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Abstract: To design an algorithm for detecting outliers over streaming data has become an important
task in many common applications, arising in areas such as fraud detections, network analysis,
environment monitoring and so forth. Due to the fact that real-time data may arrive in the form
of streams rather than batches, properties such as concept drift, temporal context, transiency,
and uncertainty need to be considered. In addition, data processing needs to be incremental with
limited memory resource, and scalable. These facts create big challenges for existing outlier detection
algorithms in terms of their accuracies when they are implemented in an incremental fashion,
especially in the streaming environment. To address these problems, we first propose C_KDE_WR,
which uses sliding window and kernel function to process the streaming data online, and reports
its results demonstrating high throughput on handling real-time streaming data, implemented
in a CUDA framework on Graphics Processing Unit (GPU). We also present another algorithm,
C_LOF, based on a very popular and effective outlier detection algorithm called Local Outlier Factor
(LOF) which unfortunately works only on batched data. Using a novel incremental approach
that compensates the drawback of high complexity in LOF, we show how to implement it in
a streaming context and to obtain results in a timely manner. Like C_KDE_WR, C_LOF also
employs sliding-window and statistical-summary to help making decision based on the data in
the current window. It also addresses all those challenges of streaming data as addressed in
C_KDE_WR. In addition, we report the comparative evaluation on the accuracy of C_KDE_WR
with the state-of-the-art SOD_GPU using Precision, Recall and F-score metrics. Furthermore, a t-test
is also performed to demonstrate the significance of the improvement. We further report the testing
results of C_LOF on different parameter settings and drew ROC and PR curve with their area under
the curve (AUC) and Average Precision (AP) values calculated respectively. Experimental results
show that C_LOF can overcome the masquerading problem, which often exists in outlier detection on
streaming data. We provide complexity analysis and report experiment results on the accuracy of both
C_KDE_WR and C_LOF algorithms in order to evaluate their effectiveness as well as their efficiencies.

Keywords: outlier detections; streaming data; data-mining; incremental algorithm; parallel
processing; sliding-window

1. Introduction

An outlier in a dataset is a data point that is considerably different from the rest of the data as
if it is generated by a different mechanism [1]. An interesting property of outliers is that they form
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minority groups in the dataset, and their patterns can be recognized from their distributions in the
datasets themselves rather than relying on a separate training set, which is labelled and expensive to
generate in most cases. Data mining without labelled data is also called unsupervised learning from
a machine learning perspective. A very popular task of unsupervised learning is clustering, where
similar data points are aggregated into a cluster repeatedly until all data points are assigned into a
group. Outlier (anomaly) detection works the other way round. Rather than finding the clusters, which
consist of the majority of the data points, it finds spatial data points that do not seem to belong to
any clusters.

A very important problem in outlier detection is masquerading. Masquerading refers to the fact
that outliers may attempt to hide within existing distributions and therefore can hardly be identified [2].
Namely, at different point in time, outliers may exist in different scales and, to properly identify them,
the algorithm should be able to process data at different level of magnitude. This would require the
updates of hyper-parameters that govern the decisions of outliers to reflect such changes adaptively.

A data stream is a continuous, unbounded sequence of data records accompanied and ordered by
implicit or explicit timestamps [3]. An important property of data streams is that they are transient,
which means that data points are only available partially at any given point in time, and random
access on the entire dataset is not possible. Moreover, data streams are characterized by uncertainty
and concept drift. Uncertainty means that data points are vulnerable to external events (noise) and
thus are unreliable [4]. Concept drift means that the distribution of data points is not fixed, and it may
change over time [5]. Apart from these considerations, when working on applications that process
data streams, their temporal contexts need to be considered. In addition, the processing needs to
be online or incremental, and data are processed one after the other to leverage the requirement on
computational and memory resources. This makes data mining over data streams a challenging task,
creating a new research area over the last decades.

With the rapid growth of modern applications, stream programming has become a must in many
applications from different fields. Indeed, the increasing popularity of stream programming has led
to a new research area compared to a long history of static data processing [6]. This is also true for
outlier detection. Outlier detection over data streams can have many applications from different fields,
including fraud detections, network intrusion detection, environmental monitoring, and so forth.
What is interesting in these applications is that we want to find abnormal behaviours over data streams
in real-time, with very low latencies. These can be of vital importance in applications such as fraud
detections, activity/environment monitoring, networking analysis, and so forth.

Researchers have proposed different solutions to this problem, which aims at detecting outliers in
data streams. A popular group of those approaches is called Distance-Based Outlier Detection in Data
Steams (DODDS) [3,7–9], which have been extended from the distance-based outlier detection method
first proposed by Knorr and Ng [10] to work in the streaming context. It works by introducing
a so-called sliding-window in the application and performing learning only on those windowed
data. While it performs quite well in some scenarios and also makes real-time results feasible, a big
disadvantage of this approach is that the correctness of its results depends largely on the choice of
window size and the obsolete data (those expired from the window) are not considered. Other similar
techniques exist but most of them fail to address those properties of streaming data, and thus produce
results exhibiting poor accuracy.

In this paper, we aim to propose new solutions that overcome aforementioned challenges in
streaming context and adopt the sliding window technique, but efficiently store in memory a statistical
summary of obsolete data, which contributes to the prediction of future data. We first provide a
detailed description of our novel algorithm C_KDE_WR, briefly introduced in [11]. This algorithm
uses a kernel function to calculate the density for the in-window data and takes advantage of a
binned statistical summary to aid with the prediction of incoming data; some of its features include
the introduction of a retrospective step and a forgetting factor to overcome the concept drift in data
streams. We also provide a complexity analysis on the algorithm design. This algorithm, however, does
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not solve the masquerading problem; thus, its accuracy could drop drastically should that problem
occur. We then present another algorithm that solves this problem. This new approach is based on an
existing very popular algorithm called Local Outlier Factor (LOF) [12], which however only works
on batched data, and very few works have been introduced to make it work in a streaming context.
We show how to modify this algorithm implementing it in an incremental fashion so that it works in
a streaming environment, and give theoretical proofs that our solution can process streaming data
online in a timely manner without affecting its accuracy. We call this new implementation Cumulative
LOF, or C_LOF for short.

For C_KDE_WR, we compare its accuracy with that of the SOD_GPU algorithm presented in
Reference [1], which is the state-of-art at the time of writing, using both synthetic and real-life datasets.
Both of these algorithms are capable of detecting outliers over streaming data where concept drift
may occur. We compare their results using Precision, Recall and F-Score metrics. In addition, we also
conducted a t-test with p-value and confidence interval to confirm significance of the improvement.
For C_LOF, in order to demonstrate its ability to overcome masquerading problem, we use synthetic
datasets generated from a mixture of Gaussian distributions with same mean but varying variances.
We test the accuracy of C_LOF on these datasets and record the ROC and Precision-Recall (PR) curve
with various thresholds. In addition, we also calculat the area under the curve (AUC) value for ROC
and the Average Precision (AP) value for PR and compare these results with other methods introduced
in Reference [13]. Details of these experiments are presented in Section 5.

