the
network training and image obfuscation pipelines, we are able
to achieve differential privacy with vastly lower (i.e., stronger)
privacy parameters than other approaches.

We note that differential privacy has also been applied in
the context of training GANs in a privacy-preserving fashion.
However, this goal is fundamentally different from that of fa-
cial obfuscation. Privacy-preserving training of GANs is used to
protect sensitive training data, whereas facial obfuscation via
GANs is intended to protect new images presented to the GAN
after training (typically on public data) is complete. One method
to protect sensitive training data involves adding noise to the
gradients calculated for the discriminator network during train-
ing [71,72]. This allows for control, in the form of a differential
privacy guarantee, over the influence of the sensitive informa-
tion on the weights and distribution learned by the generator
network. The generator can then produce new samples from the
learned distribution while protecting the privacy of the training
samples. A different approach replaces the discriminator net-
work with an ensemble of teacher discriminators and a student
discriminator [73]. The outputs of the teachers are aggregated
and made differentially private before being passed as input to
the student. Since training data is only ever seen by the dis-
criminator, use of the student network as the new discriminator
provides an alternative network that has a differentiable output
and operates only on privacy-protected data. While both of these
approaches (and others related to differentially private training)
protect the training data, they do not offer a method to obfuscate
new data presented to the network after training, and thus are
not applicable for the task of facial image obfuscation.

1 The two referenced works, [69] and [70], were posted to arxiv during the
ubmission review process of our own work.
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3. Deficiencies in existing methods of facial obfuscation

We begin by providing a description of deficiencies in exist-
ing methods of facial obfuscation in order to clearly motivate
the need for a stronger approach to privacy-protection that is
simultaneously able to preserve realism and utility in obfuscated
images. For ease of reference, we provide in Table 1 a summary of
all reviewed works that offer a formal privacy guarantee for the
task of facial image obfuscation.

While ad hoc approaches to facial obfuscation such as blurring
and pixelization may be shown to be empirically effective in
some cases, they do not formalize any attack model and offer
no guarantee regarding their effectiveness in general. This lack
of formalization leaves the potential for susceptibility to attacks
that were not tested empirically. This deficiency is demonstrated
clearly by the parrot attack [34], which handily defeats such ad-
hoc methods by training machine learning models on obfuscated
training data. Methods of face swapping (e.g., [62,63]) similarly
provide no guarantee regarding potential attacks that might be
launched against them. Furthermore, face swapping raises pri-
vacy concerns about the usage of real faces or components of real
faces that are swapped into the released images.

Although the k-same family of approaches (e.g., [34] and sub-
sequent developments) offers a formal privacy guarantee that
limits the probability of re-identification to an upper bound of
1
k , the framework remains susceptible to certain types of attacks.
In particular, k-same obfuscation is vulnerable to composition
attacks (i.e., attacks that combine information from multiple re-
leases) and to attackers who already have partial knowledge
about the context of the released images (e.g., individuals who
could not be present in the image) [35].

Methods of redaction followed by in-painting (e.g., [40,41])
offer a guarantee of perfect privacy protection within a redacted
area by destroying all information and allowing a machine learn-
ing approach to rebuild an appropriate image from contextual
information. Since the process has no access to the original in-
formation from the redacted area, there can be no leakage of this
information. Yet the contextual information around the redacted
area (often the contour of the head including forehead, hair
and ears) is likely to still reveal too much sensitive information.
Increasing the area of redaction places a greater strain on the
ability to in-paint the area in a manner that is both visually clean
and able to preserve utility.

Existing approaches to differentially private obfuscation of im-
ages are able to provide a strong guarantee of formalized privacy
but they fall short in utility. The application of differential privacy
to pixel intensities [67] or to SVD matrices of images [42] leads to
highly distorted images that no longer resemble human faces. Al-
though differential privacy has also been applied via a generative
neural network to achieve photo-realistic quality [35], the ability
to handle variability in the facial images remains limited. This
method has only been applied to images taken in a highly con-
trolled setting and does not handle the great variation (e.g., image
background, camera angle, pose, etc.) that is typically present in
images. Furthermore, the lack of an encoder network in the model
architecture greatly restricts the ability of the model to obfuscate
novel instances of images, limiting its practical applicability.

To address the shortcomings outlined here, we employ the
strong privacy guarantee of differential privacy and extend its
application in generative models to a GAN. By carefully design-
ing the model architecture and training process, we are able to
achieve high visual quality and utility for unconstrained facial im-
ages. Our method obfuscates the full head and is able to preserve
pose as well as selected facial attributes. Additionally, through
the use of an architecture that includes an encoder network, our
proposed model can obfuscate novel images of identities external
to the training data.
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ummary of the reviewed works that provide a formal guarantee of privacy.
Privacy
guarantee

Paper Generative model Weaknesses

k-Same

Newton et al. 2005 [34] None

Vulnerable to composition attacks and background knowledge.Gross et al. 2006 [39] AAM [38]

Chi and Hu 2015 [54] Custom autoencoder

Meden et al. 2017 [55] DeconvFaces [46,74]

l-Diversity/t-
Closeness

Li and Lin 2019 [56] StarGAN [52] Only predefined features are protected, leaking identifiable information
through the remainder of the encoding.

Redaction

Sun et al. 2018 [57] Custom autoencoder Ears and hair are not redacted, leaking identifiable information.

Sun et al. 2018 [41] Custom autoencoder Parts of the image encoding are unaltered, leaking identifiable information.

Hukkelås et al. 2019 [40] Custom GAN Ears and hair are not redacted, leaking identifiable information.

Chen et al. 2021 [58] DCGAN [48] Poor preservation of utility.

Differential
privacy

Fan 2018 [67] None Poor image quality.

Fan 2019 [42] None Poor image quality. Parts of the SVD representation are unaltered, leaking
identifiable information.

Croft et al. 2019 [35], 2021
[68]

DeconvFaces [46,74] Unable to handle varied image content.

Liu et al. 2021 [69] StyleGAN [75] Privacy is not guaranteed due to an unbounded sensitivity. Uses very high ϵ

values (18,000–72,000).

Li and Clifton 2021 [70] StyleGAN [75] Uses very high ϵ values (9000–160,000).
4. Preliminaries

In this section, we provide details on background material of
igh relevance to our work. We begin with a review of the ex-
sting work on differential privacy applied to generative models.
ollowing this, we provide a description of AttGAN, a network
sed for the modification of facial attributes in images. Our work
pplies the framework of differential privacy in generative mod-
ls to a novel extension of AttGAN, adapting both the framework
nd the network to handle obfuscation of unconstrained facial
mages. Lastly, we review some details on PCA which we later
raw on to better control the application of noise to the image
ncodings.

.1. Differential privacy

Differential privacy [65] offers a formal and robust guaran-
ee of privacy for the release of information about sensitive
atabases. This is achieved by allowing only for the release of
esponses to queries on the database that have been passed
hrough a randomization mechanism. In the standard framework
or differential privacy, the magnitude of noise is controlled by
privacy parameter ϵ and the query sensitivity. Query sensitiv-

ty is defined as the greatest possible difference between two
oiseless query responses from any pair of adjacent databases
i.e., databases that differ by a single record).

Let the randomization mechanism be defined as a noise-
dding function K : D→ Rn, where D is the set of valid database
onfigurations and n ∈ Z+. Formally, the differential privacy
guarantee states that such a mechanism is differentially private
if for every pair of adjacent databases D1,D2 ∈ D, the following
olds:

Pr (K (D1) = R) ≤ eϵ Pr (K (D2) = R) ∀R ∈ Rn. (1)

The repeated application of differentially private mechanisms
leads to a composition of the privacy parameters used in each
application [76]. Specifically, the use of a privacy parameter ϵ1
ollowed by the use of a privacy parameter ϵ2 results in a dif-
erential privacy guarantee that holds for ϵ = ϵ1 + ϵ2. When
ultiple applications of mechanisms are expected, the largest
cceptable sum of the privacy parameters is typically referred to
s the privacy budget.
363
4.1.1. Differential privacy in generative models
Often, sensitive information exists in forms other than as

records of a database. However, since the differential privacy
guarantee is defined in terms of adjacency, a concept specific to
the domain of databases, it cannot be directly applied outside of
this context. A generalization of differential privacy [66] provides
a privacy guarantee for secrets (structured data about individuals)
by extending the concept of adjacency in databases to distances
between secrets. The key intuition of the generalization is that an
appropriate distance metric acts as a measure of distinguishabil-
ity between secrets and thus takes the place of query sensitivity
in the configuration of noise-adding mechanisms.

This generalized form of differential privacy has been applied
to the obfuscation of facial images by considering the image
encoding of generative models to be the secret [35]. By treating
the image encoding as a vector X ∈ Rn, the generalized privacy
guarantee for images can be written using a distance function
d : Rn

×Rn
→ R and a randomization mechanism K : Rn

→ Rn:

Pr (K (X1) = R) ≤ eϵd(X1,X2) Pr (K (X2) = R) ∀X1, X2, R ∈ Rn.

