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∗Carleton University, School of Computer Science.
∗∗Carleton University, School of Information Technology.

E-mail: leecroft@cmail.carleton.ca

Received 8 November 2019; received in revised form 14 August 2020; 14 December 2020

Abstract. For the design of differentially private mechanisms, knowledge of constraints on query
responses can often be leveraged to improve the utility of a mechanism. This is typically considered
in the non-interactive setting, where constraints over batches of query responses can be exploited.
Comparatively, little attention is given to the design of constraint-adherent mechanisms in the inter-
active setting, where queries are posed on an individual basis. The absence of relationships between
batched responses in the interactive setting removes much of the structure that mechanisms in the
non-interactive setting rely on. Yet, if the valid range of a query is known, the design of range-
adherent mechanisms remains a possibility. The generation of noisy responses strictly within the
valid range of the query can serve to improve the utility of the mechanism. Furthermore, adherence
to range constraints is often beneficial for compatibility with downstream software used to analyze
the noisy responses.

In this paper, we consider the design of range-adherent mechanisms for general numeric queries
in the interactive setting. We first study requirements and desirable properties for range-adherent
mechanisms using a matrix representation of discretized probability density functions. We then pro-
pose a linear programming approach for the design of range-adherent mechanisms using a user-
independent criterion for optimal utility. We run experiments to compare our linear programming
mechanisms to other range-adherent alternatives. In these experiments, we measure utility both in
terms of the usability of the noisy query responses as well as the information preservation of the
mechanisms. The results demonstrate that our linear programming mechanisms achieve higher util-
ity when compared to existing mechanisms. The improvements in utility are most pronounced when
there is a high ratio of query sensitivity to query range. Our mechanisms are thus particularly useful
for queries posed on small-sized databases which are more vulnerable to privacy breaches.

Keywords. Differential privacy, Mechanism design, Query range constraints

1 Introduction

It is well-known that when performing analysis on sensitive data, a trade-off between pri-
vacy and utility exists. The nature of this trade-off has been studied in the context of a
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wide variety of disclosure control methods [8, 11, 30]. Among these methods, differen-
tial privacy [12] has garnered a great deal of attention [13, 34] due to the robust, formal
privacy guarantee that it provides. Informally, differential privacy offers a guarantee on
the level of distinguishability between potential configurations of a sensitive database by
adding controlled noise via a randomization mechanism to responses of queries posed on
the database. Key properties such as resistance to composition attacks [20] and abstraction
from most forms of attacker background knowledge [3, 15] have been important factors in
establishing the strength of the privacy guarantee. However, the design of mechanisms
that maintain acceptable levels of utility is also an important challenge [6, 10, 14, 24].

In cases where constraints are publicly known about the posed queries, these constraints
may be exploited for the design of mechanisms better suited for the preservation of data
utility. Particularly in the non-interactive setting, where batches of queries are posed,
known constraints over the set of query responses can be used to enforce consistency on the
noisy responses in order to improve utility [2, 19]. For example, the sum of the responses
for counting queries over disjoint subsets of the database should be equal to the response
to a counting query over the union of the same subsets. In the interactive setting, where po-
tentially unrelated queries are answered individually, such constraints are not present since
there are no other query responses with which relationships must be preserved. However,
knowledge about the range of the query can still be exploited to ensure that noisy query
responses fall within the valid range [7, 32].

When the range is known for a database attribute on which a query is posed, it is often
possible to infer the valid range of the query response. For example, responses to queries
such as min, median, mean and max all adhere to the same range as the attribute itself.
Knowledge on attribute ranges can be obtained in a number of ways. In some cases, details
about the collection of data may be shared (e.g., predefined attribute value discretizations,
use of signal capturing devices with known ranges, etc.) or ranges may be common sense
(e.g., percentages are bounded to [0,100], counts over n records are bounded to [0,n], etc.).
In practice, most mechanisms in the interactive setting ignore range constraints, allowing
for noisy responses to potentially be generated outside the valid range of the query. Since
range constraints are quite natural in many cases, this information should be leveraged.
A number of reasons motivate the design of range-adherent mechanisms; these include
downstream compatibility with other software and improved utility of the noisy data.

1.1 Motivating Example

Consider an example in which a survey is conducted using questions answered with a 5-
point Likert scale (i.e., answers are integers in the range [1,5]). This is a common format
in scientific studies which involve participant/subject groups and in customer feedback
surveys. While it is desirable to analyze and share the data, it is necessary to protect the
privacy of the individuals who participate in such studies. Common queries that might
be posed on such data include min, median and max queries. These queries, however, are
highly sensitive to changes in the underlying data and thus require a high degree of noise
to achieve differential privacy. As a result, when such queries are posed via a differentially
private mechanism, a large amount of the probability mass assigned by most mechanisms
falls outside the valid range of the query. For instance, when the true query response is 3,
use of the Laplace mechanism [12] configured for ε = 1 results in 60% of the probability
mass being assigned to values outside of the valid range of the query (i.e., less than 1 or
greater than 5). Such a wide dispersion of probability mass in contrast to such a small valid
range for the query is clearly undesirable from the standpoint of utility.
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Adherence to range constraints can trivially be achieved by snapping out-of-bounds re-
sponses to the nearest valid value. While this avoids the issue of large amounts of out-of-
bounds probability mass, this approach may not be conducive to achieving high levels of
utility. In Table 1, we show the probability distribution that would be used by the Laplace
mechanism configured for ε = 1 when discretized to the valid responses using boundary-
snapping. Each column represents the probability distribution used by the mechanism
given a particular true query response while each row corresponds to one of the potential
noisy responses. A cell entry indicates the conditional probability of a noisy response given
a true response. The first and last rows of the table show large spikes in probability due to
the out-of-bounds probability mass that has been pooled on the boundary response cate-
gories. This pooling of large amounts of probability mass leads to undesirable probability
distributions. For example, when the true response is 2, the mechanism is over two times
more likely to report 5 than to report 2 as the noisy response. When the true response is
3, the mechanism assigns the highest probabilities to reporting 1 or 5, each of which are
nearly three times more likely to be reported than the true response.

f(D) = 1 f(D) = 2 f(D) = 3 f(D) = 4 f(D) = 5
K(f(D)) = 1 0.559 0.441 0.344 0.268 0.208
K(f(D)) = 2 0.098 0.118 0.098 0.076 0.059
K(f(D)) = 3 0.076 0.098 0.118 0.098 0.076
K(f(D)) = 4 0.059 0.076 0.098 0.118 0.098
K(f(D)) = 5 0.208 0.268 0.344 0.441 0.559

Table 1: Conditional probability distribution used by a Laplace mechanism K configured
with ε = 1 for a query f with range [1, ..., 5] posed on a database D. Columns correspond
to true query responses while rows correspond to noisy responses.

Alternatively, mechanism design can integrate information about the valid range of the
query in order to adhere to the range constraints while also taking the utility of the noisy
responses into consideration. In Table 2, we show the probability distribution used by a
mechanism generated from a linear program we propose in this paper. Here, the prob-
ability mass is more focused around the true query responses. Throughout this paper,
we discuss properties that are desirable in range-adherent mechanisms and propose linear
programs to generate mechanisms that exhibit these properties.

f(D) = 1 f(D) = 2 f(D) = 3 f(D) = 4 f(D) = 5
K(f(D)) = 1 0.322 0.322 0.119 0.119 0.119
K(f(D)) = 2 0.322 0.322 0.220 0.119 0.119
K(f(D)) = 3 0.119 0.119 0.322 0.119 0.119
K(f(D)) = 4 0.119 0.119 0.220 0.322 0.322
K(f(D)) = 5 0.119 0.119 0.119 0.322 0.322

Table 2: Conditional probability distribution used by a linear programming mechanism K
configured with ε = 1 for a query f with range [1, ..., 5] posed on a database D. Columns
correspond to true query responses while rows correspond to noisy responses.
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1.2 Contributions and Paper Outline

In this paper, we study the impact of adherence to range constraints for general numeric
queries in the interactive setting and make the following contributions:

• We provide a theoretical discussion on the desirable properties of range-adherent
mechanisms and formalize a matrix representation of range-adherent mechanisms
for general numeric queries.

• We propose two variants of a range-adherent linear programming mechanism using
our discretized mechanism representation. By employing a user-independent crite-
rion for optimal utility, we produce mechanisms that are useful to a broad range of
users.