2. Related Works

From the machine learning perspective, most of the outlier detection algorithms can be classified
into supervised, semi-supervised and unsupervised categories. Their difference is mainly on the presence
of the labelled data. While labelled data can be helpful in building predictive model that imply prior
knowledge of data, they also have significant drawbacks when it comes into streaming data.

2.1. Supervised Model

Supervised learning typically requires building a prediction model for rare events based on
manually labelled data (the training set), and use it to classify new events based on this learnt
model [14,15]. In other words, the outlier detection problem in this case becomes a classification
problem where we are only interested in the minority class whose data deviate largely from the
rest. Some machine learning algorithms can be used in the supervised context to detect outliers,
such as Support Vector Machines, Neural Network, K-Mean and KNN, and so forth. A recent
technique introduced by Harkins et al. [16] takes advantage of replicator neutral network (RNN) to
detect outliers. A thing to take note when using supervised method for training is imbalanced data:
The predictive models developed using conventional machine learning algorithms could be biased and
inaccurate because the number of observations in one class of the dataset is significantly lower than
the other. To handle imbalanced data, several methods can be used, including resampling, boosting,
bagging [17–20].

2.2. Semi-Supervised Model

To overcome the scarcity of labelled data in supervised learning, semi-supervised learning [21,22]
only requires a small number of training data with some unlabeled data to obtain better predictions.
It is known that applying semi-supervised learning to anomaly detection can improve the detection
accuracy [23]. One approach introduced by Jing Gao et al. [24] uses K-mean clustering in unsupervised
learning, adding penalties to the objective function for mislabelled data points, and optimizes the
overall objective function.

Although efficient in some cases, the main problem of using both supervised and semi-supervised
methods is that they work well only with static data, and typically do not fit into the context of
dynamic streaming context. In other words, both supervised and semi-supervised methods assume
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that they have random access over the underlying data, while this is not possible for data streams
because of its transiency property. Another problem with supervised approaches is that they fail to
capture the changes of data pattern since they assume a fixed data distribution and therefore violate
the concept drift property of data streams. It is for these reasons that the unsupervised algorithms for
outlier detection, which we will discuss in the following, have become more popular.

2.3. Distance-Based Model

The distance-based model introduced by Knorr and Ng [10] was among the very first outlier
detection methods that detect outliers on static data. It calculates the pair-wise Euclidian distance
between all data and, if one data point has less than k neighbours within distance R, it is considered an
outlier. There are variants of this static distance-based approach. For instance, Ramaswamy et al. [25]
proposed a method where an outlier is defined by considering the total number of objects whose
distance to its kth nearest neighbour is smaller than itself. Angiulli and Pizzuti [26] introduced a method
where an outlier is defined by taking into account the sum of the distances from 1st up to the kth nearest
neighbours. Later on, several methods have been proposed to extend outlier detection onto streaming
data [3,7–9]. One of the most popular methods uses a sliding-window to help with detecting outliers.
Based on the benchmark among all DODDS algorithms given by Luan Tran et al. [27], the MCOD
algorithm introduced by M.Kontaki et al. [9] appear to have the best performance. In Reference [9],
the solution uses a event-based framework to avoid unnecessary computations. In addition, to minimize
the cost of range query due to the arrival of new objects, it employs evolving micro-clusters to minimize
the complexity. The time complexity of this algorithm is guaranteed to be O(n log k) while maintaining
the space complexity to be O(nk), where n is the number of data points and k refers to the parameter
of KNN (K-Nearest Neighbourhood).

Another type of distance-based outlier detection model over streaming data is based on the
approximation of probability density function (pdf), usually with Kernel Density Estimator (KDE) [3].
The distance is measured based on the density of a data point in the estimated pdf around an user
defined radius. Sadik et al. [28] first proposed a novel binned implementation of KDE to detect
outliers without having to store all observed data and outliers detected if the distance is below
a threshold (DBOD-DS). To deal with the concept drift of streaming data, they further improved
the method by introducing concept drift detection module to handle change of distribution in data
(A-ODDS) [29]. To handle higher dimension data, the authors proposed a framework, called Orion [30],
which addresses all the characteristics of streaming data and looks for projected dimension of
high-dimensional data points using evolutionary algorithms. Since DODDS methods only consider a
portion of the dataset, the lack of global view on the entire dataset often leads to poor accuracies.

2.4. Density-Based Model

The Density-based model is another way to detect outlier on static data. The idea is to assign a
degree of being outlier (a score) based on the density of local neighbourhood, given some predefined
restrictions. A popular example of this approach is Local Outlier Factor (LOF) algorithm [12], on which
one of our proposed algorithms is based on. It uses the concept of reachability to define the density of
data points: the density of each data point is measured by considering the reachability of this data
point, in regards to the reachabilities of its neighbours. In Reference [2], D. Pokrajac et al. presented an
incremental version of LOF over streaming data. The authors gave theoretical evidence to show that
the insertion of new data points as well as deletion of an old data point affects only a limited number
of neighbours.

Another popular density-based method is called LOCI (Local Correlation Integral), which uses
Multi Granularity Deviation Factor (MDEF) to measure how the neighbourhood count of a particular
data point compares with that of the values in its sampling neighbourhood [31].
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2.5. Probabilistic Model

The Probabilistic-based model, also known as parametric model, uses the distribution of the data
points available for processing. The detection model is formulated to fit the data with reference to the
distribution of data [32] and normally models the underlying data using a mixture of distributions (e.g.,
Gaussian distribution). One of the most popular one used is the Gaussian mixture model (GMM) [33,34],
where the dataset is fitted into a given number of Gaussian distributions and the model is trained
using Expectation-Maximization (EM) algorithm. Each data point is given a formulated score, and data
points which have a high score are declared as outliers. These models are usually computational
inexpensive but most of them require parameters (i.g., number of clusters) as inputs and they also
assume a fixed distribution in dataset, which in most case do not fit into streaming context.

To overcome this problem, in Reference [35], Blei et al. proposed the Dirichlet Process Mixture
Model (DPMM), which uses Dirichlet process to infer the number of clusters (components) in dataset.
The weight πi for each cluster can be described in Dirichlet Process by:

πi(v) = vi

i−1

∏
j=1

(1− vj) qα,β(v) =
K−1

∏
k=1

Beta(αk, βk)

where vi follows a Beta distribution, αk and βk are variational parameters for each cluster and K is the
upper bound. The model parameters for base distributions are optimized using Bayesian algorithm
and are then tested for convergence by monitoring lower bound on the marginal likelihood. This results
in a mixture model where each distribution can be written in exponential-family form to facilitate
inference. The scoring is calculated by averaging log likelihood from each distribution using samples
generated from their conjugate priors.

In recent years, a least-squared based anomaly detection method was developed by Quinn et al.
that also incorporates a hidden Markov model framework in order to identify anomalous
subsequences [36]. The method appears to have a faster performance and yet a comparable accuracy
compared to other distance-based alternatives.

