
Black Hole Search with Tokens in

Interconnected Networks

Wei Shi

University of Ontario Institute of Technology, Canada
wei.shi@uoit.ca

Abstract. We study the Black Hole search problem using mobile agents
in three interconnected network topologies: hypercube, torus and com-
plete network. We do so without relying on local storage. Instead we
use a less-demanding and less-expensive token mechanism. We demon-
strate that the Black Hole can be located with a minimum of two (2)
co-located agents performing Θ(n) moves with O(1) tokens, in each of
these three topologies. Then we study the Black Hole search problem
with scattered agents. We show that the optimal number of moves can
be achieved with the optimal number of mobile agents using O(1) tokens.

Keywords: Black Hole, Mobile Agent, Token, Ring, Scattered,
Un-oriented.

1 Introduction

Computational and algorithmic research has just recently started to consider
security issues, mainly in regards to the presence of a harmful host (i.e., a network
node damaging incoming agents) or of a harmful agent (e.g., a mobile virus
infecting the network nodes), see [1,2]. With respect to the computational issues
related to the presence of a harmful host, the focus has been on a black hole (BH),
a node that disposes of any incoming agent without leaving any observable trace
of this destruction [3, 4, 5, 6, 7, 8]. In this paper, we continue the investigation of
the black hole search (Bhs) problem. Our research concern is to determine under
what conditions and at what cost, within finite time, at least one of a team of
mobile agents can survive and know all the links leading to a BH.

Most of the existing investigations on Bhs have assumed the presence of a
powerful inter-agent communication mechanism, whiteboards, at all nodes. In
the whiteboard model, each node has a local storage area where information can
be written and read by the agents (e.g. see [9]). In this research, we investigate
the Bhs in a token model. Communication between mobile agents is consider-
ably more restricted (and complex) in a token model than in a whiteboard one:
information-rich messages written to and read from a whiteboard must instead be
represented using a limited number of tokens. The question then is whether this
additional constraint complicates significantly token-based solutions to the Bhs.
In this paper, we show that is not the case for the following three interconnection
networks: hypercube, torus and complete network. We also answer the following

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 670–682, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Black Hole Search with Tokens in Interconnected Networks 671

question: under what conditions and at what cost is the Bhs problem solvable.
Notice that the use of tokens introduces another complexity measure: the num-
ber of tokens. Indeed, if the number of tokens is unlimited, each information-rich
message of a whiteboard environment can be mapped to a specific configuration
of tokens and thus it is possible to simulate a whiteboard environment. The
question then is how few agents are truly required by a solution to Bhs.

The problem of locating the BH using tokens has been examined in the ring
topology in both cases of co-located agents (i.e., all the agents start from the same
node in the network) [4, 10] and of scattered agents (i.e., the agents start from
different unknown nodes in the network) [7, 8]. In [4] it is demonstrated that in
order to locate the BH without whiteboards, O(Δ2M2n7) moves suffice with Δ+1
mobile agents and one token per agent.1 Also, a recent solution proposed in [11]
solves the Bhs problem in an arbitrary network with a team of two asynchronous
agents with a map, using Θ(n log n) moves, where n is the number of nodes.
All existing solutions except for [7, 8], solve the Bhs problem using co-located
agents. Here we propose to solve the Bhs problem for some specific network
topologies, hoping to achieve better complexity than for the Bhs problem on
an arbitrary network. We first consider the Bhs problem in hypercube, torus
and complete network using co-located agents. We then study the Bhs problem
in torus and complete network with a group of scattered agents. The scattered
initial locations of the team of agents significantly complicate the solution of
the problem. Yet, we show that for Bhs in these network topologies, the token
model is computationally and complexity-wise as powerful as the whiteboard
model, regardless of the initial position of the agents and of the orientation of
the topology. Also, with specific knowledge of the network, the number of moves
executed by a team of two asynchronous agents can be reduced to Θ(n). The
results hold even without using a map for a team of two agents in a complete
network. In the scattered agents case, we show that the Bhs problem can be
solved in a complete network with O(n2) moves, where n is both the number of
scattered agents and the number of nodes in the network. We then show that,
with 3 scattered agents and 7 tokens per agent, a black hole can be located
with Θ(n) moves in a torus. We also observe that, when the number of scattered
agents in a torus increases, the problem becomes significantly more complicated.
A simple algorithm we develop solves Bhs with k (k > 3) scattered agents, with
O(k2n2) moves using only 1 token per agent.

