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Fuzzing is a simple and popular technique that has been widely used to detect vulnerabilities in software. 

However, due to its blind mutation, fuzzing brings many limitations. First, it is difficult for fuzzing to 

pass the sanity checks, which makes fuzzing unable to target vulnerability or crash locations effectively. 

Secondly, blind mutation limits the diversity of seed generation and makes it difficult for the fuzzing 

process to achieve convergence. 

In this paper, we propose a direction sensitive fuzzing solution AFLPro. On the one hand, it focuses on 

seed selection, using a new fuzzing scheme based on Basic Block Aggregation (BBA), which reduces the 

possibility of seed selection in the wrong direction. By applying a multi-dimensional oriented seed se- 

lection strategy, it achieves fine-grained seed selection. On the other hand, based on biological evolu- 

tion, AFLPro optimizes genetic variation to ensure the diversity of seed varieties and the convergence of 

fuzzing tests. Besides, AFLPro also incorporates lightweight static analysis to obtain information about the 

target program (this paper only studies closed source programs), providing complete semantic guidance 

for fuzzing through resource integration. 

We implemented a prototype of AFLPro based on the popular fuzzer AFL. We evaluated it on three 

datasets: DARPA Grand Challenges (CGC), LAVA-M dataset, and a set of real-world applications. The re- 

sults show that in 92% of all three datasets, AFLPro exhibits better vulnerability detection capabilities 

than all of the state-of-the-art fuzzers mentioned in this paper. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fuzzing is an effective technology in software security testing.

ecently, it is adopted to discover software vulnerabilities [1] . Ac-

ording to whether the prior knowledge of software code analysis

s needed, fuzzing is categorized into black-box fuzzing, white-box

uzzing, and grey-box fuzzing. Comparing to the other two cate-

ories, grey-box fuzzing is more effective and its resource cost is

maller due to the utilization of lightweight code analysis. Thus,

rey-box fuzzing is the most popular and effective vulnerability

etection technology for practical applications to date. Specifically,
∗ Corresponding author. 

E-mail addresses: jitiantian0728@gmail.com (T. Ji), wangzhongru@bupt.edu.cn (Z. 

ang), tianzhihong@gzhu.edu.cn (Z. Tian). 

i  

i  

t  

t  

c

ttps://doi.org/10.1016/j.jisa.2020.102497 

214-2126/© 2020 Elsevier Ltd. All rights reserved. 
ince the creation of AFL [2] , a representative of grey-box fuzzers,

undreds of high-risk vulnerabilities have been detected. However,

rey-box fuzzing is still limited by its blind mutation. For example,

iven a random initial seed, it may take about 2 5 ∗8 mutations to

ass the sanity check in the if b == “heil0” statement. A large num-

er of unsuccessful sanity checks result in a shallow detection suc-

ess rate. Furthermore, the input used by the fuzzer is constructed

andomly, and the detection of the abnormal position is blind so

hat the existing method cannot achieve effective direcion sensi-

ive fuzzing. Invalid guidance usually causes the fuzzer to discard

utation seeds that have significant contributions, which makes

t difficult for the fuzzer to penetrate the program code, resulting

n limited seed diversity and the fuzzer challenging to converge to

he abnormal state point. In summary, passing the sanity checks in

he target software efficiently and promptly remains a significant

hallenge. 
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Researchers have proposed many solutions to pass or bypass

sanity checks in target software. These solutions mainly fall into

three categories: 

1. The solution that takes the symbolic execution as an assist-

ing technology to the fuzzing: Driller [3] and T-Fuzz [4] . When

fuzzing gets “stuck”, the solution leverages symbolic execution

to solve the path constraint problem to help fuzzers pass sanity

checks in the target software. 

2. The solution that focuses on using taint analysis technology to

assist the fuzzing. Representative fuzzers in this category in-

clude Taintscope [5] and VUzzer [6] . These fuzzers pass sanity

checks in two steps: first ranking input test cases; second, using

a custom priority rule to guide the mutation process. However,

symbolic execution and taint analysis are considered heavy-

weight program analysis techniques, which impose restrictions

on the fuzzing process, such as higher resource consumption

and significantly reduced scalability. 

3. The solution that focuses on static analysis based fuzzing:

VUzzer [6] and InsFuzz [7] . The static analysis based methods

extract useful semantic information from the target program to

guide fuzzers to pass security checks so that it can improve the

fuzzing code coverage. Although this solution is not as expen-

sive in terms of resource consumption as the heavyweight anal-

ysis solution described above, it is still limited in its vulnera-

bility detection capabilities. The main reason is that this type

of solution does not change the status of the localized orien-

tation (Note: This article uses the term “orientation” to refer

to the sensitivity to the correct direction of fuzzing) of fuzzing,

which often leads to deviation from the correct fuzzing direc-

tion in the process of vulnerability detection. To dominate the

right fuzzing path as much as possible to find the vulnerabili-

ties in the target program accurately, we need a global-oriented

strategy to guide the fuzzing during the vulnerability detection

process. However, existing solutions using blind mutations in

fuzzing do not yield the right global fuzzing directions. There-

fore, how to guide the fuzzing going to an ideal global path

constitutes another challenge. 

In total, we summarize two main problems faced by fuzzing

and its existing improvement schemes: (1) The issue of inability to

effectively oriented towards vulnerability or crash positions due to

sanity checks; (2) The limitation on the diversity of mutant seeds

when it is not effectively oriented, and the problem that fuzzing

test is difficult to converge. To address these two problems, we

propose a direction sensitive fuzzing solution AFLPro. We focus our

attention on seed selection and implement improvements around

other genetic mutation operations related to seed selection. Specif-

ically, this paper makes the following contributions: 

• We have developed a new fuzzing solution based on Basic

Block Aggregation (BBA). Through the unique analysis of the

parent node, we conclude that the error-basic block usually cor-

responds to multiple parent nodes. Our solution reduces the

importance of the error-basic block by Basic Block Aggregation

(BBA for simplicity) and increases the importance of the parent

node corresponding to the basic block. By adjusting the impor-

tance of the basic block on the current execution path, the pos-

sibility of selecting a seed on the wrong execution path can be

reduced. 

• We propose a multi-dimensional oriented seed selection

strategy. From different dimensions, code coverage, local ba-

sic block weights, and global path weights are the three core

factors that influence seed selection. Besides, seed length and

seed execution time also affect the quality of seed selection to

some extent. Based on the analysis of the influencing factors

mentioned above, this strategy gives three principles for seed
selection, which are used to achieve more fine-grained seed se-

lection. 

• Optimizing genetic mutation: An energy scheduling strat-

egy called Generations-Based Mutation (GBMutation) is de-

signed. According to the theory of biological evolution, gener-

ally, as the generation number of genetic mutation increases,

the overall quality of the seed population is continuously im-

proved. Therefore, using the depth of genetic mutation as one

of the core factors of energy scheduling, this paper designs a

GBMutaion-based seed energy scheduling strategy. Besides, this

strategy introduces a fallback mechanism, which can speed up

the convergence speed of the fuzzing test while ensuring seed

diversity. 

• Information integration: Use very lightweight static analy-

sis to obtain program information. The static analysis based

method can extract useful semantic information from the tar-

get program, mainly including two types of information: data

flow information and control flow information. Through the re-

source integration of dynamic and static analysis information,

the completeness of static analysis and the accuracy of dynamic

analysis can be achieved at the same time, which provides a

more robust orientation for fuzzing. 