2.6. Auto-Regressive Model

An autoregressive or AR model, also known as an infinite impulse response filter or all-pole model,
describes the evolution of a variable measured over the same sample period as a linear function of only
its past evolution [37]. It is very popular for time series outlier detection and its definition is given by

x(t) = a1(t)× x(t− 1) + ... + an(t)× x(t− n) + ξ(t)

where x(t) is the series under investigation, ai are the autoregression coefficients, n is the order of
the autoregression and ξ(t) is the noise and is almost always assumed to be a Gaussian white noise.
Based on this formula, we can estimate the coefficient parameters ai(t) based on the given time series
of x(t), ...x(t− n). The model can then be used to predict future time series by defining a threshold,
called cut-off limit and the data point is identified as an outlier if it is beyond this threshold.

2.6.1. Deviation-Based Model

The Deviation-based model is an approach developed from the statistical-based model. In this
model, first introduced by Arning et al. [38], an outlier is detected if the feature space of one data
point deviates largely from other data points (in local or global set) and the variance is minimized
when removing such a point. Aggarwal and YU [39] proposed a technique where a point is an outlier
if, in some lower dimensional projection, it is present in a local region of abnormally low density.
This method is also efficient with high dimensional data.
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2.6.2. Kernel Density Model

The Kernel density estimator (KDE) is a non-parametric method to estimate probability density
function of random variables [40]. It has become increasing popular in recent year as an efficient way
to detect outliers over data streams. The probability density function f (x) is given by:

f (x) =
1
n

n

∑
n=1

khi
(xi − x)

where khi
(x) is the kernel functions with bandwidth hi. The kernel functions distribute the occurrence

of a data points into its neighbourhood regions and therefore, after observing enough data points,
the density function can be curved. Furthermore, the bandwidth can be calculated online using Scott’s
rule [40] as new data points are being observed.

Several works have been proposed to use this method for online outlier detection over data
streams. A technique inspired from sensor network is mentioned in Reference [41], where it uses a
KDE to model the distribution of the sensor data. In Reference [1], Yuni Xia et al. use GPU to accelerate
kernel density estimator with helps of non-overlapping sliding window and a statistical binned summary to
detect outliers in high volume and high dimensional data streams. In this method, the outlierness is
considered not only based on data points in current window, but also based on historical data that are
mined efficiently into bins.

2.7. Clustering-Based Model

The clustering-based model is another technique to outlier detection over stream data. Two main
algorithms exists for clustering-based approaches. One of them is called K-Mean clustering [42],
which also uses the idea of sliding window and clusters the data in each window. Unlike the distance
based approach, the detected outliers are not reported immediately but rather considered as candidate
outliers. A metric which measures the mean value of each cluster is maintained and carried over
to the next window in the stream to further compare with data in other windows. If the candidate
outlier passed a given number of windows, it is then identified as true outlier. Compared to K-Mean
clustering, K-Median clustering [43] clusters each chunk of data into a variable number of clusters (from
k to k log(n) where n is the data size and k is the KNN parameter), and it passes the weighted medians
found in current window into next one for testing outlierness rather than the mean and candidate
outliers. Both of approaches require k as usersínput, but the number of clusters in K-Median clustering
is not fixed.

2.8. Other Models

There exist some other approaches that do not fall into any of the previous categories. For example,
the One-Class SVM method [44], uses Support Vector Machine (SVM) to solve one-class problem.
This method uses kernel function to perform dot products between points from input space in
high-dimensional space. A hyperplane, also known as decision boundary, is computed by maximizing
the margin between the data in the input space and the high-dimensional output space.

Another efficient outlier detection method, especially in high-dimensional data, is Isolation
Forest [45]. It uses a random forest to recursively ‘isolate’ data points by randomly selecting a feature
with a random selected split value. This results in a tree structure and the score of each data point is
the path length from the root of the tree to the terminating node. The longer this tree path, it means it is
harder to ‘isolate’ this point from the rest. Therefore, points with lower scores are classified as outliers.

3. Algorithm C_KDE_WR

In this section, we present in detail the C_KDE_WR algorithm that we have briefly introduced
in Reference [11]. C_KDE_WR uses a sliding window and kernel function to calculate the density for
the in-window data and it takes advantage of a binned statistical summary to aid with the prediction
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of incoming data. More precisely, C_KDE_WR works by calculating approximately the cumulative
density function f (x) on the data currently contained in the sliding window as well as the density
calculated from data points contained in a statistical binned summary that has been mined from
obsolete data. To calculate the density, we use Gaussian kernel estimator as it gives smooth estimation
over the entire dataset [1]. To mine the statistical summary, we use a popular technique that bins all
obsolete data so that it can be stored efficiently in practice [46]. The density for each bins in statistical
summary is also impacted by their forgetting factors, which decay as bins become older (last updated
timestamps). If the density for a data point is less than a pre-defined threshold θ, it is considered as a
candidate outlier for future inspection. This data point is not defined as true outlier until it has been
coined as candidate outlier for a consecutive number of times R, which is defined as the rank of the
candidate outliers.

3.1. Density Estimation

To calculate the density on windowed data, we use a kernel density estimator with a Gaussian kernel
function f (x) as it gives a smoother estimation [1] and it also works on higher-dimensional data [1].
Since the kernel estimation is a point-based estimation, the model updates dynamically as new data
points arrive; therefore, it can solve the concept drift problem of data streams. Additionally, as the kernel
function f (x) is a probability estimation by its nature, it can also address the uncertainty property
contained in data streams. The definition of KDE (with Gaussian kernel) is given by Equation (1):

k(x, xi) =
1

(2π)D/2H
exp
{
− 1

2

( x− xi
H

)2}
(1)

where k(x) is called the kernel function, D is the dimension of data points, and

H =


h1 0 . . . 0
0 h2 . . . 0
...

...
. . .

...
0 0 . . . hD


is a diagonal matrix that denotes the bandwidth of the kernel function. The bandwidth H is used
to control how much a data point that is far from the current point xi should impact on xi. As we
use Gaussian kernel, probability of occurrence is distributed to all data points from −∞ to +∞ [40].
We use Scott’s rule [40] to calculate the bandwidth at each dimension based on the following formula:

hj = σjn1/D+4 (2)

where σj is the standard deviation of data points at dimension j.

3.1.1. Sliding Window Density Estimation

Due to the unbounded nature of data streams, it is not possible to store all data points in order
to calculate the density estimation. In C_KDE_WR, we only store the most recent data points at a
regular time interval; expired data points are mined into statistical summary as explained in following
section. If we let W denote the window size and T0 denote the starting time, the window boundaries
are therefore T0 + W, T0 + 2W, ..., T0 + jW (j > 0). To calculate the density in the current window,
we substitute all points in current window into the Equation (1), which gives:

fwindow(x) =
1
n

n

∑
i=1

1
(2π)D/2H

exp
{
− 1

2

( x− xi
H

)2}
(3)

where n is the number of data points in a sliding window, and H is the bandwidth of Gaussian kernel.
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However, calculating the density only based on the current sliding window does not give accurate
estimate on the overall estimation as no historical data are considered. Therefore, we also need to
calculate the density on the statistical summary mined from obsolete data.