• We conduct experiments on our proposed mechanisms and a variety of existing mech-
anisms. We apply a number of measures of utility capturing the usability and infor-
mation preservation of the mechanisms.

• We analyze the results of our experiments and discuss the implications of adherence
to range constraints for the usability and information preservation of the mecha-
nisms. We compare the performance of the mechanisms and demonstrate improve-
ments in the utility of our linear programming mechanisms over the commonly used
boundary-snapping method.

The remainder of the paper is structured as follows: In Section 2, we provide a review
of the relevant literature on utility and adherence to constraints in differentially private
mechanisms. In Section 3, we discuss the design of range-adherent mechanisms and for-
malize their representation. Within this formalized representation, we redefine the existing
method of boundary-snapping and propose our linear programming mechanisms. Finally,
in Section 4, we run experiments to compare a number of measures of utility over different
range-adherent mechanisms as well as non-adherent variants.

2 Related Work

As the concept of differential privacy has been gaining momentum, the study of utility in
differentially private mechanisms has become an increasingly important topic. Utility has
often been considered in terms of distortion, relying on some measure of distance between
true query responses and noisy query responses. Reduction of distortion has been a com-
mon goal in the design of mechanisms [6,26] and minimization of distortion has been used
as a criterion for optimality [38].

It has also been proposed that rational users will make use of their prior knowledge and
information about the randomization mechanism. They do this by applying Bayesian post-
processing to noisy query responses in order to remap the noisy responses to values that
minimize a loss function. For this class of users, a geometric mechanism [24] has been pro-
posed which minimizes the expected loss for all users (i.e., users having any configuration
of prior knowledge) when applied to counting queries. This result has been extended to
risk-averse users (i.e., users who wish to minimize the worst-case for their expected loss in
utility over all possible mechanism input values) [25].

Another study examining the same measure of expected loss shows that counting queries
are essentially the only type of query for which such a universally optimal mechanism
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can be designed [4]. Given this result, subsequent studies have focused on the design of
non-universal optimality. A non-universally optimal mechanism has been proposed for
restricted classes of Bayesian users [16] and a staircase mechanism [23] has been proposed
to provide optimal utility for the class of risk-averse users who do not possess any prior
knowledge about the query responses.

Due to the variety of utility measures available, a number of these measures have been
studied within the context of axioms of utility [31]. A distinction is made between the utility
of a mechanism in terms of usability (i.e., ease of use for specific tasks) and information
preservation (i.e., how much of the original information is maintained in the noisy query
responses). The results of the study show that distortion-based measures of utility do not
satisfy all axioms of utility whereas measures of expected loss for Bayesian users do.

A commonly-used approach to improve utility in noisy query responses is to pose a large
number of related queries in a batch (i.e., in the non-interactive setting) and to post-process
the noisy responses in order optimize a utility goal subject to known relationships between
the true query responses. In the context of the differentially private release of marginals
(i.e., projections of a contingency table onto a subset of attributes), a transformation to
the Fourier domain and the use of linear programming has been applied to ensure consis-
tency between the marginals and generation of natural numbers as the noisy counts [2].
A subsequent study has shown that for values of ε needed to ensure a reasonable level of
privacy, the noise induced by the aforementioned method leads to inadequate statistical
inferences [17]. To improve upon this, post-processing has been proposed to remap a vec-
tor of noisy query responses to a new vector that satisfies known relationships between the
elements of the vector while minimizing the L2 distance between the vectors [27]. In [28],
it is shown that more accurate responses can be obtained by instead minimizing the L1 dis-
tance as this accounts for the distribution of the noise added to each element of the vector.
Some studies in the non-interactive setting have also focused on the release of sanitized
databases tailored to application-specific optimization problems. This has been studied in
the context of objectives and constraints pertaining to optimal powerflow benchmarks [19]
and mobility service scheduling [18].

While most optimization-based approaches in the non-interactive setting involve post-
processing a set of noisy query responses, the matrix mechanism [29] handles optimization
by remapping the queries themselves prior to posing them on the sensitive database. The
underlying idea is to determine an alternate set of queries that offers more efficient access
to the database (e.g., by eliminating redundancy) while retrieving sufficient information to
answer the original set of queries. While this appears to be fundamentally different from
other optimization approaches in the non-interactive setting, the authors show that [27] is
in fact an instantiation of the matrix mechanism.

The approaches reviewed in the non-interactive setting share a common objective with
our work in the use of optimization-based techniques for the maximization of utility in
query responses subject to known constraints. However, they differ fundamentally from
our work in their reliance on relationships between batched query responses. When mov-
ing to the interactive setting, such relationships are no longer present. Our work is there-
fore more closely related to interactive setting mechanisms that focus on improving utility
through adherence to the range of the query being posed. A well-known instance of this
is the truncated variant of the geometric mechanism [24, 25] which snaps out-of-bounds
noisy responses of counting queries to the nearest valid value. This approach leads to in-
flated probability mass on the boundaries of the query range. An alternative, explicit fair,
mechanism has been proposed to adhere to range constraints on counting queries while
satisfying additional properties on the distribution of the probability mass [7]. These prop-
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erties lead to better utility for query responses that are nearer to the center of the query
range. Variants of the Laplace mechanism have also been studied in terms of truncation for
adherence to the query range [32]. These variants include the snapping of out-of-bounds
values in a manner analogous to the truncated geometric mechanism, and normalization of
a truncated mechanism distribution. However, normalization alone on a truncated Laplace
mechanism is not sufficient to preserve the differential privacy guarantee and adjustment
of the calculation for the Laplace scaling parameter is also needed [9].

Other instances of truncated Laplace mechanisms have been proposed in the literature.
However, their intent has not been adherence to a query range. In the context of approxi-
mate differential privacy [14], a truncated variant of the Laplace mechanism has been de-
signed to maximize the probability mass decay rate of the distribution [21]. A truncated-
uniform-Laplace mechanism has also been proposed for the purpose of uniformly most
powerful tests on binomial data [1]. In both cases, truncation is based on mechanism pa-
rameters and is symmetric around the location parameter (i.e., the true query response).
Thus, although these forms of truncation are related to utility, they do not enforce adher-
ence to the query range.

3 Constraint-Aware Mechanisms

We open this section with a discussion on the desirable properties of range-adherent mech-
anisms. We then formalize a matrix representation of range-adherent mechanisms. We
redefine boundary-snapping within this representation and study some of the properties
it provides. Finally, we propose a linear programming approach for the creation of range-
adherent mechanisms that optimize a user-independent criterion for utility.

3.1 Design Considerations

We propose that the design of mechanisms for the interactive setting should incorporate
publicly known range constraints of queries by restricting the noisy output to fall within
the valid range of the query. Our goal is to design more useful mechanisms in terms of
downstream compatibility and utility. There are a number of ways to approach this task
and the design decisions will impact the resultant utility of the mechanism. It is important
to first consider the intended meaning of the term “utility”. We therefore begin this sec-
tion with a theoretical discussion on the design of range-adherent mechanisms. We then
describe the impact that design decisions have on utility.

The “utility” of a mechanism may refer to either information preservation or usability [31].
The former refers to how much of the original information is carried in the noisy responses,
whereas the later refers to how directly useful the noisy responses are to a particular user.
The axiom of sufficiency [31] states that for any mechanism M1 that can be composed with
an arbitrary function to simulate another mechanism M2, the information preservation of
M1 is greater than or equal to that of M2. This is because any inferences that could be
drawn from the behaviour of M2 could equally be drawn from M1 by simulating M2 if
desired. An important consequence of this axiom is that although post-processing of the
noisy responses (without further access to the database) may improve usability, it cannot
improve information preservation and may even be detrimental in that regard.

A commonly used method of adherence to range constraints is a step of post-processing
to snap out-of-bounds query responses to the nearest valid value [25, 32]. We henceforth
refer to this method as boundary-snapping. By the axiom of sufficiency, incorporation
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of boundary-snapping into a mechanism produces a new mechanism with degraded in-
formation preservation. The non-constrained mechanism can simulate the one that uses
boundary-snapping but the opposite is not true. Although adherence to range constraints
is achieved, there is no other consideration made for how this benefits the utility of the
mechanism.