• We implement a prototype AFLPro based on AFL and evaluate

it on three datasets: CGC[8] dataset, the LAVA-M[9] dataset, and

a set of real-world applications. The results show that in 92% of

all test programs, AFLPro performs better than state-of-the-art

fuzzers in terms of vulnerability detection capability. It is worth

noting that the target test objects in this paper are all closed-

source binary programs. 

. Background and motivation 

As a grey-box fuzzing tool with advantages of being fast, ef-

cient and stable, AFL [8] has been widely recognized by both

cademia and industry. In this section, we illustrate the research

otivation of this paper. We try to maintain the inherent advan-

ages of AFL and implement a direction sensitive fuzzing solution

ased on AFL. 

.1. Motivation for oriented seed selection 

To overcome the limitation of fuzzing blindness, seed selection

nd seed mutation all should be sensitive to fuzzing direction. The

ajor problem for AFL to pass/bypass sanity checks is its blind mu-

ation. AFL uses a fast algorithm to select a smaller subset of test

ases that cover every branch of the test case tree. A branch that

 seed executes is referred to as a tuple . As shown in Equ. 1 , AFL

lassifies a seed as favorite if it is the fastest and smallest input for

ny of the tuples it exercises. However, in most cases, only the in-

ut with the “favorite” label will be selected as a next seed input.

onsequently, according to the calculation of Equ. 1 , unless the ex-

cution path of the current seed happened to be the correct test

irection during fuzzing, all valid code that should have been ex-

mined becomes unreachable “dead code”, which makes it difficult

or AFL to locate the errors or vulnerabilities in the target program.

f a f l = t i ∗ l i (1)

s shown in Fig. 1 , assuming the initial test case of AFL is the

tring “Fuzz ”, we conclude that there are two cases of error check-

ng during fuzzing. 

• There is a string matching check in module (a). We assume

that AFL can mutate the initial seed into “Fullo ” during fuzzing.

Then both “Fuzz ” and “Fullo ” enter the error code block error-

0 , and the execution paths of both two seeds are the same,

so the seed execution time is considered to be the same. The
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Fig. 1. An example of program control-flow. 
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length of “Fuzz ” is shorter than the length of “Fullo ”, so when

the Equ. 1 is used to select the optimal seed for the first tu-

ple (block main to block Hello , which we use ( main, Hello ) to

represent) of the program, the AFL selects “Fuzz ”. But actually,

whether from the perspective of program semantics or infor-

mation entropy or Hamming distance, “Fullo ” is a better seed

than “Fuzz ”, and it is more likely for a mutation to produce the

seed of “Hello ”. 

• Suppose AFL is very fortunate to have two seeds that are

“Hello \ x45 \ x7F \ x46 \ x4C ” and “Hello \ x45 \ x7F \ x46 \ x4C% ”. Both of the

two seeds trigger a new execution branch. When AFL selects a

seed for the tuple ( 0x46, 0x4C ) , according to the product of ex-

ecution time and seed length, the seed “Hello \ x45 \ x7F \ x46 \ x4C ”

with a smaller product value is selected, which leads AFL to

deviate from the correct fuzzing direction. 

After analyzing the above error checks, we draw several conclu-

ions to support the seed selection: (1) The semantic information

f AFL mutation results is important. (2) For the seeds that are ex-

cuted on the same tuple, their next destinations are important. 

Static Analysis. To guide the fuzzing direction, VUzzer adopts a

ath prioritization strategy, which calculates the basic block weight

hrough static analysis and determines the importance of the exe-

ution path by the weight. Therefore, VUzzer alleviates the second

ituation of error checking mentioned above. This motivated us to

ntegrate the static analysis technique into AFL. On the one hand,

e can extract the data-flow features by static analysis to provide

emantic information for the fuzzing. On the other hand, we can

xtract the control-flow features by static analysis to discriminate

he importance of the path and provide better guiding support for

he seed selection. 

.2. Motivation for oriented seed mutation 

AFL uses a biological evolution-based cyclic feedback mecha-

ism for fuzzing, and positive feedback is beneficial to the further

esting of AFL. The quality of the feedback depends on seed muta-

ion. During the seed mutation stage, the “good“ mutation results

re recorded and used for the mutation of the next generation.

here are substantial differences between these recorded muta-

ion results. For example, the importance of the paths they execute

nd the exploitable value of themselves are important factors in-

uencing the mutation of the next generation. Therefore, for these

good” mutations, AFL gives different importance through energy

cheduling. The higher the energy of a seed, the more critical the

ath it executes, and the more valuable its mutation results are. So

he more energy a seed has, the more mutations it performs. 
AFL divides the seeds into several different intervals based on

heir attribute values. And AFL assigns the same constant energy

alue to those seeds in the same interval based on the Power Law .

he energy allocation strategy of AFL is based on the attribute

haracteristics of the seed, i.e., the exploitable value of the seed

tself, without considering the importance of the path performed

y the seed. Based on this, AFLFast [8] introduces the importance

f the seed execution path, and it is considered that the seed on

he low-frequency path is more important. However, to pursue test

peed, AFLFast discards mutant seeds excessively, which makes it

ery easy to fall into a “stuck” state. This paper is inspired by

FLFast, and based on its work, we propose an improved energy

llocation strategy that can better utilize the importance of path

nd the value of the seed itself. 

. Overview of AFLPro 

To address the challenges mentioned earlier in this paper,

e propose AFLPro, a direction sensitive fuzzer. Fig. 2 shows an

verview of AFLPro, which consists of two major components: au-

omated static analysis module and automated fuzzing module. 

.1. Automated static analysis module 

In this module, the IDAPython [9] tool is used for automated

tatic analysis. Additionally, the information can also be collected

hrough the angr [10] tool, which integrates the static analysis

echnique. The input of this module is only the binary program

ithout source code. At first, the Data-Flow Graph (DFG) and

he Control-Flow Graph (CFG) are generated automatically in this

odule. Then we collect the Data-Flow Information (DFI) through

FG, including the byte information and the string information. At

he same time, we also combine the basic block information ob-

ained through CFG with the weight calculation model(as shown

n Equ. 2 ) to get the basic block weight information, which we call

ontrol-Flow Information (CFI) for clarity. The output of this mod-

le is DFI and CFI. They are stored in two different files. The format

f one DFI and one CFI are expressed as follows, note that we use

B to represent a “Basic Block”. 

DFI string_ i = “XXXX”

CFI BB address, BB weight, branch BB address 

Comparing with the performance consumption and time con-

umption of the entire vulnerability detection process, the perfor-

ance consumption of the entire static analysis process is negligi-

le, and the total time required for static analysis is calculated in

econds, which is also negligible. Thus, the cost of static analysis
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Fig. 2. A high level overview of AFLPro. 
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can be ignored in the whole fuzzing process, which is also an im-

portant reason why we choose the static analysis technique to aid

the fuzzing. 

3.2. Automated fuzzing module 

The input and output of the automated fuzzing module are the

same as AFL, that is, the input is the init seed and the output is

the candidate input that may cause the program to crash. Apart

from this, the input of this module also includes the DFI and the

CFI provided by the automated static analysis module. 

During fuzzing, this module gets seeds from the priority queue.

In order to use the higher quality seed in the next fuzzing, it

is necessary to adjust the priority order of the seeds in the

queue. This module first makes a seed selection for each tuple

with the guidance of the proposed BBA solution and the multi-

dimensional oriented seed selection strategy. Specifically, this is

achieved through the seed fitness calculation model, as shown in

Equ. 3 , which is built based on the CFI, and can provide better

directional guidance for seed selection by considering local and

global weight information. 