3.1.2. Binned Summary Density Estimation

The density of binned summary is calculated slightly differently than of that of the current
window (defined in Equation (3)). The bin Bi contributes to the density function f (x) by taking into
considerations both its mean value vector Mi and the number of data points Ci in Bi. If we apply those
bins to the Gaussian kernel functions, we derive:

fbin(x) =
1
C

m

∑
i=1

Ci

(2π)D/2H
exp
{
− 1

2

( x−Mi
H

)2}
(4)

where m is the number of bins in the binned summary.
When calculating the density of a data point over a binned summary, the freshness of the bin is also

considered. We introduce a forgetting factor over binned summary that weights each bin according to its
freshness. This helps us address the temporal property of the data streams as a more recent bin impacts
more than those old ones. To weight each bins, we use exponential forgetting as a weight assigning
scheme presented in Reference [47], where bin weights are denoted as (λn−1, λn−2, λn−3, ..., 1). If we
apply those weights to the density function in Equation (4), we obtain:

fbin(x) =
1

∑m
i=1 λm−iCi

m

∑
i=1

λm−iCi

(2π)D/2H
exp
{
− 1

2

( x−Mi
H

)2}
(5)

To estimate the overall distribution of the probability density function f (x), we define the
cumulative kernel density estimator function fcumulative(x) by adding the kernel estimator in the sliding
window fwindow(x) and the kernel estimator in a binned summary fbin(x) accordingly. That is,

fcumulative(x) = fwindow(x) + fbin(x) (6)

3.2. Candidate Outliers and Retrospective

To decide if a data point x ia a candidate outlier, we define its outlier factor by calculating the
inverse of the cumulative density of x on the overal kernel density function fcumulative(x), defined in
Equation (6). Thus, the outlier factor fo is defined by Equation (7):

fo =
1

f (x)
(7)

We defined threshold θthreshold on outlier factor fo to cut-off the limit on the precise definition of
candidate outlier. The threshold θthreshold is defined by the average density pavg of all points in current
sliding window and the parameter ξ, 0 < ξ < 1, as follows:

θthreshold =
1

pavgξ
(8)

Notice that the threshold θ is updated dynamically as new data points arrive in window.
For each detected candidate outlier, we assign a rank r which is either incremented or decremented

by 1 depending on whether it is a candidate outlier in the current window. If r reaches a pre-defined
value R, it is considered as a true outlier and reported. When r reaches zero, it is treated as inlier.
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3.3. Binned Summary Maintenance

Data points that have been expired from the sliding window are not discarded. Rather than
storing all of them, they are mined into a statistical binned summary that can be fitted into limited
memory. There are many binned summary mining techniques; we use the one introduced in the
literature [46]. There are two steps in bin maintenance. These steps are: (1) Calculate bin index;
(2) Update Bin Statistics.

3.3.1. Calculate Bin Index

The bin index is used to indicate which bin a data point belongs to. To calculate the bin index,
we assume that the upper and lower bound of all data points in the data stream at each dimension is
known a priori. To find the bin index, assume there are N data points in the window and each consists
of D dimensions. For each dimension j, we use the upper bound max(xj) and lower bound min(xj)

in order to derive the length of that dimension, and then divide it by a pre-defined value k to get its
width, ∆:

∆ = [max(xj)−min(xj)]/k (9)

To find the bin index for each data point xi, we first map the input values in each dimension of xij
into interval [0, 1] using the following function:

xij =
xij −min(xj)

max(xj)−min(xj)
(10)

Then, we encode the data point xi as:

< Ii1, Ii2, Ii3, ......, IiD > (11)

where Iij = xij/∆. Then, we use the following formula to find the bin index Bi for data point xi:

Bxi = (IiD − 1)kD−1 + (Ii(D−1) − 1)kD−2 + ... + (Ii2 − 1)k + Ii1 (12)

where 0 ≤ i ≤ kD. As we are only interested in the non-empty bins and data in the real-world is
generally clustered, the number of actual non-empty bins m is generally much smaller than the total
number of possible bins m << kD, which does not cause bin number to grow exponentially with the
number of dimensions [1].

3.3.2. Update Bin Statistics

For each bin, we maintain its bin count (noted as Ci) that denotes the number of data points
that have fallen into this bin and its aggregate mean value vector (noted as Mi =< µi1, µi2, ..., µiD >),
which comprises of the average mean value µij at each dimension j. Additionally, we also maintain
the mean value vector µ and the standard deviation Σ over the entire dataset until now.

To update the bin statistic when processing the nth window, once the previous (n− 1)th windows
of obsolete data have been processed and aggregated into binned summary, we first group all data
points in the current window by its bin index i calculated using Equation (12); we then derive the
mean value vector µn

i and bin count cn
i for each bin Bi at index i. We then update the cumulative mean

value vector Mn
i and bin count Cn

i at nth window using:

Mn
i =

cn
i µn

i + Cn−1
i Mn−1

i

cn
i + Cn−1

i

(13)

Cn
i = cn

i + Cn−1
i (14)
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where Cn−1
i denotes the total number of data points that fall into bin Bi up to the (n− 1)th window

and Mn−1
i denotes the mean value vector of data points in bin Bi up to (n− 1)th window. Once we

updated bin Bi, we also need to update its last-updated timestamp by setting it to the timestamp of the
most recent data point in that bin from the nth window. This is done in order to derive its forgetting
factor as shown in Equation (5).

3.4. Complexity Analysis

As algorithm C_KDE_WR is composed of two main parts, density estimation and bins maintenance,
we analyze their time complexities separately.

The density is estimated for each query point over reference points. The query points are those points
from the current sliding window plus the candidate outliers from previous windows; the reference
points are those in the sliding window plus bins in binned summary. If we denote the number of data
points in current window as N, the dimension of data points as D, the number of candidate outliers
from previous window as C, the number of bins currently in system as M, and the time complexity to
apply the Gaussian kernel function defined in Equation (1) as Tkernel , then the time required for density
estimation is given by:

Tdensity_estimation = (N + C)(N + M)Tkernel

since the density estimation is linear over all query points and, for each query point, it is linear over all
its reference points. Notice that the time complexity for running Gaussian kernel function Tkernel is
also linear over the dimension D of data points; we can therefore expand the Tkernel as:

Tkernel = D · Tkernel_d,

where Tkernel_d is the time complexity to apply the Gaussian kernel function defined in Equation (1) at
each single dimension. Therefore:

Theorem 1. The complexity for density estimation in algorithm C_KDE_WR is bounded by:

Tdensity_estimation = (N + C)(N + M)D · Tkernel_d = O(D · N2)

where C and M are independent of both N and D and they are treated as constants.

The bins maintenance consists of two steps—calculate bin statistics and update binned summary.
We first need to calculate the bin index for each point in window, which gives a linear time complexity
over data dimension D for each single point and thus a linear time complexity over the total size N of
the data points. The overall complexity is therefore bounded by O(D · N). We then group data points
by their bin index, which requires time linear in N as each record would need to be traversed; finally
we perform aggregations on each of these bins to derive µn

i and cn
i , which also uses linear time over

D · N as each dimension of a single data record need to be scanned for all data points regardless of
which bins they belong to.

Once we get the all statistics, we update the global bin, as mentioned in Equations (13) and (14),
which takes only constant time for each mined bin. In the worst case scenario, each data point from
current window is scattered into different bins, in which case, after mining over all data points in the
window of size N, we get N mined bins to update. That is, this step requires linear time of data size N
in the worst case. Therefore:

Theorem 2. The complexity for bin maintenance in algorithm C_KDE_WR is bounded by:

Tbin_maintenance = Tin-window + Tout-o f -window = aD · N + bN = O(D · N),
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where a, b are constants.