An alternative method of post-processing which achieves adherence to range constraints
is Bayesian post-processing [24]. This involves remapping noisy query responses to valid
values in order to optimize a user-specific measure of utility. This form of post-processing
relies on the specification of the user’s prior knowledge of the sensitive data (represented
as a probability distribution over the valid query responses) and the user’s utility goal
(represented as a loss function). Although this improves the usability of the responses, its
reliance on specific user settings causes a degradation in information preservation for users
operating under different settings. As such, this should be kept as a separate step which
is either handled independently by the user or is provided as an optional operation on a
per-user basis.

Although Bayesian post-processing applied as a separate step may be an appropriate so-
lution in some situations, there are also scenarios where it cannot be applied. If the mecha-
nism is used as a building block in a larger system that does not allow for the specification
of additional user settings, post-processing cannot be properly applied. The use of default
settings can be detrimental for the utility of many users and thus should not be used. In
other cases, users may simply not yet be aware of the ideal objective function to apply for
their data analysis and are thus unable to apply post-processing. Furthermore, only the
remapping process is optimal with respect to the user’s objective function; the underlying
mechanism provides no such guarantee and may not be well-suited to a range-constrained
setting. Ideally, a mechanism should be able to adhere to range constraints while optimiz-
ing a general goal for utility that is independent of user settings.

3.2 Formalization of Range-Adherent Mechanisms

To facilitate the incorporation of range-adherence into mechanism design, we next provide
a formal representation of range-adherent mechanisms. To this end, we employ a matrix
representation of mechanisms along with a set of requirements for range-adherence. We
also consider the inclusion of optional requirements on the matrix which may be conducive
to higher levels of utility.

A differentially private mechanism can be defined as a stochastic function that adds con-
trolled noise to responses to queries posed on databases. That the noise must be controlled
refers to the requirement for a privacy guarantee to be satisfied for all pairs of adjacent
databases. For a set of valid databases D, a pair of databases D1, D2 ∈ D are adjacent if
they differ by a single record. More formally,

Definition 1. Let R be the set of real numbers, f : D → R be a query function, K : R → R
be a randomization mechanism and ε be a privacy parameter selected by the data custodian.
For K to satisfy the differential privacy guarantee, the following condition must hold for
all pairs of adjacent databases D1 and D2:

Pr (K (f (D1)) = r) ≤ eε Pr (K (f (D2)) = r) ∀r ∈ R. (1)

In practice, the range of a query may correspond to a particular subset of R. We refer
to such a correspondence as query range constraints. We wish to define requirements for
the adherence of mechanisms to query range constraints. For this, we first consider the

TRANSACTIONS ON DATA PRIVACY 13 (2020)



178 William Lee Croft, Jörg-Rüdiger Sack, Wei Shi

treatment of the underlying probability density function (PDF) used by the mechanism to
generate noise. We discretize the range of the PDF such that it can be mapped to a set of
discretized response categories. Each response category represents a range of values such
that reporting the category indicates a noisy query response that falls within the corre-
sponding range. Let PK(f(D)) : R→ R be the PDF used by the mechanism K for a query f
posed on a database D ∈ D and let R ∈ R be the finite, continuous range that we wish to
discretize. We define rl and ru to be the lower and upper bounds, respectively, of R.

Definition 2. LetR be a set of discretized response categories over a range R. EachRi ∈ R
is a finite, continuous range, having lower and upper bounds ril and riu respectively such
that rl ≤ ril ≤ riu ≤ ru. The probability of a noisy response Ri ∈ R is given by:

Pr (K (f (D)) ∈ Ri) =

∫ ri
u

ril
PK(f(D))(x) dx. (2)

The discretization of a mechanism’s PDF allows for the representation of the mechanism
as a matrix having true query responses as columns, noisy query response categories as
rows and conditional probabilities as the matrix entries (e.g., Mi,j is the probability of re-
porting Ri given the true query response Fj). The matrix representation provides a conve-
nient format for considering mechanism modifications for adherence to query range con-
straints.

Definition 3. Let F ⊂ R be the set of true responses for a query f and let R be the set
of discretized noisy response categories. A mechanism matrix M is an |R| × |F | matrix
such that its entries Mi,j correspond to the conditional probability distribution, defined by
a mechanism K as follows:

Mi,j = Pr (Ri|Fj) = Pr (K (Fj) ∈ Ri) i = 1, ..., |R| , j = 1, ..., |F | . (3)

To avoid potential confusion, we emphasize the difference between the terms “mecha-
nism matrix” and “matrix mechanism” [29]. The former refers to a matrix of mechanism
probabilities as described in Definition 3 which we use throughout this paper. The later
refers to a mechanism designed for the non-interactive setting which is largely unrelated
to our work.

In order to provide a valid conditional probability distribution, a mechanism matrix must
have a column for each possible true query response such that each of these columns con-
stitutes a valid probability distribution. For a mechanism matrix to be considered a valid
differentially private mechanism, its entries must additionally satisfy the differential pri-
vacy guarantee. To be considered range-adherent, we assert that the mechanism must use a
discretization of noisy response categories that is finite and that covers all of the true query
responses. We formalize these requirements for a mechanism matrix as follows:

• R.1 The conditional probability distribution must be differentially private:

Mi,j ≤ eεMi,k ∀D1, D2 ∈ D such that f (D1) = Fj , f (D2) = Fk, |D1 −D2| = 1.
(4)

• R.2 The noisy response categories must be disjoint and their union must be finite and
must contain all of the true query responses:
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Ri
⋂
Rj = ∅ i = 1, ..., |R| , j = 1, ..., |R| such that i 6= j, (5)

rl 6= −∞, ru 6=∞, (6)

Fj ∈
|R|⋃
i=1

Ri j = 1, ..., |F | . (7)

• R.3 Each true query response must correspond to a column representing a valid prob-
ability distribution:

Mi,j ≥ 0 i = 1, ..., |R| , j = 1, ..., |F | , (8)

|R|∑
i=1

Mi,j = 1 j = 1, ..., |F | . (9)

We note that in some cases, one might additionally require that the union of all the noisy
query responses covers the full span of the chosen range R. We omit this requirement for
the sake of a more general representation as it may be desirable in some cases to allow for
some portions of the range to never be reported. For example, with counting queries, it is
reasonable to only report integer values as the noisy query responses.

The matrix representation also allows for the inspection of further mechanism properties
which may help to improve utility in certain cases. We use the notation ij to indicate the
index of the noisy response category in which the true query response of index j falls (i.e.,
Fj ∈ Rij ). We now consider properties that have been previously studied in the context
of mechanisms designed for answering counting queries on constrained ranges [7]. We
generalize these properties here in the context of mechanism matrices for general numeric
queries:

• Column Monotonicity - For any fixed true response Fj , the probability of reporting a
noisy responseRi given Fj monotonically decreases as the distance between between
Fj and Ri increases:

Mi,j ≤Mi+1,j i = 1, ..., ij − 1, j = 1, ..., |F | , (10)

Mi,j ≥Mi+1,j i = ij , ... |R| − 1, j = 1, ..., |F | . (11)

• Row Monotonicity - For any fixed noisy response Ri, the probability of reporting
Ri given a true query response Fj monotonically decreases as the distance between
between Ri and Fj increases:

Mi,j ≤Mi,j+1 i = 1, ..., |R| , j = 1, ..., |F | − 1 such that Fj+1 ≤ rui , (12)

Mi,j ≥Mi,j+1 i = 1, ..., |R| , j = 1, ..., |F | − 1 such that Fj ≥ rli. (13)
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• Symmetry - The matrix has 2-fold rotational symmetry (equivalent to centrosymme-
try in this context):

Mi,j = M|R|−i+1,|F |−j+1 i = 1, ... |R| , j = 1, ... |F | . (14)

• Fairness - The probability of reporting the noisy response category containing the
true query response is the same for all true query responses:

Mij ,j = Mij′ ,j
′ j = 1, ... |F | , j′ = 1, ... |F | . (15)

The use of a PDF that monotonically decreases as distance from the location parameter
increases (referred to henceforth as a monotonic PDF) can be desirable from a data analysis
perspective. This ensures that, as one would typically expect, the probability of noisy re-
sponses is inversely related to their distance to the true query response. The properties of
column and row monotonicity guarantee that this concept holds in the context of a mecha-
nism matrix. These properties are considered to help avoid certain pathological behaviours
that may result from blindly following optimization of an objective function in the design
of a mechanism [7]. For example, the geometric mechanism provides optimal utility for
all Bayesian users [24]. Yet, its well-known truncated variant (which snaps out-of-bounds
responses to the nearest valid value) does not maintain column monotonicity as it induces
spikes in probability mass on the noisy response categories at the query range boundaries.
This behaviour has been shown to lead to poor utility for cases where the true query re-
sponses are near the center of the range, particularly in the case of small databases [7].

