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Intrusion Detection Systems (IDSs) play a vital role in securing today’s Data-Centric Networks. In a dynamic environment such as
the Internet of Things (IoT), which is vulnerable to various types of attacks, fast and robust solutions are in demand to handle fast-
changing threats and thus the ever-increasing difficulty of detection. In this paper, we present a novel framework for the detection of
anomalies, which, in particular, supports intrusion detection. The anomaly-detection framework we propose combines reinforcement
learning with class-imbalance techniques. Our goal is not only to exploit the auto-learning ability of the reinforcement-learning loop
but also to address the dataset imbalance problem, which is pervasive in existing learning-based solutions. We introduce an adapted
SMOTE to address the class-imbalance problem while remodelling the behaviors of the environment agent for better performance.
Experiments are conducted on NSL-KDD datasets. Comparative evaluations and their results are presented and analyzed. Using
techniques such as SMOTE, ROS, NearMiss1 and NearMiss2, performance measures obtained from our simulations have led us to
recognize specific performance trends. In particular, the proposed model AESMOTE outperforms AE-RL in several cases. Experiment
results show an Accuracy greater than 0.82 and a F1 greater than 0.824.

Index Terms—deep reinforcement learning, class-imbalance, adversarial strategy, anomaly detection, dynamic training, feature-
selection.

I. INTRODUCTION

CONCERNS about cyber security have emerged as a
pressing issue not only in the scientific community but

in society at large. It not only threatens the safety and security
at the personal level but also at a much higher one [1].
For example, due to the arise of big-data era, significant
amounts of biomedical data have been accumulated, which
leads potential threats such as data loss, monetary theft, and
attacks on medical devices and infrastructure [2]. Due to the
development of Industrial wireless sensor networks (IWSN),
security challenges have becoming a concern and are often
dealt with intrusion detection system as a second line of de-
fence against failure of normal network security protocols [3].
Critical Infrastructures Systems such as turbines, power plants,
high-temperature energy systems, storage devices and with
rotating mechanical parts are the crucial industrial systems that
greatly suffer from damages on a day-to-day basis [4]. Internet
of Things (IoT) refers to a network of interconnected devices
that forms an emerging communications paradigm in which
devices have the ability to sense the surround environment and
have ways to exchange data via Internet [5]. While the smart
environment provides convenience to our daily lives, such as
smart homes, smart healthcare, smart devices, smart services,
and smart cities, it is also very susceptible to security attacks
[6]. Among all, detecting anomalies and network intrusions
are the most crucial tasks. An Intrusion Detection System
(IDS) refers to identifying malicious activity in a computer-
related system and anomalies usually refers to abnormalities,
deviants, or outliers in the data mining and statistics literature.
In our daily lives, anomaly detection may appear in both
research and application domains. Typical domains include
fraud detection, medical anomaly detection, sensor networks
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anomaly detection, video surveillance, Internet of Things (IoT)
big-data anomaly detection, industrial damage detection and
cyber-intrusion detection [4].

Common types of intrusion detection methodologies include
signature-based detection and anomaly-based detection [7].
Signature-based detection or misused detection systems focus
on the idea of known threats, while anomaly-based detection
systems focus on the process of comparing with normally
observed events to identify significant deviations. Similar to
the signature database, a profile is used to store all the
normal behaviors of users, hosts, network connections, and
applications. Observing the current activities, any significant
deviations from the profile may be flagged as an anomaly.
The main advantage of anomaly-based detection is that it
allows the system to detect previously unknown attacks. Its
sensitivity to any new coming threats prevents malwares which
potentially consume processing resources, send large number
of emails, initiate large numbers of network connections, and
perform other behavior that would significantly different from
the established profiles for the computer [7]. However, this
sensitivity advantage can also lead high false-alarm rate which
causes unnecessary panics and over reactions.

A. Problem Statement and Our Contributions

Common approaches of anomaly detection frameworks are
based on supervised and unsupervised learning methods. With
the existing useful information of a labelled dataset, classi-
fication becomes the most used task in supervised learning.
Through an efficient learning, such as neural network (ANN),
support vector machine (SVM), K-nearest neighbor (KNN),
Naive Bayes, logistic regression (LR), Decision tree... etc.,
decent performance can occur and lead to high prediction
accuracy. Nevertheless, the shortcoming of supervised learning
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is also obvious as real life datasets often come in unlabelled
and labelling data manually is an expensive and time consum-
ing task. On the other hand, unsupervised learning classifies
data through unlabelled datasets, which are easy to obtain, yet
the performance is usually inferior comparing to supervised
learning classifiers. Hence, it is very common to see a trade-off
between performance and accessibility for decision makers to
take action. Most current supervised and unsupervised learning
IDS are also limited to static data. As a fixed training process,
they lack the adaptive learning skills for any changes to the
dataset such as introduction of new labels and significant
pattern changes to features. Another problem that arises for
many types of datasets is due to class-imbalance. Data are
said to suffer the class-imbalance problem when the class
distributions are highly imbalanced [8]. In an imbalanced
dataset, we might easily get an overall high accuracy, but
minority classes suffer from a very low recall score. Typical
examples include e-mail spam detection, medical diagnosis
detection, and fraud detection. Imbalances may occur between
classes, such as e-mail spam versus e-mail ham, diagnosis
being positive versus negative, and fraud being normal versus
abnormal. Imbalances may also occur within classes, such as
e-mail spam containing a 9 to 1 ratio of advertisement versus
scams, diagnosis of cancer containing 9 to 1 ratio of brain
cancer versus liver cancer, and fraud detected containing a
9 to 1 ratio of trojan horse versus worms [9]. Additionally,
false-positive error, in some cases, are not acceptable at all.
For instance, if the cancer is regarded as positive and non-
cancer as negative, failing to detect the diagnosis of cancer
may cost a person’ s life. Hence, it is important to have a
high accuracy for the minority class as well.