4. Algorithm C_LOF

In this section, we introduce our second algorithm, Cumulative Local Outlier Factor (C_LOF), that
is based on a very popular outlier detection technique, called Local Outlier Factor (LOF) [12], which
however only works on batched data. In C_LOF, we use a sliding window to maintain active data
points and incrementally update their proximities as new data arrive or old data expire; this process
works exactly in the same way as discussed in the literature [2]. Furthermore, we also keep statistical
summary of historical data to help predict the proximities of active data points, which gives novelty to
this algorithm. Expired inlier points are clustered as virtual data points and combined with active points
in the current window to execute algorithm LOF incrementally. This is done in order to address the
concept drift issue in data streams. Algorithm C_LOF can also overcome the masquerading problem
in outlier detection. Moreover, to incorporate the temporal context in data streams, we introduce
the forgetting factor λ on all virtual points as we have done in the binned summary of C_KDE_WR
Equation (5). In the following, we provide the details of C_LOF procedures.

4.1. Local Outlier Factor

Let us first look at the classical LOF algorithm proposed by Breunig et.al in 2000 [12]. The main
idea of algorithm LOF is to assign to each data point a degree (or score) of being outlier; this degree
is called Local Outlier Factor (LOF) of the data point. The metric measures the density of a data point
compared to its neighbourhood (K-nearest neighbours). The computing of LOFs for all data points
typically comprise of the following steps [12]:

1. For each data point p, compute its k-distance(p), i.e. the distance to its kth nearest neighbour.
2. For each data point p, find its k-distance-neighbourhood of p, which contains every object q whose

distance to p, noted as d(p, q) is not greater than k-distance(p).
3. For each data point q in the k-distance-neighbourhood of p, calculate its reachability distance with

respect to data record p as follows:

reach-dist(p,q) = max(d(p, q), k-distance(q)) (15)

4. For each data point p, calculate its local reachability density (lrd) of q as inverse of the average
reachability distance over k-nearest neighbour of p:

lrd(p) =
1

∑
k∈knn(p)

reach-dist(p, q)/k
(16)

5. Finally, for each data point p, calculate its LOF as ratio of average lrd over k-nearest neighbour of p
and lrd of p itself

LOF(p) =
1
k ∑k∈knn(p) lrd(p)

lrd(p)
. (17)

We assume that the distances between each pair of data points are different and, in the original
publication, k was also named MinPts, which means the minimum number of data points in a cluster
in order to consider this cluster as inliers [12]. The outlierness is detected once the LOF value of a data
point p deviates largely from the average value of LOF in the population. This is often controlled by
the hyper-parameters that defined the maximum threshold θ that the algorithm can tolerate (as inliers).

4.2. Incremental LOF

To address the challenge of applying LOF over data streams, an incremental LOF algorithm was
proposed in Reference [2]. The incremental LOF works by constantly maintaining k-distances, lrd and
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LOF values for all existing points and incrementally updating these values whenever a new data point
is inserted or an obsolete data point is deleted. Since the static LOF algorithm has time complexity of
O(N · logN), if we apply LOF algorithm iteratively after observation of N data points, the algorithm
gives a O(N2 · logN) time complexity [12]. In Reference [2], they proved theoretically that the insertion
and deletion of data points actually only affect a limited number of existing data points (neighbours)
rather than the total number of data points in dataset, and therefore the total complexity of incremental
LOF algorithm is bounded in practice by O(N · logN). In addition, they also illustrated that the result
of applying their incremental LOF algorithm is the same as the result of applying the static version of
LOF algorithm after receiving N data points, and it is also independent of the order of the insertions.

4.3. Update Operation

We design our algorithm C_LOF based on the incremental LOF algorithm; in particular the
insertion and deletion operations are as in the original paper in Reference [2]. However, in C_LOF,
we introduce an update operation which is performed when positions of some points within the
dataset have changed. This operation can become complicated as the change of position of a particular
point within the dataset may cause k-distances of some points in the dataset to decrease while it can
also cause k-distances of other points to increase. Indeed, the change of position of any point may
break the K-NN relationship that has been previously established among data points. Particularly,
the kth neighbour of an updated point pn may change due to the change of position of other points in
the dataset. The safest option for updating a point pn is to first perform the delete operation on point
pn, followed by an insert operation on point pn based on its new position. While this guarantees the
correctness of the update operation, the execution maybe very time consuming, since large amount of
K-NN and K-RNN range queries need to be executed for insert and update operations. In addition,
when the change of position of a point pn is very tiny, it is unlikely to cause the K-NN relationships
among data points to change and therefore executing delete and insert operations result in many
redundant range queries. Therefore, we need to simplify the update operation when the change of
position is tiny.

For the update operation, we assume that, when the change of position (in terms of Euclidian
distance) of a point pn is within a threshold ε, for all point p′ in the dataset, the kth nearest neighbour of
point p′ would not change. Therefore, the k-distances only changes for those points pc whose kth nearest
neighbour is point pn, noted as r-kth(pn), and point pn itself. For points pc ∈ r-kth(pn), their k-distances
should be updated based on the new Euclidian distances between pc and pn. We also need to consider
the reachability-distances that have been affected by such changes of k-distances and re-calculate lrd
values for those points affected just as in insertion and deletion operations. For point pn itself, we need
to re-calculate its k-distance to its kth neighbour since its position has changed. Since pn’s k-distance is
updated, the reachability distances between all points in its k neighbours, k-NN(pn) to point pn have also
been updated; therefore, for all points q ∈ k-NN(pn), if q satisfies pn ∈ k-NN(q) or q ∈ k-RNN(pn),
then its lrd values should be updated. As a result of change of position of pn, the Euclidian distances
from every points to pn have changed. Therefore, the reachability distances from any point q such that
q /∈ k-NN(pn) to pn changes; thus, the lrd value changes for those points of q such that q ∈ k-RNN(pn)

and q /∈ k-NN(pn). Apart from them, the lrd value of point pn itself need to be updated since the
Euclidian distances to every of its k neighbours have changed. For update of LOF values, it is the same
as insertion and deletion operations. Algorithm 1 depicts the update operation in details.
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Algorithm 1 Incremental LOF Update (Dataset S, Point pn)

if ∆pn < ε then
Supdate_k_distance = Compute r-kth(pn) ∪ pn;
Update(S, pn);
Supdate_lrd = Compute {[k-RNN(S, pn)− k-NN(S, pn)]} ∪ pn;
for all p ∈ Supdate_k_distances do

Compute k-distance(S, p);
for all q ∈ k-NN(S, p) do

if p ∈ k-NN(S, q) then
reach-dist(q, p) = k-distance(S, p);
Supdate_lrd ∪ q;

end if
end for

end for
Supdate_LOF = Supdate_lrd;
for all p ∈ Supdate_lrd do

Compute k-NN(S, p);
for all q ∈ k-NN(S, p) do

Get/Compute reach-dist(p, q) using Equation (15);
end for

Update lrd(p) using Equation (16);
Supdate_LOF ∪ k-RNN(p);

end for
for all p ∈ Supdate_LOF do

Get lrd(p);
for all q ∈ k-NN(S, p) do

Get lrd(q);
end for

Update LOF(p) using Equation (17);
end for

else
Deletion(S, pn);
Insertion(S, pn);

end if

4.4. Maintenance of Active Data Points

The first step of our algorithm C_LOF is the maintenance of active data points in the current
sliding window. The maintenance of active points starts when a new data point is fed into the C_LOF
algorithm. Every new data point coming after the first window runs the algorithm incrementally
as shown in Section 4.2. More precisely, when a new data point arrives, we need to first delete the
oldest data point in the window by performing the deletion operation and then insert the new one by
performing the insertion operation. Therefore, we need to maintain a queue in the sliding window so
that data points can arrive and depart in a FIFO manner. Algorithm 2 describes how our active data
points in the sliding window are maintained upon arrival of each new data point.