The properties of fairness and symmetry enforce further regularity on the mechanism ma-
trix to facilitate analysis. Continuing the example of the truncated geometric mechanism,
the spike in probability mass on the boundary can lead to an over-representation of counts
corresponding to the boundary response categories. The property of fairness helps to mit-
igate this by requiring that the probabilities of reporting the true query responses are all
equal to each other. Similarly, the property of symmetry helps to mitigate bias towards
certain noisy responses by requiring the mechanism matrix to be centrosymmetric. The
example of the boundary-snapping Laplace mechanism in Table 1 demonstrates the spikes
in probability mass that occur due to a lack of adherence to fairness and column mono-
tonicity. The linear programming alternative shown in Table 2 adheres to row and column
monotonicity, fairness and symmetry, thus avoiding such spikes in probability mass.

Under the assumption that the range of a mechanism spans infinitely, many mechanisms
used in the interactive setting already satisfy these properties. Row and column mono-
tonicity follow from the use of a monotonic PDF. Any data-independent mechanism will
also satisfy the property of fairness since the true query response will not impact the prob-
ability of reporting the original value. These properties apply to well-known mechanisms
such as the Laplace mechanism [12], the staircase mechanism [23] and the geometric mech-
anism [24]. However, the adaptation of a mechanism to a finite range necessitates mod-
ification to the discretized PDF in order to achieve requirement R.3. It is through such
modification that the aforementioned properties may be lost.

3.3 Boundary-Snapping

Next, we redefine the concept of boundary-snapping in the context of a mechanism ma-
trix. Using this representation, we prove certain properties that boundary-snapping mech-
anisms possess. The boundary-snapping method is commonly used when mechanism re-
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sponses must conform to a known range in the interactive setting [7, 32]. This operation
can be directly incorporated into the probability distribution of a mechanism with a finite
range by reallocating all out-of-bounds probability mass to the nearest noisy response cat-
egory. In the context of the discretization defined in Formula (2), this entails changing the
lower bound of the first response category to negative infinity and the upper bound of the
last response category to infinity.

Definition 4. For any mechanism K and discretized range R, the boundary-snapping
mechanism matrix representation of K is an |R| × |F | matrix M with its entries defined
as follows:

Mi,j =



∫ rui
−∞ PK(Fj)(x) dx i = 1∫∞
rli
PK(Fj)(x) dx i = |R|∫ rui

rli
PK(Fj)(x) dx otherwise

i = 1, ..., |R| , j = 1, ..., |F | . (16)

Next, we derive several properties possessed by boundary-snapping mechanism matrices
defined as in Formula 16.

Theorem 1. The boundary-snapping mechanism matrix of Definition 4 satisfies all three
requirements of a valid differentially private, range-adherent mechanism when applied to
any differentially private mechanism K for a discretized range R that covers a finite and
continuous range R ⊂ R such that F ⊂ R.

Proof. This implementation of boundary-snapping is equivalent to the post-processing step
of snapping the noisy responses to the nearest valid value. Since differential privacy is im-
mune to privacy breaches induced by post-processing [15], requirement R.1 is satisfied,
provided the original mechanism K is differentially private. Since R is a finite discretiza-
tion of a range that covers all true query responses, R.2 is satisfied. Furthermore, as R is a
discretization of a continuous range R, each matrix column j contains the full probability
mass of a valid PDF PK(Fj) broken up over |R| entries corresponding to integrals of PK(Fj).
Since the probability density in a PDF can never drop below zero and the union of the inte-
grals covers the full range R of PK(Fj), the column entries correspond to a valid probability
distribution and satisfy requirement R.3.

Theorem 2. Let K be a range-adherent mechanism produced through the application of
boundary-snapping to a mechanism matrix for any symmetric and monotonic PDF. Un-
der the assumptions that the discretized response categorizes are uniformly sized and the
true query responses are uniformly spread across the range of the query, K preserves the
properties of row monotonicity and symmetry.

Proof. For any discretization using uniformly sized response categories, each such category
corresponds to a uniformly sized integral of the underlying PDF. If the PDF is monotonic,
any sequence of such integrals to one side of the location parameter corresponds to a mono-
tonic sequence of probability masses. Prior to the inflation of probability mass induced
by boundary-snapping, any mechanism matrix produced under this configuration there-
fore provides row monotonicity. If the true query responses are uniformly spread across
the range of the query, this initial matrix will also possess the property of symmetry. We
must show that these properties are preserved after the inflation of probability mass in the
boundary response categories.
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Row Monotonicity: The new probability mass associated with any boundary response
category is the sum of its original value and all probability mass beyond its outer bound-
ary. Let x be the original value of a boundary response category and x′ be the shifted
probability mass that is added to it. Since the underlying PDF is monotonic, the value of
x is determined by a monotonic function of the distance d between the boundary response
category and the location parameter. Similarly, the newly added probability mass x′ is de-
termined by a monotonic function of the same distance d as this determines how much
probability mass has been shifted. Since both values that contribute to the sum monotoni-
cally decrease as the distance from the location parameter increases, it follows that the new
boundary response categories maintain the property of row monotonicity.

Symmetry: The dependence of the inflated probability mass on distance between the lo-
cation parameter and the boundary also ensures that symmetry continues to hold. For
an arbitrary response category M1,j along the lower boundary, the true query response is
j − 1 indices away from the lower boundary. We must show that M|R|,|F |−j+1 is subject to
the same increase in probability mass. This is a boundary response category on the upper
boundary and the true query response is j − 1 indices away from this boundary. Since the
true query responses are uniformly spread across the range of the query, it follows by the
definition of boundary-snapping that the increase in probability mass will be the same. The
property of symmetry therefore holds.

A consequence of applying boundary-snapping to a mechanism matrix is that column
monotonicity may not be preserved. Boundary-snapping has the potential to increase the
probability mass of a boundary response category to a value higher than that of its adja-
cent, non-boundary response category. This can occur when the true query response is near
the boundary, causing a large amount of out-of-bounds probability mass to be shifted. If
the true query response does not fall in the range covered by the boundary response cate-
gory, the probability mass of the response categories no longer decreases monotonically as
distance from the query response increases. This is in violation of column monotonicity.

Similarly, the property of fairness is not guaranteed to be preserved under the application
of boundary-snapping. For every pair of true query responses j, j′ ∈ F such that j 6= j′,
fairness requires that Mij ,j = Mij′ ,j

′ . However, if ij is a boundary response category and
ij′ is not, the inflation of probability mass invalidates this condition. As such, fairness is
not guaranteed to hold under the application of boundary-snapping.

3.4 Linear Programming

The adherence to range constraints achieved by boundary-snapping is an ad-hoc adapta-
tion to mechanisms that were not designed for a range-constrained setting. As a conse-
quence, it does not take into account the impact on the utility of the mechanism. Here, we
wish to improve on this by proposing the use of linear programming to derive mechanisms
that optimize a general objective function in order to provide a good level of utility for a
broad range of users.

Outside of the context of counting queries, it is well-known that it is impossible to design
mechanisms of universal optimality [4] (i.e., optimality for all users). We therefore cannot
optimize utility for all Bayesian users. An alternative to optimality for Bayesian users is the
notion of optimal risk-averse utility in which users wish to minimize the expected loss of
the worst-case true query response [25,33]. However, the measure of expected loss is taken
in terms of user-specific utility goals, making the design of universally optimal mecha-
nisms difficult for this form of utility as well. Although the staircase mechanism [23] offers
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optimal utility in general numeric queries for risk-averse users, it requires the assumption
that users do not have any knowledge about range constraints of the query [22]. We note
that there is an existing formulation of a linear program for risk-averse users posing count-
ing queries [25]. However, this applies a user-specific objective function and is only used
as an example rather than a proposed mechanism.