After the seed selection, this module applies our seed energy

scheduling strategy to guide the direction of the seed mutation

with the expectation of providing high-quality feedback to the

fuzzer. Our seed energy scheduling strategy is achieved through an

energy function as well as a mutation strategy proposed in this

paper, as shown in Equ. 4 and Fig. 3 respectively, which is a com-

prehensive consideration of the importance of the fuzzing path and

the value of the seed itself. 

The seed energy determines the number of seed mutation. After

the seed energy scheduling, this module starts the seed mutation,

in which we do not change the mutation strategies but provide

useful semantic information for the seed mutation. The semantic

information is the DFI provided by the automated static analysis

module. We try to solve the first type of error checking problem

encountered during fuzzing mentioned earlier by utilizing the seed

mutation strategy based on program semantic information. 

In summary, with the combination of the automated static anal-

ysis module and the fuzzing module, we propose a fuzzing im-

provement solution with BBA as the core design. This solution en-

hances the direcion sensitivity of fuzzing from three aspects: seed
election, seed energy scheduling and seed mutation, which are

mbodied in the multi-dimensional oriented seed selection strat-

gy and the triple orientation of weight information, seed energy

nd semantic information. 

. Implement direction sensitive fuzzing 

In this section, we will elaborate on the key technical details of

FLPro. 

.1. Basic block aggregation 

In AFLPro, the basic unit of program analysis is the basic

lock or path branch (we call “tuple” for simplicity). We use the

ightweight static analysis method to collect the basic block (some-

imes we also use “node” to represent) information (i.e., CFI) of

ach function, including the inheritance relationship between ba-

ic blocks, the probability of generating each tuple, and the weight

f basic blocks. By collecting these basic block information, we

an help to determine the path direction, distinguish important

aths, and assist dynamic seed selection in the process of dynamic

uzzing. This paper refers to the fixed point iterative algorithm

entioned in VUzzer to calculate the tuple weight or to calculate

he fitness function in units of the tuple. 

We improve the weight calculation model based on VUzzer, as

hown in Fig. 1 . In the general process of vulnerability detection,

he path to the specific abnormal location of the program is usu-

lly unique, and the node in the fuzzing path usually has only one

arent node. Especially for the high-level code language, taking a

f statement (e.g., 

if(buf[1] == 0x45 && buf[0] == 0x7F && 
buf[3] == 0x46 && buf[2] == 0x4c) 
) containing multiple judgments as an example, the if statement

s displayed in the assembly code language as multiple paths con-

isting of multiple consecutive basic blocks or multiple tuples such

s the module (b) in the Fig. 1 . But in fact, the form of under-

tanding of high-level language is more in line with the human

ay of thinking. If the judgment conditions of several consecutive

asic blocks constituting the if statement are not all satisfied, then

n the high-level language, the program is still in a state that has

ot passed the if condition. When the conditional checks of one
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Fig. 3. The model of the GBMutation strategy. 
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r more consecutive basic blocks that make up the if statement

ail, they all arrive at the same error-basic block, which usually has

ore than one parent node. 

So based on the uniqueness analysis of the parent node, this pa-

er proposes the idea of Basic Block Aggregation (BBA for simplic-

ty). That is, by determining the parent node of the current basic

lock, for basic blocks with multiple parent nodes and basic blocks

ith fewer or a single parent node, we do different log process-

ng for these two types of basic blocks and the specific processing

perations follow the Equ. 2 . 

We define η = 

1 ∑ 

c∈ pred(b) prob(b) ∗prob(e cb ) 
and δ = 

len (pred(b)) 
len (pred(brob)) 

for 

larity, 

 (b) = 

{
η ∗ log 2 (len (pred(b)) + 1) , δ < 1 

1 
η∗log 2 (δ+1) 

, δ > 1 

(2) 

In the Equ. 2 , b represents the current basic block; brob rep-

esents the sibling basic block of b; pred(b) represents the set

f the parent basic blocks of basic block b; c represents a par-

nt basic block of the current basic block b; len() is a function

or length/number solving, len(pred(b)) represents the number of

 ’s parent basic blocks; e cb represents the tuple of (c, b); prob(b)

eans the probability of generating the basic block b, prob(e cb )

eans the probability of generating the tuple (c, b) ; finally, w(b)

s the calculated weight of the current basic block b . 

As shown in Fig. 1 , the two modules (b) and (c) are the re-

ults of the BBA processing. By the BBA operations, the sibling ba-

ic blocks generated by the same parent node are compared. We

ssign less weight to the sibling basic blocks with more parent

odes by log processing and increase the weight of the sibling ba-

ic blocks with fewer parent node by a different log processing. 

Taking the seed selection of the tuple ( 0x4C, % ) in Fig. 1 as an

xample, suppose we have two kinds of seeds, the first type is go-

ng to the basic block error-2 , and the second type is going to the

asic block @ that satisfies the % judgment condition. Both the two

eeds trigger a new tuple and increase the code coverage, which

akes VUzzer difficult to distinguish the importance of the two

eeds in both cases. But actually, the second type of seed is the

eed in the correct test direction we want to choose. Based on this

ituation, we take use of the BBA idea, then the calculated weight

f the nextB basic block % is significantly higher than the weight

f the nextB basic block error-2 . Finally, we select the seed whose

xecution direction is the basic block % for the tuple ( 0x4C, % ) ,

hich avoids the wrong test direction as much as possible. This
aper focuses on seed selection. Our proposed BBA solution is the

ore design of seed selection. It can adjust the importance of the

asic blocks on the current execution path to reduce the possibility

f seed selection in the wrong direction. In the following, we will

pply the BBA solution to the multi-dimensional oriented seed se-

ection strategy. 

.2. Multi-Dimensional oriented seed selection strategy 

Like most popular fuzzers, AFLPro is a code coverage-oriented

uzzer, that is, whether the state changes during program execu-

ion is based on whether the code coverage increases. However,

ased on our analysis above, during the fuzzing process, the in-

rease in code coverage does not mean that it will be closer to

he abnormal location of the program. We expect that each se-

ected seed will not only increase code coverage but also be closer

o the correct test direction, enabling deep penetration of the tar-

et program to increase the likelihood of trigger crashes. For this

urpose, this paper proposes a more fine-grained seed selection

cheme, namely Multi-Dimensional Oriented Seed Selection Strat-

gy. The strategy takes the code coverage, local basic block weight

nd global path weight as three core dimensions, and takes the

eed length and seed execution time into consideration. By con-

idering different factors in multiple dimensions, we modeled the

ulti-dimensional oriented seed selection strategy (we call this

odel the seed fitness function) and designed three principles to

e followed in the model establishment process. The details are as

ollows: 

Principle 1 . The most important thing is the next intention of

ll the seeds on this tuple, that is, to measure the importance of

he target basic block of the next tuple to be executed by these

eeds. For clarity, we use nextB to represent the target basic block

f the next tuple. Therefore, the weight of nextB should be an im-

ortant factor in the calculation of seed fitness on the tuple. 

Principle 2 . For the seeds that determine the same intention,

he closer the seeds are to the abnormal position on the execution

ath, the higher the weight we assign to the seeds. Therefore, the

eight of the seeds should be the second important factor in the

alculation of fitness. 

Principle 3 . Finally, if the weights of some seeds are still the

ame, then the seed with the shorter length and less execution

ime is selected as the best seed on the tuple, and the correct test
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direction in the seed selection process can be guaranteed as much

as possible. 

