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Abstract
In this work, the problem of anomaly detection in imbalanced datasets, framed in the
context of network intrusion detection is studied. A novel anomaly detection solution
that takes both data‐level and algorithm‐level approaches into account to cope with the
class‐imbalance problem is proposed. This solution integrates the auto‐learning ability of
Reinforcement Learning with the oversampling ability of a Conditional Generative
Adversarial Network (CGAN). To further investigate the potential of a CGAN, in
imbalanced classification tasks, the effect of CGAN‐based oversampling on the following
classifiers is examined: Naïve Bayes, Multilayer Perceptron, Random Forest and Logistic
Regression. Through the experimental results, the authors demonstrate improved per-
formance from the proposed approach, and from CGAN‐based oversampling in general,
over other oversampling techniques such as Synthetic Minority Oversampling Technique
and Adaptive Synthetic.

1 | INTRODUCTION

In recent years, an unprecedented rise in the number of
computing apps and network sizes has increased the potential
threat of cyber‐attacks drastically [1]. Network security has
become an integral concern more than ever. It has also become
increasingly difficult to capture anomaly signals due to their
constantly changing nature [2]. It is therefore crucial to employ
automated systems like Intrusion Detection Systems (IDSs),
which can accurately detect cyber‐attacks [3]. The key roles of
an IDS are tracking hosts and networks, evaluating computer
system activities, generating warnings, and reacting to unusual
behaviours. IDSs that utilize machine learning algorithms can
identify intrusion effectively when there is sufficient training
data, and the algorithms are flexible enough to identify attack
variations and novel threats. Furthermore, machine‐learning‐
based IDSs are simple to develop and construct without
having deep domain‐specific knowledge [4]. Supervised
Learning, Unsupervised Learning and Reinforcement Learning
(RL) are the three main machine learning techniques. RL,
which lies outside of supervised and unsupervised learning due
to its own ‘signal sensing’ ability [5], overcomes the problem of
label scarcity in supervised learning and the problem of poor
performance in unsupervised learning.

In data mining, datasets with imbalanced classes are a
ubiquitous natural phenomenon. Common IDS datasets suffer
from imbalanced representation as the normal traffic behav-
iour always constitutes the majority of the dataset, whereas
intrusion traffic behaviour typically constitutes a relatively
small proportion of the dataset. When making a binary clas-
sification in detecting fraudulent activities, the class‐imbalance
issue significantly reduces the effectiveness of binary classifiers,
undesirably biasing the results towards the prevailing class,
while we are interested in the minority class. Current research
on the classification of imbalanced data is mainly summarized
into two classes of approaches. The first targets the algorithm
level through the use of classifiers designed with imbalanced
data in mind. The objective is to enable the classifier to adapt
or strengthen its learning process for the minority classes. The
second approach involves data‐level modifications aimed at
balancing the distribution of classes in the training data. Re‐
sampling techniques are employed for this purpose and they
are divided into oversampling [6], undersampling [7] and
hybrid sampling methods [8]. Generative adversarial networks
(GANs) [9] are machine learning models, which are used to
produce novel instances of samples from a targeted data dis-
tribution. A Conditional GAN (CGAN) [10] variant of the
model can be used to provide further control over the
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generated data such as forcing the model to learn a distribution
of a dataset conditioned on its class labels.

1.1 | Major contributions

In this study, a novel algorithm, AEGAN, has been pro-
posed. It is a hybrid model that consists of adversarial
environment reinforcement learning (AE‐RL) and CGAN.
The CGAN model is trained on a network intrusion detec-
tion dataset, and is used to generate synthetic samples to
handle the class‐imbalance problem. This data‐level approach
has been combined with an algorithm‐level approach, AE‐
RL. The combination of these two frameworks is able to
provide an improved performance in the network intrusion
detection system. Furthermore, a comparative study has been
shown between CGAN and other oversampling techniques
and a detailed analysis has been conducted over which
oversampling techniques are more appropriate to combine
with AE‐RL. We conduct our experiments on the AWID
dataset, comparing various oversampling techniques in their
performance for classification over an imbalanced distribution
of classes. Our contributions are summarized as follows:

1. We present a novel IDS solution that combines an algorithm‐
level approach, AE‐RL, with CGAN‐oversampling concept
to achieve a better classification on imbalanced data.

2. We compare and analyse the performance of alternate
classifiers (Naïve Bayes [NB], Multilayer Perceptron [MLP],
Random Forest [RF] and Logistic Regression [LR]) when
combined with CGAN.

3. We analyse the performance of different combinations of
oversampling techniques and base classifiers and demon-
strate improved classification performance from our pro-
posed solution.