We therefore turn to an alternative criterion for optimality that abstracts from user-specific
utility by considering the concentration of probability mass around the location parameter
in the mechanism’s PDF [38]. Intuitively, the concept is that for a given PDF, any rational
user should prefer an alternative that can be derived from the given PDF by shifting prob-
ability mass closer to the location parameter as this would reduce the expected noise. To
formalize this notion, an order was defined over PDFs based on the ability to obtain one
PDF from another by shifting probability mass closer to the location parameter.

Definition 5. Let y1 and y2 be two PDFs having the same location parameter µ. The PDF
y1 is considered to be smaller than y2, denoted as y1 ≤ y2, if y1 can be obtained from y2 by
shifting probability mass closer to µ.

Definition 6. For any class Y of PDFs, a PDF y ∈ Y is considered to be optimal if it is
minimal within Y .

Under the assumption of data-independence, an optimal, staircase-shaped, differentially
private mechanism was derived for this criterion [38]. The assumption of data-independence
was used to assert that the PDFs used for any true query response differ only in their lo-
cation parameters. As a result, the PDFs used by the mechanism are all shaped the same,
allowing for the derivation of an optimal mechanism to be based on the identification of
a single optimal (and differentially private) PDF. In our setting, we cannot make the same
simplification as each true query response sits at a different position relative to the bound-
aries of the valid range of noisy query responses. As a result, the mechanism must use a
different PDF for each true query response. To reflect this, we propose an adapted optimal-
ity criterion.

Definition 7. For any range-restricted query f having a set F of true query responses, let
P1 and P2 be finite, ordered sets of PDFs of size |F | used by two different mechanisms
that have been designed for f . The set P1 is considered to be smaller than P2, denoted as
P1 ≤ P2, if each element P1i is smaller (by Definition 5) than its counterpart P2i as shown
in Formula 17.

P1 ≤ P2 ↔ P1i ≤ P2i i = 1, ... |F | . (17)

Without the property of data-independence, a mechanism can no longer be characterized
by a single PDF. The ordering given by Definition 7 provides a natural extension to that of
Definition 5 when dealing with mechanisms that are defined by a set of PDFs. Informally,
a set of PDFs P1 is preferable to another set P2 if, for every true query response Fi ∈ F ,
the PDF P1i can be obtained from P2i by shifting probability mass closer to the true query
response. As such, any rational user should prefer the use of P1 over P2 regardless of
which PDF the true query response requires from the set. Based on this ordering, we define
optimality in an analogous fashion to Definition 6.

Definition 8. For any class P of finite, ordered sets of PDFs, a set P ∈ P is considered to be
optimal if it is minimal within P.
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An additional complication in the design of a data-dependent mechanism is the charac-
terization of the form of the distributions that constitute an optimal set. This was handled
in the data-independent setting by starting from a non-optimal PDF and shifting probabil-
ity mass in a structured manner to produce the smallest possible PDF (under Definition 5)
subject to the requirement for it to remain differentially private. This process resulted in
the definition of a staircase-shaped PDF which gives rise to an optimal mechanism [38]. In
our data-dependent setting, the optimization of a set of PDFs such that they remain differ-
entially private with respect to each other presents a more challenging task. This is due to
the fact that the PDFs cannot share a common form due to the query range constraint. To
handle this, we leverage the discretized nature of the mechanism matrix representation to
employ linear programming. By capturing optimality as a linear programming objective
function, we need not explicitly define the shape of the PDFs that would give rise to an
optimal discretized mechanism. We must therefore adapt our definition of optimality to a
form that can be interpreted by a linear program. To make this change, we first show that
the ordering over the elements of any class of finite, ordered sets of PDFs determined by
the measure of expected loss using any monotonic loss function subsumes the ordering of
Definition 7.

Theorem 3. Within a given class of finite, ordered sets of PDFs, the ordering of Definition
7 is subsumed by the ordering determined by the measure of expected loss over the sets of
PDFs when using any non-decreasing loss function L : R→ R.

Proof. Let y1, y2 be two arbitrary PDFs from the same class Y . The inequality y1 ≤ y2

implies that there are sets of ranges X and X ′ such that for each xi ∈ X , some probability
mass of y2 can be shifted from this range to another range x′i ∈ X ′ that is nearer to the
location parameter in order to produce y1. For each such shifted range, the decrease in the
distance to the location parameter combined with the non-decreasing loss function implies
a decrease in the measure of expected loss. This leads to the following inequality:∫

x∈R
L(x)y1(dx) ≤

∫
x∈R

L(x)y2(dx). (18)

By Definition 7, for any pair of finite, ordered sets of PDFs P1 and P2, such that P1 ≤ P2,
the above inequality must also hold for every pair of PDFs P1i and P2i . As a result, P1 ≤
P2 implies an expected loss for P1 that is less than or equal to that of P2. It follows that
the ordering determined by any non-decreasing loss function subsumes that of Definition
7.

Corollary 1. For any class P of finite, ordered sets of PDFs, a set P ∈ P is optimal under
Definition 8 if it minimizes expected loss for a non-decreasing loss function.

Proof. By Theorem 3, the ordering of Definition 7 is subsumed by the ordering determined
by any non-decreasing loss function. As a result, any finite ordered set of PDFs that mini-
mizes expected loss must also be minimal in the ordering of Definition 7, making it optimal
under Definition 8.

With this result, we are now ready to formulate the linear programming objective func-
tion. Given that any non-decreasing loss function can be applied to achieve the required
ordering, we apply L1 distance between the true query response and the center of the noisy
response category. We accordingly set the objective function as the minimization of the ex-
pectedL1 distance. To ensure that the linear program produces a valid differentially private
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mechanism, we apply requirements R.1 and R.3 of the matrix representation as constraints
for the linear program. The inequalities of Formulae (4), (8) and (9) can be directly carried
over without any changes in notation. The formulation of the linear program is as follows:

LP Mechanism Variant 1

min

|R|∑
i=1

|F |∑
j=1

Mi,j

∣∣∣∣rui + rli
2

− Fj
∣∣∣∣

s.t. Mi,j ≤ eεMi,k ∀D1, D2 ∈ D s.t. f (D1) = Fj , f (D2) = Fk, |D1 −D2| = 1,

Mi,j ≥ 0 i = 1, ..., |R| , j = 1, ..., |F | ,
|R|∑
i=1

Mi,j = 1 j = 1, ..., |F | .

We emphasize that this optimization-based approach differs fundamentally from those
applied in the non-interactive setting. The linear program we formulate optimizes the
probability distributions to be used by a differentially private mechanism. Contrary to
this, optimization in the non-interactive setting typically involves post-processing applied
to noisy responses which have already been generated by a randomization mechanism.

In some cases, users may wish to enforce additional properties in the mechanism in order
to prevent certain pathological behaviours [7]. To address these concerns, we define an
alternative linear program that is identical to the first but employs additional constraints
to provide the properties of row and column monotonicity, symmetry and fairness. Once
again, we can directly apply the inequalities and equations as specified in Formulae (10)
- (15). To distinguish between these two linear program formulations, we refer to the for-
mulation without the additional constraints as Variant 1 and the formulation with the ad-
ditional constraints as Variant 2. The constraints used to extend the formulation are as
follows:

LP Mechanism Variant 2
Extend Variant 1 with:

Mi,j ≤Mi+1,j i = 1, ..., ij − 1, j = 1, ..., |F | ,
Mi,j ≥Mi+1,j i = ij , ... |R| − 1, j = 1, ..., |F | ,
Mi,j ≤Mi,j+1 i = 1, ..., |R| , j = 1, ..., |F | − 1 s.t. Fj+1 ≤ rui ,
Mi,j ≥Mi,j+1 i = 1, ..., |R| , j = 1, ..., |F | − 1 s.t. Fj ≥ rli,

Mi,j = M|R|−i+1,|F |−j+1 i = 1, ... |R| , j = 1, ... |F | ,
Mij ,j = Mij′ ,j

′ j = 1, ... |F | , j′ = 1, ... |F | .