In the stage of seed selection on the tuple, AFL uses QEMU to

perform instrumentation and simulation execution on binary pro-

grams. In this paper, only one instrumentation instruction is added

based on AFL, which is used to obtain the actual memory address

when the basic block is dynamically executed and can guarantee

lower performance overhead and maintain the advantage of fast

and stable. It is worth mentioning that when detecting a program

that can cause QEMU to crash, the current vulnerability detection

process will not be terminated due to the setting of the process

management mechanism in AFL that makes QEMU and our target

binary run in the same subprocess. In short, we should keep in

mind that such programs that under test but can cause QEMU or

AFL to crash do not affect the normal execution of fuzzing. 

In this phase, this paper maps the basic block information col-

lected in dynamic and static components. Then, based on Principle

1 and the idea of BBA, we leverage the proposed weight calculation

model as shown in Equ. 2 to calculate the weight of the nextB . 

After we select a class of seeds with the same local test direc-

tion according to Principle 1, we still have to make the best choice

from such seeds. Therefore, this paper follows Principle 2 to add

the weights of all the basic blocks on the path of each seed exe-

cution, which we use w q to represent. And preferentially we select

the seed q with a higher w q . Compared with Principle 1, Principle

2 is a global optimization strategy which not only takes into ac-

count the importance of the entire path, but also a measure of the

effective value of the seeds. 

Principle 3 is a consideration of time and resource overhead in

the fuzzing process. After ensuring the value of the seed and the

direction of the fuzzing, we also need to consider the performance

overhead in the fuzzing. So after the seed sifting by Principle 1

and Principle 2, we finally do the third selection, choosing the seed

with the least performance overhead from the candidate seeds as

the best seed. 

Based on the above three principles, this paper proposes a

tuple-oriented fitness function calculation model (as shown in

Equ. 3 ). By calculating the fitness values of all the seeds passing

through the same tuple, the seed with the highest fitness is se-

lected as the best seed of the tuple. 

f new 

= 

[ w (nextB ) + ε] · w q 

log 2 ( t q · l q ) 
(3)

Note: ε is small enough to ensure that the molecule is not zero;

w(nextB) represent the calculate result of the Equ. 2 ; t q and l q rep-

resent the execution time and the length of the seed q , respec-

tively. 

4.3. GBMutation-Based seed energy scheduling 

According to the analysis of the impact factors of seed energy

scheduling as mentioned before, AFL allocates seed energy accord-

ing to Power Law , base on which, AFLPro develops the seed en-

ergy scheduling strategy. According to the theory of biological evo-

lution, with the increasing generation number of cross-mutation,

the biological population becomes more and more excellent. Dur-

ing fuzzing, the generation number of the seed mutation appears

as the depth attribute of the seed. We regard the depth attribute

of the seeds as an influential factor in energy scheduling. After

many verification experiments, we propose a mutation strategy

called Generations-Based Mutation (GBMutaion for simplicity), that

is, with the increasing the seed depth, we assign more energy to

the seed for the subsequent seed mutation. 

Considering the adaptability of seed populations, we also add

a fallback mechanism in the GBMutation strategy. That is to say,

when the seeds in the current generation are still unable to find a
rash after executing for a certain period, we would think that the

unctions or values that these seeds should have in this genera-

ion do not meet expectations. At this time, we will discard all the

eeds in the current generation by reducing the seed depth and

e-select the seed from the queue. From another perspective, the

allback mechanism of the GBMutation strategy can also prevent

eeds from getting “stuck” and replace the test case in time. 

Besides, we construct a model of the GBMutaion strategy as

hown in Fig. 3 . The GBMutaion strategy allows the optimal indi-

iduals of each generation to be retained and also ensures that the

ptimal individuals generated are not affected by those operations

uch as crossover and mutation to ensure the convergence of the

lgorithm. 

We apply the GBMutaion strategy to the seed energy scheduling

o ensure the better utilization of the seed value. Based on the GB-

utaion strategy, we propose an energy scheduling model which

s shown as Equ. 4 . 

p(i ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 

d(i ) 

log 2 ( f (i ) + 2) 
, d(i ) < max _ gene 

2 

d(i ) 

log 2 ( f (i ) + 2) · 2 

s (i ) 
, d(i ) > max _ gene 

(4)

Where p(i) denotes the energy assigned to the current seed i ;

.e., the number of the seed mutation, max_gene represents the

aximum mutation generation; d(i) represents the depth of the

eed; s(i) means that the number of times the seed input which

xecutes a path is selected from the seed queue; f(i) means that

he number of times the path of the seed has been executed in

otal, which also includes the number of times that it has been ex-

cuted by other seeds. The increase of s(i) and f(i) will affect the

volutionary speed of the seed, so we put them on the denomina-

or. 

As shown in Equ. 4 , our GBMutation-based energy scheduling

trategy is very different from AFLFast’s energy scheduling strat-

gy (as shown in Equ. 5 ). Our strategy does not excessively discard

eeds to ensure the diversity of the mutant seeds; and by introduc-

ng a fallback mechanism, our strategy also guarantees the conver-

ence of fuzzing. Specifically: 

On the one hand, through the monitoring of f(i) , our energy

cheduling strategy still prefers to assign high energy to those

eeds on the low-frequency path and low energy to those seeds

n the high-frequency path. On the other hand, when d(i) is lower

han max_gene , the energy allocated to the seed is increasing, but

hen d(i) is equal to max_gene , the seed energy value reaches the

pper limit. To prevent the high-energy seed from being selected

niquely and continuously, we start monitoring by s(i) , and as the

umber of times the seed is selected from the queue increases, the

nergy allocated to the seed will begin to decline exponentially. 

p(i ) ∝ 

s (i ) 

f (i ) 
(5)

.4. Semantic information collection 

The semantic information collection is one of the main parts of

nformation integration. It refers to the DFI obtained through static

nalysis, mainly including the byte information and string infor-

ation that is related to the cmp instructions and cmp functions.

hen using cmp, cmpsb and other cmp instructions in binary pro-

rams, or using cmp functions such as strncmp and memcmp , it is

ften the process of character or string matching. Especially in the

ace of such checks, it often leads AFL to go to erroneous fuzzing

irections due to wrong judgments, seed selection errors, and in-

ufficient seed mutation, which always makes the fuzzing process

tuck. Therefore, to maintain the fast characteristics of AFL, we use

tatic analysis to collect the sematic information and provide it to

he fuzzer for oriented seed mutation. 
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For the semantic information at the instruction level, we collect

he immediate data in the comparison instruction, mainly includ-

ng single-byte information. As shown in Fig. 1 , all the single-byte

omparison information in each judgment instruction of module

b) and module (c) belongs to this type of information. Note that

ach basic block corresponds to a judgment instruction, and we

se the immediate data in the comparison instruction to represent

ts corresponding basic block. 

For the semantic information at the function level, there are

ome instructions (such as mov, push , etc.) used for setting func-

ion parameters before the function call instruction, and we would

ollect the string information existing in these instructions. Such

emantic information mainly includes multi-byte information. As

hown in Fig. 1 , the string “Hello” in the basic block included in

he module (a) is such information. 

AFLPro collects single-byte and multi-bytes semantic informa-

ion and uses this information for the implementation of seed mu-

ations. At the same time, the collection of this information would,

o some extent, solve the problem of the first type of error check-

ng encountered by AFL in the seed selection stage, which is a

uarantee that the selected seeds contain valid semantic informa-

ion. 