(2)

Since the encoding can be seen as a numeric representation
of an individual depicted in an image, it is possible to measure
distance between individuals and to alter the depicted identity
through the injection of noise to the encoding. The distance mea-
sure used in [35] was an L1 measure with the distance between
each pair of elements scaled to the range [0, 1] and the overall
vector distance similarly scaled. Letting Ri = [mini,maxi] be the
range of elements in the ith position of the vector, the distance
measure is defined as follows:

d (X1, X2) =
1
n

n∑
i=1

|X1i − X2i|

maxi −mini
. (3)

Using this distance measure, the differential privacy guaran-
tee can be achieved by independently adding Laplace noise to
each element of the vector such that the element at the ith
position uses a distribution with a scaling parameter of σi =
n(maxi−mini)

ϵ
[35].

We make use of this privacy mechanism to protect the facial
identities captured in GAN image encodings. We provide a dis-
cussion on the practical implications of this generalized privacy
guarantee in the context of our proposed model in Section 7.1.
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.2. AttGAN

Manipulation of facial images is a common task in the machine
earning community and has been treated quite successfully in
ecent works using GANs. In particular, AttGAN [53] has shown
xcellent results in the modification of high-level facial attributes
e.g., gender, hair colour, etc.) while preserving facial identity.

AttGAN uses an encoder/decoder pair which is trained along-
ide a discriminator in an adversarial manner. The encoder takes
n image as input and passes it through a series of convolu-
ional layers to generate an encoding which represents high-
evel features detected in the image. The decoder accepts an
ncoding along with a vector of supplementary facial attributes
e.g., gender) and passes the concatenated input through a series
f transpose convolutional layers in order to produce a new image
s output. The generated image is intended to resemble the orig-
nal as closely as possible while differing only in the changes to
acial attributes specified by the supplementary vector fed to the
ecoder. The discriminator is also a convolutional network which
ccepts an image as input. It serves two purposes. After matching
he architecture of the encoder, it splits into two branches of fully
onnected layers. The first branch acts as the discriminator while
he second branch acts as a classification network for the facial
ttributes present in the image.
We use the AttGAN architecture and training process as a

tarting point in our work and adapt them to suit our require-
ents for facial obfuscation. Full details on the adapted architec-

ure and loss functions are given throughout Section 5.

.3. Principal component analysis

Principal Component Analysis (PCA) is an approach used in
achine learning to calculate an alternate basis within which to

epresent points of data (i.e., multivariate observations) such that
he dimensions of the new basis are orthogonal and are arranged
n descending order of explained variance over a training dataset.
his technique is widely used as a method to greatly reduce
imensionality of data while preserving the most important in-
ormation by dropping trailing dimensions in the new basis. This
s typically done to assist in machine learning and data visualiza-
ion tasks. We provide here a brief overview of how to extract and
pply a PCA transformation matrix. For greater detail, we refer the
eader to [77].

PCA involves computing a decomposition of the covariance
atrix of a tabular dataset, either via eigendecomposition or SVD.
he decomposition is used to calculate a transformation matrix
hich maps the original dataset into a new basis defined by the
igenvectors of the covariance matrix. The dimensions of the new
asis are referred to as principal components. Each eigenvector
as an eigenvalue associated with it which reflects the ratio of
he variance from the original dataset that is expressed in the
orresponding principal component. Since the ratios of explained
ariance typically decrease rapidly over the principal compo-
ents, many of the later principal components (based on their
rder) can be dropped to reduce dimensionality while incurring
ery little information loss.
Let D be a matrix representing the original data in row format

nd let Z be a matrix made from the eigenvectors of the covari-
nce matrix arranged in descending order of their eigenvalues.
he transformed data is given by D′ = ZT

×D. Data that has been
ransformed to the principal component basis can be transformed
ack to its original basis by applying an inverse transformation.
his is given as D = ZT

× D′. This is possible to do even when
imensionality reduction has been applied. If all dimensions have
een preserved, the inverse transformation is lossless. If trailing
rincipal components have been dropped, information loss is
inimized in the sense that the omitted principal components
ere those that expressed the least amount of variance in the
riginal data.
364
4.3.1. PCA and differential privacy
When applying differential privacy to multi-variate data that

has strong correlations between the variables, the independent
application of noise to each variable can destroy a great deal of
useful information [78]. As the magnitude of noise is increased,
the correlations become less pronounced in the noisy data, lead-
ing to perturbed data points that are increasingly likely to lie
outside of the original distribution.

The application of noise within a transformed PCA basis of
reduced dimensionality can help to better preserve correlations
in the data while simultaneously spending the privacy budget
more efficiently [78,79]. The use of principal components that
maximize explained variance within the training data ensures
that the addition of noise along the axes of the transformed basis
will produce noisy data that more closely resembles the origi-
nal distribution. Furthermore, trailing axes with low explained
variance ratios can be dropped without great loss of information,
allowing the privacy budget to be focused on the axes with
greater information content. We refer the reader to [78] for a
visualization of these benefits realized on a two-dimensional
example.

Most research (e.g., [79,80]) on this topic has focused on how
to perform the PCA learning process in a differentially private
manner since the training data is private. Once the data has
been transformed to the PCA basis, noise can be added and the
obfuscated results can then be transformed back to the original
basis and released. Although less prominently addressed in the
literature, the step of adding noise in the PCA basis requires
care to ensure that the magnitude of the noise is controlled
based on the sensitivity of the data in its new representation. In
the context of databases, this sensitivity can be calculated using
information about the PCA transformation and the queries posed
on the data [78]. To the best of our knowledge, PCA has not been
previously used in the context of distance-generalized differential
privacy.

5. Differentially private obfuscation via a GAN

While GANs are an excellent tool for the representation and
manipulation of facial images, the model must be carefully de-
signed and trained in order to effectively execute its intended
task. A pipeline to obfuscate images using an encoder-based GAN
can be seen as a three-step process: (1) encode the facial image,
(2) apply noise to the encoding, (3) decode the noisy encoding.
With an appropriate application of noise, the decoding step will
result in a novel image that differs sufficiently from the origi-
nal to achieve effective obfuscation. However, a straight-forward
application of differential privacy to image encodings leads to
unrealistic distortions to images, resulting in poor-quality output
as shown in Fig. 2-a.

Our work provides a method to address this concern and
produce realistic obfuscated images via an encoder-based GAN
architecture. Throughout this section, we cover important con-
siderations for the structure of the image encoding and model
architecture (covered in Section 5.1) as well as the model training
process (covered in Sections 5.2–5.4). These design details do not
change the structure of the obfuscation pipeline but rather the
way in which the model will handle the steps of encoding and
decoding. This is done to enable the model to treat the addition
of noise as realistic modifications to facial identity as opposed
to arbitrary visual distortions. We describe these details in the
context of an extension and adaptation of AttGAN, however, the
concepts can equally be applied to other models. We additionally
propose to extend the pipeline with pre- and post-processing
steps to first mask out and then later rejoin the image background
(covered in Section 5.5). This is done to allow the GAN, and thus
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Fig. 2. An example of obfuscated instances of an image with each row showing results from a different architecture and training configuration. Row (a) uses the
original 4 × 4 × 1024 encoding with no changes to the model. Each subsequent row incorporates one cumulative modification to the model. Row (b) substitutes a
× 1 × 4096 encoding (as described in Section 5.1) with no changes to the model training. Row (c) adds noise to encoding samples during training (as described

n Section 5.2). Row (d) employs additional inputs to preserve pose (as described in Section 5.3). Row (e) applies background masking (as described in Section 5.5).
he obfuscation of its encoding, to focus on only the portion of
he image that contains the facial identity (i.e., the head depicted
n the image).

Samples of obfuscated images are shown in Fig. 2 to demon-
trate the impact each of our major design considerations have
n the obfuscated output. The complete pipeline is as follows:

1. Background masking (pre-processing)
2. Image encoding (GAN encoder)
3. Encoding noise addition (differential privacy mechanism)
4. Image decoding (GAN decoder)
5. Background merging (post-processing)

We define the following notation (extending that of the orig-
nal AttGAN) to be used throughout this section. Let xa,p be an
image depicting a face that has facial attributes matching the
specification of a vector a = [a1, . . . , am] of binary attributes and
a pose matching the specification of a vector p = [p1, . . . , pk]
of real-valued parameters. Let Genc and Gdec be the encoder and
decoder networks, respectively. Given an image xa,p as input,
z = Genc(xa,p) denotes the encoding of xa,p and xb̂,q̂ = Gdec(z, b, q)
denotes the image produced by the decoder when given an en-
coding z, a new vector b = [b1, . . . , bm] of binary attributes and
a new vector q = [q1, . . . , qk] of real-valued pose parameters.
Furthermore, a noise-adding function, N , may be applied to the
encoding to produce an obfuscated image, denoted as x̃b̂,q̂ =
Gdec(N(z), b, q).