We provide a small example to illustrate the resultant mechanism matrix for a counting
query with a range of 0 - 5. For counting queries, it is natural to use the same set of in-
tegers from the possible true query responses as the set of noisy responses (i.e., R = F ).
The matrix for Variant 1 is shown in Table 3. Each column represents the probability dis-
tribution used by the mechanism given a particular true query response while each row
corresponds to one of the potential noisy responses. A cell entry in row i, column j thus
corresponds to the conditional probability Mi,j of the mechanism. We note that Variant 1
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has assigned a probability of zero to the noisy response categories on the boundaries of the
valid range. Due to this, the mechanism will never report these responses, even in the event
that the true query response falls in these boundary categories. This may seem at odds with
the goal concentrating probability mass around true query responses. However, the opti-
mization goal is to achieve the best concentration of probability mass when considering all
probability distributions used by the mechanism. The mechanism has assumed this config-
uration in order to achieve a greater overall degree of expected utility across all true query
responses. Furthermore, while the probabilities of M0,0 and M5,5 are 0 in this example, the
probabilities of M1,0 and M4,5 are 0.771, meaning there remains a very high probability of
reporting a noisy response that is close to a true query response in a boundary category.

f(D) = 0 f(D) = 1 f(D) = 2 f(D) = 3 f(D) = 4 f(D) = 5
K(f(D)) = 0 0 0 0 0 0 0
K(f(D)) = 1 0.771 0.622 0.378 0.229 0.139 0.084
K(f(D)) = 2 0.090 0.149 0.245 0.149 0.091 0.055
K(f(D)) = 3 0.055 0.090 0.149 0.245 0.149 0.090
K(f(D)) = 4 0.084 0.139 0.229 0.378 0.622 0.771
K(f(D)) = 5 0 0 0 0 0 0

Table 3: Mechanism matrix for the linear programming Variant 1 solution of a counting
query with a range of 0 - 5 and ε = 0.5. Columns correspond to true query responses while
rows correspond to noisy responses.

If properties such as 0-probability events are deemed undesirable, use of Variant 2 can
provide a mechanism with a more constrained structure. This is shown for the same exam-
ple in Table 4. Here, the additional constraints have forced the entries with a probability of
zero in Variant 1 to now take on non-zero values. The additional properties of this variant
may be desirable for some data analysis tasks but they come at the cost of less flexibility in
the optimization of the objective function.

f(D) = 0 f(D) = 1 f(D) = 2 f(D) = 3 f(D) = 4 f(D) = 5
K(f(D)) = 0 0.315 0.191 0.116 0.070 0.043 0.026
K(f(D)) = 1 0.315 0.315 0.191 0.116 0.070 0.043
K(f(D)) = 2 0.231 0.265 0.315 0.191 0.116 0.070
K(f(D)) = 3 0.070 0.116 0.191 0.315 0.265 0.231
K(f(D)) = 4 0.043 0.070 0.116 0.191 0.315 0.315
K(f(D)) = 5 0.026 0.043 0.070 0.116 0.191 0.315

Table 4: Mechanism matrix for the linear programming Variant 2 solution of a counting
query with a range of 0 - 5 and ε = 0.5. Columns correspond to true query responses while
rows correspond to noisy responses.

4 Experimental Comparisons

In this section, we describe our experiments and discuss comparisons between our pro-
posed mechanisms and our implementations of three other range-adherent mechanisms.
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We first describe the different mechanisms and utility measures that we apply. This is fol-
lowed by a detailed discussion on our experiments in which we give our analysis. We use
both synthetic data as well as real data to gain insight into expected behaviour and practical
performance.

4.1 Mechanisms

We compare our linear programming approach to boundary-snapping variants of two well-
known mechanisms: the Laplace mechanism [12] (Mechanism 1) and the staircase mecha-
nism [23] (Mechanism 2). Additionally, we include a range-adherent normalized Laplace
mechanism [9] (Mechanism 3) in our comparisons. In the mechanism definitions, ∆F is
used to denote the query sensitivity. This is defined as the maximum possible difference
between the true query responses of any pair of adjacent databases.

Mechanism 1. Laplace [12] - For a database D, noise is drawn from a Laplace distribution
using f(D) as the location parameter and ∆F

ε as the scaling parameter:

Lap

(
x|f(D),

∆F

ε

)
=
εe−

ε|f(D)−x|
∆F

2∆F
. (19)

Mechanism 2. Staircase [23] - For a database D, a mechanism drawing from a staircase-
shaped PDF centered at f(D) minimizes the expected distortion of the noisy query re-
sponse:

Stair (x|f(D)) =


y |f(D)− x| ∈

[
0, ∆F

1+e
ε
2

]
ye−ε |f(D)− x| ∈

[
∆F

1+e
ε
2
,∆F

]
e−kεStair (x− k∆F ) |f(D)− x| ∈ [k∆F, (k + 1)∆F ] for k ∈ N,

(20)

y =
1− e−ε

2∆F
(

1

1+e
ε
2

+ e−ε
(

1− 1

1+e
ε
2

)) . (21)

The normalized Laplace mechanism (Mechanism 3) uses a PDF truncated to the valid
range of the query. Due to the data-dependent operation of normalization, this mechanism
requires a higher scaling parameter than the standard Laplace mechanism.

Mechanism 3. Normalized Laplace [9] - For a database D, noise is drawn from a Laplace
distribution truncated to the range of [rl, ru] and normalized within this range, using f(D)
as the location parameter and 2∆F

ε as the scaling parameter:

NormLap

(
x|f(D),

2∆F

ε

)
=


2Lap(x|f(D), 2∆F

ε )

2−e−
ε(f(D)−rl)

2∆F −e
ε(ru−f(D))

2∆F

rl ≤ x ≤ ru

0 x < rl, x > ru.
(22)

4.2 Utility Measures

To compare the utility of the mechanisms, we employ measures of both usability and in-
formation preservation. Recall that usability indicates ease of use for specific tasks while
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information preservation indicates how much of the original information is maintained in
the noisy query responses. We therefore consider usability in terms of taking noisy query
responses at face value (i.e., without applying any post-processing). See e.g., [23, 26] for
instances of utility measured in this way. Specifically, we measure both the expected ab-
solute error and the expected squared error of noisy query responses with respect to the
true query response. These expected measures are calculated over all true query responses
and over all possible noisy query responses for each true response. We assume a uniform
distribution for the probabilities of the true responses. The probabilities of the noisy query
responses are determined by the conditional probability of the mechanism given a partic-
ular true query response. The expected absolute error acts as a measure of the amount of
distortion expected to be induced by the mechanism, giving preference to mechanisms that
have low distortion in the expected case. The expected squared error assigns a penalty that
grows rapidly as the amount of distortion increases. This gives preference to mechanisms
that avoid allowing for high distortion in some cases in order to achieve low distortion in
other cases. We have selected these measures as they provide a good representation of typi-
cal properties that are desirable in terms of the usability of a mechanism. The two measures
are defined as follows:

Ex Err =
∑
f∈F

∑
r∈R

Pr (r|f) |f − r|

|F |
, (23)

Ex Sqr Err =
∑
f∈F

∑
r∈R

Pr (r|f) (f − r)2

|F |
. (24)

We additionally measure utility for Bayesian users [24] having a uniform distribution over
the true query responses as their prior knowledge. This models a common scenario in
which the user initially has no additional information about distribution of the true query
responses. Given a noisy response r ∈ R, a Bayesian user will remap this value to the
response f ∈ F that minimizes the expected loss according to their prior knowledge. The
measure of expected loss under Bayesian post-processing is appropriate as a measure of
information preservation [31] and is therefore useful as contrast against the measures of us-
ability. For close correspondence between these measures, we employ instances of Bayesian
post-processing for minimization of expected absolute error and expected squared error.
We define these measures of loss as shown in Formulae (25) and (26).

Ex Baye Err =
∑
r∈R

Pr(r) min
f∈F

∑
f ′∈F

Pr (r|f ′) |f − f ′|
|F |

, (25)

Ex Baye Sqr Err =
∑
r∈R

Pr(r) min
f∈F

∑
f ′∈F

Pr (r|f ′) (f − f ′)2

|F |
. (26)

4.3 Experiments

To solve the linear programs needed for our mechanisms, we used WinGLPK [37], a Win-
dows executable version of the GNU Linear Programming Kit [36]. In all experiments, we
assume that the database sizes and attribute response categories are public knowledge. We
compare our mechanisms against the alternatives using mean and max queries. We pose
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the mean query on an integer-valued scalar attribute that can take on 5 possible values (0
through 4). We pose the max query on an integer-valued scalar attribute that can take on 10
possible values (0 through 9). Although we refer to the later as a max query for simplicity,
it can equivalently be interpreted as a min or median query, which share the same query
sensitivity and set of true query responses.