2 | RELATED WORK

In the cybersecurity field, detecting cyber‐attacks has become
a crucial task. Cyber‐attacks are rapidly evolving and
becoming increasingly difficult to detect [2]. Traditional ma-
chine learning approaches are ill suited to the task of
detecting evolving cyber‐attacks due to the class‐imbalance
property of common IDS datasets. We provide a review of
both algorithm‐level and data‐level approaches to address the
class‐imbalance problem.

2.1 | A review of algorithm‐level approaches

With algorithm‐level approaches, the objective is to strengthen a
classifier in terms of algorithm architecture to cope with the
class‐imbalance problem. AE‐RL is an example in this context
[11]. AE‐RL learns based on a reward function, which has been
obtained through the interaction between two agents. However,
although AE‐RL offers improved performance in the

imbalanced domain, it also suffers from the lack of positive
samples in cyber‐attack datasets [12]. Due to insufficient varia-
tional data, the classifier struggles to predict unknown classes. In
[13], the authors propose a solution for IDS using boosting‐
based feature selection to evaluate the relative importance of
individual features. This work accounts for the imbalanced
classes by assigning different costs for positive and negative
samples and applies feature selection on the modified dataset. In
[14], the authors address the class‐imbalance problem by
consolidating stratified sampling, the use of a cost function, and a
weighted support vector machine (WSVM). The authors assign
the records of minority classes that have greater weights than
those of the majority classes. In [15], the authors propose a
double‐layer detection and classification approach that consists
of a neural network model with two layers and multiple
ensembled techniques to better categorize subtypes in the at-
tacks. Their experiments employ various classifiers including
support vector machine (SVM), RF, Adaboost and Gradient‐
Boosted Decision Trees (GBDT). However, only precision
and recall scores are compared. AE‐RL showed the best per-
formance on addressing the class‐imbalance problem from the
algorithm‐level perspective. Moreover, the auto‐learning nature
of reinforcement learning gives AE‐RL a unique advantage that
makes AE‐RL not only capable of performing prediction
without human supervision, but also has great potential on
performing prediction on unknown classes.

2.2 | A review of data‐level approaches

The objective of data‐level approaches is to alter on the
training dataset such that it becomes sufficiently balanced,
enabling more effective learning for classification algorithms. A
typical strategy is to generate synthetic data samples. In [16],
the authors propose the Two‐Layer Multi‐class Detection
(TLMD), which consists of a combination of a C5 Decision
Tree and NB to perform adaptive network intrusion detection.
They handle the imbalanced dataset problem by extracting
subsets of data from the training dataset. The work in [17]
proposes Synthetic Minority Oversampling Technique
(SMOTE), which can produce synthetic samples via interpo-
lation using distance measures within the K‐nearest neigh-
bouring samples. In [18], it is stated that traditional
oversampling approaches such as SMOTE are restricted to
only generating samples based on local information. Hence,
when applying oversampling techniques, data generated by
SMOTE has a disadvantage due to the limited local informa-
tion. In [19], The authors optimize the SMOTE ratios for the
minority classes on the KDDCUP1999 dataset by adding a
support vector regression to help in creating the model. By
conducting the experiments using the best ratios, the results are
significantly better than the original SMOTE. In [20], the au-
thors propose a novel class‐imblance processing technology
that combines with SMOTE and under‐sampling for clustering
based on Gaussian mixture model (GMM). They investigate
the impact of different numbers of convolution kernels and
different learning rates on model performance. Through
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experiments on the UNSW‐NB15 and CICIDS2017 datasets,
results show that their proposed method outperforms the
state‐of‐the‐art intrusion deteciton methods. In [21], the au-
thors present Adaptive Synthetic (ADASYN) sampling
approach for imbalanced learning , which improves learning
with respect to the data distribution by reducing the bias due to
the class‐imbalance and adaptively shifting the classification
decision boundary towards the difficult examples. Similarly, to
SMOTE, it has a disadvantage in limited local information
based on nearest neighbour distance measures.