5.1. Image encoding and model architecture

We begin by considering the design of the image encoding
used by the model. Following the process of [35], we will be
adding noise to the encodings of images in order to induce
changes to high-level facial features as a means of obfuscation.
The encoding must therefore be appropriately receptive to such
noise. Regardless of the shape of the encoding, it is ultimately a
multi-dimensional representation of numeric features to which
noise can be added. However, the shape plays an important role
in determining how visual quality is impacted by the addition of
365
noise. Consider the 4 × 4 × 1024 encoding used in AttGAN. This
can be interpreted as 1024 many 4 × 4 grids where each grid is a
spatially compressed representation of the presence of some type
of feature in the image. The 4 × 4 spatial dimensions present two
problems. The first is that each cell of the grid relates to a local
part of the image, meaning noise applied to a grid cell will have a
localized effect rather than modifying the image at a global level.
The second issue is that when convolutional filters are applied
to overlapping areas of the output from the previous network
layer, the resulting features (grid cells) describe overlapping areas
and are thus highly correlated. Even when applications of a filter
do not overlap (i.e., the convolutional stride matches the filter
size), correlation between features remains likely due to the
close spatial proximity of the filter applications. When noise is
added to the encoding, the independent modification of features
destroys their correlations with each other. Since this is done
to features representing local areas in the image, the result is a
highly distorted image which no longer resembles a human face.
An example of this distortion can be seen in Fig. 2-a.

To avoid distortions induced by inconsistencies between pre-
viously correlated features representing local areas in the image,
we propose that noise should instead be added to global facial
features. Further compression of the encoding down to 1 × 1
spatial dimensions guarantees that each numeric value in the
resultant encoding is a representation of a feature at the global
level. This eliminates the potential for inconsistencies at the local
level since the correlations are now compressed into a single
value. Our proposed encoder/decoder architecture which imple-
ments this approach is given in Table 2. The improvement in
visual quality from this change to the architecture can be seen
in the difference between rows a and b of Fig. 2.

We note also that while the use of shortcut connections [81]
is a common strategy in encoder/decoder pairs to help retain
finer details in the image by bypassing the encoding bottle-
neck, we do not employ this strategy. Since our intent is to
obfuscate images through the addition of noise to the encod-
ing, any information that bypasses this bottleneck leads to leak-
age of sensitive information regarding the identity depicted in
the image. This would render the differential privacy guarantee
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Table 2
Encoder and decoder architectures. BN refers to batch normalization while LReLU refers to the leaky rectified linear
units activation function.
Encoder Decoder

Input: 128 × 128 × 3 image Input 1 × 1 × 4096 encoding

Conv (4 × 4 × 64, Stride = 2), BN, LReLU Concat binary attributes and pose parameters

Conv (4 × 4 × 128, Stride = 2), BN, LReLU Trans Conv (2 × 2 × 2048, Stride = 1), BN, LReLU

Conv (4 × 4 × 256, Stride = 2), BN, LReLU Trans Conv (4 × 4 × 1024, Stride = 2), BN, LReLU

Conv (4 × 4 × 512, Stride = 2), BN, LReLU Trans Conv (4 × 4 × 1024, Stride = 2), BN, LReLU

Conv (4 × 4 × 1024, Stride = 2), BN, LReLU Trans Conv (4 × 4 × 512, Stride = 2), BN, LReLU

Conv (4 × 4 × 2048, Stride = 2), BN, LReLU Trans Conv (4 × 4 × 256, Stride = 2), BN, LReLU

Conv (2 × 2 × 4096, Stride = 1), BN, LReLU Trans Conv (4 × 4 × 128, Stride = 2), BN, LReLU

Trans Conv (4 × 4 × 3, Stride = 2), Tanh
meaningless. Although one could potentially apply noise to the
information passed through the shortcut connections, this would
present a number of additional challenges including the degra-
dation of newly introduced correlations, obfuscation applied at
a local level, and the requirement for a more complex privacy
budget management scheme. We expect that this would not be
a worthwhile venture but we leave the possibility open as a
potential extension of our work.

5.2. Loss calculations for noisy encodings

In addition to using an encoding amenable to the application
f noise, the decoder network must also be trained on how
o handle noisy encodings. Networks such as DCGAN [48] have
emonstrated that appropriate manipulation of encodings can
ead to novel, realistic images within the targeted data distribu-
ion. However, since our modification of the encoding is stochas-
ic by design, this makes the task of producing realistic images
ore difficult. Furthermore, despite the compression of features

o a global level, each encoding feature is independently per-
urbed, leaving the possibility for unrealistic output images due
o resulting combinations of noisy features that fall outside of the
ata distribution.
Specifically, the decoder must be trained to accept noisy en-

odings and produce realistic faces depicted in the output images.
he adversarial nature of the training process can be leveraged
o achieve this. To this end, we modify the training process by
njecting noise into the encodings of training samples before
assing the encoding to the decoder.
The adversarial loss objective function employs a Wasser-

tein critic with a gradient penalty [82]. Let D be the discrim-
nator/critic, GP be the gradient penalty function and λGP be a
yperparameter that controls the weight of the gradient penalty.
or a distribution pdata of training images, a distribution pattr of

binary attribute vectors and a distribution ppose of real-valued
pose parameter vectors, the discriminator and generator losses
are defined as follows:

Ladvd = −Exa,p∼pdataD(x
a,p)+ Exa,p∼pdata,b∼pattr ,q∼pposeD(x̃

b̂,q̂)+

λGPExa,p∼pdata,b∼pattr ,q∼pposeGP(x
a, x̃b̂,q̂),

(4)

Ladvg = −Exa,p∼pdata,b∼pattr ,q∼pposeD(x̃
b̂,q̂). (5)

The preservation of specific facial attributes in obfuscated
images is also one of the goals for our model. We keep the
attribute classification loss in the same form as originally used in
AttGAN. Let C denote the classification network and Ci(x) denote
the application of the network to classify the ith element of a
vector of binary facial attributes for an image x. The loss function
is as follows:

ℓa(xa,p) =
m∑
−ai log Ci(xa,p)− (1− ai) log(1− Ci(xa,p)), (6)
i=1

366
To ensure that the injection of noise does not alter the at-
tributes we wish to preserve, we modify the classification loss
function of the generator such that it is calculated for training
samples to which noise has been injected:

Lclsg = Exa,p∼pdata,b∼pattr ,q∼pposeℓa(x̃
b̂,q̂). (7)

The loss for the classification network remains as it originally
was with the exception that the pose parameters are now added
to the notation:

Lclsc = Exa,p∼pdataℓa(x
a,p). (8)

The change from row b to row c in Fig. 2 demonstrates the
improvements in the visual quality of the obfuscated faces us-
ing noisy samples during the training process. To more clearly
discern the impact of training with noisy encodings in Fig. 2, we
provide an additional example in Fig. 3 which demonstrates the
difference between training with and without noisy encodings
once all other changes proposed throughout the remainder of the
section have also been applied. Here, the images produced by
the model trained without noisy encodings show obvious distor-
tions, particularly around the hair and clothing of the obfuscated
individuals.

5.3. Pose preservation

Given that images in unconstrained settings capture individu-
als with a wide variety of poses, it is desirable to preserve this
information in the obfuscated images. Unless care is taken in
the design and training of the model to manage specific types
of information, it will remain entangled in the encoding of the
image. As a result, it is also subject to perturbation when noise
is applied to the encoding. For example, if an image depicts an
individual with their head turned to the side, the addition of noise
to the encoding may alter the pose of the head, likely changing
it to a forward-facing pose as this is typically the predominant
orientation in training data. This produces an output that may
look unnatural and destroys important contextual information in
the image. To address this, we extend the model architecture and
training process to accommodate for additional decoder inputs
that capture pose information.

In order to extract pose information from images, we em-
ploy RingNet [83], a neural network which is able to regress
3D facial model parameters from 2D input (images). An im-
portant aspect of these parameters is a separation of identity-
specific information, captured in shape parameters, from the
non-identity-specific information of camera position, pose and
facial expression. This separation allows us to target the non-
sensitive information that is of interest to us. The RingNet model
uses 3 parameters that capture axis-angle representations of the
global rotation for the depicted head. Since we align all in-
put images for our model (as described in our training details,
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Fig. 3. A comparison of the impact of training with and without noise added to the sample encodings while using all other proposed modifications. The obfuscated
instances from the model trained without noise show unnatural distortions of colour and texture.
Table 3
Discriminator, classifier and pose regressor architectures. IN refers to instance normalization, LReLU refers to the
leaky rectified linear units activation function and FC refers to a fully connected layer.
Discriminator Classifier Pose regressor

Input: 128 × 128 × 3 image

Conv (4 × 4 × 64, Stride = 2), IN, LReLU

Conv (4 × 4 × 128, Stride = 2), IN, LReLU

Conv (4 × 4 × 256, Stride = 2), IN, LReLU

Conv (4 × 4 × 512, Stride = 2), IN, LReLU

Conv (4 × 4 × 1024, Stride = 2), IN, LReLU

FC (1024), LReLU FC (1024), LReLU FC (1024), LReLU
FC (1) FC (1) FC (2)
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Section 8.1), we require only the yaw and pitch angles. We
use RingNet to annotate these two parameters for both training
images as well as the images to be obfuscated.