To neutralize the above-mentioned problem of performance
versus accessibility trade-off, Reinforcement Learning (RL)
can be an efficient way to balance out their extremes. The
fundamentals of RL establishes on: 1. Large and real-time
datasets; 2. Agent is able to self-learn on its own: without
any supervising activities during the learning process, which
could self-label during the training phase based on its previous
knowledge. Ideally, when data is large enough and in a
real-time manner and without the consistent adjustment of
labels, RL can be the better choice comparing to supervised
and unsupervised learning. Furthermore, to solve the above-
mentioned problem of imbalanced dataset, two conventional
approaches are usually taken: the data-level approaches and
algorithm-level approaches [10]. At the data-level, the orig-
inal dataset is modified so that it becomes balanced enough
to proceed further learning process. Re-sampling techniques
are performed for this purpose and they are divided into
over-sampling methods and under-sampling methods. At the
algorithm-level, the objective is to make existing classifier
adapt or strengthen on the learning of minority classes. In
AE-RL [11], RL is integrated to generate new samples from
a simulated environment and perform RL training on the sim-
ulated dataset. In addition to the conventional classifier agent,
its features rely on the introduction of an environment agent,
which is used to cope with the imbalance property. In this
research, we set up an adversarial mechanism which provide a
conflicting reward system of the two agents, so that the training

dataset forms a fairly even distribution when being delivered to
the classifier agent for training. This concept matches with the
algorithm-level approach as mentioned above. In this paper, a
data-level approach is implemented to further reduce the affect
of class-imbalance.

Researchers in various disciplines have recognized that
assuring sample independence is the basic assumption for any
analysis conclusions. We approach this problem by applying
several over-sampling and under-sampling techniques to gen-
erate artificial data, assuring no existence of duplicated data. In
this paper, we present a RL framework that is built and tested
on its ability to detect anomalies in networks. We use NSL-
KDD dataset, on which dynamic trainings are carried out and
various sampling techniques are implemented in the process
to improve performance on minority classes. Our contributions
are summarized as follows:

1) Establish a RL framework on anomaly detection in
networks using NSL-KDD dataset.

2) Through simulation trials, we obtain comparative analy-
sis of different over-sampling and under-sampling tech-
niques at data-level and receive the best response based
on performance.

3) Training occurs based on a recursive over-
sampled/under-sampled dataset joining a feature-
selection mechanism, providing a dynamic environment
for performance evaluation.

4) Formulate trending for SMOTE performance on the
AE-RL framework and provide comparative evaluation
against AE-RL and other sampling techniques, resulting
in a better performance.

II. RELATED WORK

A. Machine Learning Approaches on Anomaly Detection

Supervised learning based anomaly detection techniques are
superior in performance than unsupervised due to the labelled
datasets. Semi-supervised Deep Anomaly Detection (DAD)
techniques assume that all training instances have only one
class label. The assumption is that points which are close
to each other both in input space and learned feature space
are more likely to share the same label [4]. A few works of
deep learning based semi-supervised techniques for anomaly
detection are presented in [12] [13]. Hybrid models are more
scalable and computationally efficient due to the reduced
input dimension. The downside of a hybrid model is that the
learning within the hidden layer of feature extractor cannot be
controlled since generic loss functions are employed instead
of the customized objective for anomaly detection [4]. For
unsupervised DAD, a few important assumptions are needed.
First, the “normal” can be distinguished from “anomalous”
regions in the latent feature space. Second, “normal” takes
the majority of dataset. Lastly, outliers are identified based on
intrinsic properties such as distances or densities. For example,
in [14], the hidden layers of deep neural network aim to
capture these intrinsic properties within the dataset. Another
type of DAD is the Clustering based anomaly detection. The
idea behind is to group data with similar patterns based on
features extracted to detect new anomalies. [15] proposes a
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model to obtain the semantical presentations of normal and
anomaly data to form clusters.

Anomaly detection with a dynamic environment often re-
quires an adaptive learning strategy and RL possess such
character. A Monte-Carlo learning is displayed in [16] for the
use of generating synthesized intrusion data based on a de-
rived Poisson-Gamma joint probabilistic model. The proposed
framework addresses the challenges of data scarcity and class-
imbalance. Deep Reinforcement Learning (DRL) is a novel
concept to the field, which had attracted significant interest due
to its ability to learn complex behaviors in high-dimensional
data space. [17] proposes a design of time series anomaly
detector using DRL. The model makes no assumption about
the underlying mechanism of anomaly patterns, takes away
threshold settings for simplicity and adapts well to dynamic
environment. [18] proposes a data poisoning attack method
which takes a reverse perspective comparing to conventional
IDS, showing that malicious workers, with limiting local
information, still capable to find effective data poisoning
attack strategies to interfere with crowd sensing systems. The
proposed method is based on the DRL framework. Some
typical researches have been done on the IoT data, which
mostly are generated by weather stations, Radio-Frequency
IDentification (RFID) tags, and IT infrastructure components
[4]. [19] proposes a web attack detection system through the
analysis of URLs andis deployed on edge devices. Various
deep learning models are implemented and compared for eval-
uation. [20] proposes Vcash, a new reputation framework for
tracking denial of traffic service in the Internet of connected
vehicles. It borrows the idea of market trading and set up
rules for the connected vehicles to follow. While restricting the
malicious vehicle’s spread of false message, it also performs
traffic event monitoring and verification. Edge computing is
mentioned in [21], introducing CloudSEC, a real-time lateral
movement detection method, based on an evidence reasoning
network for the edge-cloud environment. Descent performance
shows that CloudSEC guarantees rapid and effective real-time
attack detection. A data-driven model is proposed in [22] to
achieve high-precision BGP based on deep learning methods.
The model analyzes the routing behaviors without any prior
knowledge.

B. Related Work on Class-Imbalance

Inappropriate evaluation metrics for generated model using
imbalanced data can mislead to wrong conclusions. Common
evaluation metrics include: Precision, Recall, F1 score, and
Prediction accuracy. In this paper, since we are comparing our
work to AE-RL, we choose to use F1 score as the standard
measure. To solve an imbalanced dataset issue, countless sam-
pling strategies had been developed throughout the years. The
strategies aim to develop over-sampling and under-sampling
techniques which smooth out the imbalanced property of the
original dataset before any training is performed.

Random Over Sampling (ROS) [23] is the simplest tech-
niques that works for all types of datasets. ROS extends
the minority groups by duplicating them until the proportion
of such minority groups reaches a predefined value. The

advantage of this technique is that it does not demand any
prerequisite requirements on the original dataset. However,
the technique is also simple enough to affect fraud detection
performances and over-sampling with replication does not
always improve minority class predictions. With replication of
minority groups, over-fitting may occur as the decision region
becomes too specific. Hence, any new coming data that meant
to belong to a minority group will be classified to others
due to some trivial feature differences. On the other hand,
Random Under Sampling (RUS) [23] randomly discards some
majority group samples to balance the original dataset. The
shortcoming appears for this technique when potential useful
majority samples are dropped out during the process. Another
under-sampling technique, NearMiss, is introduced early in
[24] to improve prediction accuracy of minority classes. [25]
later proposes a Boosted NearMiss Under-sampling algorithm
on the training of SVMs (BNU-SVM), which aims to balance
the dataset by adaptively updating weights over negative
examples.