2.2.1 | GAN oversampling techniques

The GAN framework is a popular machine learning approach
for creating synthetic data. Oftentimes, research works apply the
GAN framework in the context of producing synthetic samples
for cyberattack datasets [22]. GAN has a disadvantage owing to
mode collapse, unstable training and lacks the consideration of
the majority class samples that affect the classification boundary
[18]. In [23], the authors propose an Outlier Detectable‐GAN
(OD‐GAN), which uses a discriminator as an outlier detector
to quantify the difference between the distributions of the ma-
jority and minority classes. In [24], the authors propose a novel
Single‐Objective Generative Adversarial Active Learning (SO‐
GAAL) method to generate potential outliers for data in high‐
dimensional space as these outliers may provide information
to assist the classifier in describing a boundary that can separate
outliers from normal data effectively. In [25], the authors pro-
pose a conditional variational autoencoder (VAE) that is able to
learn class‐dependent distributions. In their results, they
discover that deep generative models outperform traditional
oversampling methods in many circumstances, especially in
cases of severe imbalance. In [26], the authors claim that CGAN
is better at approximating the true data distribution and generate
data for the minority class of various imbalanced datasets. They
apply CGAN on binary‐class‐imbalanced datasets, where the
CGAN conditional information is the data sample class label. In
their experiments on various datasets with different imbalance
ratios, the performance of CGAN is compared against several
oversampling methods including Random Oversampling,
SMOTE, Borderline SMOTE, ADASYN and Cluster‐SMOTE
and decent improvement have been found. In [27], the authors
propose to add constraints to the networks of theCGAN to limit
the degree of convergence freedom, which mitigates the phe-
nomenon of slow convergence or failure to converge due to the
high degree of freedom of traditional GAN. In [28], the authors
train the CGAN model to generate synthetic samples from mi-
nority classes using the KL‐divergence to guide the model to-
wards learning the true minority class distribution. Before
training the model, they have also reduced the size majority class
by using undersampling techniques. Their experiments are per-
formed on the NSL‐KDD and UNSW‐NB15 datasets and
decent performance has been achieved. In [29], the authors
propose a solution for classification on credit card fraud datasets,
which are strongly imbalanced. It adopts theGAN framework to
output synthetic minority class samples and then merges them

with the original training set to form an augmented set. The
experiments show a significant improvement on the perfor-
mance of a classifier trained on the augmented set over that of
the same classifier trained on the original data. The authors in
[30] propose an Imbalanced Generative Adversarial Network‐
based Intrusion Detection System (IGAN‐IDS), which in-
troduces an imbalanced data filter and convolutional layers to the
typical architecture. The framework utilizes a data filter, which
restricts the GAN training data to only the minority classes. The
work in [31] introduces Autoencoder‐Conditional GAN (AE‐
CGAN), a novel framework that processes data characteristics to
a lower level by using an autoencoder prior to GAN over-
sampling. The use of a Conditional Wasserstein GAN with
Gradient Penalty (CWGAN‐GP) for class balancing is proposed
in [18]. The Wasserstein objective function provides greater
stability during training, mitigating issues such as mode collapse
that are common in standard GAN models. In [32], the authors
propose Supervised Adversarial Variational Auto‐encoder with
Regularization and Deep Neural Network (SAVAER‐DNN)
that can detect both minority class samples, and unknown at-
tacks. The framework consists of a combination of a supervised
variational autoencoder with regularisation and a Wasserstein
GAN with Gradient Penalty (WGAN‐GP). It uses the encoder‐
decoder process to synthesise minority class samples and un-
known attacks for the purpose of balancing training data.

3 | CGAN AS AN OVERSAMPLING
TECHNIQUE

In this section, we describe the general structure and training
details of the GAN framework, the CGAN variant and how
they are being used as an oversampling technique.

3.1 | Generative adversarial networks

When training a GAN, the goal is to learn a mapping of noise
drawn from a random distribution to an approximation of the
desired data distribution. When successfully trained, the model
is able to produce highly realistic samples. This ability to
produce novel, high quality data is of particular use for the task
of data augmentation and has been investigated as a means to
balance class distributions in unbalanced datasets by over-
sampling minority classes [26, 29].

A GAN typically consists of two multi‐layered, feed‐
forward neural networks: a generator and a discriminator.
The task of the generator is to learn the mapping from a multi‐
dimensional latent space to the data distribution. The latent
space is often sampled using a normal or uniform distribution.
The discriminator is used to scrutinize the quality of the
generated data by learning to classify the samples as being
either real or fake (i.e. generated). The output of the discrim-
inator is thus a scalar value representing the probability that the
input sample is real. A diagram depicting the overall structure
of the model is given in Figure 1. Dashed arrows denote the
auxiliary information present only in the CGAN variant. In
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both variants, the generator G accepts as input random noise z
sampled from a distribution pz and produces as output fake
data x� from an approximation of the training data distribution
pdata. The discriminator D accepts input fake data x� or real data
x sampled from pdata and outputs a value in the range [0, 1]. In
the CGAN variant, both networks additionally accept input
auxiliary information y sampled from pdata.