We modify the decoder architecture to concatenate these pa-
ameters along with the vector of facial attributes. We modify
he discriminator by adding an extra branch (parallel to the
ranches of the discriminator/critic and the classifier) with two
ully connected layers to approximate the parameters. Details on
he architecture of these networks can be found in Tables 2 and
.
Let P denote the pose regression network embodied by the

added branch and let Pi(x) denote the output of P for the ith pose
parameter of an image x. In order to train the model on these new
parameters, we introduce an additional loss function to minimize
of the mean squared error in the approximated values:

ℓp(xa,p) =
k∑

i=1

(Pi(xa,p)− pi)2

k
, (9)

Lposer = Exa,p∼pdataℓp(x
a,p), (10)

poseg = Exa,p∼pdata,b∼pattr ,q∼pposeℓp(x̃
b̂,q̂). (11)

The change from row c to row d in Fig. 2 demonstrates the
mpact of pose preservation in the obfuscated images.

.4. Objective function

With the new loss calculations laid out, we are now able to
ut together the full objective function for the model training
rocess. We leave the reconstruction loss essentially untouched,
pdating only the notation to reflect the use of unmodified pose
arameters as input for the decoder:

rec = Exa,p∼pdata

xâ,p̂ − xa,p

1
. (12)

While high fidelity reconstruction of images is not explicitly
goal in our setting, it is desirable for the model to learn that a
oiseless image should resemble the original image for the sake
f preserving utility in features that are not captured in the other
oss calculations. In this way, under a low-privacy setting, the
njected noise will only make minor adjustments to the depicted
dentity, which may be desirable in many cases.
367
The full objective function is given below. The definitions for
each of the loss functions, Lrec , Lclsg , Lposeg , Lclsc , Ladvd and Lposer , are
iven in Formulae (12), (7), (11), (8), (4) and (10), respectively.
ach of the corresponding λ coefficients denote hyperparame-
ers used to configure the relative importance of the objectives
aptured by each of the loss functions.

min
enc ,Gdec

λrecLrec + λclsg Lclsg + Ladvg + λposeg Lposeg , (13)

min
,C,P

λclsc Lclsc + Ladvd + λposer Lposer . (14)

To visualize how the network components fit together in the
oss calculations, we provide a diagram depicting the flow of data
uring the model training process in Fig. 4.

.5. Image background

While the focus of our model is on the face depicted in an
nput image, it is inevitable that portions of the image will also
apture the background behind the individual. The image could
e tightly cropped to the face, however this is undesirable since
t excludes major portions of the head, such as hair and ears,
hich would leak identifiable features. Although accurate rep-
esentation of the background can be handled by many GANs,
llowing the background to appear in the input image leads to
n entanglement of background-specific features in the image
ncoding. The primary concern when this happens is the undesir-
ble distortion of the background upon injection of noise, which
egatively impacts visual quality. Additionally, the inclusion of
ackground details in the image encoding wastes encoding capac-
ty on features that are irrelevant to the goal of facial obfuscation.
his, in turn, leads to a wasteful use of the privacy budget which
s intended only to be spent on the facial features.

To address these issues, we use Mask R-CNN [84] to mask the
rea covered by the head in each image, allowing us to subtract all
ackground content. By pre-processing all training images in this
ay, the model learns a distribution in which all images depict
head in a space with a white background. This also avoids the
eed for features to capture complex patterns in the background
f the image. When an image is to be obfuscated, we similarly
pply masking and background subtraction prior to passing the
mage as input to the trained model. When noise is added to the
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Fig. 4. Visual representation of the flow of data through the model during training. Dashed-edge boxes denote data, trapeze shapes denote network components
nd round-edged boxes denote loss calculations.
Fig. 5. Pipeline for the obfuscation process using masking. Step 1: the input image is masked to separate the head and the background. Step 2: Obfuscation is
pplied to the masked head. Step 3: The obfuscated head and masked background are recombined using an in-painting GAN.
encoding, the obfuscated image is likely to remain in the learned
distribution, depicting a new identity over a white background.

Once an image has been masked and obfuscated, the new head
must be recombined with the original image background. During
the pre-processing step, we store the image background so that
it can be later recombined. Some care must be taken to do this
in a clean way. The area covered by the head, and in particular
the hair, is likely to have changed slightly. A simple overlay
of the obfuscated head onto the original background leaves the
possibility for gaps to occur in the image where the new head no
longer covers areas previously occupied by the original head. To
fill in these gaps in a visually realistic manner, we apply Pluralistic
Image Completion [85], a GAN-based approach to facial image
in-painting.

Row e of Fig. 2 shows obfuscated images using the background
masking and merging process. Unlike the obfuscated images in
all other rows, the background remains untouched; only the
depicted identity is changed. The pipeline for the process of
masking, obfuscation and recombination is illustrated in Fig. 5.

6. Obfuscation within a PCA basis

While image encodings can be directly treated as the sensitive
information to be obfuscated, better utility can be achieved by
instead performing the obfuscation within a PCA basis. Since
we employ distance-generalized differential privacy, we must
carefully examine the measure of distance used in the new ba-
sis to ensure that a meaningful level of privacy is achieved. In
368
this section, we explain how to manage the obfuscation process
within a PCA basis and how to efficiently allocate the privacy
budget. We then discuss how to update the model training pro-
cess to accommodate these changes to the manipulation of image
encodings such that we retain the ability to generate realistic
obfuscated images. Lastly, we demonstrate the practical value of
the proposed changes by comparing images obfuscated with and
without the use of PCA.

6.1. Proposed usage of PCA

As discussed in Section 4.3, the application of differential pri-
vacy within a transformed PCA basis offers a number of benefits
related to the preservation of utility and the management of
the privacy budget. To obtain these benefits, we use the image
encodings of our training data to learn a PCA transformation that
is well-suited to the data we aim to obfuscate. When presented
with a new image that requires obfuscation, we then encode
it, transform the encoding to the PCA basis, apply noise, and
transform the noisy data back to its original basis. This provides
an obfuscated encoding that has been restored to a representation
in its original basis, allowing for it to then be passed through the
decoder as usual to generate the output image. This process is
illustrated in Fig. 6.

Our usage of PCA with differential privacy differs from existing
works on two counts. First, our training data is not private, there-
fore the task of learning the PCA transformation need not be done
in a differentially private manner in our setting. Second, since
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Fig. 6. Pipeline for the PCA training and image obfuscation process. The image obfuscation process can be seen as an expansion of Step 2 in Fig. 5.
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e employ a distance-based generalization of differential privacy,
e no longer deal with the concept of query sensitivity and
annot apply approaches such as [78] to determine the required
agnitude of noise within the PCA basis.
In order to properly control the addition of noise to encodings

epresented in the PCA basis, we employ the strategy of [35] to
et up a distance measure and a mechanism appropriate for the
rotection of secrets in the form of encodings of facial identities.
et X = [x1, . . . , xn] be the representation of an image encod-
ng in the PCA basis. We use the distance measure defined in
ormula (3) to interpret distinguishability between the PCA basis
ncodings. Recall from Section 4.1 that an encoding can be made
ifferentially private by independently adding Laplace noise to
ach element of the encoding vector such that the element at the
th position uses a distribution with a scaling parameter of σi =
n(maxi−mini)

ϵ
, where (maxi −mini) is a scaling factor used to ensure

hat the range of element is [0, 1]. The element-wise range scaling
revents features with large ranges from dominating the distance
easurement, ensuring each element receives noise configured

o the appropriate magnitude. Furthermore, the use of an L1
istance measure is well-suited to representations in a PCA basis
iven that the principal components are linearly uncorrelated. We
rovide practical details for the interpretation of the resultant
rivacy guarantee in Section 7.1.