2 Model, Assumptions and Terminology

Let G = (V, E) denote a simple connected undirected graph, where V is the
set of vertices or nodes and E is the set of edges or links in G. At each node
x ∈ V , the incident edges are labeled by an injective mapping λx. Hence, each
edge (x, y) has two labels, λx(x, y) at x, and λy(x, y) at y. λx(x, y) and λy(x, y)
will be called the port numbers. We say a graph is oriented, if there is a globally
1 Here, M is the number of edges in the graph, n is the number of nodes in the graph,

and Δ is the maximum degree of the graph.

672 W. Shi

consistency of such labeling (or sense of direction) of all the edges (links), un-
oriented otherwise [7, 8].

Operating on G is a set of k agents a1, a2, ..., ak. The agents have limited
computing capabilities and bounded storage. They all obey an identical set of
behavioral rules (referred to as the “protocol”), and can move from node to
neighboring node. We make no assumptions on the amount of time required by
an agent’s actions (e.g., computation, movement, etc.) except that it is finite.
Thus, the agents are asynchronous [5]. Also, these agents are anonymous (i.e., do
not have distinct identifiers) and autonomous (i.e., each has its own computing
and bounded memory capabilities). If co-located, agents start at the same node,
called homebase (H for brevity). Scattered agents start at different Hs.

We postulate that, while executing a Bhs, the agents can interact with their
environment and with each other only through the means of tokens. A token is an
atomic object that the agents can see, carry, place in the middle or on a port of a
node, or remove. Several tokens can be placed at the same location. The agents
can detect such multiplicity, but the tokens themselves are undistinguishable
from each other. Initially, there are no tokens in the network, and each agent
starts with O(1) number of tokens.

The basic computational behavior of an agent (executed either when an agent
arrives at a node, or upon wake-up) consists of three actions called steps. First an
agent need to examine its current node and evaluate (as a non-negative integer)
the multiplicity of tokens at the middle of the node and/or on its ports. (An
agent therefore may have to evaluate several multiplicities for its current node.)
Second, an agent may modify tokens (by placing/removing some of the tokens at
the current node). Third, an agent may either become Passive(i.e., temporarily
stop participating to the Bhs) or leave the node through a port. Finally, an agent
may become DONE, namely terminate the whole algorithm. A step is performed
as a single atomic (i.e., none interruptable) operation. We assume that there is
a fair scheduling of the steps of the operation at the nodes, so that, at any node
at any time, at most one computational step will take place, and every intended
step is performed within finite time. This computation is asynchronous in the
sense that the time an agent sleeps or travels is finite but unpredictable. It is
known that in an asynchronous system, it is undecidable to determine if there
is a BH or not [6]. The consequences of this fact are numerous and render the
asynchronous case considerably difficult. Hence, in this research, we assume that
there is one and exactly one BH in the network. All the agents are aware of the
presence of the BH, but, at the beginning of the search, the location of the BH
is unknown. The goal of this search is to identify all the links leading to the BH.
At the end of the search, there must be at least one agent that has survived (i.e.,
not entered the BH) and knows the location of the BH.

We will consider three complexity measures for the Bhs problem. The first one
is size: the number of agents needed to locate the BH. The other two complexity
measures of interest are the token size (i.e., the number of tokens each agent
needs to start with) and the cost (i.e., the total number of moves executed by
the agents in the worst case over all possible timings). We study the following

Black Hole Search with Tokens in Interconnected Networks 673

three topologies in such model and under such assumptions: hypercube, torus
and complete network.

3 Basic Tool and Technique

3.1 CWWT

Cautious Walk with Token (henceforth CWWT for brevity) is an adaptation of
the cautious walk technique used in systems with whiteboards [5]. It is a basic
step in all our algorithms and is explained below.