The two networks compete in a minimax game during
training. The discriminator aims to correctly distinguish be-
tween real training samples and fake samples while the
generator aims to produce high quality samples capable of
fooling the discriminator. The adversarial nature of the training
forces both networks to continually improve in order to thwart
the other. The networks alternate in updating their parameters
during training in order to ensure that neither improves too
rapidly compared with the other, as this would lead to training
instability. Both networks share the same objective function:

min
G

max
D

Ex∼pdataðxÞ logðDðxÞÞ½ � þ Ez∼pzðzÞ logð1 − DðGðzÞÞÞ½ �;

where G and D are the generator and discriminator networks,
respectively, pdata is the training data distribution and pz is the
distribution of random noise used as input for G. The
generator aims to minimise this value while the discriminator
aims to maximize it.

A CGAN [10] variant of the model can also be employed
when the goal is to generate samples from a conditional data
distribution. This can be used to provide more control over the
generated data. For instance, by training the model to learn a
distribution conditioned on class labels, it becomes possible to
specify the class of samples to be generated by the trained
model. In the context of oversampling for the purpose of data
balancing, this allows for labels of minority classes to be
specified during data generation in order to selectively augment
the classes in need of additional samples. At the implementation
level, the generator and discriminator networks are modified to
accept an additional input that captures the auxiliary informa-
tion (e.g., a class label). The flow of the auxiliary information is
shown by the dashed arrows in Figure 1. The updated objective
function is given as follows:

min
G

max
D

Ex;y∼pdataðx;yÞ logðDðx; yÞÞ½ �

þ Ez∼pzðzÞ;y∼pyðyÞ logð1 − DðGðz; yÞ; yÞÞ½ �;

where pdata is now a conditional distribution and py is the
distribution of the auxiliary information.

4 | AEGAN

In this section, we present details on applying CGAN over-
sampling to an algorithm approach AE‐RL. Q‐learning is used
to perform reinforcement learning. With the defined Q‐values,
we further explain how to setup AE‐RL to run on the AWID
dataset. Finally, we present details on how to combine the data‐
level approach CGAN to the chosen algorithm‐approach.

4.1 | Q‐learning

Q‐learning [33] is a model‐free RL algorithm that we use in
our proposed approaches. The objective of Q‐learning is to
find a policy that is optimal in the sense that the expected
return over all successive time steps is the maximum achiev-
able. The algorithm consists of a value iteration process which
iteratively updates the Q‐values for each state action pair using
the Bellman equation until the Q function converges to the
optimal Q function, Q*. Among all possible functions, there
exists an optimal value function which has the highest value,
denoted as V*(s) = maxπVπ(s) and π* = arg maxπVπ(s) is the
optimal policy which maximizes the action value achievable
for state s. The relationship is defined as follows:

Q�ðs; aÞ ¼Rðs; aÞ þ γEs0 V �ðs0Þ½ � ¼ Rðs; aÞ

þ γ
X

s0∈S
Pðs0∣s; aÞV �ðs0Þ ½33�

where R(s, a) is the immediate expected reward after per-
forming action a at state s and γEs0[V*(s0)] is the expected,
discounted, accumulated, future reward after the transition
to the next state s0. The learning function is defined as follows:

Qnew(st, at)← (1 − α)Q(st, at) + α(rt + γ maxaQ(st+1, at+1))
[33]

where Qnew is being updated at a discount rate γ based on the
learning rate α.

4.2 | AE‐RL setup

AE‐RL is set up with two learning agents, withQ‐values defined
as Qc(si, aci) and Qe(si, aei). They are arbitrarily initialized at the
beginning of the training process and tuned as RL proceeds. For
every training episode, a random sample is selected as the initial
state before the RL process. Then, it calculates the states, actions,
and rewards of both agents. Following their given rewards, the
classifier makes a prediction on the current class type, aci, based
on its policy, Qc(s, a), while the environment provides the next
training sample aei. aei is calculated based on the previous clas-
sifier’s performance, Qe(s, a). Similarly, rci is either a positive
integer or zero, as the reward corresponds to classifier’s correct
or incorrect classification, respectively. Meanwhile, rei takes
opposite rewards as the classifier agent. The next state, si+1, is
derived from randomly picking a sample from ae(i+1), the
resulting class decided by the environment agent.