.2. Privacy budget allocation

Beyond determining an appropriate distance measure, allo-
ation of the privacy budget should also be considered. In a
etting where each element of the secret carries roughly equal
nformation, it is logical to evenly distribute the privacy budget
cross the elements. However, in the case of an encoding repre-
ented in a PCA basis, the information content of the elements
ecreases monotonically, and often quite significantly, from the
irst element to the last. We can take advantage of this property
y selectively dropping trailing principal components in order
o focus the privacy budget on the remaining components with
igher information content.
Dropping components has the effect of reducing the dimen-

ionality of the PCA basis representation. When data is trans-
ormed from the PCA basis back to its original basis, dropped
omponents are treated as if they had assumed their mean value
rom the training dataset. For low variance components, this can
ave the effect of introducing relatively little error in the data
hile attaining perfect privacy protection since the original value
f an encoding within the component is entirely removed form
369
he released data. This is particularly valuable for dealing with
omponents that have a low variance in relation to their overall
ange since the range-based scaling used in the configuration of
he privacy mechanism would likely lead to a scaling parameter
uch higher than the standard deviation of the component. Given

hat such a high scaling parameter would induce heavy perturba-
ion of the data, use of the mean value (calculated from a set of
ow variance points) is likely to induce a much smaller error on
verage. As a result, carefully choosing which components to drop
an achieve lower expected error on these components while
imultaneously providing them with perfect privacy. Further to
his, the privacy budget that would have been spent on these
omponents is freed up to instead be spent on components with
reater information content.
To guide the process of determining which components to

rop, we propose the use of a binary search. Given a user’s
rivacy budget ϵ, the algorithm will search the range of [1, n],
here n is the number of features in the original encodings, to

ind the best choice for how many of the leading components
o retain. The search is guided by a user-specified threshold
n the acceptable ratio of each scaling parameter used by the
echanism to the standard deviation (within the training data) of

he corresponding component. For example, the user may specify
hat the scaling parameter used for each retained element may be
t most 1.5 times the standard deviation of its component. Since
he dimensionality of the PCA basis appears in the numerator
f the scaling parameters, a reduction in dimensionality leads
o a reduction in the magnitude of required noise. If the ratio
or any of the leading components exceeds the threshold, the
rivacy budget is spread too thin and more components must be
ropped. If none of the ratios exceed the threshold, the budget
an allow for a greater number of components to be retained.
he search terminates when the boundary between these two
ases is found. Recall that the principal components are ordered
ccording to their explained variance in the training data. This
pproach therefore determines the selection of components that
etains the maximum explained variance in the data subject to
he constraint on the scaling parameter threshold. We provide the
teps in Algorithm 1.

.3. Model training

With the details for the mechanism configuration and budget
llocation laid out, we must next ensure that the GAN is trained
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Algorithm 1: Budget Allocation
Input: Encoding size n, Privacy budget ϵ, Ratio threshold

α, Component standard deviations s1, ...sn,
Component ranges (min1,max1), ..., (minn,maxn)

cmin ← 1
cmax ← n
cmid ← ⌈

cmin+cmax
2 ⌉

while cmid ̸= cmax do
reduce← False
for i← 1 to cmid do

if cmid(maxi−mini)
ϵ

≥ αsi then
reduce← True
break

end
end
if reduce then

cmax ← cmid
else

cmin ← cmid
end
cmid ← ⌈

cmin+cmax
2 ⌉

end
return cmid

to handle encodings that have been accordingly perturbed. As
per the loss functions given in Section 5, our training process
requires the addition of noise to training samples in order to
teach the decoder how to produce realistic images from noisy
encodings. Yet the addition of noise requires the use of the PCA
transformation matrix while the calculation of this matrix (refer
back to Fig. 6) requires a training set of encodings from the target
model. In short, there exists a circular dependence between the
GAN and the PCA transformation. Although one could first train a
model without noise and use this to generate the PCA training
encodings, the model later trained with noise will differ in its
learned parameters, rendering the PCA training data inaccurate
with respect to the target distribution of encodings.

To handle this, we propose to compute the PCA transformation
atrix at the end of each epoch of training using a snapshot
f the current encoder. The transformation matrix can then be
sed during the next epoch of training. During the first epoch
f training, we simply forgo the addition of noise and during
ach subsequent epoch, we add noise using the most recent
ransformation matrix. In this way, the noise-adding process is
eriodically updated throughout training to reflect the changes
n the encoder. This allows for the model to always have access
o a reasonable approximation of how it would currently be used
o add noise in practice.

Since the mechanism is intended to allow for a configurable
evel of privacy based on the user selected parameter ϵ, we train
the model for a range of different privacy budgets. Each time
training data is sampled, we draw a privacy budget uniformly at
random from a range of typical budgets. This helps to train the de-
coder for the preservation of utility at different levels of privacy.
We provide more specific details on the training configuration in
Section 8.1.

6.4. Obfuscation examples

We conclude the section with a brief comparison of obfusca-
tion with and without PCA in order to demonstrate the practical
importance of applying obfuscation within the PCA basis. We note
that the obfuscated instances presented in Figs. 2 and 3 were
produced using an ϵ value of 3000. While the values of ϵ used
370
for our instantiation of distance-generalized differential privacy
must be interpreted on a different scale from those of standard
differential privacy (as we later explain in Section 7), 3000 is
nonetheless a high value in our framework and offers a poor
level of privacy. Yet reducing the value of ϵ while using only the
modifications proposed in Section 5 results in obfuscated images
with poor visual quality due to a lack of control in the application
of the increased magnitude of noise. In Fig. 7, we demonstrate
the improvements in visual quality obtained through the use of
obfuscation within the PCA basis when using values of ϵ that
result in a strong level of privacy.

7. Privacy interpretation

Although differential privacy offers a formalized guarantee
of privacy, the implications of the guarantee are not always
directly obvious. In particular, the interpretation of the distance-
generalized guarantee we employ, and thus the selection of an
appropriate privacy parameter, may be difficult for most users.
In this section, we first provide information on how our privacy
guarantee relates to other applications of differential privacy,
one of which provides a bound on the change in knowledge
(regarding the sensitive information) of attackers. We use this to
offer some intuition on the meaning of the privacy guarantee in
relation to the choice of ϵ. We then discuss, in terms agnostic
to any particular method of obfuscation, how sensitive informa-
tion can leak from portions of images that are left unobfuscated
(e.g., the background of the image) and how an attacker can
exploit this.

7.1. Differential privacy guarantee interpretation

The differential privacy guarantee in Formula (2) provides an
upper bound on the allowable difference between the probabil-
ities of different inputs to the mechanism producing the same
obfuscated output. This allows us to make an assertion that simi-
lar inputs have similar probabilities of producing the same output
and are thus difficult to distinguish between. Since this is strictly
a property of the mechanism, it holds regardless of the attacker’s
background knowledge. This is a useful property since it allows
for reasoning about the level of privacy in a manner that is largely
agnostic to the attack model. However, this degree of abstraction
prevents the calculation of an actual level of re-identification
risk for an obfuscated release. As a result, the privacy guarantee
may be difficult for most users to interpret, making the task of
selecting a value for ϵ rather challenging.

To help interpret the privacy guarantee, we first highlight a
strong parallel between the distance measure we use and the
concept of query sensitivity in standard differential privacy. Recall
that we configure the randomization mechanism using a scal-
ing parameter of σi =

n(maxi−mini)
ϵ

for the ith element of the
mage representation. The numerator of the scaling parameter
cts as a measure of sensitivity for each element of the im-
ge representation, capturing its potential for influence in the
verall distance measure. This serves as a surrogate for the con-
ept of query sensitivity used in standard differential privacy
or databases. Contrast this scaling parameter against that of the
tandard Laplace mechanism for databases, σ = ∆F

ϵ
, where ∆F is

the query sensitivity. Both scaling parameters are linear functions
of a measure of sensitivity that captures the maximum amount
by which a value can change. They are both, therefore, similarly
sensitive to a worst-case interpretation of how much information
could be revealed in the released data.

An important distinction in the interpretation of the distance-
based guarantee is that without any notion of adjacency between



W.L. Croft, J.-R. Sack and W. Shi Future Generation Computer Systems 129 (2022) 358–379

w
g
a
m
H
g
s

d
o
p
c
p
i
l
O
i
o
p
o
h
t
d
h
w

Fig. 7. A comparison of obfuscation with and without the use of PCA to control the application of the noise. The instances which do not use PCA demonstrate
darkened facial features and distortions in skin tone, hair style and facial expression. The final column is included as a point of reference to show the visual impact
of the dimensionality reduction from PCA without the application of noise.
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secrets, we are considering a worst-case over all possible im-
age encodings. This is akin interpreting the standard differential
privacy guarantee in terms of maximally distant databases as op-
posed to adjacent databases. As such, it is important to recognize
that the values of ϵ applied to our mechanism will have an en-
tirely different meaning than those commonly seen in differential
privacy for databases. It is in fact possible to capture the standard
differential privacy guarantee in the distance-generalized frame-
work by (1), considering the domain of secrets to be the set of
all possible database configurations, and (2) using the Hamming
distance between pairs of databases as the distance measure [66].
Within this setting, the range of the distance measure is [1, n],
here n is the number of records in the database. The privacy
uarantee for adjacent databases corresponds to pairs of secrets
t distance 1, a small fraction of the total range of the distance
easure. Although there is no precise correspondence between
amming distance and our distance measure, it is clear that the
uarantee would be most meaningfully interpreted in terms of a
mall fraction of the range of the distance measure.
Moving away from the concept of differential privacy for

atabases, we can also contrast our privacy guarantee against that
f geo-indistinguishability [86]. Geo-indistinguishability is an ap-
lication of distance-generalized differential privacy to protect lo-
ation data, using a measure of physical distance to configure the
rivacy mechanism. A key intuition in geo-indistinguishability
s that location data is desirable to reveal at an approximate
evel in order to allow for utility in the released information.
nly pairs of locations that are nearby should remain highly
ndistinguishable. The same notion applies to our setting of facial
bfuscation in the sense that distinguishability between ‘‘distant’’
airs of facial identities is acceptable and desirable for the sake
f utility. To help interpret the practical implication of this, we
ighlight a bound used in geo-indistinguishability that captures
he maximum possible change (due to the release of obfuscated
ata via the privacy mechanism) in the probability that the secret
as a particular numeric value. Let Br (X) be the set of secrets
ithin distance r of X and let Pr(X |Br (X)) be the probability with

which the attacker initially believes the secret to have the value
X , while already possessing prior knowledge of the set Br (X). The
probability after additionally observing the obfuscated release R
is bounded as follows:

Pr(X |R, Br (X)) ≤ eϵr Pr(X |Br (X)) ∀r > 0 ∀X, R ∈ Rn. (15)

The usage of this bound is necessarily dependent on assump-
tions regarding an attack model due to the use of probabilities
representing the attacker’s prior beliefs about the likelihood of
candidate identities. However, we provide an example of a possi-
ble scenario. Consider an attacker with no prior knowledge about
the secret beyond the set B (X). The attacker’s prior knowledge
r

371
can therefore be represented by the following uniform probability
distribution over Br (X):

Pr(X ′|Br (X)) =
1

|Br (X)|
∀X ′ ∈ Br (X). (16)

Since the guarantee is intended to offer strong protection for
imilar secrets while allowing for some distinguishability be-
ween distant secrets, we are interested in sets of candidates
i.e., instantiations of Br (X)) with relatively small radii. Consider a
cenario in which the set of candidates uses a distance of r = 0.1
recall that the total range of the distance measure is [0,1]) and
ontains 5000 identities. The application of Formula (15) indicates
hat the posterior probability of re-identification on an image
bfuscated using ϵ = 50 is upper bounded by roughly 2.97%.
To provide further intuition on practical implications of the

rivacy guarantee, we show the distribution of inter-identity
istances on a dataset of facial images in our experiments (Sec-
ion 8.6).

.2. Information leakage via auxiliary model inputs

In some generative models of facial obfuscation, such as ours,
uxiliary inputs beyond the facial identity are provided to the
odel for the purpose of utility. These are inputs such as pose and
ender which are considered useful pieces of information that
re intentionally conveyed in the released image. Although some
nformation about the identity is revealed via personal attributes
uch as gender, this is considered acceptable and the inputs are
therwise seen as being benign. However, there exists potential
or unintended leakage of information if the auxiliary inputs are
enerated from other machine learning models. Recent work [87]
as shown that representations learned by a neural network
odel can be re-purposed to perform unintended tasks that

eveal sensitive information about the input data. For example,
binary classifier for gender in facial images will learn high-level
acial features that are used to perform the gender classification
ask. The representation of these features in the penultimate layer
f the network may also reveal information about other facial
ttributes such as ethnicity.
The attacks studied in [87] rely on access to an intermediate

epresentation of the model input prior to its final classification
utput (i.e., hidden layer outputs). Such intermediate representa-
ions carry significantly more information about the input image
han the final output of the model, which is highly specialized
or a particular task. In the context of facial obfuscation, it is
trictly the outputs of the final layer that an attacker could access.
et, since a typical model enforces no formalized guarantee on
he absence of information leakage in its outputs, it stands to
eason that some minor degree of sensitive information may yet
e present. This may occur due to imperfect disentanglement of
eatures by the model or known bias in the model outputs. We
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o not study this aspect of information leakage but leave it as an
pen problem as to how much of a concern it may be for facial
bfuscation.
We emphasize that this is not something unique to our appli-

ation of differential privacy for facial obfuscation. Any method
f obfuscation that relies on the use of automated generation of
uxiliary inputs for utility-related objectives has the same poten-
ial for information leakage. Although we do not investigate these,
e propose three different approaches to address this concern,
hould it be deemed necessary in practice:

• Require manual entry of auxiliary inputs wherever possi-
ble. This avoids the potential for inferences based on knowl-
edge about models that generate the inputs. A practical
example is the use of a user profile that requires entry
of desired facial attributes only once and then applies the
attributes each time an image of the user is to be obfuscated.
• Apply differential privacy to the auxiliary inputs. The

degree of perturbation can be configured based on the ex-
pected risk associated with the inputs. Our approach to
generalized differential privacy in a PCA basis can be applied
to continuous values such as the RingNet parameters. For
categorical values such as facial attributes, the exponential
mechanism [88] could be applied.
• Train a model to only use the image encoding without

auxiliary inputs. This ensures that all sensitive information
is subject to the formalized privacy guarantee. In the context
of differential privacy, the degree of utility preserved then
becomes entirely dependent on the configuration of the
mechanism.

8. Experiments

In this section, we present the results of an experimental
valuation of our proposed method of obfuscation and a compar-
son against other alternatives which offer a formal guarantee of
rivacy. We begin by providing the training details used for our
odel and the experimental setup. We then give an empirical
valuation of the level of privacy obtained through our model
ver a range of potential choices for the privacy budget ϵ. Lastly,
e provide a comparison against other approaches in terms of a
rade-off between re-identification risk and measures of utility.

The experiments were run on a machine using a GeForce
TX 1080 Ti graphics card and 24 GB of RAM. The Tensorflow
nd Pytorch libraries were used to train and execute all neural
etwork models.

.1. Training details

We train our model using the CelebA [89] dataset, a collection
f 202,599 facial images annotated with identity, 40 binary facial
ttributes (e.g., gender, bearded, wearing makeup, etc.) and 5
acial landmark locations. The images contain a variety of poses
nd sizes of heads (in terms of their pixel coverage). We align
nd crop the training images to bounding boxes with ample space
or the full head and hair using HD CelebA Cropper [90] and
esize the cropped images to 128 × 128 pixels. We generate
ose parameters for the processed images using RingNet [83] and
tandardize the pose parameters across the training data such
hat they have zero mean and unit variance.

To prevent the preserved vector of facial attributes from leak-
ng too much information, we choose only to keep the attribute
or gender. Following AttGAN, we uniformly perturb the facial
ttributes to generate the modified vector b = [b1, . . . , bm] given
o the decoder during training. To generate the perturbed vector
f pose parameters q = [q , . . . , q ] we draw from a normal
1 k
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istribution using the original vector p as the location parameter
nd a scaling parameter of 1. We follow the AttGAN configuration
f hyperparameters with the exception of λclsg which we reduce

to 0.5 due to the reduced number of attributes, and λrec which
we increase to 200 for better preservation of visual quality when
dealing with noisy encodings. We set our additional objective
coefficients of λposer and λposeg to 2 and 20, respectively.

When adding noise to the image encodings during training,
we randomly draw a value of ϵ for each batch of images us-
ing a uniform distribution over the range [100,1000]. We use a
threshold of 1.3 for the ratio of mechanism scaling parameters
to standard deviation values. This exceeds the ratio of 0.9 that
we use at the time of obfuscation in order to ensure that the
model is trained to easily handle this magnitude of noise. If any
elements of the noisy encodings fall outside of the range of values
observed in the training data, we remap the out-of-bounds values
to the boundary of the range. This is done to better preserve visual
quality in the obfuscated images by restricting the encodings to
remain closer to the distribution learned by the model.

8.2. Experimental setup

We aim to investigate three measures of success in the images
obfuscated by our approach: (1) privacy, (2) visual quality, and
(3) utility. To measure privacy, we use FaceNet [18], a neural
network that has reported excellent results in the classification
of facial identities. To measure visual quality, we use SSIM [91], a
measure of structural similarity between images which is inspired
by principles of the human visual system. Lastly, to measure
utility in terms of preservation of specific information, we employ
a neural network trained for the task of gender classification. For
this, we use the DeepFace [92] framework which implements the
DEX [93] gender classification model.

We run our experiments on the FaceScrub [94] dataset, a
collection of 107,818 unconstrained setting facial images across
530 different identities. As with the CelebA dataset, the images
contain a variety of poses and sizes of heads. However, anno-
tations are provided only for identity and gender. Since not all
identities have the same number of images we take 50 images
per individual to avoid bias due to over or under-representation
of some individuals. This leaves us with 506 identities which meet
the minimum image requirement. We split the data using 40
images per identity for training FaceNet and the remaining 10
for testing the obfuscation. For all experiments, we pre-process
the data with an identical process to that used for our training
data, using Dlib [95] to generate the facial landmarks that are
needed for the alignment process. In order to obtain the facial
attribute annotations needed by our model, we use our classifica-
tion network to generate the annotations. This is done to simulate
a more realistic setting in which annotations cannot be expected
to already exist for the images to be obfuscated.