Sensors 2020, 20, 1261 14 of 24

Algorithm 2 Sliding Window Maintenance (Queue window, Point pnew)

if |window| < W − 2 then
window.enqueue(pnew);

else
if |window| == W − 2 then

window.enqueue(pnew);
Non Incremental LOF(window.active_points);

else
if |window| == W − 1 then
window.enqueue(pnew);
Incremental LOF Insertion(window.active_points, pnew);
else
pold = window.dequeue();
Incremental LOF deletion(window.active_points, pold);
window.enqueue(pnew);
Incremental LOF Insertion(window.active_points, pnew);
end if

end if
Computer threshold θ;

end if

4.5. Maintenance of Virtual Data Points

Step two of algorithm C_LOF is the maintenance of virtual data points. Instead of throwing every
obsolete data away right after they expire, we cluster them incrementally and store each cluster as a
virtual data point with its total number of data points it contains. The virtual data points contain the
position information and the proximity information (e.g., k-distances, lrd and LOF values) about all
data points that fall into this cluster previously and they can affect the proximity information of active
data points. More importantly, at each iteration, the calculation of virtual data points depends only on
their previous states and the total number of points in the cluster. It does not depend on the whole
data points in that cluster; therefore, they can be computed incrementally.

The maintenance of virtual data points starts whenever a data point expires from the active
window and that point is NOT an outlier. It first needs to execute the clustering algorithm that runs
incrementally to mark all active points that belongs to the same cluster as this one, and then merge its
position and proximity information into the virtual data point of the cluster it belongs to. The cluster
that this expired data point belongs to should (ideally) be marked by previous points that expired.
Once we decide to which cluster each expired data point belongs, we first update the position of that
cluster incrementally by calculating its average value, based on its previous position, the number of
data points in that cluster and the current position of this expired point (as shown in Equation (18)).

pnew
virtual = (pold

virtual ∗ countold + pexpired)/(countold + 1). (18)

If the expired data point has not been marked by any previous expired points, it forms a new
cluster on its own, and the point just stays as is, except that its status has changed from active to virtual.
That virtual point becomes the first point of that cluster along with its proximity information copied
directly from its previous values as active point.

The same goes for updating the proximity values for virtual data point. They are calculated based
on the average k-distance and lrd values above all points in that cluster rather than by calculating
their neighbourhoods. Therefore, for each cluster (virtual point), we only need to keep the average
positions, average k-distance values, average lrd values and the count of data points in that cluster in
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memory. Once the information of a virtual data point is updated, we need to calculate the k-distances,
lrd and LOF values of active data points that are affected by such changes and update them accordingly.
This can be achieved by performing the update operation described in Section 4.3. Before discarding
this expired data point, we also need to work out the weighted lrd values for each virtual point by
applying forgetting factor in the same fashion as in C_KDE_WR, shown in Equation (19) and these are
the actual lrd values of virtual data points that are used for computation. After all these steps, we can
safely discard this point as its information has already been incorporated in that cluster.

lrdv
projected = λn−i · lrdv. (19)

4.6. Complexity Analysis

We first discuss what happens when each individual point pnew is fed to the algorithm.
The situation would depend on the number of data points, noted as N that are currently in the
system. If N < W − 2, where W is the number of data points contained in each window, the time
complexity of this operation would only consist of the time to insert new data point to data stores
of each components, noted as Tinsert. If we use a KD-Tree data structure, the average time for Tinsert
would be O(logN). Insertions to other components would take constant time if we store them using
hashtables. Therefore, the time complexity of C_LOF when no LOF calculation actually happens would
be simply:

TN<W−2
C_LOF = Tinsert = O(logN).

When N = W − 2, C_LOF inserts the point pnew as before and trigger the static LOF algorithm
that runs in batch mode. Since the time complexity TLOF of the static LOF algorithm is O(N · logN)

is [12], the time complexity to process initial N data points is given by:

TN=W−2
C_LOF = Tinsert + TLOF ≤ a · logN + b · N · logN = O(N · logN)

where a, b are constants.
When N = W − 1, C_LOF starts processing each future points incrementally. The time complexity

of C_LOF algorithm in this case would be exactly the same as the insertion operation in incremental
LOF algorithm, noted as TLOF_insert. The insertion operation in incremental LOF has time complexity
O(k · F · TkNN + k · F · TkRNN + F2 · k + Tinsert) [2], where k is the predefined number of nearest
neighbours of point pnew, F is the maximum number of reverse nearest neighbours of pnew, which is
proportional to k, and TkNN and TkRNN are the time complexities of k-NN and k-RNN range queries
respectively. For KD Tree, time complexities of these range queries can be reduced to O(logN),
as compared to the naive brute-force approach which would require O(N2) time complexity. If we
denote F = ck, the time complexity of C_LOF algorithm when N = W − 1 is bounded by:

TN=W−1
C_LOF = ck2 · (TkNN + TkRNN) + c2k3 + Tinsert ≤ 2ack2 · logN + b · logN + c2k3 = O(k2 · logN + k3)

where a, b, c are constants.
When N = W, C_LOF first removes the oldest data point pold from window by performing the

delete operation. Depending on the status of pold, C_LOF triggers the cluster maintenance steps.
The deletion operation when N = W has the same time complexity as the insertion operation when
N = W − 1. If no cluster maintenance steps are triggered (if pold is an outlier), C_LOF just runs the
insertion operation after performing the deletion operation. Therefore the time complexity in this case
would be:

T(N=W)best

C_LOF = TLOF_insert + TLOF_delete = 2TLOF_insert = O(k2 · logN + k3).
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If the cluster maintenance steps are triggered (pold is an inlier), beside the insertion and deletion
steps, C_LOF first need to run incremental clustering. The time complexity of incremental clustering,
noted as Tclustering, is dependant on the clustering algorithm. The DBSCAN algorithm has an average
runtime complexity of O(N · logN) and worst case runtime complexity of O(N2) [48]. Using that
procedure in our algorithm, Tclustering will have the same bound in the worst case.

Tclustering = O(N2)

The update of virtual point and its proximity information takes only constant time; the time used
by the update operation, noted as TLOF_update, it is at most twice that required by the insertion operation.

TLOF_update ≤ 2TLOF_insert = O(k2 · logN + k3).