F I GURE 1 Flow of data through the generative adversarial networks
model
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4.3 | AEGAN details

In general, AE‐RL works well on imbalanced multi‐class
classification problems because of its ability to select samples
in a balanced way. However, when there are very few samples
in a minority class, even AE‐RL suffers from a lack of variation
in the data. We aim to solve this problem by creating relevant
synthetic samples of the minority classes using CGAN. The
CGAN model trains on the original dataset using the labels
associated with each class as the conditional information. After
this training, we select minority classes that are in need of
oversampling and then produce new records by passing
random noise to the CGAN combined with the class label to
indicate what class to generate. CGAN is excellent at
mimicking the original data distribution. Figure 2 illustrates the
algorithm architecture of the proposed IDS. At first, various
basic classifiers are trained on the original training dataset in
order to gain general exploration knowledge. By observing
each performance metric, we identify the minority classes that
are in most need of augmentation. Then, we resample the
chosen minority classes using oversampling techniques. This
phase is considered as the data‐level approach portion of the
solution to the class‐imbalance problem. The oversampling

process is used to raise the number of instances in the minority
classes to levels comparable with the majority class. Both
original and synthetic records are concatenated into a new
training dataset. This modified dataset is then passed in as an
input for classifier training. In this study, various classifiers are
compared. The expected use of AE‐RL is to tackle the class‐
imbalance problem as an algorithm‐level approach whereas
other classifiers are used to examine the ability of CGAN as a
data‐level approach. This also enables us to examine whether
the algorithm‐level approach has a counter effect on the data‐
level approach. From the probabilistic family, we have selected
NB. Then, RF is used as an ensemble technique. We have
selected an MLP as an implementation of a neural network.
Finally, Logistic Regression from the linear model family is
selected.

5 | EXPERIMENTAL SETUP

In this section, we first provide information on the training
dataset. We then describe the settings for training our CGAN
framework and the conceptual details of all oversampling
techniques and learning classifiers that we have used.

F I GURE 2 Algorithm architecture of the detection system
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5.1 | AWID

The Aegean WIFI Intrusion Dataset (AWID) is a well‐known
publicly available dataset [34].This dataset has been created
based on real‐world network traffic with a fine mixture of
normal activity and anomalous activities. Among the available
variants of the dataset, we have selected AWID‐CLS‐R. Here,
the attack types are classified into three major categories
(Flooding, Injection and Impersonation), with normal activity
as a fourth category. A detailed description of the attack types
can be found in [34]. The dataset contains 1,795,574 training
samples and 575,642 testing samples. It has in total 154 fea-
tures (continuous and categorical ones). This dataset is
extremely imbalanced, having 1,633,189 normal instances with
only 162,385 instances across all attack classes. In Figure 3, the
class distribution of the AWID dataset is shown. The minority
classes are similarly sized with each other in regard to their
number of samples in the training dataset. For the pre-
processing, we have followed the steps detailed in [11].

5.2 | Oversampling techniques

In this study, three oversampling techniques are studied: two
traditional oversampling techniques SMOTE and ADASYN, as
well as CGAN. The default parameters are used for both
SMOTE and ADASYN. In CGAN, there are two main
modules: a generator and a discriminator, each of which is
embodied by a neural network. The generator has four hidden
layers; the numbers of output units for each layer are 32, 64,
128 and 256, respectively. Similarly, the discriminator has four
hidden layers with 256, 128, 64 and 32 output units. The
hidden layers of both modules are configured based on the
description of [18]. The SGD optimizer is used along with
30,000 steps. During the training process, the generator and
discriminator execute training steps alternately to update their
parameters. A single training step is configured to be executed
in each network. A learning rate of 0.0001 is set to help CGAN
learn smoothly. For the CGAN model, both the generator and
discriminator accept class labels as conditional information
along with their standard input features. After the training

stage, the generator can be employed to create synthetic
samples of a specific class. After initial experimentation, we
have chosen to use a 100‐dimensional vector of Gaussian noise
as the input for the generator network.

From the AWID dataset, we observe that the injection
class has a very unique distribution, which enables it to be
classified perfectly in the testing phase for all studied classifiers.
Since injection has nearly 100% detection rate, we have decided
to create synthetic samples only for the flooding and imper-
sonation classes. It is crucial to decide the number of synthetic
samples to create. We have created 1 million synthetic samples
for each of the flooding and impersonation classes as this not
only balances the distribution, but also provides enough vari-
ation to these minority classes to assist classifiers such as AE‐
RL to be more effective.