A different strategy to overcome the imbalance property
is to generate artificial data samples, so called synthetic data
generation. The Synthetic Minority Over-Sampling Technique
(SMOTE) [26] proposes a technique that arbitrarily interpo-
lates new minority samples in between several samples of
that minority group, which can be found through K-nearest
neighbors (KNN). This strategy avoids the over-fitting problem
from ROS and still keeps the samples within the decision
boundaries. A drawback for SMOTE is that the neighboring
samples can be drawn from other minority groups, which
may form overlapping regions among minority groups which
increases additional noise. SMOTE is also not very practical
in high dimensional datasets, as it does not attenuate the
bias towards the classification in the majority class for most
classifiers when data are high-dimensional, and it is less
effective than RUS [27]. Only in cases when feature selection
is applied, SMOTE can be beneficial for KNN classifiers in
high dimensional datasets.

Above-mentioned works ignore to cope with both learning
framework and class-imbalance concerns together, in which it
is being demonstrated in our proposed model.

III. PRELIMINARY

A. Dataset

In this paper, NSL-KDD is chosen for various reasons. First
of all, it is well-organized and cleansed. Second, we have
observed that this dataset still contains imbalanced data as
its previous version KDD-99. NSL-KDD [28] is the refined
version of KDD-99, which eliminates redundant records of
the original dataset for the purpose of reducing bias towards
frequent records. Moreover, the dataset has a reasonable num-
ber of entries for researchers to affordably train the complete
dataset rather taking a random small portion, which makes
evaluation results consistent and thus easily comparable to
other research works. Hence, although NSL-KDD may not
be a perfect representation of the current real network, it is
still a general admitted benchmark in the IDS research field.
NSL-KDD consists of 41 features, including 38 continuous
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and 3 categorical variables, all being transformed, scaling
down to the range of [0 − 1] for the continuous ones and
one-hot encoded to dummy variables for the categorical ones.
After data transformation, the dataset consists of 122 features,
including 38 continuous and 84 binary variables. The dataset is
grouped into five major categories: NORMAL, PROBE, R2L,
U2R and DoS [28]. The following are brief descriptions on
each of the four attack categories:
• Denial of Service, or DoS, refers to the act of fulfilling the

memory spaces and overloading the computing resources
of working machines by sending unimportant information
for the purpose of affecting the usage of legitimate users.

• Probing attacks, or PROBE, refers to the act of gathering
information of networks for the purpose of circumventing
security controls. It may be not be directly defined as an
attack, but rather it is a sign of future attacks.

• Remote to Local, or R2L, refers to the act of accessing
machines via sending set of packets over the network
without any permission for the purpose of exploiting
vulnerability to gain local access.

• User to Root, or U2R, refers to the act of obtaining
full access of machines by first accessing the network
resources as a normal user.

TABLE I: Attack Categories
DoS back, land, neptune, pod, smurf, teardrop, mailbomb,

apache2, processtable, udpstorm
PROBE ipsweep, nmap, portsweep, satan, mscan, saint

R2L ftp write, guess passwd, imap, multihop, phf, spy,
warezclient, warezmaster, sendmail, named,
snmpgetattack, snmpguess, xlock, xsnoop, worm

U2R buffer overflow, loadmodule, perl, rootkit, httptunnel,
ps, sqlattack, xterm

The initial dataset comes with three types of variables:
binary, nominal, and continuous. The details of feature types
and label categories are shown in Table I and Table II.

TABLE II: NSL-KDD Feature Variables
Binary Land, logged in, root shell, su attempted,

is host login, is guest login
Nominal Protocol type, Service, Flag

Continuous

Duration, src bytes, dst bytes, wrong fragment, urgent,
hot, num failed logins, num compromised, num root,
num file creations, num shells, num access files,
num outbound cmds, count, srv count, serror rate,
srv serror rate, rerror rate, srv rerror rate, same srv rate,
diff srv rate, srv diff host rate, dst host count,
dst host srv count, dst host same srv rate,
dst host diff srv rate, dst host same src port rate,
dst host srv diff host rate, dst host serror rate,
dst host srv serror rate, dst host rerror rate,
dst host srv rerror rate

B. Reinforcement Learning

Reinforcement learning (RL) [29] is a type of machine
learning that possess the ability to self-learn and develop
behaviors through trial-and-error simulations with a dynamic
environment. The major key components of reinforcement
learning consist of the agent, the action, the environment,
and the reward state. The process starts at time t with an

agent taking an action, at, in an environment, which is being
rewarded, rt, and represented by a state, st. The state will be
fed back to the agent for the recursive learning process.

The goal of reinforcement learning is to find a path that
maximize rewards. The general formula is set up to be:

Rt =
∑∞
k=0 γkrt+k [30]

where Rt is the total accumulated, discounted, future return
that the agent receives from time t and on, γ ∈ (0, 1] the
discount factor, and rt+k the rewards of each future time
step. This long-term calculation continues to go on for future
time states repeatedly and discretely. Reinforcement learning
introduces the value-function by taking its expectation at state
s, E(Rt | st = s), denoted as V π(s), is showing how
good is state s, for the agent to be in. The value function
depends on the policy π by which the agent chooses actions
to behave. Among all possible functions, there exists an
optimal value-function which has the highest value, denoted
as V ∗(s) = maxπ V

π(s) and π∗ = argmaxπ V
π(s) is the

optimal policy which maximizes the action value achievable
for state s. For convenient purpose, reinforcement learning set
up a function called Q function, which takes inputs of state and
action pair and outputs the value of rewards. Hence, we can
rewrite the equation as: π∗ = argmaxaQ

∗(s, a), where Q∗

stands for the most optimal value for Q. According to Bellman
equation, a recursive definition for optimal Q function is then
defines to be:

Q∗(s, a) = R(s, a) + γEs′
[
V ∗(s

′
)
]
=

R(s, a) + γ
∑
s′∈SP (s

′ | s, a)V ∗(s′) [30]

where R(s, a) is the immediate expected reward after per-
forming action a at state s and γEs′ [V

∗(s
′
)] is the expected,

discounted, accumulated, future reward after the transition to
the next state s

′
.