At any time during the execution of this algorithm, a port will be classified
either as With Tokens (i.e., one or more tokens have been placed on this port)
or Without Tokens (i.e., no tokens on this port). The details of how to establish
that a port is with or without tokens will differ across the algorithms that we
introduce throughout this paper. During a CWWT, having a certain number of
tokens on a port indicates that the link of this port is currently being explored by
an agent. The exact number and location of tokens required to determine that
a port is being explored may vary between the algorithms that use CWWT.
Clearly, a port under exploration may be dangerous (i.e., possibly leading to the
BH). To prevent unnecessary loss of agents, we require that no two agents enter
the BH through the same link. In order to achieve this, we establish two basic
rules for the agents that use CWWT. The first rule is:

When an agent a arrives at a node u with a port p under exploration, that
agent is not allowed to move through port p. In fact, agent a can only leave
through port p once p becomes safe.

In order to explain how a port becomes safe, consider an agent a that leaves
token(s) on a port p of node u in order to explore the node v through the link
of p. Our second rule captures how p becomes safe:

Upon reaching node v through port q, if v is not a BH, then a immediately
returns to u and removes tokens on p. Thus, p necessarily becomes Without-
Tokens and both its link and itself are thereafter considered safe. Port q is also
considered safe once visited by a.

3.2 Bypass Technique

The Bypass technique is used in the algorithms to solve Bhs in both hypercube
and torus with co-located agents. For those topologies, in contrast to a ring, each
node has more than two links and ports adjacent to it. This significantly compli-
cates the communication between agents using tokens, but also offers multiple
paths between any of the two nodes in the graph. In fact, we get the following
observation:

Observation 1. Both hypercube and torus topologies contain one or more ring
subgraphs, as shown in Figure 1.

674 W. Shi

!

"""""""""#! $%&’()*+’"""""""""#! $%&’()*+’

,

,

,

,

-
-
-
-

. / 0""""111

.120""""!1!

.110""""11!

. 30""""1! !

"""!11".20

""! ! 1".10

11! ".40

.50""""1! !

. 60""""1! 1

.1#0""""!11

.1! 0""""111

.70""""1! 1

.1/ 0"""""! ! !

!

!

!

!

!

!

! 1! ". #0!

1

1

1

1

1

1

1

1.140""""! ! 1

"""! ! ! ". ! 0

Fig. 1. Hypercube and Torus

According to our assumption that “there is one and only one BH in the
network”, we remark:

Observation 2. It is impossible that the BH is in both ring a and ring b.

We then call the ring without the BH a safe ring; a dangerous ring otherwise.
The basic idea of the Bypass technique is to use the links and nodes on a safe

ring to create a bridge over an unknown node (possibly BH) on the dangerous
ring that is under exploration by an agent. This bridge will allow a second agent
to continue exploring the rest of the dangerous ring. This technique ensures a)
that two agents do not explore the same node at the same time; and b) that all
the nodes in the network get traversed using a linear number of moves, so that
the total number of moves for locating the BH stays linear. Details follow:

Once in the “Bypass” procedure, an agent acts differently whether advancing
in a safe ring or in a dangerous ring. Let Ad denote the agent that is exploring
a node I in the dangerous ring, and As denote the agent that is going to bypass
node I through path J ,K ,L,M ,N (see Figure 2). When As arrives at node J
, it moves the token(s) from port Jd to Js if Js is without token. Otherwise, As

picks up the token(s) from port Jd , then As walks through Js to node K . As

then walks to node M through node L. If port Ms is with token, then As moves
the tokens from port Ms1 to port Ms2 , then walks to the next node on the safe

K L M

J I N

J
d

Js

L
d

L
s1

L
s2

M
d

M
s1 M

s2

SSaaffee
rriinngg

DDaannggeerroouuss
rriinngg

TTookkeenns

K
d

K
s1

K
s2

Fig. 2. Two agents executing “Bypass on a dangerous ring and a safe ring

Black Hole Search with Tokens in Interconnected Networks 675

ring. Otherwise, As leaves a token at port Md , then it becomes ready to go back
to the dangerous ring. From this point on, As becomes an agent exploring the
dangerous ring M ′

d in the next stage. If the old Ad does not die in node I , then
it becomes an agent trying to bypass node N that is under exploration by the
other agent. Namely, in the new stage, agent Ad will become a new A′

s . These
two agents keep changing roles to bypass a node in the dangerous ring that is
under exploration, until one dies in the BH.