. Evaluation 

Through the above theoretical analysis, we conclude that AFL-

ro has the following advantages: 1) it maintains the fast, efficient,

nd stable characteristics of AFL; 2) by overcoming the blindness of

uzzing, it can bypass the sanity checks, thereby achieving a prac-

ical orientation of fuzzing. To further prove the effectiveness of

FLPro, we do comparison experiments with several state-of-the-

rt fuzzers such as AFLFast [8] , VUzzer [6] , AFLPlusPlus [11] , etc. All

omparative experiments demonstrate the advanced performance

f AFLPro. 

First, we use the DARPA CGC dataset to perform a separate

alidation for the energy allocation strategy in the seed muta-

ion stage. On the one hand, referring to the time setting of the

utomated vulnerability mining competition, we set the evalua-

ion time to be within 6 hours in the CGC evaluation experiment.

n the other hand, to avoid the randomness of the experimen-

al results, we performed multiple repeated experiments, which

trengthened the reliability of the experimental data by presenting

he average of the experimental results. 

Secondly, for the overall verification of AFLPro, we chose the

AVA-M dataset and several real-world programs to complete the

xperimental evaluation. Among them, we set a 24-hour experi-

ental evaluation span for the real-world programs to reduce the

andomness of the experimental results, thereby providing definite

roof for the effectiveness of AFLPro’s vulnerability detection. 

Furthermore, we verified the necessity of instrumentation opti-

ization through experiments, and the experimental analysis re-

ults demonstrated that instrumentation optimization could be

sed as a research direction for future fuzzing improvement. 

Our experimental environment is a virtual machine with an

buntu 16.04 system equipped with a 64-bit 4-core CPU and 4GB

AM. But for the real-world programs, in order to meet the in-

tallation requirements of our comparison tool VUzzer and ensure

he consistency of the experimental environment, our experiments

re performed on a virtual machine with a Ubuntu 14.04 system

quipped with a 32-bit 4-core CPU and 4GB RAM. 

.1. Experiments on CGC dataset 

To make the energy scheduling strategy proposed in this pa-

er more convincing, this paper verifies its effectiveness based on
he DARPA CGC dataset. The Challenge Binaries (CBs) are custom-

ade programs specifically designed to contain vulnerabilities that

epresent a wide variety of crashing software flaws. They are

ore than simple test cases, they approximate real software with

nough complexity to stress both manual and automated vulnera-

ility discovery [12] . 

Moreover, To ensure sufficient experimental support for the

BMutaion-based energy scheduling strategy of AFLPro, this pa-

er controls a single variable. That is, the AFLPro energy scheduling

odel is separately integrated into the AFL, which is represented

y GBM(AFLPro) , and our implementation GBM(AFLPro) is used for

omparative experiments. AFLFast is an improved tool superior to

FL, so based on the CGC dataset, this paper only compares the

xperimental data of GBM(AFLPro) and AFLFast. 

We obtained a total of 149 CGC binaries, of which 137 bina-

ies were successfully tested. The specific reasons why the other

2 binaries were not successfully tested are described in Steelix

13] , and we will not repeat them in this paper. Except for the out-

ut folder, we use the same execution command for GBM(AFLPro)

nd AFLFast. Besides, regarding the rules of the CGC competition

nd other popular automated vulnerability detection competitions,

e conducted comparative experiments with a limited time of 1 h

nd 6 hours. We use the metric of the number of binaries that be

riggered to crash. The various comparison results obtained by the

xperiment are shown in the Table 1 . Among them, column 1 rep-

esents the experimental test time; column 2 and column3 repre-

ent the binary quantity that GBM(AFLPro) and AFLFast can trigger

he program to crash, respectively; in column 4, for all CGC pro-

rams, > 0 means that GBM(AFLPro) performs better than AFLFast

i.e., the number of binaries that can be triggered to crash is more),

nd < 0 means that AFLFast performs better than GBM(AFLPro) ; col-

mn 5 indicates the number of binaries that can be triggered to

rash by GBM(AFLPro) but not by AFLFast; column 6 indicates the

umber of binaries that can be triggered to crash by AFLFast but

ot by GBM(AFLPro) ; column 7 indicates the number of binaries

hat neither GBM(AFLPro) nor AFLFast can trigger them to crash.

he experimental results of the Table 1 show that the combina-

ion of AFL and our proposed GBMutaion-based energy scheduling

trategy can have better test performance than AFLFast, which also

roves the effectiveness of our GBMutaion energy scheduling strat-

gy. 

In addition to counting the number of binaries that are trig-

ered to crash, we also want to measure the number of crashes

hat trigger binary to crash. It is more powerful to prove the ro-

ustness and effectiveness of our energy scheduling strategy from

hese two aspects. Due to the space limitation, from the binary

rograms where both AFLFast and GBM(AFLPro) can trigger them

o crash, we selected five CGC binaries randomly to show their ex-

erimental comparison results. As shown in the Table 2 , column

 and 3 present the number of crashes obtained by AFLFast and

BM(AFLPro) respectively during the fuzzing within 1 h. The re-

ark part of the last column is a supplement to our experimental

ata. We use parallelized fuzzing in the experiment of CGC dataset,

-M” means deterministic seed mutation strategy during fuzzing,

nd “-S” means a non-deterministic seed mutation strategy dur-

ng fuzzing. Our CGC-based experiment takes 1 h as a time limit.

aking remark of CADET_0 0 0 03 experimental data as an example,

vg(20 ∗4(-S)) indicates that we use four parallel fuzzer processes to

erform non-deterministic fuzzing, and 4 parallel fuzzers perform

 h as 1 round. We conduct 20 rounds of fuzzing and calculate

he average after summing all the experimental data. The average

s our final experimental result. Similarly, avg(20(-M)) means that

e use 1 parallel fuzzer to perform deterministic fuzzing. Taking 1

 as 1 round, we perform 20 rounds of fuzzing and calculate the

verage after summing all the experimental data. The average is

ur final experimental result. Therefore, the supplementary expla-
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Table 1 

Statistics: the number of CGC binaries are crashed by GBM(AFLPro) or AFLFast. 

Table 2 

Comparison: the number of crashes found. 
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nation in our remark is to explain the origin of the experimental

data in Table 2 . After many experiments, the average experimental

result is more convincing. 

The experimental results in Table 2 prove that the ability of

GBM(AFLPro) in detecting vulnerability is better than AFLFast. Be-

sides, it is worth mentioning that although the measure of compar-

ison between the fuzzers is the number of crashes obtained during

fuzzing, we find that the quality of the crashes we got is higher

than AFLFast after conducting the exploit experiment. 

Our exploit experiment is done with the rex tool. Rex tries

to exploit the crashes generated by AFLFast and GBM(AFLPro) re-

spectively, and finally gets the conversion rate from crash to vul-

nerability exploit (i.e., POV, Proof of vulnerability). The experi-

mental results indicate that the vulnerability exploitation conver-

sion rate of GBM(AFLPro) is about 10% higher than AFLFast. Tak-

ing CROMU_0 0 071 as an example, GBM(AFLPro) has a vulnerabil-

ity exploitation conversion rate of 26.8%, while AFLFast’s conver-

sion rate is 15.8%. In terms of vulnerability exploitation conversion

rate, GBM(AFLPro) is 11% higher than AFLFast, which proves that

GBM(AFLPro) gets a higher crash quality than AFLFast. 

5.2. Experiments on LAVA-M dataset 

Since the introduction of the LAVA-M dataset, the LAVA-M

dataset has become a benchmark for researchers to test the per-

formance of fuzzing tools. LAVA-M consists of 4 Linux utilities –

base64, who, uniq , and md5sum – each injected with multiple bugs.