5.3 | Machine learning classifiers

In this study, the main machine learning classifier used is
AE‐RL. It is a complex classifier to manipulate. However, it
offers great potential for handling an imbalanced dataset. The
parameters of AE‐RL are set up as described in [11]. Other
standard machine learning algorithms are also included in our
experiments in order to compare their results with those of
AE‐RL. The NB classifier sets a rigid independence assump-
tion on the feature variables and takes the approach of
calculating a conditional probability for all possible prediction
outcomes [35]. MLP is similar to a regular feedforward neural
network, and it consists of at least three layers of nodes, which
include input, hidden and output layers. It uses back-
propagation to train on labelled datasets [36]. RF is an
ensemble learning method for supervised classification that
combines a large number of decision trees and makes predic-
tion on the class with the most votes [37]. LR is a statistical
approach that makes estimates by using a logistic function to
model a binary dependent variable [38] and it can be used for
multi‐class scenarios by applying it repeatedly as one‐against‐
rest classification. The results of these standard classifiers are
recorded both with and without the use of oversampling
techniques. A detailed comparison is shown in the Results

F I GURE 3 Class distribution of the Aegean WIFI Intrusion Dataset dataset
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and Analysis section. Except AE‐RL, all other classifiers
are implemented using the scikit learn library [39].1 For these
classifiers, default parameters are used and all experiments are
performed on nodes with the same level of computational po-
wer. For each combination of a classifier and an oversampling
technique, we perform the experiment 20 times and report the
average value of our selected evaluation metrics as the result.

5.4 | Evaluation metrics

For the evaluation of these the above‐mentioned models, we
have focussed on F1‐score because it reflects the trade‐off
between recall and precision. We used the weighted form of
F1‐score due to the imbalanced nature of the dataset. The
weighted F1‐score gives priority based on the number of the
samples of each class presented in the testing data. A good F1‐
score requires a reasonable detection rate and low false alarm
rates [10]. The formula of the F1‐score is as follows:

F1 − score¼
2 � ðPrecision � RecallÞ
Precisionþ Recall

ð1Þ

We additionally report the accuracy, precision and recall for
all the models.

6 | RESULTS AND ANALYSIS

In this section, we present the results of all classifiers when
applied with different oversampling techniques. We report all
four evaluation metrics and provide analysis on these results.

Table 1 and Figure 4 illustrate the performance of AE‐RL
combined with various oversampling techniques. We observe
that AE‐RL + CGAN achieves the best F1‐score of 0.9438,
while AE‐RL combined with SMOTE also produces results
that outperform the original AE‐RL. AE‐RL combined with
ADASYN achieves a similar improved performance. Since
AE‐RL takes a unique algorithm‐level approach to resolve
class‐imbalance, we were expecting minimal improvements
when it was combined with data‐level approaches. From the
results, we indeed do see there is a smaller improvement in
performance while combining data‐level approaches with AE‐
RL compared with other classifiers (as presented later in this
subsection). It is beneficial to further add a data‐level resam-
pling phase into the AE‐RL classifier.

Figures 5 and 6 show a comparison between the original
AE‐RL and the case when CGAN is combined with AE‐RL. A
Normalized Confusion Matrix (NCM) is used to illustrate the
results. First, we observe an improvement on the prediction of
the minority classes: the correct labelling of the Flooding
attack class is increased from 62% to 63% and the correct
labelling of the Impersonation class is increased from 36% to
72%. Meanwhile, the false‐positive rate on the Normal class

labelled as the Impersonation class drastically decreased from
64% to 27%. As an effect of these shifted percentages, the AE‐
RL classifier gains an overall performance improvement from
93.34% to 94.38% in terms of the F1‐score.

Table 2 and Figure 7 illustrate the performance of NB with
various oversampling techniques. NB combined with CGAN
achieves the best F1‐score of 0.9428, while NB combined

TABLE 1 Results of AE‐RL on AWID

Method F1‐score Accuracy Precision Recall

AE‐RL 0.9334 0.9289 0.9415 0.9289

AE‐RL + SMOTE 0.9337 0.9388 0.9398 0.9388

AE‐RL + ADASYN 0.9320 0.9402 0.9155 0.9578

AE‐RL + CGAN 0.9438 0.9371 0.9592 0.9371

Abbreviations: ADASYN, (ADASYN); AE‐RL, adversarial environment reinforcement
learning; AWID, Aegean WIFI Intrusion Dataset; CGAN, Conditional Generative
Adversarial Network; SMOTE, Synthetic Minority Oversampling Technique.

F I GURE 4 Various oversample techniques applied on AE‐RL

F I GURE 5 Confusion matrix of AE‐RL

1
https://scikit‐learn.org/stable/
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with SMOTE achieves similar performance to the original
NB. Finally, NB combined with ADASYN receives the worst
performance. Because NB is a probabilistic model, the distri-
bution of the dataset has a great impact on the classification
result. GAN is known for being great at mimicking the dis-
tribution of the original dataset whereas SMOTE and ADA-
SYN generate synthetic samples based on distance measures.
Therefore, CGAN + NB performs the best compared to

applying SMOTE or ADASYN on NB. When the variable
independence assumption is enforced, NB has an advantage
of having a fast execution time by simply formulating pre-
dictions based on the conditional probability model. However,
since there is no control put on the augmented portion of
the training data, the newly generated samples might change
the feature independence. Without this variable independence
assumption, the overall performance is not guaranteed.