At the end, C_LOF applies the forgetting factor, calculates the projected lrd values for all virtual
points, and updates the LOF values of the affected active points. Let m denote the number of virtual
points currently in the system; by definition of LOF, m < N

k in worst case. For each of these virtual
point, we need to run the k-RNN range queries and find its reverse neighbours. If we denote the
number of these reverse neighbours as F = ck where c is a constant, then for each of these reverse
neighbours, their LOF values need to be updated based on Equation (17), which has exactly the same
time complexity as k-NN range queries. Assuming k-NN and k-RNN both have the time bound of
O(logN) and m = N

k , the total time complexity to apply the projected lrd values on all virtual points,
noted as Tprojected_lrd_update would be:

Tprojected_lrd_update ≤ m · (logN + ck · logN) = O(N · logN).

Theorem 3. The time complexity of C_LOF after observing each individual data point in case N = W and
where cluster maintenance steps are necessary has an upper bound of:

T(N=W)worst

C_LOF = TLOF_insert + TLOF_delete + Tclustering + TLOF_update + Tprojected_lrd_update = O(N2 + k2 · logN + k3).

This bound is for the worst case. As Tclustering is O(NlogN) on average, the average time
complexity of TC_LOF can be reduced to O(NlogN + k2 · logN + k3) in most cases.

Consider now the case when n data points are fed into the algorithm and each of them is
processed individually. We first discuss the initial n data points that are first fed to our algorithm,
where n = W − 1. In that case, the first n− 1 points do not trigger any update and they only need to
be stored in the sliding window. The nth data point triggers the static LOF algorithm that runs in batch
mode. Since the LOF algorithm has time complexity of O(n · logn) [12], the time complexity to process
the initial n data points is therefore given by:

TC_LOF(n) =
n−1

∑
i=1

Tinsert + TLOF = O(n · logn).

where n = W − 1. Later on, whenever a new point is inserted, it triggers the C_LOF algorithm to run
incrementally. As discussed previously, each insertion of individual data point has an upper bound of
O(N2 + k2 · logN + k3), where N here would be equal to the number of data points W in each window.
Therefore, in a count-based window, where W is a constant, we have:

Theorem 4. The time complexity of C_LOF after observing n data points is:

TC_LOF(n) =
n

∑
i=i

TC_LOF ≤ nW2 + nk2 · logW + nk3 = O(nk3)
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5. Experiments and Results

We present the experimental results on both proposed algorithms. Experiments have been
performed over both synthetic and real-life datasets. For C_KDE_WR, we compare its accuracy with
the method proposed in the literature [1] using both synthetic and real-world datasets. To measure
the accuracy, we use different metrics including Precision, Recall and F-score, and so forth. We also
performed a t-test to further confirm that the accuracy of C_KDE_WR out-performed SOD_GPU due
to our novelties introduced. For C_LOF, we measure its accuracy on different parameter settings
in synthetic datasets. In addition, we draw the Receiver Operating Characteristics (ROC) curve
(true positive rate against false positive rate) and Precision-Recall (PR) curve on C_LOF at various
threshold settings. We want to demonstrate that C_LOF is efficient in the streaming context even with
masquerading problem.

5.1. Datasets

5.1.1. Synthetic Datasets

For C_LOF algorithm, we only measure its accuracy on synthetic datasets using Gaussian mixture
model with outlier points generated using uniform distribution given a range. We chose the Gaussian
mixture model because it does not conform to a fixed distribution and its data pattern can change over
time to simulate real data streams. We conducted the experiments in two different settings. In one
setting, we want to measure the ability to detect concept drift of our model and we therefore generated
two 2-dimensional Gaussian distributions with different means but same variances (noted as Synthetic
1 dataset in experiments). In the second setting, we generate two 2-dimensional Gaussian distributions
with same mean but different variances (noted as Synthetic 2 dataset in experiments). Each of the
Gaussian distribution consists of 200 data records and they may appear at different point in time.
20 outlier points are generated randomly within a range specified that deviate largely from these
distributions. Data records are fed to the algorithm 100 at a time so the window size is set at 100.

For C_KDE_WR algorithm, we also generate synthetic data from Gaussian mixture model using
similar settings as in C_LOF. We generate 10,000 data samples from eight different dimension settings
(from 2 to 9) using Gaussian mixture with different means but same variances. These points were
considered as inliers and are ordered by the distributions that they belong to. 100 outlier points were
generated uniformly and shuffled into inlier points in a random order in each dimension setting.

5.1.2. Real-World Datasets

Real-world datasets are only measured on C_KDE_WR algorithm. We use two real-world
datasets obtained from UCI machine learning library (http://archive.ics.uci.edu/ml/datasets.html):
KDDCup99 network dataset for the intrusion detector learning task, and Covertype forest cover dataset
for cover type prediction task in forest, which are both designed for classification tasks. In order to
make them suitable for outlier detection task, we chose classes with minority instances as outlier points
(i.e., less than 10% occurrence). Specifically, for KDDCup99 dataset, points belong to normal, smurf
and nepturn classes as considered as inliers. All other classes are considered outliers. For Covertype
dataset, points belonging to class Spruce-Fir and Lodgepole Pine are considered inliers. Other classes are
considered as outliers. We take some preprocessings on both real-world datasets and randomly chose
10, 000 samples based on the proportion of each class, where outlier points are uniformly distributed.

5.2. Test Environment

We implemented the C_KDE_WR algorithm using NVIDIA CUDA framework (Compute Unified
Device Architecture: https://developer.nvidia.com/cuda-zone) to parallelize the computations for
kernel density estimations and takes advantages of Apache Flink framework (https://flink.apache.
org/) to simulate the streaming environment for C_LOF. All experiments were performed on a server
with Ubuntu 16.04 operating system, equipped with an Intel 3.3 GHz quad-core CPU and 64 GB host

http://archive.ics.uci.edu/ml/datasets.html
https://developer.nvidia.com/cuda-zone
https://flink.apache.org/
https://flink.apache.org/
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memory, along with an NVIDIA GTX 1080 Ti GPU (6.1 compute capability). The CUDA runtime
version used was 9.2 and the Flink version was 1.7.2. We used Numba JIT compiler (http://numba.
pydata.org/numba-doc/latest/index.html) to implement C_KDE_WR algorithm in CUDA. Numpy
(https://numpy.org/) library was used to implement our C_LOF algorithm in an incremental fashion.

5.3. Evaluation Criteria

To evaluate the accuracy, we use the same metrics as the binary classification task in machine
learning. Outlier detection can be thought of as a special type of binary classification task since each
data point needs to be classified as either inlier or outlier. The only difference is that the dataset
used for outlier detection is hugely unbalanced. In order to measure accuracy of C_KDE_WR, we use
Precision, Recall and F-Score, which is widely used for accuracy evaluation in binary classification.

Precision is defined as the number of correctly detected outliers (true positives) divided by the
total number of detected outliers (true positives + false positives). Recall is defined as the number of
correctly detected outliers divided by the total number of outliers in the dataset (true positives + false
negatives), and F-Score is defined as:

Fscore =
2× precision× recall

precision + recall
.