And each injected bug has a unique ID differentiating with other

bugs. To verify the advantages of AFLPro compared to other fuzzing

tools, this paper continues to conduct experimental comparisons

based on the experimental data provided in LAVA [14] , VUzzer [6] ,

InsFuzz [7] and other papers. We have reviewed the latest research

materials and found many improved tools based on AFL. VUzzer

and InsFuzz should be two state-of-the-art AFL-based tools. So we

use them as experimental comparison objects to introduce the ad-

vantages and features of AFLPro. In addition, we have learned that

the team of Yan proposes a program conversion method to im-

prove the fuzzing, and implements a tool called T-Fuzz [4] . The

idea of T-Fuzz is somewhat similar to that of Driller. That is, the

AFL is used to generate input, and when AFL gets “stuck”, it takes

action. AFLPro also compares and analyzes with T-Fuzz based on

the experimental results given in the T-Fuzz paper. 
Like other fuzzing tools, AFLPro also tests each LAVA-M pro-

ram with a limited time of 5 hours, and we don’t turn on par-

llelized processes, i.e., don’t use the “-M” and “-S” options. The

pecific experimental results are shown in Table 3 . The results

f AFLPro are shown in the last column and results from other

uzzers are shown in other columns. From the experimental results

f base64, uniq and md5sum , we can see that AFLPro find more

ugs than all other fuzzers listed in Table 3 , and far more bugs in

ho than all fuzzers listed in Table 3 apart from InsFuzz. Besides,

FLPro finds some new bugs that the author of LAVA-M does not

ist. The new bugs found by AFLPro are shown in Table 4 . We an-

lyze the reasons why AFLPro found more bugs than VUzzer, Ins-

uzz, and T-Fuzz, and why AFLPro found fewer bugs than InsFuzz

n who as below. 

Comparison with VUzzer. Compared with VUzzer, the advan-

ages of AFLPro are shown in three aspects: 

1. AFLPro collects not only single-byte information in the cmp in-

struction during the static analysis phase, but also multi-bytes

semantic information in the target program; 

2. AFLPro puts forward BBA solution on the weight calculation of

basic blocks, which better guides the direction of fuzzing; 

3. AFLPro considers not only the localized basic block weights

when making seed selection on the tuple, but also the weight

of the seeds from a global perspective. Through both local and

global considerations, AFLPro achieves better orientation than

VUzzer and other fuzzing tools. 

Comparison with T-Fuzz. Compared with T-Fuzz, AFLPro has

etter performance in automated fuzzing based on LAVA-M

ataset. Note that, in the T-Fuzz column shown in Table 3 , the

umber of crashes in brackets is the result of both manual and au-

omated analysis. Besides, the overall design idea of T-Fuzz is sim-

lar to Driller, so we analyze that T-Fuzz has a common problem

ith Driller, that is, the global fuzzing direction is dominated by

uzzing, so what can be optimized and corrected by both two tools

s the local fuzzing orientation problem. So T-Fuzz, like Driller, still

as limitations in implementing direction sensitive fuzzing. 

Another problem with T-Fuzz is that its scalability is not high.

hen the target program becomes larger or more complicated, it

ill have a “transform explosion” problem, which limits the exe-

ution speed of fuzzing. 
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Table 3 

The number of bugs found by each fuzzer on LAVA-M DATASET. 

Table 4 

New bugs found by AFLPro. 
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Fig. 4. Result of parallel experiments on who . 
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Comparison with InsFuzz. Compared with InsFuzz, AFLPro out-

erforms InsFuzz in testing uniq, base64 , and md5sum . Especially

n the test of uniq , the testing effect of InsFuzz is obviously be-

ind AFLPro. Since InsFuzz does not open source, after analysis,

e suspect that the reason for this is probably due to the inaccu-

ate knowledge information collected by InsFuzz. The reason why

e have such a guess is that there is often misleading informa-

ion near the location where the comparison information exists in

he binary program. Moreover, in the process of dynamic instru-

entation, we cannot accurately analyze whether the comparison

nformation is correct. When the collected comparison information

s biased, it is easy to cause the wrong fuzzing direction. However,

nsFuzz claims that it guides the random mutation based on the

ccurate knowledge set, which contradicts the fact that the com-

arative information is not always accurate. Therefore, we believe

hat the idea or method of such fuzzing should be further analyzed

nd verified. 

Moreover, another advantage of AFLPro exceeds InsFuzz is that,

part from the static analysis and AFL tools, the implementation of

FLPro no longer depends on other tools, while InsFuzz is imple-

ented with many tools. As mentioned in the paper of InsFuzz, it

ses two instrumentation tools. One is the QEMU [15] integrated

n AFL, which is to instrument j ∗ instructions and call instructions.

nother instrumentation tool used by InsFuzz is the Dyninst tool

16,17] , which instrument instructions of the cmp class to collect

omparison information. 

For the target program who , the reason why AFLPro performs

orse than InsFuzz is the time-limit problem. Since there are thou-

ands of sanity checks in who , this is rare in most of our target

rograms, and AFLPro is still mutating the only seed in the initial

eed queue during the 5 h test period. A complete round of muta-
ions based on the initial seed is not completed, i.e., the first round

f seed mutation has not yet ended. 

So we perform a parallelized experiment on who , as shown in

ig. 4 , we find that when using parallelized fuzzing, the number

f crashes that AFLPro can detect the crash is increasing within 5

ours. 

In summary, the overall performance of AFLPro on the LAVA-M

ataset is superior to the existing state-of-the-art fuzzing tools in

erms of the number of bug found. It is particularly worth men-

ioning that for md5sum, base64 , and uniq , the percentage of bugs

etect by AFLPro within 1 h is 86%, 96%, and 100% of the number

f bugs detected within 5 hours, respectively. And this is a stable

esult of many experiments, which is enough to prove the fast and

table advantages of AFLPro in vulnerability detection. 

.3. Experiments on real world programs 

In order to measure the effectiveness of AFLPro in real life, we

valuate the experimentation in 4 real-world programs: gif2png,

df2svg, tcpdump, tcptrace against AFL, VUzzer and AFLPlusPlus in

he ability to find the unique crashes. AFLPlusPlus [11] is the latest

roposed tool in the AFL family. AFLPlusPlus is the state-of-art, and

ts comparison experiments with AFLPro can show the absolute ef-

ectiveness of AFLPro. 

It is worth noting that, these programs are also used to evaluate

Uzzer but are different from the evaluation experiment of VUzzer.

n VUzzer’s evaluation experiment, it not only needs to perform

tatic analysis on the target binary program but also needs to per-

orm static analysis on the dynamic link libraries on which the tar-

et program depends. Moreover, it is also required to specify the

ntry addresses of the dynamic-link libraries during dynamic test-

ng. Although VUzzer detects a lot of crashes, most of the crashes

re not located in the target binary itself. Moreover, in terms of

calability, when fuzzing relies more on other information rather

han the target program itself, its scalability will be greatly lim-
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Table 5 

32-bit system: The real-world programs evaluation results. 

Table 6 

64-bit system: The real-world programs evaluation results. 
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ited. The goal of this paper is to detect as much as possible the

vulnerabilities of the binary itself, without paying attention to the

vulnerabilities in the dynamic-link libraries that the target binary

depends on. Therefore, in the process of dynamic fuzzing, this pa-

per performs the static analysis only on the target binary and does

not use the dynamic-link library as the test target, which also en-

sures the scalability of AFLPro. 