4 Bhs with Co-located Agents

4.1 Bhs in Hypercube — Algorithm Two Rings

The following well-known property of a hypercube is the key to our solution to
the Bhs problem in this topology:

Property 1. Qd consists of two d−1-hypercubes connected by 2d−1 links labeled
as d.

Given this property, we find a way for two mobile agents (given 2 is the minimum
team size for the Bhs problem) to traverse the hypercube with tokens. The basic
idea can be carried out using the following three steps2:

– let one agent stay in the common H, and the other agent move to the other
ring through the connecting link using CWWT.

– have both agents explore a Hamiltonian Cycle (i.e., a ring) of each (d − 1)-
hypercube according to a specific permutation (see below) with CWWT.
After an agent has finished exploring its ring, we call this ring a safe ring,
and call the other ring, which has not finished being exploring, a dangerous
ring.

– let the agent that finished exploring the safe ring go to the other ring through
a connecting link. This agent will help the other agent exploring the dan-
gerous ring. It keeps walking on the dangerous ring until it sees the marker
of the other agent. The two agents then repeat multiple stages of the bypass
technique until one agent dies in the BH and the surviving agent finishes
exploring all but one nodes in the entire hypercube. The only node the sur-
viving agent has not visited is the BH.

The detail we need to address is how do we make the agents only walk on an
appropriate Hamiltonian cycle and 2d−1 links labeled as d, in a labeled Qd. The
following technique makes it possible:

We define a permutation that can construct a unique Hamiltonian cycle when
a starting node is given. Let Pd be a permutation of length n: {p1, p2, ..., pn/2, p1,
p2, ..., pn/2}. The sequence is constructed as follows:

2 Due to the page limit, most Lemmas and Theorems and their proofs are omitted.
Details can be found in:
http://www.scs.carleton.ca/∼swei4/FinalThesis(VF2007May23).pdf

676 W. Shi

– when d = 2, n = 22 = 4, P2: {1, 2, 1, 2};
– when d = 3, n = 23 = 8, P3: {1, 2, 3, 2, 1, 2, 3, 2};
– when d = 4, n = 24 = 16, P4:

{1, 2, 3, 2, 4, 2, 3, 2, 1, 2, 3, 2, 4, 2, 3, 2};
– when d = 5, n = 25 = 32, P5:

{1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3,
2, 1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2};
If we let P ′d denote the sequence from the second digit to the 2d−1th digit
of Pd, then:

– when d = i− 1, n = 2i−1, Pi−1: {1,P ′i−2, i− 1,P ′i−2, 1,P ′i−2, i− 1,P ′i−2}
– when d = i, n = 2i, Pi: {1,P ′i−1, i,P ′i−1, 1,P ′i−1, i,P ′i−1}

While d increases, each permutation Pd can be constructed by executing the
following two steps on permutation Pd−1:

a) replace the second occurrence of ‘1’ found in the sequence by ‘d’;
b) duplicate this modified sequence and append it to its own end (effectively

creating a sequence that consists of the modified sequence followed by itself).

Given all the agents know the size of the hypercube n = 2d, they can all come
up with such a permutation individually. All their permutations will be the
same, because they construct it according the same rules. Each element in the
permutation represents a label of a link. Every such number indicates which link
an agent is going to explore next.

Theorem 1. Permutation Pd computed by an agent constructs a Hamiltonian
cycle of Qd.

4.2 Bhs in Torus — Algorithm Cross Rings

Informally, a torus is a mesh with “wrap-around” links that transform it into a
regular graph: every node has exactly four neighbors. We develop an algorithm
Cross Rings, to locate the BH in a torus with co-located agents when the torus
is oriented, that is, when the ports of each node in the torus are consistently
labeled as: East, West, North, and South.