With respect to the discretization of the noisy query responses, it is necessary to specify
a set of noisy response categories that covers the full valid range of the query (e.g., no
gaps between noisy response categories) in order to obtain valid probability distributions
from mechanisms that use continuous PDFs. When querying a mean value on a database
D with an attribute taking on integer values from 0 to k, there are k |D| + 1 possible true
query responses. Each of these responses are evenly spaced at a distance of 1

k|D| apart over
the valid range of [0, k]. To handle the discretization, we set the size of each noisy response
category to 1

k|D| and position them such that each noisy response category is centered on
a true query response. When querying the max value on an attribute with integer values
from 0 to k, there are k + 1 possible true query responses. Each of these responses are
evenly spaced at a distance of 1 apart over the range [0, k]. In this case, we set the size of
the response categories to 1 and again center them on the true query responses. For all
distance measures, we consider the value of a noisy response category to be the midpoint
of the span it covers.

In all experiments, we have measured expected absolute error and expected squared er-
ror both with and without Bayesian post-processing. Since the relationships between the
plotted curves for expected squared error showed no significant differences from those of
the expected absolute error, we only show the later for space considerations. In all experi-
ments, lower values of loss indicate better utility.

4.3.1 Database Size

We begin our experimental analysis by plotting expected loss as a function of the database
size for fixed values of the privacy parameter ε. For a max query, database size impacts
neither the true query responses nor the query sensitivity. As a result, it has no influence
over the measures of utility we employ. We therefore examine the impact of database size
only for the mean query. Results are shown in Figure 1 using an ε value of 0.2 and in Figure
2 using an ε value of 0.5.

Through these experiments, we demonstrate that the most notable improvements in util-
ity achieved by our mechanism occur at smaller database sizes. This is in line with the
results on the explicit fair mechanism [7], which found that, in the context of counting
queries, improvements in utility obtained through alternate methods of adherence to range
constraints are most prominent for queries posed on small databases.

In many queries, such as the mean query studied here, the size of the database plays a
major role in determining the amount of probability mass (for non-range-adherent mecha-
nisms) that falls outside of the valid range of the query. For example, reduction of database
size in a mean query increases the query sensitivity while leaving the valid range of the
query unchanged. An increase in the ratio of query sensitivity to query range implies a
greater amount of probability mass will fall outside the valid range in order to satisfy the
differential privacy guarantee. Reduction of the privacy parameter ε has a similar effect.
This can be seen in the more pronounced improvements in utility for linear programming
in Figure 1 compared to Figure 2.
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Figure 1: Expected loss as a function of the database size for a mean query with ε = 0.2

Figure 2: Expected loss as a function of the database size for a mean query with ε = 0.5

Given these observations, we focus our other experiments on small databases (10 records)
for the mean query in order to better observe the differences in the behaviours of the mech-
anisms. In practice, small datasets may arise in a number of instances. For example, studies
on rare diseases, marginal groups of populations or small groups of participants can lead to
small datasets. If studies involve expensive trials, cost may also be a limiting factor leading
to small datasets. Privacy is particularly important when sample sizes are small. Yet, high
ratios of query sensitivity to query range create a difficult scenario within which to achieve
a good privacy/utility trade-off. This further highlights the importance of developing new
mechanisms to improve utility in this setting.
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4.3.2 Discretization

As we have chosen a specific method for determining the noisy response category size in
the mechanism discretizations, we include experiments using different sizes for the noisy
response categories to observe the effects that this may have on the utility of the mecha-
nisms. Results are shown in Figure 3 for a mean query. Each plotted line shows a differ-
ent size of discretized response categories. The numbers associated with each plot in the
legends indicate a scaling factor for the noisy response category size. Here, lower num-
bers indicate finer granularity and higher numbers indicate coarser granularity. Surpris-
ingly, the boundary-snapping Laplace mechanism achieves better levels of utility with a
coarser granularity in high privacy settings. This is due to the fact that the high level of
privacy leads to the probability mass being very spread out from the location parameter.
Boundary-snapping then causes large amounts of out-of-bounds probability mass to pool
at the boundaries of the valid range. The finer the granularity of the discretization is, the
more concentrated the pooled probability mass becomes near the extremities of the valid
range. This leads to greater expected distance between noisy query responses and true
query responses. This suggests that boundary-snapping is a poor choice for queries posed
on small databases under high privacy settings. To further illustrate this point, we include
an additional mechanism that simply uses a uniform distribution over the noisy query
responses in these experiments. In the high privacy setting, even this trivial mechanism
performs better than the boundary-snapping variant.

Figure 3: Expected loss as a function of ε for a mean query. Each plot uses noisy responses
category sizes equal to the minimum distance between two different true responses scaled
by the postfixed number in the legend (e.g., a postfix of 5 indicates categories 5 times
larger).

For the discretization experiments on the linear programming mechanism, we observe
the expected trend of coarser granularity leading to worse levels of utility. We note that
for the three finest levels of granularity tested, the differences in the levels of utility are
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almost negligible. Intuitively, the loss in query accuracy induced by the injected noise
negates much of the benefit that could otherwise be achieved through the use of higher
precision. This supports our decision to use noisy response categories having a size equal
to the distance between true query responses in all other experiments. We omit graphs for
the other measures as they display similar trends.

4.3.3 Expected Utility

With a fixed size for the database and the noisy query response categories, we are able to
plot the levels of utility as a function of the privacy parameter ε to compare different types
of mechanisms. This allows for a more comprehensive understanding of the behaviours
of the mechanisms at varying levels of privacy. Our results are shown in Figure 4 for the
mean query and in Figure 5 for the max query.

The linear programming Variant 1 consistently provides the best levels of utility, with the
greatest improvements over other mechanisms appearing in the non-post-processing mea-
sures at high levels of privacy. For the linear programming Variant 2, although it does not
reach the same levels of utility as Variant 1, it still outperforms the other mechanisms in the
non-post-processing measures. In the measures of post-processing, Variant 2 performs on
par with Variant 1 for the max query and on par with the boundary-snapping mechanisms
for the mean query.

For min, max and median queries, the query sensitivity is equal the size of the range
of true query responses. The high ratio of sensitivity to query range makes such queries
ideal candidates for the improvements in utility attainable through the use of our linear
programming mechanisms.

Figure 4: Expected loss as a function of ε for a mean query
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Figure 5: Expected loss as a function of ε for a max query

4.3.4 Extended Range

As we have hypothesized that the incorporation of range constraints into the design of
a mechanism will have a positive impact on the level of utility, we provide a compari-
son between range-adherent mechanisms and non-adherent variants. Since any computer
implementation of a mechanism must have a finite range, we apply a greatly widened
range to model a lack of adherence to range constraints. To do so, we widen the range
of noisy query responses to 300% of the constrained range, keeping this span centered on
the valid range. Since probability mass is always focused near the true query response,
any further widening of the range beyond 300% has little impact and does not provide
additional insight. Results are shown in Figures 6 and 7. For visual clarity, we omit the
boundary-snapping variant of the Laplace mechanism and Variant 2 of the linear program-
ming mechanism from the graphs. The behaviour of the extended range versions of these
omitted mechanisms matched those of the boundary-snapping staircase mechanism and
the linear programming Variant 1, respectively.

The most notable difference in the range-extended variants is that the non-linear program-
ming mechanisms show substantially worse levels of utility in the non-post-processing
measures at high levels of privacy. In the measures of post-processing, the range-extended
variants of the non-linear programming mechanisms perform on par with or marginally
better than their range-adherent counterparts. Given that the application of boundary-
snapping to a mechanism cannot improve its information preservation [31], it is not sur-
prising to see a lack of improvement in the measures of post-processing. However, the large
difference in the non-post-processing measures shows that adherence to range constraints
clearly has a significant impact on utility.

The linear programming mechanisms show no differences in any measures of utility be-
tween their range-adherent and extended range variants. This is due to the fact that even
when presented with response categories for an extended range, the optimization process
will not assign probability mass to such responses.
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Figure 6: Expected loss as a function of ε for a mean query. Mechanism variants using an
extended range are marked by the postfix (ext).