Note that, we do not compare AFLPro with other fuzzers such

as InsFuzz and T-Fuzz because their source code or binary tools are

not released. Besides, the reason why we do not select mpg321 and

djpeg used in VUzzer’s evaluation experiment as the target pro-

gram are as follows. 

• We need to customize the Ubuntu 14.04 virtual machine en-

vironment according to the installation requirements of the

VUzzer and transplant AFL and AFLPro to the virtual machine

environment for our evaluation experiment. But for some rea-

son, we can’t use mpg321 correctly in this virtual machine. For

the sake of the correctness of the VUzzer test, we do not choose

mpg321 as the test program. 

• In the paper of VUzzer, it is mentioned that neither VUzzer

nor AFL detects any related crash of djpeg . When getting rid

of the dynamic-link library and only pay attention to the crash

of djpeg itself, it not only makes the detection difficult, but we

think the meaning of this binary program used in evaluation

experiments is also greatly reduced, so we also do not choose

djpeg as the test program. 

In this paper, we conduct evaluation experiments by control-

ling a single variable, allowing VUzzer and AFLPro to perform the

static analysis only on the target binary. VUzzer, AFL, and AFL-

Pro are fed with the same input. In this experiment, we set a

time limit of 24 hours for fuzzing to avoid any issues caused by

randomness [18] , and we do not use the “-M” or “-S” option to

perform the parallelized fuzzing. It is worth noting that, because

VUzzer requires the experimental environment to be a 32-bit sys-

tem, and we found that the compilation of the QEMU environment

on which AFLPlusPlus relies requires a 64-bit system during the

installation of AFLPlusPlus, we conducted comparative experiments

on two systems. The experimental results are shown in Table 5 and

Table 6 , respectively. 
Table 5 shows the results of unique crashes triggered by VUzzer,

FL, and AFLPro. The second column in Table 5 is the parameters

e used in the fuzzing process of the three fuzzers, where @@ rep-

esents the current seed input. According to the data in Table 5 ,

FLPro performs better than VUzzer and AFL, which proves that

ts vulnerability detection capability is higher. Moreover, compared

o the number of vulnerabilities detected in the VUzzer paper that

ely on dynamic link library information, the number of vulnera-

ilities detected by VUzzer in the evaluation experiments in this

aper is significantly reduced. This also proves from the side that

hen relying on dynamic link libraries for vulnerability detection,

any of the vulnerabilities are not located in the target program

tself but located in the dynamic link libraries. 

Table 6 shows the experimental comparison results of AFLPlus-

lus and AFLPro. The experimental programs and its correspond-

ng version number and parameters used are the same as those in

able 5 . The only difference is that Table 6 is an experiment on a

4-bit system. According to the data in Table 6 , AFLPro performs

etter than AFLPlusPlus. This comparison proves AFLPro’s ability in

ulnerability detection and demonstrates the absolute effectiveness

f our proposed direction sensitive fuzzing method. 

.4. Instrumentation performance analysis experiment 

Through experimental analysis, we find that when AFL uses

EMU to collect instrumentation information, it will generate a lot

f meaningless instrumentation overhead during each dynamic ex-

cution of the binary program. The specific reasons are as follows:

• If our target program is a statically compiled binary, each time

AFL re-executes the target program, the entry address of the

program execution starts from the _start function. We think

that the instrumentation instructions between the address of

the _start function and the entry address of the actual main

function are meaningless because the effective instrumentation

information used in the process of dynamic fuzzing starts from

the entry address of the main function. 

• If our target program is a dynamically compiled binary, AFL will

first dynamically link to the dynamic link libraries when it first

executes the binary. Then, apart from the instrumentation be-

tween the _start function and the main function, the useless in-

strumentation cost of a dynamically compiled binary also in-
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Table 7 

Instrumentation performance analysis results. 
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cludes a large number of instrumentation loads generated dur-

ing the dynamic linking process. 

We use some statically compiled binaries of 670-700KB size

nd some dynamically compiled binaries of 50-60KB size as test

rograms. Based on the prototype AFL, the optimization perfor-

ance analysis experiment is carried out on the instrumentation

mplementation. Our test results show that there is much space

or performance optimization in the instrumentation implementa-

ion of AFL. Specifically, please see the data in Table 7 for details. 

• For statically compiled binary programs, the data we obtained

from experimental statistics is that about 46% of the instrumen-

tation is meaningless. 

• For the dynamically compiled binary programs, the statisti-

cal data we obtained is: For the first execution of the pro-

gram, about 92% of meaningless instrumentation is generated,

of which about 91% of the instrumentation is caused by dy-

namic linking, and about 1% of the instrumentation is between

the _start function and the main function; For each subsequent

program execution other than the first time, the instrumenta-

tion cost of the dynamic linking is no longer generated, but the

instrumentation overhead from the _start function to the main

function occupies about 12% in the total instrumentation. 

As can be seen from the above experimental statistics, a sin-

le execution of the binary program would bring a lot of mean-

ngless instrumentation overhead. The result of the uninterrupted

xecution of the binary program during the AFL fuzzing is that it

ccumulates more meaningless instrumentation cost, which would

ead to a significant waste of computer resources. Therefore, this

aper considers that it is necessary and meaningful to optimize

he instrumentation implemented in AFL. The initial idea of our

ptimization is straightforward, that is, locating the entry address

f the main function in the binary program and only the part af-

er the address can be instrumented each time AFL executes the

inary program. In this way, the instrumentation cost in the AFL

uzzing can be reduced, and the fuzzing speed can be improved.

t present, in the AFLPro implemented in this paper, we have not

ade improvements and optimizations based on the implementa-

ion of the instrumentation in the AFL. But based on the support

f the current analysis data, we consider in-depth research and im-

lementation of this part in the future work. 

. Related work 

Fuzzing is widely recognized by academics and industry for its

dvantages of fastness, efficiency, and stability. However, because

f its blindness and randomness, fuzzing often deviates from the

orrect test direction when facing sanity checks in target program.

o this end, the researchers have proposed several improvement

ethods in the research directions described below: 
.1. Coverage-Oriented fuzzing 

Coverage-based fuzzing uses code coverage to measure the ef-

ectiveness of fuzzing. Usually, the path to an abnormal location

n the program is challenging to detect, and the seeds provided

y some traditional fuzzing tools are mainly executed on many in-

alid high-frequency paths. The execution of high-frequency paths

n fuzzing limits the growth of code coverage. To improve the code

overage, AFLFast assigns high energy to the seeds on the low-

requency path while assigning low energy to the seeds on the

igh-frequency path. AFLFast’s energy distribution strategy, com-

ined with non-stop seed mutation, allows the fuzzing to trig-

er as many low-frequency paths as possible, thus enabling the

uzzing direction towards the low-frequency path. It is instruc-

ive for AFLFast to assign high energy to the seeds on the low-

requency path. Therefore, when the low-frequency path is de-

ected in this paper, the same idea is adopted to allocate high en-

rgy. 

AFLGo [19] takes the accessibility of the program’s abnormal

ocation as an optimization problem, and uses a meta-heuristic

ethod to schedule and utilize the test seeds that are shorter than

he abnormal locations in the target program. The seed distance

alculation method used by AFLGo always directs the fuzzing to

he shortest path that may reach the abnormal position (note that

FLGo’s target objects are open source binaries), but this way of

voiding the longer path may cause the fuzzing to fail to reveal

ugs hidden in the longer path. But AFLGo also provides us with

n important thought, that is, the direction sensitivity problem of

uzzing can be transformed into a reachability problem for an op-

imal solution. 