During the process of learning, there is a trade-off of
between exploration and exploitation. The dilemma is that
neither exploration nor exploitation can be pursued exclusively
without failing at the task. The rate of exploration and exploita-
tion are presented by ε and 1 − ε in reinforcement learning,
respectively, ranging from 0 to 1. The exploration rate should
start off in a high probability, often 1, and gradually decreases
as the training goes on. When the training model is mature
enough, that is reaching a decent prediction performance, the
agent mostly makes decisions with its existing knowledge,
based on the exploitation rate.

C. Q-learning

Q-learning was introduced by Watkins in 1989 [31]. It is
a form of model-free reinforcement learning and can also be
viewed as a method of asynchronous dynamic programming
(DP). A function Q is introduced to represent the maximum
discounted future reward when an action is performed in a
state and continually optimally from that point on. The core
of the algorithm is a value iteration update process, giving a
learning rate for agent to learn the new coming Q value.

Qnew(st, at)←
(1− α)Q(st, at) + α(rt + γmaxaQ(st+1, at+1)) [30]
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The Q value is progressively being updated, until st+1

reaches the terminal state, in which the end of the episode.
acts as a tuning factor, deciding the pace of learning speed,
is always within the range of 0 and 1. A large α can lead to
a faster learning process, yet may loses some information on
the way. Similarly, verse versa.

D. Deep Q-learning

Although Q-learning is a powerful algorithm for policy
selection, it does not have the ability to estimate values
of unseen states. Hence, for an infinite state space, where
environment setup may be changed, some Q-values cannot
be calculated. Deep Q Network (DQN) is introduced to deal
with this problem of lack of generality. A neural network
is implemented, where the currents are the input and the
estimates of Q values for each actions are the output. [17]
The target Q-value for Q-learning is:

rj + γa′Q(φj+1, a
′
; θ−) [32]

where φ is equivalent to state s and θ is the parameters
in the Neural Network. Since we are approximating Q-values,
the goal is to minimize the error between target Q-value and
the Q-value output from the network:

Loss = (yj −Q(φj , aj ; θ))
2 [32]

A gradient descent is performed to find the minimal error.

IV. AESMOTE FRAMEWORK DESCRIPTION

A. General Description

As mentioned previously, RL has two advantages over con-
ventional supervised learning: easy to deal with large and real-
time datasets and has the ability to learn on its own without any
supervision. This section will introduce the general process of
RL and the detailed structure of AE-RL along with techniques
that associate with the class-imbalance concern.

Instead of giving rules, correcting input/output pairs and
finding similarities and differences between data points, re-
inforcement learning emphasizes on the performance, which
bases on rewards and punishments as instructions for positive
and negative behavior. The reward system is assigned to a
software agent, who constantly interacts with the environment
and learns from the acquired rewards and punishments. Super-
vised and unsupervised learning are usually one-shot, myopic,
considering instant reward; while reinforcement learning is
sequential, far-sighted, considering long-term accumulative
reward [33].

In a RL framework, the agent, the state, the action, the
environment, and the reward are components of the learning
loop.

TABLE III: RL Components (Classifier Agent)
Components Corresponding Implementation

Agents Classifier
Environment Training dataset
State Current line of data
Action Making prediction of current label type
Reward Correctness of prediction

Table III defines the corresponding matches of RL compo-
nents to our real dataset. During the active RL process, for
every incoming data, it is noted as the current state. Making a
prediction by the classifier agent would be regarded as taking
an action. Receiving a feedback of whether the prediction is
correct is defined as the reward. Correct predictions receive a
value of +1 and incorrect predictions receive a value of -1.

In this paper, Q-learning is chosen for the base learning
algorithm. As mentioned previously, Q-learning finds the
maximum discounted accumulated reward for each state-action
pair. In other word, for each incoming line of data, Q function
will find all rewards for every possible action and accumulate
the best ones in record. The Q-learning functions as follows:

Qnew(st, at)←
(1− α)Q(st, at) + α(rt + γmaxaQ(st+1, at+1)) [30]

In this equation, st represents the current state, at represents
the current action, st + 1 represents the next state, at + 1
represents the next action, γ represents the discount factor, α
represents the learning rate, rt represents the current reward,
and Qnew represents the updated Q value. In this paper, values
of 1.0 and 0.001 for α and γ are assumed, respectively, based
on the assumption that all individual data are independent.

Now, the question comes to which data we should give
for the agent to train. If, let’s say, the original training set is
100 times larger, running through the complete dataset would
be non-realistic. Even if we have enough computation power
to train the complete dataset, the imbalance problem is still
existence. Hence, a mechanism is constructed to handle this
problem, noted as the environment agent. Similar to the clas-
sifier agent, the environment agent also performs Q-learning
for every incoming data. The difference is that it accumulates
opposite rewards as the classifier agent. For instance, when
the incoming NORMAL data is predicted to be normal by
the classifier agent, the environment agent receives a negative
reward. The essential idea behind the environment agent is to
learn the prediction performance of classifier agent and select
the most appropriate categories of data for classifier agent
to train next. Hence, the classifier agent is always forced to
train the most difficult samples at the moment, which balances
out the distribution of training samples. With the cooperation
of environment agent, a more balanced dataset is simulated,
accuracies may improve, especially for the minority classes
such as U2R and R2L.

TABLE IV: RL Components (Environment Agent)
Components Corresponding Implementation

Agents Environment
Environment Training dataset
State Current type of data
Action Making prediction of incoming label types
Reward Correctness of the classifier’s prediction (opposite reward)

As described in Table IV, the process begins with the current
state being the current type of data, the current action being
making prediction of the type of next line of data for training
based on its policy, and receiving opposite amount of reward
as classifier agent in memory.
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One important thing to note is that there are two different
epsilon value for the two agents as these values decide the
learning exposure of agents to the incoming data.