Let R−NS denote a ring with only links labeled South and North in a labeled
torus and, let R− EW denote a ring with only links labeled East and West in
a labeled torus. Starting from a node, there are two obvious paths that allow an
agent to traverse the torus and go back to the starting node. See Figure 3:

It is clear that a north-south ring A and an east-west ring B share exactly
one node, say v. If node v is not the BH, we know the BH cannot be on both A
and B. We then get the following observation:

Observation 3. Let 2 agents start from v. If we let one agent traverse the
north-south ring A, and another agent traverse the east-west ring B, then there
is at least one agent that survives its traversal.

Black Hole Search with Tokens in Interconnected Networks 677

N

N

N

N

S

S

S

W

WW

W

W

W
W

W

W

E

E

E

E

E

E
E

E

E

W

E

W

E

W

E

W

S

N

N

N

S

S N

S
N

S

E E W E W E W

NSN

N S S

S SNS S N N

Fig. 3. Two paths that allow an agent to traverse all the nodes in a labeled 3∗4 torus:
1. an east-west ring, plus every north-south ring that starts with a node in this east-
west ring, and 2. a north-south ring, plus every east-west ring that starts with a node
in this north-south ring

If only one agent finishes traversing a ring (i.e., the other agent died in the BH),
then we call this ring a Base ring. If both agents finish traversing their rings,
then we call the ring that is traversed the earliest, a Base ring, which is also a
safe ring. Hereafter, we assume that the Base ring is a north-south ring. (The
algorithm would be essentially the same if the Base ring were an east-west ring).
Now, we let the surviving agent(s) (either one or two) explore all the east-west
rings, each of which starts from a node on the Base ring. In order to prevent the
two agents from both dying in the BH, we let both agents explore a dangerous
node using CWWT with 1 token on a port.

Before one agent starts exploring an east-west ring, it puts 1 token in the mid-
dle of the homebase u. This agent then explores the first east-west ring. When
this agent finishes exploring an east-west ring, it will move the single token it left
in u to the next node to the North of u on the Base ring. We call the east-west
ring marked by this token, a RUE (Ring Under Exploration). An agent contin-
ues exploring east-west rings one by one, until it sees a token in the next node.
It then puts a second token in the next node to the north, comes back to pick up
the token it left in the previous node, goes to the next node to the north again
and starts exploring a new east-west ring. Given there is only one BH, and there
is no common node(s) shared by any two east-west rings, we obtain Lemma 1.
Given one agent a1 will finish exploring all but one east-west ring. The other
agent a2 is either exploring the RUE or died in the BH in the last RUE. Then
a1 will go and help a2 to explore the last east-west ring. Because we assumed
that one of the north-south rings is the Base ring, we say that an agent finishes
a stage as soon as it finishes exploring an east-west ring. An agent a1 will not
visit a RUE (by a2) until this is the only east-west ring left. Also, a1 follows
the path that a2 took on this last east-west ring, until it sees the CWWT to-
ken of a2. Now a1 and a2 will execute the procedure “Bypass on Torus”, sketched

678 W. Shi

out earlier. Eventually the algorithm terminates when there is only one node
that is not explored in the last RUE. The only node left unexplored is the BH.

Lemma 1. Eventually all but one east-west rings are explored.

4.3 Bhs in a Complete Network — Algorithm Take Turn

In this subsection, we present the solution to the Bhs problem in a complete
network without using sense of direction, that is, no ports of any node is labeled.
However, it is important to note that, even without a common labeling, the co-
located agents share a common reference (e.g., indexing) mechanism for the n−1
links of their H and thus can share a common order of traversal of these links.

For simplicity, we will say that the links are traversed ‘clockwise’ when going
from the lowest to the highest index, ‘counterclockwise’ otherwise (This is merely
a convention and the actual order of traversal could be defined differently, as long
as it is shared by the co-located agents.). A team of two co-located agents is used
to solve the problem. We can imagine the complete network as a star-shape
network with a node (which we will take to be the H of this pair of co-located
agents) in the middle.