Table 3 and Figure 8 illustrate the performance of MLP
with various oversampling techniques. The best performance is
shown when MLP is combined with CGAN. This combination
achieves an F1‐score of 0.9523. When MLP is combined with
SMOTE, its F1‐score ends up reaching 0.9354. When MLP
and ADASYN are combined, a slightly worse performance is
shown with an F1‐score as 0.9158. Although the base AE‐RL
has a better F1‐score than the base MLP, this reverses when
applying oversampling, resulting in better performance with
MLP combined with CGAN. This demonstrates that applying
a data‐level approach on a normal classifier can achieve a better
result than applying it on an algorithm‐level approach.

Table 4 and Figure 9 illustrate the performance of RF when
various oversampling techniques are applied. The highest F1‐
score is achieved by combining RF with CGAN. Its F1‐score
is 0.9282. When RF is combined with ADASYN, it achieves a
better performance than the original RF with F1‐score reaching

F I GURE 6 Confusion matrix of AEGAN

TABLE 2 Results of NB on AWID

Method F1‐score Accuracy Precision Recall

NB 0.8925 0.8734 0.9154 0.8726

NB + SMOTE 0.8912 0.8731 0.9125 0.8714

NB + ADASYN 0.8757 0.8235 0.9648 0.8232

NB + CGAN 0.9428 0.9504 0.9354 0.9504

Abbreviations: ADASYN, (ADASYN); AWID, Aegean WIFI Intrusion Dataset;
CGAN, Conditional Generative Adversarial Network; NB, Naïve Bayes; SMOTE,
Synthetic Minority Oversampling Technique.

F I GURE 7 Various oversample techniques applied to Naïve Bayes

TABLE 3 Results of MLP on AWID

Method F1‐score Accuracy Precision Recall

MLP 0.9245 0.9324 0.9215 0.9367

MLP + SMOTE 0.9354 0.9314 0.9347 0.9385

MLP + ADASYN 0.9158 0.9226 0.9274 0.9287

MLP + CGAN 0.9523 0.9516 0.9574 0.9516

Abbreviations: ADASYN, (ADASYN); AWID, Aegean WIFI Intrusion Dataset;
CGAN, Conditional Generative Adversarial Network; MLP, Multilayer Perceptron;
SMOTE, Synthetic Minority Oversampling Technique.

F I GURE 8 Various resample techniques applied to Multilayer
Perceptron
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0.9242. Since RF is an ensemble of decision trees, it takes the
majority decision from the subtrees. When combined with
ADASYN, it focusses on the hard‐to‐learn minority samples,
which slightly improves the result. We observe similar results
when using the augmented dataset produced using CGAN
because it captures the distribution of the minority classes well,
which helps to improve the detection rate of theminority classes.
On the other hand, the SMOTE‐augmented dataset led to worse
performance than that of the original dataset. Our intuition is
that the augmented dataset creates a bias towards the minority
classes that ends up misclassifying some normal class instances.
However, further experiments are required to quantify this bias.
We will address this in future work.

Table 5 and Figure 10 illustrate the performance of LR
when various oversampling techniques are applied. An
outstanding performance is achieved when LR is combined
with CGAN, reaching an F1‐score of 0.985, while LR com-
bined with SMOTE achieves similar performance as the
original LR with F1‐scores of 0.9568 and 0.9569, respectively.
When LR is combined with ADASYN, its performance is
comparatively poor reaching an F1‐score of 0.9521. We can
observe that the overall performance of LR‐based classifiers
outperforms all other classifiers.

We illustrate a comparison between LR and LR + CGAN
using NCMs in Figures 11 and 12 . We observe a significant
improvement on one of the minority classes; Flooding: the rate

of successful identification of this type of attack is increased
from 11% to 62% while eliminating 51% of the false‐positive
rate on predicting as Normal. Even after the improvement on
the detection rate of the Flooding classes, we observe that it is

TABLE 4 Results of RF on AWID

Method F1‐score Accuracy Precision Recall

RF 0.9144 0.9368 0.9347 0.9359

RF + SMOTE 0.8921 0.9238 0.9245 0.9234

RF + ADASYN 0.9242 0.9548 0.9551 0.9548

RF + CGAN 0.9282 0.9473 0.9573 0.9487

Abbreviations: ADASYN, (ADASYN); AWID, Aegean WIFI Intrusion Dataset;
CGAN, Conditional Generative Adversarial Network; RF, Random Forest; SMOTE,
Synthetic Minority Oversampling Technique.