We compare accuracy of C_KDE_WR with the SOD_GPU algorithm proposed in Reference [1] on
both synthetic and two real-life datasets as mentioned previously. We also performed a t-test between
these two algorithms and recorded the p-value, confidence interval and variance to further support
that our C_KDE_WR algorithm has improved over its counterpart in terms of accuracy.

For C_LOF, we measure its accuracy against different parameters of k on two synthetic dataset
settings generated from mixture of Gaussians as mentioned before: One is fixing on variance but
varying mean, the other is fixing on mean but varying on variance. We want to show that C_LOF
can detect outliers in data streams with both concept drift and masquerading problems as mentioned
earlier. To further prove its efficiency, we also draw the Receiver Operating Characteristics (ROC)
curve and Precision-Recall (PR) curve of C_LOF at varying threshold settings, using the LOF score
of each trained data point. The positive class denotes outliers and negative class represents inliers.
Finally, we calculate Area Under the Curve (AUC) for ROC using the trapezoidal rule and summarize
PR curve using Average Precision (AP) as the weighted mean of precisions at each threshold, given by:

AP = ∑
n
(Rn − Rn−1Pn),

where Pn and Rn are precision and recall at the nth threshold.

5.4. Accuracy Evaluation for C_KDE_WR

We set ξ to 0.1 and k to 100 in C_KDE_WR. Three retrospects (R = 3) are required to finalize
a true outlier detection. 0.5 is selected as forgetting factor λ and the window size is set at 1000
for all datasets (synthetic and real-word). We performed the experiments 30 times independently
and in each case, we shuffled the outlier points evenly within the inlier points. Figure 1 illustrates
the comparison of results between the two algorithms. Specifically, Figure 1a shows the average
accuracies of C_KDE_WR and SOD_GPU, in terms of Precision, Recall and F-Score on KddCup99
dataset. Our proposed C_KDE_WR algorithm performs better in terms of Precision but slightly lower
than SOD_GPU in terms of Recall score. The results on CoverType and synthetic datasets are very
similar as we can see from Figure 1b–d.

http://numba.pydata.org/numba-doc/latest/index.html
http://numba.pydata.org/numba-doc/latest/index.html
https://numpy.org/


Sensors 2020, 20, 1261 19 of 24

(a) KddCup99 (b) CoverType

(c) Synthetic (3-dimensional) (d) Synthetic (4-dimensional)

Figure 1. Average accuracy of C_KDE_WR on KddCup99 dataset (a), CoverType dataset (b),
and Synthetic datasets (c,d).

Furthermore, our results show that C_KDE_WR improves over SOD_GPU in Precision and the
overall F-Score on all datasets. This can be supported by the t-test results we have obtained in Table 1.
We run the experiments and compare those metrics between these two algorithms in multiple times,
with the hypothesis that the Precision and F-Score metrics of C_KDE_WR is higher than that of
SOD_GPU. Based on the result in this table, we are assured that our C_KDE_WR performs better than
SOD_GPU in term of accuracy over streaming context.

Table 1. T-test: C_KDE_WR vs. SOD_GPU.

KddCup99 Dataset CoverType Dataset Synthetic Dataset

Precision F-Score Precision F-Score Precision F-Score

p-value <2.2× 10−16 <2.2× 10−16 <2.2× 10−16 <2.2× 10−16 <2.2× 10−16 <2.2× 10−16

confidence (0.106, (0.045, (0.064, (0.014, (0.264, (0.018,
interval 0.119) 0.055) 0.680) 0.018) 0.291) 0.056)

variance 9.964× 10−6 5.669× 10−5 1.059× 10−6 2.853× 10−4 6.982× 10−5 9.941× 10−5
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We also compared the accuracy between C_KDE_WR and SOD_GPU algorithm as the number
of data dimension increases in synthetic data. Figure 2 illustrates that C_KDE_WR demonstrates
a superior performance on processing high dimensional data in both Precision and F-Score than
SOD_GPU algorithm. The accuracy of our C_KDE_WR algorithm only drops slightly as the data
dimension grows, while the accuracy of SOD_GPU plummets as the dimension of data increases.

(a) F-Score (b) Precision
Figure 2. Accuracy of C_KDE_WR on synthetic data with varying dimensions.

5.5. Accuracy Evaluation for C_LOF

We test the accuracy of our C_LOF algorithm when value of k parameter varies. By the definition
of LOF, k parameter is the minimum number of points in order to be considered as a cluster [12]. We
set this parameter k from 3 to 10 and test the corresponding accuracy metrics on two synthetic datasets
generated from mixture of Gaussians as per in Section 5.1.1. Note that setting k to 1 and 2 would not
have any practical meaning and therefore we do not measure C_LOF on these two settings. Based on
our experiment, the result indicates that the accuracy of C_LOF on both datasets peaks when k is at
around 5. The precision metric stabilizes on both synthetic datasets after k = 5, where it is equal to
1. However, both the recall and F-Score metrics have descended after k = 5 on synthetic dataset 1,
while these metrics fluctuate after k = 5 on synthetic dataset 2.

With k = 5, which is the maximum parameter setting, we draw the ROC curve and PR curve on
both synthetic datasets at different threshold settings in order to prove its efficiency. Figure 3 illustrates
results of these metrics with also their AUC ROC values and AP (Average Precision) values shown in
the figure legends.

According to the survey on outlier detection algorithms given in Reference [13], the result of our
C_LOF seems descent and promising. In some cases, it is even better than some of those methods
introduced in Reference [13]. Notice that the experimental results presented in Reference [13] are all
conducted in a static and non-streaming environment, especially without concept drift, while result of
C_LOF is run in a streaming context with the presents of both concept drift and masquerading.
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(a) ROC curve on synthetic dataset 1 (b) PR curve on synthetic dataset 1

(c) ROC curve on synthetic dataset 2 (d) PR curve on synthetic dataset 2

Figure 3. Receiver Operating Characteristic (ROC) curve and area under curve (AUC) value on
synthetic dataset 1 (a), 2 (c) and PR curve and AP value on synthetic dataset 1 (b), 2 (d).

6. Conclusions and Future Works

Our experimental results confirms that both proposed algorithms can detect outliers over data
streams accurately with low number of false negatives. Based on the results of our accuracy metrics and
t-test on both synthetic and real-world data, we conclude that C_KDE_WR outperforms SOD_GPU [1],
which is the state-of-the-art by the time of writing, in terms of precision and overall F-score while the
number of false positives is also significantly reduced. This further confirms that our novel concept
of drift detection module is effective. C_LOF on the other hand, can detect outliers over streaming
datasets where both concept drift and masquerading occur. Comparing its ROC AUC and AP metrics
with those results presented in Reference [13], C_LOF demonstrates good efficiency in general.

We are investigating further improvements and open research directions. In particular:

• Though we managed to drop the number of false positives in C_KDE_WR, its number is still
high in some specific cases. We believe that this number can be further reduced.

• The time complexity of C_LOF is still high, especially as dimension of data increases.
Therefore, the result is more desirable when processing low-dimensional data. An efficient
(or approximation) algorithm for clustering (based on reachability distances) is to be developed
in order to decrease the overall complexity of C_LOF.

• Algorithms for detecting Type III outliers are barely found in the literature and therefore this area
has much to be researched.
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