The idea is very simple: once an agent a1 wakes up, it puts one token on a port
of its node, which it views as its H. a1 then explores the node reachable from
this port. When a1 comes back to its H after exploring a node, if the token of a1

is still at the port where it was left, then a1 will move this token to the next port
clockwise, and repeat this exploration step. Once the second agent a2 wakes up,
it moves the token of a1 to the next clockwise, and explores the node accessible
through this port. When an agent comes back from the exploration of a node,
if it sees the token it left is missing, then this agent continues clockwise until
it finds the port with one token. It moves this token to the next port clockwise
and starts exploring another node through this port. During this process, an
agent keeps counting the number of ports it visited (i.e., ports it used to access
nodes to explore) or passed (i.e., ports that are between the port this agent just
visited and the port that currently has a token). As soon as one agent notices
that this total (of ports being counted) reaches n−1, it terminates the algorithm
immediately. It is important to know that we use a variable bhlocation to record
the location of the BH. Each time an agent ai moves the token used by partner
aj to the next port, ai resets the variable bhlocation to 0, then keeps increasing it
by one each time it explores a new node. Also, variable nCount is incremented
as ports are used. ai terminates the algorithm as soon as it realizes nCount
reaches n − 1, at which point bhlocation indicates the location of the BH : the
bhlocationth port counter clockwise leads to the BH.

Theorem 2. Using two (2) co-located agents and one (1) token in total, the BH
can be successfully located in a complete network of n nodes, with Θ(n) moves
in total.

Black Hole Search with Tokens in Interconnected Networks 679

5 Bhs with Scattered Agents

5.1 In a Complete Network

The algorithm for locating the BH with scattered agents follows: upon one agent
waking up, it leaves a token in the middle of its H and waits. This agent starts
executing algorithm Take Turn as soon as its token is moved to a port of its H. If
an agent wakes up in a node that has a token in the middle, then this agent starts
executing algorithm Take Turn immediately. Once an agent wakes up in a node
that has a token on a port of its H, it becomes Passive immediately. Eventually,
a maximum of n/2 pairs of agents will execute algorithm Take Turn and finally
locate the BH. Given algorithm Take Turn requires n moves, n/2∗n = n2 moves
in total suffice with n scattered agents. 1 token per agent for n agents suffice to
correctly locate the BH. Hence we get the following theorem:

Theorem 3. Using n scattered agents, one (1) token per agent and O(n2)
moves, the BH can be successfully located in an un-oriented complete network
Kn.

5.2 In a Torus with Minimum Number of Agents

Again in this section, we assume the torus under investigation is oriented. We
also assume no agent wakes up in the BH. It is possible that 4 agents could die
immediately after the first move: one enters the BH through the North port, one
through the South port, one through the East port, and one through the West
port. In order to minimize team size, we program each mobile agent to enter
each node through only the South or West ports3, and thus a maximum of two
agents die after the first move. Hence, we conclude:

Lemma 2. At least 3 scattered agents are needed to locate the BH in an oriented
torus .

The basic idea for solving the BH s problem with scattered agents is to let two of
the three agents form a pair that execute algorithm Cross Rings starting from
the node (their H) where they formed this pair. In the following paragraphs
we will explain how the agents form a pair and how a pair of agents finds a
Base ring. Then, the rest of the algorithm is almost the same as algorithm Cross
Rings. In algorithm Cross Rings, there are only two agents working on the Bhs.
But in the scattered agents case, we need to find out a way to eliminate the
third scattered agents. Consequently, we work out a way for the third agent
to become DONE, in order to simplify the communication between the work-
ing pair: as soon as an agent goes into a node with 2 tokens on any of a port
(the indication of a single agent), it will pick up all the tokens and then continue.

3 In order for an agent to traverse an oriented torus, each agent must visit at least
two ports of each node.

680 W. Shi

Procedure “Initialization” and “Single Agent Explores a north-south
Ring: upon waking up, an agent becomes a single agent and it immediately
executes procedure “Single Agent Explores a north-south Ring” to the north.
In procedure “Single Agent Explores a north-south Ring”, an agent a1 explores
the north-south ring starting from node u (H), with CWWT (two tokens on the
port). a1 keeps counting the number of nodes in this north-south ring.