We compare our proposed method of obfuscation against
two alternative approaches which also offer a formalized privacy
guarantee: k-same obfuscation and in-painting. We implement
k-same obfuscation within the encoding space of our trained
model using the clustering algorithm as specified for k-same-
m [39]. As such, our implementation of k-same obfuscation gains
all the benefits of our proposed GAN architecture and serves as
a comparison strictly between the formal privacy guarantees of
differential privacy and k-same obfuscation. For obfuscation via
in-painting, we use the publicly available pre-trained DeepPri-
vacy [40] model. A visual comparison of obfuscated output from
each of these methods is shown in Fig. 8.

During obfuscation, should any of the elements in the en-
codings of the test images fall outside of the bounds defined by
the encodings of our training data, we remap the out-of-bounds
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Fig. 8. Examples of output images from the three methods of obfuscation applied in our experiments. The top row shows our proposed method of differentially
private obfuscation using ϵ = 200. The middle row shows the in-painting approach of DeepPrivacy. The bottom row shows k-same obfuscation using k = 5. Only
one obfuscated image per identity is shown for k-same as it is a deterministic process.
elements of the testing encodings to boundary of the training
data range. This step ensures that the encodings are suitable
for the distance measure that we use. The configuration of the
mechanism is based on the assumption that we know the range
of each element in the encoding in order to appropriately scale
the magnitude of the noise applied to the elements. However, in
practice, we can only approximate the range using our training
data. The adjustment of out-of-bounds values in the test data en-
sures that all encodings we encounter in practice conform to the
assumed range. With a sufficiently large training set, occurrences
of new encodings with out-of-bounds elements are unlikely to be
common. Furthermore, any adjustments made in this way will
have only a minor impact on the original encoding and thus a
negligible impact on the obfuscated output given that noise is to
be subsequently added regardless. After the application of noise
to the encoding, we perform the same process of adjusting out-
of-bounds values as described for the handling of noisy training
encodings.

8.3. Re-identification risk

We begin with an evaluation of the impact the privacy bud-
get ϵ has on re-identification risk. To calculate the level of re-
identification risk, we pass obfuscated instances of images from
the FaceScrub test partition to a trained FaceNet model and
measure the identity classification accuracy over all instances.
The classification accuracy is the percentage of obfuscated images
that are correctly classified as their true identity by the model.
Since differentially private obfuscation is stochastic, we generate
3 obfuscated instances per test image. We plot the accuracy as a
function of ϵ to provide empirical results on the level of privacy
attained at various choices of the privacy parameter. In other
words, the experiment is repeated across a range of ϵ values. For
each experiment, we obtain a measure of re-identification risk
associated with the value of ϵ that was used.

We use FaceNet to execute a parrot attack [34] on the obfus-
cated images, training a different model for each value of ϵ we
test in order to exploit the ability of a classification network to
learn patterns in methods of obfuscation. To do so we take the
set of training set of images for FaceNet and pass them through
the obfuscation process (configured with the targeted value of ϵ),
gain generating 3 instances per image. The obfuscated output
s used to train the FaceNet model such that it learns to classify
mages subject to the targeted obfuscation as best as it is able.

The results are shown in Fig. 9. The percentage value of the
dentity classification accuracy is plotted as a function of ϵ. Recall
from Section 7.1 that the multiplicative bound in the differen-
tial privacy guarantee is given by eϵd(X1,X2) where the distance
373
Fig. 9. Results on the impact of the privacy budget ϵ on re-identification risk.
Identity classification accuracy is plotted as a function of ϵ. For a practical
interpretation of the ϵ values shown in this plot, we refer the reader back to
Section 7.1.

d(X1, X2) between a pair of identities represented by X1 and X2

is most meaningfully interpreted in terms of nearby identities
(e.g., at distance 0.05). We do not show the other methods of
obfuscation in this experiment since they cannot be plotted as
a function of the privacy parameter used by our method. To
provide a meaningful comparison against the other methods, the
subsequent experiments examine the methods of obfuscation in
terms of a privacy-utility trade-off.

The baseline classification accuracy achieved by FaceNet on
the unobfuscated testing set is 92.6%. The plotted values show a
significant drop in classification accuracy from this baseline. This
demonstrates the ability of our proposed method of obfuscation
to provide a strong level of privacy, even when subjected to a
parrot attack. Although the classification accuracy does not drop
as low as that of random guessing, this is to be expected if
the mechanism is to retain useful information in the obfuscated
output. The intention with differential privacy is not to guarantee
that no identifiable information is leaked but rather to limit the
distinguishability of the released information. Therefore, some of
the released information can naturally be exploited by the parrot-
trained classification model. However, the degree of success the
model achieves at classification is greatly hampered, as we have
shown by our results.
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Fig. 10. A comparison of the trade-off between visual quality and re-
dentification risk. SSIM is plotted as a function of identity classification
ccuracy.

.4. Visual quality

We next turn to the goal of preservation of visual quality
n the obfuscated images. The measure of SSIM can be used to
etermine the similarity of an obfuscated image to its original
nstance. A measure of 1 indicates identical images whereas a
easure of 0 indicates no structural similarity, therefore, higher
alues imply better visual quality. We plot the average SSIM over
ll obfuscated instances as a function of identity classification
ccuracy. This allows us to compare the methods of obfuscation
n a manner that abstracts from approach-specific privacy param-
ters. The resulting plots can be interpreted as a representation
f the trade-off between privacy and visual quality where high
SIM with low classification accuracy is desirable.
Each plotted data point is the result of applying a method

f obfuscation with a particular privacy parameter configuration.
or differential privacy, we apply values of 10, 100, 200, 300, 400,
00, 600, 700, 800, 900 and 1000 for the privacy budget. For k-

same obfuscation, we apply values of 2, 3, 4, 5, 10, 20, 50 and
100 for k. Unlike differential privacy and k-same, DeepPrivacy
has no configurable privacy parameter. Therefore, rather than
producing a plot, it produces a single point of data. For each
method of obfuscation, we calculate the identity classification
accuracy when subjected to a parrot attack. As such, we train a
separate FaceNet model for each plotted point of each obfuscation
method. The SSIM values for each point are calculated as the
average SSIM across all pairs of obfuscated images and their
original counterparts.

As the approach of DeepPrivacy is stochastic in nature, we gen-
erate 3 obfuscated instances per test image as with differential
privacy. Since k-same is deterministic, we generate a single ob-
fuscated instance per test image. Due to a requirement of k-same
bfuscation for each identity to appear at most once in the set of
mages to be obfuscated, we partition the k-same testing set into
0 subsets, each of which contains a single image of each identity.
hese galleries are then further subdivided based on equivalence
lasses for the gender attribute. This is necessary to ensure that
lusters do not contain images from different equivalence classes
s this would directly violate the k-same guarantee given that the
bfuscation GAN is designed to reveal these attributes.
The results are shown in Fig. 10. Unsurprisingly, DeepPrivacy

ffers the highest level of SSIM in its obfuscated output, but at the
ost of having the highest re-identification risk, since it modifies
nly a tightly cropped area containing the face rather than the
hole head. In contrast, obfuscation via our proposed GAN mod-
fies the hair, forehead, ears and neck as well. Furthermore, unlike a
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eepPrivacy which aims to match the new face to the unmodified
acial contour, our GAN is able to make adjustments in skin tone.
his leads to lower similarity to the original images and thus a
ower SSIM score. However, the greater degree of modification is
ritical in achieving a sufficient level of privacy in the obfuscated
utput. A classification network trained for a parrot attack is able
o recognize that the outer contour of the face remains invariant
nder tightly-cropped facial redaction and will thus focus on the
eatures in the contour when attempting to classify identities.
his is witnessed by the significantly higher identity classification
ccuracy measured for DeepPrivacy compared to the other meth-
ds of obfuscation. We argue that the drop in visual similarity
o the original images under the more thorough modification of
ur GAN is a necessary sacrifice in order to achieve a reasonable
egree of privacy.
The methods of differential privacy and k-same obfuscation

ppear to follow a similar trend to each other in the trade-off
etween re-identification risk and visual quality, likely due in part
o the use of the same GAN for the generation of the output im-
ges. However, differential privacy demonstrates a slightly better
rade-off.