Algorithm 1: Epsilon - Greedy

Initialize Q(s, a), the Q-function;
Initialize K > 1, the number of available actions;
Initialize c > 0 and 0 < d < 1, coefficients;
Initialize ε ∈ (0, 1];
for t = 0 to N do

εt = min{1, cKd2t};

at =

{
argmaxπQ(s, a) with probability 1− εt
a random action with probability εt

return at

As we can see from Algorithm 1, ε first start off being equal
to 1 and is dynamically changing in a descending trend as t
increases. Actions are then calculated by taking the piecewise
choice based probability ε. Two agents both have their epsilon
estimates and are different for each case. The lower bound of
epsilon for the classifier agent is relatively low as the model
is becoming more and more stable, which is set to 0.01. We
set this low value because classifier agent is our main agent as
it’s “the final decision maker” and we want it to have a high
exploration rate. On the other hand, the lower bound of the
epsilon for the environment agent is set as a hyperparameter
[11], with an ideal value of 0.8. The reason for this value to
be large is that there is no need for the environment agent to
be absolutely accurate since it’s based on an unstable factor.
Additionally, all these values are selected from trial-and-error
process.

B. Over-sampling and Under-sampling methods

Now, the question comes to the existence of duplicate data
when selecting samples from the original dataset D. This
problem may appear trivial for the majority classes such as
NORMAL, DoS, and PROBE, but when dataset is small
enough, like R2L and U2R, which only has around 1000 and
50 lines of data, respectively, it is very likely that data is
being selected more than once. Hence, over/under-sampling
techniques are applied and compared.

To begin, we need to initialize the value K as the K-Nearest
Neighbor, which will be used in all the following techniques.
For Over-sampling, first we set R2L and U2R as our minority
classes. According to [34], some key features such as “number
of file creations” and “number of shell prompts invoked”
can be carefully looked when over-sampling U2R data and
“duration of connection”, “service requested”, and “number of
failed login attempts” can play an significant role for R2L data.
The essential idea is to keep the same values for these features
when generating new dataset, while other unimportant features
are randomly generated. The next step is applying different
over-sampling techniques. In this paper, over/under-sampling
techniques SMOTE, ROS, NearMiss1, and NearMiss2 are
applied and compared. These techniques are chosen because

Algorithm 2: over/under-Sampling Algorithm

Import dataset D;
Initialize dataset DM ;
Initialize K for K-Nearest Neighbor;
Initialize key feature list = [];
Over-sampling:
for each incoming data do

if minority then
while feature not in key feature list do

Apply over-sampling techniques include:
ROS and SMOTE;
DM = DM .append(new data);

end
DM = DM .append(mean(data));

end
end
Under-sampling:
for each incoming data do

if majority then
Apply under-sampling techniques include:
NearMiss-1 and NearMiss-2;
DM = D.remove(data);

end
end

of their simplicities of implementation and the fact that they
take completely different approaches, which results in easier
comparisons.

1) Random Over Sampling (ROS)
Random Over Sampling (ROS) is the most naive approach

to generate new samples. The new samples are randomly
duplicated in the minority classes with replacement. They are
referred “naive resampling” due to the fact that they assume
nothing about the nature of data and no heuristics are used.
The advantage, however, is that it is simple to implement and
fast to execute.

2) Synthetic Minority Over-Sampling Technique (SMOTE)
Synthetic Minority Over-Sampling Technique (SMOTE)

proposes the idea of generating synthetic samples based on ex-
isting ones. Based on the “feature space” of data, the minority
class is over-sampled by generating new samples on the line
segments formed by the endings of its K nearest neighbours
[26]. K is chosen depending on the amount of over-sampling
required. On each line segment, the newly generated samples
can be determined by multiplying the difference between
the feature vector and its nearest neighbour by a random
number ranged from 0 to 1. This approach allows generated
synthetic samples to follow certain feature patterns and forces
the boundaries of minority classes to become more general.

3) NearMiss Undersampling
On the other hand, under-sampling techniques focuses on re-

ducing the size of majority samples. In NSL-KDD dataset, we
set NORMAL and DoS as the majority classes since they take
up to 53.46% and 36.46% of the whole dataset, respectively.
The NearMiss [25] [24] under-sampling technique aims on the
distance measures between these majority classes and a few
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specific minority samples. Two types of NearMiss approach
are presented here:

NearMiss 1: Keep only the majority samples for which has
smallest average distance to the N nearest minority samples.

NearMiss 2: Keep only the majority samples for which has
smallest average distance to the N farthest minority samples.

After pre-processing the training data, we can put it into the
RL structure.

C. Main Algorithm

In addition to AE-RL, our algorithm provides a synthetic,
more balanced, and more packed dataset before any learning
process. Moreover, some features are added into the main
algorithm for a more data-specific analysis. Every step learning
is based on episodes and the number of episodes is based on
the computation power of the machine. A feature-selection is
applied during the process, in which keeping the important
characteristics of the newly generated samples in order to
reduce biases. The training dataset, D, is modified by perform-
ing over/under-sampling techniques and the modified dataset,
DM is constantly being reset at the start of every episode so
that brand new simulated datasets are generated and used for
training the agent’s adaptive skills.

Algorithm 3: Main Algorithm

Import dataset D;
Initialize Qc(si, aci) arbitrarily;
Initialize Qe(si, aei) arbitrarily;
for each episode do

Reset DM ;
s0 = A random sample of dataset;
for each sample within episode, i ε [0, N ] do

Memorytemp = [];
DM = Apply over/under-sampling techniques

to si of dataset D;
Classifier agent: choose action aci based on
Qc(si, aci);

Environment agent: choose action aei based on
Qe(si, aei);

Obtain rewards: rci, rei;
Derive next state: si+1 = S(ae(i+1)), where
S(ae(i+1)) is randomly selected from all
samples whose label is ae(i+1) of the
simulated dataset DM ;

Update state, action, next state, reward;
while si+1 is in Memorytemp do

Reselect si+1 from all samples whose label
is from ae(i+1) of DM ;

end
Update Memorytemp by appending si+1;

end
end

Referring to Algorithm 2, the main algorithm starts by
importing the original dataset. The Q values for the current
data with the prediction of classes based on an accumulated
policy, defined as Qc(si, aci) and Qe(si, aei), respectively,

are arbitrarily initialized as they will eventually be auto
adjusted by the RL process. For every episode, a random
data is selected as the initial state before the RL process.
Then, for every incoming data, the dataset is consistently
being updated by performing over/under-sampling techniques
to si, the current data’s sub-class (eg. normal, back, ipsweep,
ftp write, and buffer overflow) in keeping the ratio to its
major class (eg. NORMAL, DoS, PROBE, R2L, and U2R).
Next, RL components are discovered for both classifier and
environment agents. Following their given rewards, classifier
will make prediction of the current class type, aci, based
on its policy, Qc(s, a), while environment provides the next
training data, aei, based on previous classifier’s performance,
Qe(s, a). In the case of NSL-KDD, aci is an element of
NORMAL, DoS, PROBE, R2L, and U2R and aei is an element
of the features in the training dataset. Similarly, rci is the
positive or negative reward corresponding to classifier’s correct
or incorrect classification, respectively. Meanwhile, rei takes
opposite rewards as the classifier agent. The next state, si+1,
is derived by randomly picking a sample from ae(i+1), the
resulting class decided by the environment agent. Meanwhile,
a memory checker is constructed in parallel to eliminate the
existence of duplicated data during the data selection phase.