CollAFL [20] solves the problem of path collision caused by

ash calculation, which, to some extent, corrects the problem that

FL deviates from the correct test direction in fuzzing due to

ath collision, and improves the accuracy of fuzzing. The above

hree fuzzing tools are the same as AFLPro. They are all coverage-

riented fuzzing tools, and they have improved and optimized AFL

rom different perspectives. 

But in the aspect of the orientation of fuzzing, for the fuzzing

ools or methods that rely only on coverage, it is difficult for them

o pass sanity checks in the target program, such as the magic

ytes check. Therefore, apart from the coverage, this article also in-

roduces other metrics for passing sanity checks in the target pro-

ram, such as basic block weights, seed weights, and so on. 

.2. Symbolic execution-Assisted fuzzing 

Symbolic execution uses the symbol value instead of the ac-

ual value to execute the target program, it collects the path con-

traints and then generates an input that can pass sanity checks

hrough the constraint solver. In theory, 100% code coverage can be

chieved using symbolic execution. However, due to the existence

f the path explosion, and the path constraint is too complicated

o that the constraint solver cannot solve, which limits the scala-

ility of symbol execution. Therefore, researchers use symbolic ex-

cution as an aid to fuzzing to improve the fuzzing performance,

nd this idea is used in the work of DART [21] , SAGE [22] , SYMFuzz

23] , and Driller [3] . 

Driller is one of the most representative tools. Its main idea is

o use fuzzing as the main method, let the symbolic execution per-

orm the auxiliary test. When the fuzzing gets “stuck”, Driller will

all the symbolic execution to bypass the check, and then continue

he fuzzing. However, the symbolic execution-assisted fuzzing rep-

esented by Driller is locally oriented, and the global direction still

ominated by the fuzzing. Therefore, if the fuzzing deviates from

he correct direction at the beginning, then the test result would

e deviated and wrong. Besides, since symbolic execution is a
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heavy-weight analysis technique, the stress of the constraint solv-

ing in symbolic execution is very large for longer paths or more

complicated path constraints, so it is difficult to apply it to reality.

Therefore, this paper does not choose the method of symbolic ex-

ecution to assist fuzzing but uses the static analysis-based fuzzing.

6.3. Static analysis-Based fuzzing 

Static analysis reasons about a program without executing it,

and can achieve high code coverage of the target program. But

due to the lack of dynamic information when the program is run-

ning, static analysis is not as accurate as fuzzing in vulnerability

detection. Therefore, the vulnerability detection method combining

static analysis with fuzzing can integrate resources and have com-

plementary advantages of static analysis and fuzzing. 

VUzzer uses static analysis to focus on the magic byte checks

that exist in the cmp instruction compared to the immediate values

and uses static analysis to calculate the weight of the basic block to

guide the direction of the fuzzing. However, VUzzer has a certain

degree of limitation on its execution speed and resource overhead

due to the use of heavy-weight taint analysis. In this paper, when

collecting information based on static analysis, for passing sanity

checks, we are no longer limited to the magic byte check of the

immediate value comparison in the cmp instruction. We also col-

lect the string information corresponding to the parameters in the

comparison function. Therefore, AFLPro can both pass magic byte

checks and string comparison. On the other hand, for basic block

weight calculation, this paper also proposes a BBA solution, using

the thinking that more in line with the human to guide the direc-

tion of fuzzing. 

Hawkeye [24] is an improved method based on AFLGo that

guides the dynamic execution of fuzzing by collecting static infor-

mation and achieves better results than AFL and AFLGo. However,

the target object of Hawkeye is the binary program with source

code, so its practical application is limited. In contrast, the target

of this paper is the binary program without source code, so it has

a wider range of practical applications. 

InsFuzz [7] is an implementation that focuses on using static

analysis to assist in passing sanity checks during fuzzing. But its

dynamic way of determining key bytes depends on the extra in-

strumentation tool Dyninst, which not only brings more instru-

mentation overhead but also brings possibly incorrect byte infor-

mation, which would lead to the wrong test direction. 

6.4. Program transformation-Based fuzzing 

Program transformation is the process of removing the detected

sanity checks in the target program. Researchers have proposed

some ways to bypass the complex sanity checks using the idea

of program transformation. For example, TaintScope [5] , MutaGen

[25] , AFL-lafintel [26,27] , and T-Fuzz [4] are all fuzzing tools based

on program transformation. But the implementation of TaintScope

and MutaGen requires a lot of manual analysis, AFL-lafintel only

works when you can access the source code of the program. T-Fuzz

may generate false positives, and it would seek help from symbolic

execution to filter out false positives. Therefore T-Fuzz is limited

by symbolic execution, and it also has the problem of limited scal-

ability. An important reason for improving AFL in this paper is to

maintain AFL’s scalability to the large-scale programs, as well as

the advantages of fast and stable, so this paper does not adopt any

methods or strategies related to symbolic execution. 

7. Conclusion and future work 

Fuzzing is acknowledged as a popular vulnerability detection

technique in academia and industry. However, due to the limita-
ions of its blind mutation, fuzzing cannot be effectively directed

nd is often difficult to pass sanity checks in the target program,

hich is relevant to the fuzzing direction carefully. Researchers

ave proposed many improved methods or tools for conducting

uzzing, such as Driller, VUzzer, etc. However, these methods still

ave some limitations, such as less scalability and less efficiency,

s well as localized orientation and other issues. 

This paper implements the direction sensitive prototype fuzzing

ethod AFLPro based on AFL and focuses on seed selection.

round the seed selection, this paper designed the BBA solution

nd applied it to our proposed multi-dimensional oriented seed

election strategy to achieve fine-grained seed selection. More-

ver, for other stages associated with seed selection, we have also

roposed improvements. For example, we propose a GBMutation-

ased seed energy scheduling strategy and use static analysis for

nformation integration. The application of all these strategies or

ethods enhances the orientation in fuzzing. We implement our

uzzing strategies in AFLPro and verify the effective orientation of

FLPro through comparative experiments. That is, on 92% applica-

ions of all datasets that we test in this paper, AFLPro performs

etter and has more possibility than the state-of-the-art fuzzers

owards the crash locations in the target program. 

However, AFLPro still has some limitations in practical applica-

ions, that is, for those programs that use code obfuscation and

acking techniques, static analysis can not implement effective

nalysis for them. Due to the limitations of its static analysis mod-

le, AFLPro is limited in achieving effective vulnerability detection

or such programs currently. Therefore, we will invest more re-

earch on how to eliminate the limitation of AFLPro while still

nsuring its good features in the future. Furthermore, this paper

roves the feasibility of instrumentation optimization by analyz-

ng the instrumentation performance of AFL. As a future research

ork, we will conduct in-depth research on AFL’s instrumentation

ptimization. 

All in all, we will continue to explore more possibilities in au-

omated vulnerability detection. For example, security is impor-

ant and even critical for many applications of sensor networks,

uch as military and homeland security applications [28–32] . And

ot only in the field of sensor networks, but also in router net-

orks [33] , network services and protocols [34–36] , internet of ve-

icles [37–39] , internet of things [40,41] , digital forensics [42] , and

ther fields, there are many possible vulnerabilities to be exploited.

apid vulnerability detection and recovery for the first time is es-

ential to minimize the negative impact [34] . While in fact, auto-

ated vulnerability detection is not widely used in these fields at

resent. So in the future, to achieve automated vulnerability detec-

ion in these areas requires us to invest more human and material

esources for in-depth research. 
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