.4.1. Impact of PCA on visual quality
A related question to the impact of obfuscation on visual

uality is the impact of the PCA dimensionality reduction on
isual quality. In our proposed usage of PCA, stronger levels of
rivacy imply fewer preserved components, leading to a greater
oss of visual detail from the original image. In order to examine
he loss in visual detail purely in relation to the number of pre-
erved components, we apply dimensionality reduction without
he addition of any noise. By measuring the SSIM of the resulting
ecoded images in comparison to their original versions, we are
ble to empirically measure the loss in visual quality induced by
he use of PCA. As before, we measure the overall visual quality
s the averaged SSIM across all pairs of decoded images and their
riginal counterparts. We repeat this experiment across a range
f values, from 1 to 500, dictating how many of the PCA basis
omponents are to be preserved out of the full 4096. The results
re shown in Fig. 11, where the averaged SSIM value is plotted as
function of the number of preserved components.
The results above 100 preserved components show little vari-

tion in the average SSIM due to the fact that very little of the
ariance from the data is lost when dropping the majority of the
rincipal components. This demonstrates how effectively the vi-
ual information is compressed into a small number of the leading
omponents. From the plotted values, it is clear that the majority
f the information pertinent to visual quality is preserved in
he first 100 components. In Table 4, we provide information
ertaining to the impact on visual quality from the dimensionality
eduction in our privacy budget allocation scheme. For each value
f ϵ used in our experiments, we list the number of preserved
omponents and the corresponding explained variance across
hose components. Note that explained variance is a value in
he range of [0,1] such that 0 indicates complete loss of all
nformation and 1 indicates lossless preservation of information.

.5. Utility

Beyond the generation of images with high visual quality, we
lso aim to preserve specific features in the obfuscated images.
ere, we test for the ability to preserve the depicted gender. The
aceScrub dataset provides a gender label for each image and
as an equal number of male and female identities. Using these
abels as the ground truth, we measure the gender classification
ccuracy and plot this as a function of identity classification

ccuracy. The gender classification accuracy is calculated as the
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Fig. 11. A demonstration of the impact of PCA dimensionality reduction on the
visual quality of the decoded images. SSIM is plotted as a function of the number
of preserved components.

Table 4
A listing of the number of preserved principal components and the
corresponding explained variance for a range of ϵ values.
ϵ Preserved components Explained variance

1000 86 0.7932
900 80 0.7759
800 72 0.7498
700 63 0.7148
600 54 0.6731
500 46 0.6294
400 37 0.5716
300 30 0.5186
200 20 0.4248
100 10 0.2963
50 5 0.2003
10 1 0.0642

percentage of obfuscated images classified as the correct gender
by the DeepFace classifier. The setup with respect to privacy
parameters and the calculation of identity classification accuracy
is kept the same as in Section 8.4. Low identity classification
accuracy with high gender classification accuracy is desirable.
The results are shown in Fig. 12. For reference, we include the
baseline gender classification accuracy on the unobfuscated set
of test images.

Differential privacy and k-same obfuscation show a very sim-
ilar trend in the preservation of gender. Both methods of ob-
fuscation in fact provide accuracy above the baseline for most
of the plotted points. This is due to the attribute preservation
training objective of the GAN which aims to produce output
images that clearly depict the specified attributes. In contrast to
the methods that use our GAN, DeepPrivacy obfuscation suffers
from a significant drop in gender classification accuracy. This is
due to the fact that it does not use auxiliary inputs to selectively
preserve certain types of information as we do in our proposed
model. While methods of in-painting could be extended with
such inputs, this would likely further exacerbate the issue of high
identity classification accuracy.

8.6. Practical interpretation of inter-identity distances

To provide further insight into the practical implications of
the privacy guarantee in the context of facial obfuscation, we
examine the distribution of inter-identity distances in the Face-
Scrub dataset. To do so, we take one image per identity from the
test partition and measure all pairwise distances. This produces
a distribution consisting of roughly 250,000 inter-identity dis-
tances. It is important to note that the distribution of distances is
impacted by the set of principal components over which distances
are measured. Though we do not apply any obfuscation in this
375
Fig. 12. A comparison of the trade-off between utility and re-identification risk.
Gender classification accuracy is plotted as a function of identity classification
accuracy.

experiment (as we are interested in distances between unobfus-
cated identities), we do apply dimensionality reduction according
a specified privacy budget. In Fig. 13, we show two examples
of distance distributions, using privacy budgets of ϵ = 50 and
ϵ = 100. The plotted distributions show that in practice, most
identities have a relatively small distance between themselves
and many others. This supports the intuition that the privacy
guarantee can imply strong levels of protection in practical set-
tings due to the large numbers of individuals that exist within
relatively small radii of distance.

To further assess the implications of the sampled distances,
we extrapolate from the FaceScrub data to approximate the value
of ϵ that would be required to achieve a maximum of 5% re-
identification risk in a variety of scenarios. Let P be the full set of
identities we are considering. We first measure Pr , the percentage
of P covered by the set Br (X) averaged across all identities X ∈ P:

Pr =

∑
Xi∈P
|Br (Xi)|

|P|2
. (17)

This calculation provides us with an approximation of the
roportion of a population that is expected to fall within an
nstantiation of Br (X). With the FaceScrub data, we obtain P0.1 =
.1196 and P0.2 = 0.7481 when using ϵ = 50. We then
earrange the posterior probability bound of Formula (15) to
alculate the value of ϵ required to achieve an upper bound of
post re-identification risk on an obfuscated release:

≤
ln(|P| ∗ Pr ∗ rpost )

r
. (18)

This form allows us to use our Pr values to consider sce-
arios involving other population sets. In Table 5, we provide
xamples for a variety of populations in which we require the re-
dentification risk to be upper bounded by 5% (i.e., rpost = 0.05).
The population size |P| is shown in the first column and the
required value of ϵ is shown for radii of 0.1 and 0.2 in the second
and third columns, respectively. The intent here is to provide
intuition on how the generalized privacy guarantee can be under-
stood in the context of facial obfuscation. We stress that this table
is not intended to be used as a guideline in practice as it relies on
assumptions regarding the attack model and extrapolation from
a relatively small set of samples.

8.7. Discussion

As demonstrated through our experimental results, our pro-
posed GAN is able to achieve a favourable trade-off between
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Fig. 13. Distribution over all pairwise inter-identity distances calculated on a set of images using one instance per identity from the FaceScrub test partition. The
left distribution uses dimensionality reduction corresponding to a privacy budget of ϵ = 50 while the right distribution uses a privacy budget of ϵ = 100.
able 5
xamples of the ϵ values required to achieve a maximum re-identification risk
f 5% in various scenarios. Each row corresponds to a different population
ithin which the attacker knows the targeted individual exists. Each column
orresponds to a radius within which indistinguishability is required. Cell entries
ive the ϵ value required under the specified settings.

r = 0.1 r = 0.2

7,900,000,000 (Global population) ϵ ≤ 176.71 ϵ ≤ 97.52
1,000,000 (City population) ϵ ≤ 86.96 ϵ ≤ 52.65
10,000 (Town population) ϵ ≤ 40.91 ϵ ≤ 29.62
500 (Event attendance) ϵ ≤ 10.95 ϵ ≤ 14.64

privacy and utility. Contrarily, the approach of redaction and
in-painting used by DeepPrivacy falls short in the ability to suf-
ficiently hamper re-identification risk. Without a configurable
privacy parameter, methods of in-painting have no means to
further reduce re-identification risk aside from widening the area
of redaction. This type of all-or-nothing approach does not lend
itself well to balancing privacy with utility.

The comparison between differential privacy and k-same ob-
uscation demonstrates similar levels of utility from the two
ethods of obfuscation with differential privacy performing
lightly better for the measure of SSIM. Empirically, the two
ethods appear to perform very similarly when using the same
AN. Yet, differential privacy has been shown to achieve stronger
rivacy than k-same obfuscation against composition attacks and
s better suited for protection against inferences in more practi-
al scenarios where an attacker is likely to exploit background
nowledge [35]. Given the stronger theoretical properties of
ifferential privacy combined with comparable levels of utility to
-same obfuscation, we propose that our method of obfuscation
ffers a better overall privacy-utility trade-off.

. Conclusions

In digital images depicting faces, privacy violations are of-
en a concern. In this work, we propose a method of facial
bfuscation that offers a provable guarantee of privacy while
reserving utility in the obfuscated images. Our work allows
s to provide a differentially private guarantee for GAN image
ncodings. Through careful design of the model architecture and
raining process, we achieve photo-realistic obfuscated images
hile preserving desired features such as gender and pose. We
ropose a novel combination of PCA with distance-generalized
ifferential privacy to control the application of noise, allowing
he privacy budget to be spent in an efficient manner. Through
xperimental comparisons, we demonstrate that our proposed
376
approach achieves a strong level of privacy protection while
preserving favourable levels of utility in the obfuscated images.

As the field of machine learning, and more specifically the
study of GANs, is advancing rapidly, we expect that greater
preservation of visual quality and utility in the obfuscated im-
ages can be attained by applying our methods to cutting-edge
architectures and training methodologies. Improved handling of
extreme variation in pose could also be achieved through the aug-
mentation of the model training data with samples that capture
a more balanced distribution over such types of variation. Fur-
thermore, the investigation of alternate privacy budget allocation
schemes within the PCA basis may prove fruitful in achieving
improved privacy-utility trade-offs. Other interesting extensions
of our work to explore include the application of differentially
private obfuscation via GANs that handle full-body images or
entirely different domains of sensitive information.
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