The algorithm progresses along with a decreasing epsilon-
greedy policy. Both agents start off with a high exploration
rate, ε = 1, indicating the fact that they had no previous
knowledge of the dataset. Then, their rates gradually decreases
as the learning goes on and converges to lower bounds of εc =
0.01 and εe = 0.8, for the classifier agent and environment
agent, respectively. εc is set relatively low since an ideal
predictability for the classifier agent is to have the entire
control of the training set based on existing knowledge. On the
other hand, the environment agent requires a more arbitrary
distribution method of data in cases of uncontrollable learning
patterns from the classifier agent.

D. Models and Error Reduction

Let’s recall that Bellman equation relating to Q functions
of consecutive steps is:

Q∗(s, a) = R(s, a) + γmaxa′Q(s
′
, a

′
) [30]

Through a temporal difference learning which iteratively
approximates the Q values at each time step, a loss function
can be derived so that we can minimize the mean squared
error for more accurate estimations:

L = 1
2 [R(s, a) + γmaxa′Q(s

′
, a

′
)−Q(s

′
, a

′
)] [30]

Since we can never be accurate in estimating the actual
Q∗(s, a), in practice, we apply the gradient descent for every
iteration to find the local minimum of loss and eventually ar-
rives at the global minimum of the loss function L. In addition,
we use Huber loss as the base for the actual loss function to
apply robust regression, which consists of a piecewise function
that is quadratic when the parameter is small and becomes
linear beyond a threshold. The advantage is that it eliminates
sensitivity to outliers (i.e., explosive behaviours).
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Fig. 1: Algorithm Structure

1) Double Deep Q-Network
Consider the Q-function, more specifically:

maxa′Q(s
′
, a

′
)

Taking the maximum Q-value among all possible actions at
a given state is our current standard for getting the optimal
value of the learning process. However, this would cause an
overestimation of the actual Q-values. For instance, suppose
the true label for a specific data is R2L, if the decision-
changing features are distributed some above and some below
the decision threshold, by taking the maximum of these
estimates would always lead to the choice of one above the
threshold.

To deal with this concern, we choose the Double Deep
Q-Network (DDQN) for our model structure. The DDQN
structure involves using two separate Q-value estimators for
action-value estimation. They function as constraints to each
other by selecting actions using opposite estimators. Thus, the
maximization bias can be disentangled. The details of DDQN
algorithm are shown in Algorithm 4.

After Qc(s, ac) is randomly initialized, for each incoming
data, the Q-values are being updated. As opposed to a regular
DQN, where actions are chosen by the innate Q-learning
policy, DDQN always chooses the optimal action based on
the Qθ′ function, which is a function approximation. Then,
we minimize the mean squared error between Qc(s, ac) and
Qθ′ for a better action evaluation. Lastly, Qθ′ is slowly being
transformed to Qc(s, ac) through Polyak averaging, where θ

′

refers to the target network parameter, θ refers to the primary
network parameter and τ refers to the rate of averaging which
is set to 0.01 as a default hyper-parameter [35].

Algorithm 4: DDQN

Initialize Qc(si, aci) arbitrarily;
for each sample within episode, i ε [0, N ] do

Store (si, ai, ri, si+1) in replay buffer;
Compute target Q:

Qc(si, aci) ≈
ri + γQθ(si+1, argmaxa′Qθ′ (st+1, a

′
));

Perform Gradient Descent:
(Qc(si, ai)−Qθ(si, ai))2;

Update target network parameters:
θ
′
= τθ + (1− τ)θ′

;
end

E. A Walk-through

Figure 1 illustrates a detailed procedure of our algorithm,
which concludes all parts mentioned above. In this subsection,
we walk-through the algorithm with one simulation trial.
Assume a majority class sample, say normal (NORMAL),
is selected as the initial state from the original training
set D and is being passed to the environment agent (EA).
Without any previous knowledge about the data, EA makes a
prediction, aei (23 labels) based on an arbitrary Q function,
Qe(si, aei), say neptune (DoS) and on one hand performs
over-sampling/under-sampling techniques (OS/US) to produce
a modified dataset, DM and the other passes into the RL
environment for modelling. Then, a neptune sample from DM

is randomly selected and passed to both the EA and classifier
agent (CA) as the next state. Meanwhile, Q functions are
updated for both EA and CA by going through a series of
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Fig. 2: Subclasses

modelling with DDQN, gradient descent, and loss reduction
in the RL environment. Receiving the state and updated Q
functions, EA and CA could consistently take actions for
every incoming data. At the end of every episode, DM

will be reset to the original training set, where the dynamic
training occurs by training a dataset that had new data samples
added dynamically. After training the specified total number
of episode, CA makes prediction of the final classes (5 labels)
on the testing set.

V. EXPERIMENTAL EVALUATION

A. Dataset Description

The dataset is split into a training set of 125973 samples and
a testing set of 22544 samples. When comparing the training
and testing set, a few facts raise concerns:

1) Both datasets have only 21 labels in common.
2) 2 labels are unique that only appear in the training set

and 17 labels are unique that only appear in the testing
set.

This implies that a lot of testing cases are not being trained
at all in the training set, which would be a challenge as the
agent has to be accurate enough to generalize the categories
in order to do well against the untouched samples. However,
this problem can be solved as follows.