Case 1: When a1 goes into a node with one token in the middle of a node, a1

becomes DONE immediately.
Case 2:When a1 goes into a node with two tokens on the east port, it executes
“Paired agent finds a Base ring” to the north.
Case 3: a1 goes into a node with two tokens on the north port, it leaves one
extra token in the middle of the node. It then executes “Paired agent finds a
Base ring” to the east.
Case 4: When a1 comes back to the node where it left its CWWT tokens, if
two tokens are in the middle and at least one token on the east port of the node,
it then executes “Paired agent finds a Base ring” to the north.
Case 5: When a1 goes into a node, if any of the following three situations
happens, a1 will become Passive immediately. All three situations indicate that
a pair was formed. The situations are: either there is at least one token in the
middle of the node (there may be also token(s) on a port of that node), or there
is a token on the north port, or there is a token on the east port.
Case 6: When a1 finished exploring the north-south ring, it then executes pro-
cedure “Single Agent Explores an east-west Ring”.
Case 7: When a1 comes back to the node where it left its CWWT tokens, if all
the CWWT tokens are no longer there, it becomes DONE.
Case 8: When a1 finishes exploring one east-west ring, it immediately explores
the next east-west ring that starts from the next node to the north on the
north-south ring. a1 then executes procedure “Single Agent Explores an east-
west Ring” again.

Procedure “Paired Agent Finds a Base Ring”: As a single agent, as soon
as a1 sees two tokens on a port of a node (the CWWT) of another single agent
a2, it modifies the token configuration in this node and becomes a paired agent
immediately. After a1 becomes a paired agent, it executes procedure “Paired
Agent Finds a Base Ring”. Once an agent a2 becomes a paired agent (after
seeing the modified token configuration a1 left to it) it also executes procedure
“Paired Agent Finds a Base Ring”. We call this node with the modified token
configuration the homebase (H for brevity as used earlier) of these two paired
agents. It is worth repeating that if a1 executes “Paired Agent Finds a Base
Ring” to the north, then a2 will execute “Paired Agent Finds a Base Ring” to
the east, or vice versa.

Upon starting “Paired Agent Finds a Base Ring” to the north. A paired agent
a1 keeps walking to the north with CWWT, until it goes back to the H of this
pair. It is possible to have the following token configurations in this node:

Black Hole Search with Tokens in Interconnected Networks 681

1. there is 1 token on the north port and two tokens in the middle of their
H (and maybe another token on the east port if the other paired agent a2 is
exploring the node to the east after being a paired agent). In this case, the
north-south ring becomes the Base ring. a1 informs a2 of this result by picking
up the token on the north port.

2. there are 2 or 3 tokens in the middle of the node. In this case, 2 tokens
in the middle of the H shows that the second agent a2 finished exploring the
east-west ring before a1 finished exploring the north-south ring. So, the east-west
ring becomes the Base ring.

In either case, a1 then keeps walking to the east until it sees 1 token in the
middle of a node. It then executes algorithm Cross Rings to the east port. If there
are 3 tokens in the middle (a2 is exploring the first east-west ring as a paired
agent), a1 executes algorithm Cross Rings to the east port immediately. When
agent a2 walks back to the H of this paired agent after exploring an east-west
ring, there are either

a) 2 tokens in the middle of the H (a1 informed a2 that the north-south ring
is the Base ring). So a2 keeps walking to the north until it arrives in the node
with a token in the middle. It then executes algorithm Cross Rings to the north.

b) or 3 tokens in the middle of the H or 1 token on the north port and 2
tokens in the middle of their H (this means that not only a1 informed a2 that
the north-south ring becomes the Base ring, but also that a1 is exploring the
east-west ring that a2 just finished). Then a2 will execute algorithm Cross Rings
to the north.

c) or, in the third case, a2 decides that the east-west ring is the Base ring and
picks up the token on the north port of the pair’s H. a2 then executes algorithm
Cross Rings to the east.