F I GURE 9 Various oversampling techniques applied to Random
Forest

TABLE 5 Results of LR on AWID

Method F1‐score Accuracy Precision Recall

LR 0.9569 0.9586 0.9663 0.9586

LR + SMOTE 0.9568 0.9503 0.9712 0.9503

LR + ADASYN 0.9521 0.9522 0.9557 0.9522

LR + CGAN 0.9850 0.9849 0.9851 0.9849

Abbreviations: ADASYN, (ADASYN); AWID, Aegean WIFI Intrusion Dataset;
CGAN, Conditional Generative Adversarial Network; LR, Logistic Regression;
SMOTE, Synthetic Minority Oversampling Technique.

F I GURE 1 0 Various oversampling techniques applied to Logistic
Regression

F I GURE 1 1 Confusion matrix of Logistic Regression on Aegean
WIFI Intrusion Dataset
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difficult to improve after reaching 62%. Flooding attacks aim
to overload the network traffic in order to saturate the victim’s
system [40]. Since vast numbers of packets following the same
network protocols as normal traffic are sent to perform
flooding attacks in order to cause a Denial of Service, it is
difficult to distinguish such an attack from normal traffic.
Meanwhile, the majority class Normal gains further improve-
ment in performance from 97% to 99% while eliminating 3%
of false‐positive rate on the Impersonation attack class.

In summary, all studied oversampling techniques, namely,
SMOTE, ADASYN and CGAN have a positive impact in
most of the cases over AE‐RL, MLP, RF and LR. A crucial
observation is that CGAN always performs better than other
oversampling techniques. Furthermore, all classifiers combined
with CGAN consistently outperform their original models.
Among these results, LR demonstrates the most significant
improvement when combined with CGAN.

Lastly, we calculate the population variance for each classifier
to inspect the variation in performance induced by over-
sampling. These measures are calculated using the F1‐scores
from the base classifiers and each of their oversampling
methods. The formula of population variance is as follows:

σ2 ¼

Pn

i¼1
ðxi − μÞ2

n

where xi is the sample from each classifier and μ is the mean of
the corresponding population. From the results shown in
Table 6, we observe that AE‐RL has the lowest variance value
of 0.000022146 when applying the oversampling techniques.
Lower variance values are indicative of less significant changes
in the performance of a classifier from the use of over-
sampling. This suggests that data‐level approaches have a less
significant impact on algorithm‐level approaches compared
with other classifiers. Since AE‐RL addresses the imbalance

problem of the dataset, it does not benefit like other classifiers
when data‐level approaches are applied. It can further be
investigated by testing more algorithm‐level approaches. On
the other hand, NB has the highest variance value of
0.000638703 after applying oversampling techniques. This is
due to NB's rigid assumption of independence, which cannot
be avoided in the augmented portion of the training data.

7 | CONCLUSION

IDSs are a critical service that monitor networks for malicious
activities through analysing abnormal network traffic. In this
study, we propose an IDS architecture that combines a
CGAN‐based oversampling technique with the existing clas-
sifiers. Based on the experimental results, we provide a thor-
ough performance analysis to display the benefit of our
models. Overall, most data‐level approaches have a positive
effect on the performance of classifiers. The results demon-
strate that LR combined with CGAN achieves the best
F1‐score of 0.985 compared with all other classifier‐
oversampling combinations. The algorithm‐level approach
AE‐RL shows the least amount of variation when combined
with oversampling. This suggests there may be limited addi-
tional benefit in the combination of data‐level approaches with
algorithm‐level approaches. Expansion of the experiments to
include additional algorithm‐level approaches is required to
further investigate this topic.

As future work, we intend to explore the capabilities of the
GAN framework in the context of improving semi‐supervised
learning. We believe that this can be leveraged to not only
create synthetic samples but also to predict class labels.
Furthermore, using dimensionality reduction techniques, we
hope to speed up the learning process. Moreover, we plan to
test our proposed model on other similar datasets to further
validate its performance. Finally, we plan to investigate creating
a ranking system for majority class samples using a trained
CGAN discriminator in order to apply undersampling tech-
niques to the ranked majority class samples in a dataset.
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F I GURE 1 2 Confusion matrix of Logistic Regression + Conditional
Generative Adversarial Network on Aegean WIFI Intrusion Dataset

TABLE 6 Population variance on the F1‐scores for each classifier

Method σ2

AE‐RL 0.000022146

NB 0.000638703

MLP 0.000185585

RF 0.000195837

LR 0.000169525

Abbreviations: AE‐RL, adversarial environment reinforcement learning; LR, Logistic
Regression; MLP, Multilayer Perceptron; NB, Naïve Bayes; RF, Random Forest.
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