As Figure 2 demonstrated, the subclasses normal and nep-
tune takes the majority portion of the dataset, 53.45% and
32.71%, respectively, whereas the remaining subclasses only
take 13.84%. Thus, the dataset is extremely unbalanced. Now,
to make the dataset meaningful, these 23 labels are categorized
into five categories: NORMAL, DoS, PROBE, R2L, and U2R
[28]. (Further details can be found in Table I) The advantage
of this action is that even for the new samples in the test set,
the agent is able to predict its category, rather its subclasses.

As Figure 3 demonstrated, the imbalanced property becomes
more evident as the biggest class NORMAL contains 53.45%
while the smallest class U2R only contains 0.04% of the
whole dataset. Figure 4 displays the architecture of input and
output on which both agents are based. In the architecture, two
neural networks are implemented with shallow layer numbers
of 3 and 5 for environment and classifier agent, respectively.
The input of both agents are equivalent as they take in all
the features in the training data for learning. Their outputs,
however, are different as they serve for different purposes.
The objective for environment agent is to summarize the most

Fig. 3: Distribution of Categories

Fig. 4: Input and Output

needed samples for training at the moment, which requires
the output to be as specific as it can. Hence, the output
of environment agent is the 23 labels. On the other hand,
classifier’s objective is to produce a meaningful prediction of
attacks so that intrusion defender can take immediate actions.
As mentioned previously, data is categorized into 5 categories
according to their natures. Hence, the output of classifier
agent is the 5 categories. Another advantage of this different
output strategy is that it has the ability to cope with the
untrained labels. The classifier agent would always make the
most optimal estimation based on its learned characteristics of
closest category.

B. Evaluation Metrics

When evaluating the performance of the prediction, two
evaluation metrics are used: classification accuracy and F1-
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score.
Accuracy is the most intuitive performance measure as it is

simply the ratio of correctly predicted observations to the total
observations. Yet, one shortage of using accuracy as measure-
ment is that it is only good when the false positive and false
negative rates are relatively close to each other. Otherwise, it
should only be considered as a reference parameter. F1-score
is the combined calculation of precision and recall. By taking
the weighted average of both measurements, it takes both false
positives and false negatives into account. Hence, it is more
reliable to use for imbalance datasets.

VI. PARAMETER SETUP

When performing the training, several major parameters had
been examined and determined to be certain values which is
ideal for the model. As training begins, the exploration rates,
ε, are set to lower bounds of 0.01 and 0.8 for the classifier
agent and the environment agent, respectively. Since εc is
used to progress the classification tasks, hence it is strictly
following a regular bound. On the other hand, εe is used to
choose tasks for training, hence as long as the distribution is
relatively balanced, it is encouraged to be more explorable.
During the Q-learning, the learning rates for both agents are
set to 0.2 and the discount factor is set to 0.001. The layers
of the neural network, lc abd le are set to 5 and 3 for the
classifier and environment agent, respectively. The number of
nearest-neighbors that is used to generate synthetic data, k, is
set to a value greater equal to 3. Since several subclasses have
a small quantity of samples, such as multihop (7), ftp write
(8), loadmodule (9), imap (11), and land (18), a large number
of nearest-neighbors would produce bias results. For cases
such as spy (2), perl (3), and phf (4), we select k as 1.
Through repeatedly testing, we set the number of training
episodes and iterations per episode lower bounds of 100 since
the performance is reaching its optimal after these values.

TABLE V: Training Parameters
Parameter Description
εc Exploration rate for classifier agent, > 0.01
εe Exploration rate for environment agent, > 0.8
αc Learning rate for classifier agent, = 0.2
αe Learning rate for environment agent, = 0.2
γ Discount factor, = 0.001

lc
Hidden layers for classifier agent’s neural

network, = 5

le
Hidden layers for environment agent’s neural

network, = 3
k Number of Nearest-Neighbors for SMOTE, ≥ 3
num episodes Number of training episodes, ≥ 100
iterations episode Number of iterations per training episode, ≥ 100

As demonstrated in Figure 5 and Figure 6, we observe
that both F1 and accuracy have an increasing trend from 10
episodes to 100 episodes. The performance after 100 episodes
becomes stable around 0.82 for both F1 and accuracy. Hence,
the number of episode for training is tuned to be greater than
100 episodes to achieve best results.

Figure 7, 8, and 9 display the changes as number of episodes
increase. At 10 episode, the class U2R is being overestimated.
This is due to the fact that we forced the balanced learning

Fig. 5: F1 scores for different number of episodes

Fig. 6: Accuracy scores for different number of episodes

Fig. 7: F1 score: 0.4033 for 10 episodes

Fig. 8: F1 score: 0.642 for 50 episodes
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Fig. 9: F1 score: 0.824 for 100 episodes

strategy onto the classifier agent and it’s not mature enough
to identify the differences between classes yet. However, it is
showing a sign that our mechanism starts to kick in as the
agent is treating all classes equivalently. At 50 episode, the
agent is already mature enough to clearly identify NORMAL
class, reaching a descent true positive rate, yet still unclear
on the minority parts. Finally, at 100 episode, the boundary
between the classes is becoming more clear and achieves an
F1 of 0.824.

VII. SMOTE PERFORMANCE

In this section, we are going to demonstrate the performance
of SMOTE on the AE-RL framework. As note, the purpose
of SMOTE is to generate synthetic samples in accordance to
its own data patterns so that minority classes have enough
samples to be transferred to the classifier agent for training.
Considering the highly unbalanced property of the dataset,
the metric F1 will be used to measure performance [36].
As mentioned before, F1 takes both precision and recall into
consideration, which assures both false-positive and false-
negative into account. In our case, false-positive and false-
negative rates are both crucial measures. For instance, a
NORMAL class is predicted to be an intrusion attack, say
DoS, can lead to false-alarm. F1-score can be further divided
down to “one vs. rest” and “aggregated”. Considering the “one
vs. rest” approach, the NORMAL class is the “one” while all
other four classes belong to the “rest”, which results in a binary
classification. On the other hand, the “aggregated” refers to all
classes being equivalent. In this paper, we use the aggregated
F1-score as our measure, which takes the weighted average of
all F1-scores. For result comparison, we are interested in the
F1-score trending on SMOTE performance.