During the execution of procedure “Paired Agent Finds a Base Ring”, there
are two other possible scenarios: 1) as soon as a1 or a2 goes into a node with 2
tokens on any of a port, it will pick up all the tokens then continue. 2) as soon
as a1 or a2 notices its CWWT token is moved, it will continue using the Bypass
technique as a paired agent.

5.3 In a Torus with k Scattered Agents

We also study the Bhs problem in a labeled torus with k (k > 3) scattered
mobile agents. Here, k is not known to any of the agents. From the result shown
in Theorem 4 we conclude that: not only an increase of team size does not
help to reduce the total number of moves, but also drastically complicates the
communication mechanism and increases the total number of moves performed
during the Bhs.

Theorem 4. Using k (k > 3) scattered agents and one token per agent, the BH
can be successfully located using O(k2n2) moves in a labeled torus with n nodes.

682 W. Shi

6 Conclusion

In this paper, we developed a set of token-based algorithms for locating a BH in
three interconnected network topologies. We sketched out solutions with both co-
located agents and scattered agents. This set of algorithms suggests that the token
model is computationally and complexity-wise as powerful as the whiteboard
model, regardless of the topology of the network, and with the knowledge of a
specific network topology, the cost of Bhs is improved from Θ(n log n) to Θ(n).
Moreover, in section 5, we show that Bhs with a team of scattered agents is rather
complex but solvable in some dense graphs. We are now exploring a solution for
Bhs on Hypercube with optimal complexity using scattered agents.

References

1. Greenberg, M., Byington, J., Harper, D.G.: Mobile agents and security. IEEE Com-
mun. Mag. 36(7), 76–85 (1998)

2. Oppliger, R.: Security issues related to mobile code and agent-based systems. Com-
puter Communications 22(12), 1165–1170 (1999)

3. Dobrev, S., Flocchini, P., Kralovic, R., Prencipe, G., Ruzicka, P., Santoro, N.:
Optimal search for a black hole in common interconnection networks. Networks 47,
61–71 (2006)

4. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Exploring a dangerous un-
known graph using tokens. In: Navarro, G., Bertossi, L., Kohayakwa, Y. (eds.)
TCS 2006. IFIP, vol. 209, pp. 169–180. Springer, Heidelberg (2006)

5. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

6. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in
arbitrary networks: Optimal mobile agent protocols. Distributed Computing 19(1),
1–9 (2006)

7. Dobrev, S., Santoro, N., Shi, W.: Scattered Mobile Agents Searching for a Black
Hole in an Unoriented Ring Using Tokens. International Journal of Foundations of
Computer Science(IJFCS) 19(6), 1355–1372 (2008)

8. Dobrev, S., Santoro, N., Shi, W.: Scattered black hole search in an oriented ring
using tokens. In: Proc. of 9th Workshop on Advances in Parallel and Distributed
Computational Models (APDCM 2007), IEEE International, vol. (26-30), pp. 1–8
(2007)

9. Fraigniaud, P., Ilcinkas, D.: Digraph exploration with little memory. In: Diekert, V.,
Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer, Heidelberg
(2004)

10. Dobrev, S., Kralovic, R., Santoro, N., Shi, W.: Black hole search in asynchronous
rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC
2006. LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006)

11. Flocchini, P., Ilcinkas, D., Santoro, N.: Ping Pong in Dangerous Graphs: Optimal
Black Hole Search with Pure Tokens. In: Taubenfeld, G. (ed.) DISC 2008. LNCS,
vol. 5218, pp. 227–241. Springer, Heidelberg (2008)

	Black Hole Search with Tokens in Interconnected Networks
	Introduction
	Model, Assumptions and Terminology
	Basic Tool and Technique
	CWWT
	Bypass Technique

	Bhs with Co-located Agents
	Bhs in Hypercube — Algorithm Two Rings
	Bhs in Torus — Algorithm Cross Rings
	Bhs in a Complete Network — Algorithm Take Turn

	Bhs with Scattered Agents
	In a Complete Network
	In a Torus with Minimum Number of Agents
	In a Torus with k Scattered Agents

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