Figure 7: Expected loss as a function of ε for a max query. Mechanism variants using an
extended range are marked by the postfix (ext).

4.3.5 Real Data

Finally, to gain insight on the practical performance of the mechanisms, we have run exper-
iments on real data. We have used the Statistics Canada 2011 National Household Survey
public use microdata file [5] to query the family size of the survey respondents. The valid
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range of responses are integers from 1 (no family) up to 7 (interpreted as 7 or more family
members). The mean value over all groups for this query is 2.02. As required by Statistics
Canada’s data use regulations, we state that the results or views expressed here are not
those of Statistics Canada. We have partitioned the records into groups of size 10, using
only records from the province of Ontario. In total there are 341,253 such records. This ex-
perimental setup can be interpreted as a simulation of small-scale or finely-grained surveys
conducted at the level of neighborhoods. Each group of records corresponds to a dataset
collected by sampling a small number of households within a particular neighborhood.

To measure the utility of a query posed on a particular group, we employ each mechanism
variant to generate a noisy response. For the measures of usability, the response is taken at
face value, whereas for Bayesian users, the response is mapped to their best guess. In both
cases, the resultant value is used to measure the loss (as absolute error and squared error)
with respect to the true query response. Since the mechanisms are stochastic functions,
this process is repeated 1000 times for each mechanism variant to obtain mean measures
of utility. This is done over each of the groups and once again, mean values are computed
across the groups.

We have run this experiment for both mean and max queries. Given the high sensitivity of
the max query, we include the well-known concept of a smooth-sensitivity [35] mechanism
for comparison in our experiments. Smooth sensitivity acts as an upper bound on local
sensitivity (the maximum difference between the query response of a database and any of
its neighbors). The main insight is that as a smooth function, smooth sensitivity is insen-
sitive to the contents of the database, making it appropriate for use in the configuration of
differentially private mechanisms. This allows for a reduction in the required sensitivity
from the global level which is particularly high in queries such as max, min and median.
To implement a smooth sensitivity mechanism for pure differential privacy (i.e., without
any relaxations in the privacy guarantee), a Cauchy distribution can be used with a scaling
parameter of 8S(D)

ε , where S(D) is the smooth sensitivity of a database D. We then apply
boundary-snapping to produce a range-adherent mechanism.

Figure 8: Expected loss as a function of ε for mean family size
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Figure 9: Expected loss as a function of ε for max family size

Note that, since we use real query responses from sets of records, the max query can-
not be equivalently interpreted as a min or median query here as it could in the previous
experiments. Results are shown in Figures 8 and 9.

The results for both queries mainly follow the same trends as in the experiments of ex-
pected utility on synthetic data. The linear programming Variant 1 performs best with
Variant 2 next, most prominently at high levels of privacy. The only exception to this oc-
curs with the measures of post-processing for the mean query where Variant 2 performs
best at high levels of privacy. Since most of the data groups are expected to have similar
true query responses, we hypothesize that the mechanism is simply able to perform well
on the specific query responses that were commonly encountered despite having an over-
all lower level of expected utility than Variant 1. The mechanism using smooth sensitivity
performs poorly compared to the other mechanisms. This is largely due to the use of a max
query on small-sized databases which often results in relatively high local sensitivities. As
a result, the mechanism cannot fully take advantage of the smooth sensitivity and suffers
in utility due to the use of a less ideal underlying PDF compared to the other mechanisms.
Analogous results can be expected for min queries.

4.4 Discussion

We conclude this section with a discussion on the practical implications of the results from
our analysis. We assess the impact of adherence to range constraints on the utility of the
mechanisms and discuss the performance of our linear programming mechanisms.

Our results indicate that adherence to query range constraints can indeed be beneficial for
the utility of mechanisms, provided adherence is appropriately handled. We have observed
that the improvements in utility are most pronounced for cases where the ratio of query
sensitivity to query range is high. This often occurs for particular types of queries (e.g., min,
max, median) or for general queries posed on small databases. For cases where queries
are posed on small groups, high levels of privacy are arguably the most important setting
as these individuals are likely to be more susceptible to unwanted inferences than those
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who are hidden among larger group sizes. From the results of Section 4.3.4, we see that
in this setting, adherence to range constraints greatly improves the measures of non-post-
processing, indicating a significant improvement in usability. The correspondence in the
measures of post-processing between the range-adherent mechanisms and the extended-
range variants indicates that the mechanisms have not suffered in information preservation
through the modifications required for adherence to range constraints. This suggests that
the explicit adherence to range constraints offers a favourable improvement in utility with
respect to a trade-off between usability and information preservation.

Overall, the linear programming Variant 1 performs the best both in terms of expected
error and expected squared error. The mechanism achieved superior levels of utility in
the non-post-processing measures and matched or slightly exceeded the levels of utility
achieved by boundary-snapping variants in the measures of post-processing. While not
matching the levels of utility achieved by Variant 1, the linear programming Variant 2
does match or exceed the levels of utility of all other mechanisms. These results are also
visible in the experiments on real data with the exception some minor differences in the
post-processing measures of the mean query at high levels of privacy. Given that we are
interested both in usability as well as information preservation, we do not consider this dis-
crepancy to outweigh the overall benefits of the linear programming Variant 1. For queries
posed on small databases at mid-to-high levels of privacy, we recommend the linear pro-
gramming Variant 1 for the best levels of utility. For users interested in mechanisms that
offer the additional properties of row and column monotonicity, symmetry and fairness,
the linear programming Variant 2 is a good alternative.

The number of variables in the linear programs is the product of the number of true query
responses and the number of noisy response categories. Due to this, the computational
expense of the linear program can grow rapidly as the size of the database increases, mak-
ing it impractical to derive linear programming mechanisms for large cases. Despite this
apparent shortcoming, we expect that this poses little practical significance. Our results
suggest that for cases where the true query responses are impacted by database size, the
utility levels of the different mechanisms begins to converge for large numbers of records.
The major improvements in utility occurred either for small-sized databases or for queries
invariant to database size. In such cases, the input sizes can be reasonably handled by a
linear programming solver. We therefore recommend the use of the linear programming
mechanisms for queries either unaffected by the size of the database or otherwise posed
on small-sized databases. The exact sizes depend also on the chosen discretization and the
computational power of the target machine. For other cases, we recommend the use of an
alternative such as boundary-snapping applied to an appropriate mechanism. As an exten-
sion to our work, it may be of interest to study the applicability of approximation schemes
to handle larger-sized databases.

Finally, we note that although we expressly chose an optimality criterion that abstracts
from user-specific goals as the basis for the linear programming objective function, the
selection of a specific loss function necessarily imposes some degree of user preference
according to the selected measure of loss. The subsumed ordering of Definition 7 remains
the same as long as a non-decreasing loss function is chosen. However, there are many pairs
of finite, ordered sets of PDFs that are incomparable within this order but are comparable
once a loss function is imposed. This implies that some user-specific preferences leak into
the final objective function. As such, it may be the case that other loss functions or different
objective function formulations may offer better results for general users.

TRANSACTIONS ON DATA PRIVACY 13 (2020)



198 William Lee Croft, Jörg-Rüdiger Sack, Wei Shi

5 Conclusions

Adherence to publicly known constraints on queries can be an effective method to improve
utility in differentially private mechanisms. However, care must be taken to consider util-
ity both in terms of information preservation as well as usability. In this work, we have
studied the design of mechanisms that generate noisy query responses within the valid
range of responses for the query. We have combined a formalized matrix representation of
range-adherent mechanisms with a user-independent criterion for optimal utility in order
to provide a basis for the derivation of a range-adherent linear programming mechanism.
We have proposed two range-adherent linear programming variants. The first is subject
only to the differential privacy requirement while the second is also subject to constraints
providing row and column monotonicity, symmetry and fairness in the mechanism ma-
trix. Through experimental comparisons, we have shown that the linear programming
mechanisms are able to provide improvements in utility over boundary-snapping, a com-
mon choice when adherence to range constraints is required. We have observed that the
most significant gains in utility occur for small-sized databases, which are more vulnera-
ble to privacy breaches. We therefore recommend the use of boundary-snapping for cases
of large input where the computational cost of a linear program becomes prohibitive. For
smaller databases, particularly in mid-to-high levels of privacy, we recommend the use of
the linear programming mechanisms for substantial improvements in utility.
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