Equal amount of samples are generated for both minority
classes U2R and R2L. For instance, if we generate 20000
samples, 10000 samples will be generated for U2R and R2L,
respectively. To test the trending, 20 trials had been recorded
for presentation. As shown in Figure 10, we can observe that
the algorithm AESMOTE’s performance, although fluctuating,
but demonstrating an increment, reaching a peak of F1 =
0.8243, when the sample size is between 5000 to 70000.
After a closer inspection of the result data, we observe that
the implementation of SMOTE had putting on some negative
effects at first, causing the F1-score averaging around 0.7

Fig. 10: F1-score Trending on SMOTE

while the original AE-RL has an average of 0.78. This is
due to the instability of newly generated samples. Although,
theoretically, the synthetic samples are “within” its neighbours,
but they are still not as reliable since they might produce
new non-realistic pattern which could affect the real data’s
performance. However, as more samples are being generated,
this non-realistic pattern becomes stable enough and slowly
separates itself from the real data’s pattern. The advantage of
this newly created pattern is that it could become useful to
deal with the non-trained labels in the testing set. This is also
the reason that an outstanding score of 0.825 could be found
in the trend as opposed to the flat average of 0.78 by AE-RL.

Fig. 11: Confusion Matrix for AE-RL

Looking at the confusion matrix for both algorithms in
Figure 11 and Figure 12, we observe that the true-positive
rate for the minority class R2L has a significant increase
from 0.29 to 0.69, showing an improvement due to the over-
sampling mechanism. As we look into the subclasses in Figure
13 and Figure 14, we can see that the number of correct
estimates for the minority class R2L has a significant increase
for AESMOTE comparing against the original AR-RL.
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Fig. 12: Confusion Matrix for 70000 samples with SMOTE

Fig. 13: AE-RL, F1 = 0.78

Fig. 14: AESMOTE, F1 = 0.8243

VIII. PERFORMANCE ON OTHER METHODS

Other than the SMOTE sampling method, we’ve also tried
implementing Random Over Sampling (ROS) [23], NearMiss1
and NearMiss2 [25] [24] under sampling method. Results are
obtained in Table VI.

As note, the main idea of ROS is duplicating existing data,
which is against our initial purpose. After several trials, the
highest F1-score that we obtained were 0.7083. Theoretically,
this method is considered the most unreliable method, although
it does have the potential of discovering new data patterns,
its performance is relatively non-stable. For under-sampling

TABLE VI: Across Algorithms
Method F1-score Acc. Prec. Rec. Time (sec.)
AE-RL 0.78 0.7744 0.7616 0.7744 350
AESMOTE 0.8243 0.8209 0.8411 0.8209 2000
ROS 0.6932 0.6977 0.7112 0.6932 1000
NearMiss1 0.7602 0.7611 0.7795 0.7611 195
NearMiss2 0.7865 0.7805 0.8027 0.7805 84

techniques such as NearMiss1 and NearMiss2, the NORMAL
and DoS are considered as the majority classes. Yet again, this
does not solve the duplicated data problem since it only applies
a decrement of the majority classes’ data size. However, they
have the advantage of a faster runtime of 195 seconds and
84 seconds, respectively and only 10 episodes are required
for training due to the data size reduction. Comparing to AE-
RL, AESMOTE has a longer runtime due to the addition of
sampling techniques and feature-selection mechanism, yet they
have brought up the F1-score to 0.8243.

Fig. 15: NearMiss1, F1 = 0.7602

Fig. 16: NearMiss2, F1 = 0.7856

Fig. 17: ROS, F1 = 0.6932

Figure 15, 16, and 17 shows the detailed prediction of each
class. We can observe that all of them have weak perfor-
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mances on minority classes with low true positive rates. More
specifically, NearMiss1 has lower normal prediction accuracy
than NearMiss2. This is due to the fact that NearMiss1 keeps
the majority samples that are closest to the nearest minority
samples, which means rather keeping the whole identify of
the majority class, it only keeps a cluster of samples. Simulta-
neously, since majority classes are in a cluster form and does
not cover a wide range of area, more predictions are made
for the minority classes, which results in a higher number of
correct estimates. On the other hand, NearMiss2 has descent
performance on the majority classes NORMAL, DoS, and
PROBE, but lower number of correct estimates in R2L. This is
due to the fact that NearMiss2 keeps the majority samples that
are closest to the furthest minority samples. Instead of forming
a cluster-like group, it forms a line-like shape. The advantage
is having more accurate majority classes’ predictions, but gives
less predictions on the minority classes. Lastly, we can observe
that ROS suffers in performance from both majority and
minority classes. The fact that duplicating minority samples
leads to an inferior result.

IX. CONCLUSION

IDS is a critical service that monitors networks for malicious
activities such as security attacks. Difficulties have been im-
posed due to the network’s complex and dynamic environment,
which could severely affect the performance of existing IDS
software. These difficulties include unbalanced, complex and
asymmetric datasets. This paper modifies the framework of
AE-RL by imposing sampling techniques and specifically
investigates the performance of joining SMOTE with the
AE-RL framework. RL algorithms are mostly successful in
other domains such as videogames, strategy games, robotics,
finance, resource management, chemistry, web system config-
uration, etc. Yet it is very new to IDS because rewards are
generally difficult to be defined.

In this paper, we not only adopt RL to detect anomalies
including anomaly-based intrusions in networks, but also
improves the class-imbalance problem which is pervasive to
datasets in many domains. Our algorithm takes a labelled
dataset as input, then provides a RL framework based on
an adversarial strategy. Sampling techniques are implemented
for better data selection in order to achieve the best possible
classification results. Additionally, we propose a feature se-
lection mechanism during the data selection phase so that the
simulated data still capture their main characteristics.

In summary, we present a joint framework of supervised
learning, adversarial RL and sampling techniques, which re-
sults in an increasing performance of intrusion prediction.
Our proposed model leverages a thorough training process on
dynamic data environment. The experiment results obtained
provide a thorough performance trending analysis of AES-
MOTE to display the optimal number of generating samples
in practice and a comparative analysis of AESMOTE with
AE-RL, fully displaying the benefit of our model. Finally, the
comparative evaluation results demonstrate that the proposed
AESMOTE has a better prediction performance than other
sampling techniques such as ROS, NearMiss1 and NearMiss2.

For future work, we plan to expand the work load of
environment agent. First, we will introduce “difficulty levels”
to the dataset using existing supervised learning techniques.
Based on its performance, the “difficulty levels” will be further
distributed into multiple partitions. By setting up multiple
environment agents, we provide a multi-adversarial strategy
for data selection. The advantage of this idea is to further
identifies the “weakness” of the current classifier agents, which
further balances the dataset.
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