
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261135731

On Acceptance Testing

Conference Paper · January 2013

CITATION

1
READS

632

2 authors:

Some of the authors of this publication are also working on these related projects:

Wireless Sensor Networks View project

Wei Shi

Carleton University

97 PUBLICATIONS 574 CITATIONS

SEE PROFILE

Jean-Pierre Corriveau

Carleton University

94 PUBLICATIONS 466 CITATIONS

SEE PROFILE

All content following this page was uploaded by Wei Shi on 28 March 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/261135731_On_Acceptance_Testing?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/261135731_On_Acceptance_Testing?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Wireless-Sensor-Networks-77?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Shi28?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Shi28?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carleton_University?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Shi28?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Pierre_Corriveau?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Pierre_Corriveau?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carleton_University?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Pierre_Corriveau?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Shi28?enrichId=rgreq-349ffc5daef39f151e11838f62792b7b-XXX&enrichSource=Y292ZXJQYWdlOzI2MTEzNTczMTtBUzo5ODU0MDI2OTM0Mjc0N0AxNDAwNTA1MjM5OTQ3&el=1_x_10&_esc=publicationCoverPdf

On Acceptance Testing

Jean-Pierre Corriveau
School of Computer Science

Carleton University
Ottawa, CANADA

jeanpier@scs.carleton.ca

Wei Shi
Faculty of Business and Information Technology

University of Ontario Institute of Technology
Oshawa, CANADA

Wei.shi@uoit.ca

Abstract— Regardless of which (model-centric or code-centric)
development process is adopted, industrial software
production ultimately and necessarily requires the delivery of
an executable implementation. It is generally accepted that the
quality of such an implementation is of utmost importance. Yet
current verification techniques, including software testing,
remain problematic. In this paper, we focus on acceptance
testing, that is, on the validation of the actual behavior of the
implementation under test against the requirements of
stakeholder(s). This task must be as objective and automated
as possible. Our goal here is to review existing code-based and
model-based tools for testing in light of what such an objective
and automated approach to acceptance testing entails. Our
contention is that the difficulties we identify originate mainly
in a lack of traceability between a testable model of the
requirements of the stakeholder(s) and the test cases used to
validate these requirements.

Keywords— Validation, Acceptance Testing, Model-Based
Testing, Traceability, Scenario Models

Contact author for SERP 2013 paper: J-Pierre Corriveau

I. INTRODUCTION
The use and role of models in the production of

software systems vary considerably across industry.
Whereas some development processes rely extensively
on a diversity of semantic-rich UML models [1],
proponents of Agile methods instead minimize [2], if
not essentially eliminate [3] the need for models.
However, regardless of which model-centric or code-
centric development process is adopted, industrial
software production ultimately and necessarily requires
the delivery of an executable implementation.
Furthermore, it is generally accepted that the quality of
such an implementation is of utmost importance [4].
That is, except for the few who adopt 'hit-and-run'
software production 1 , the importance of software
verification within the software development lifecycle

1 according to which one develops and releases quickly in order to

grab a market share, with little consideration for quality
assurance and no commitment to maintenance and customer
satisfaction!

is widely acknowledged. Yet, despite recent
advancements in program verification, automatic
debugging, assertion deduction and model-based
testing (hereafter MBT), Ralph Johnson [5] and many
others still view software verification as a "catastrophic
computer science failure". Indeed, the recent CISQ
initiative [6] proceeds from such remarks and similar
ones such as: "The current quality of IT application
software exposes businesses and government agencies
to unacceptable levels of risk and loss." [Ibid.]. In
summary, software verification remains problematic. In
particular, software testing, that is evaluating software
by observing its executions on actual valued inputs [7],
is "a widespread validation approach in industry, but it
is still largely ad hoc, expensive, and unpredictably
effective" [8]. Grieskamp [9], the main architect of
Microsoft's MBT tool Spec Explorer [10], indeed
confirms that current testing practices "are not only
laborious and expensive but often unsystematic,
lacking an engineering methodology and discipline and
adequate tool support".

In this paper, we focus on one specific aspect of
software testing, namely the validation [11] of the
actual behavior of an implementation under test
(hereafter IUT) against the requirements of
stakeholder(s) of that system. This task, which
Bertolino refers to as "acceptance testing" [8], must be
as objective and automated as possible [12]. Our goal
here is to survey existing tools for testing in light of
what such an "objective and automated" approach to
acceptance testing entails. To do so, we first discuss in
section 2 existing code-based and, in section 3, existing
model-based approaches to acceptance testing. We
contend that the current challenges inherent to
acceptance testing originate first and foremost in a lack
of traceability between a testable model of the
requirements of the stakeholder(s) and the test cases
(i.e., code artifacts) used to validate the IUT against
these requirements. We conclude by considering
whether Model-Driven Development may offer an
avenue of solution.

II. CODE-BASED ACCEPTANCE TESTING?
Testing constitutes one of the most expensive

aspects of software development and software is often
not tested as thoroughly as it should be [8, 9, 11, 13].
As mentioned earlier, one possible standpoint is to
view current approaches to testing as belonging to one
of two categories: code-centric and model-centric. In
this section, we briefly discuss the first of these two
categories.

A code-centric approach, such as Test-Driven
Design (TDD) [3] proceeds from the viewpoint that,
for 'true agility', the design must be expressed once and
only once, in code. In other words, there is no
requirements model per se (that is, captured separately
from code). Consequently, there is no traceability [14]
between a requirements model and the test cases
exercising the code. But such traceability is an
essential facet of acceptance testing: without
traceability of a suite of test cases 'back to' an
explicitly-captured requirements model, there is no
objective way of measuring how much of this
requirements model is covered [11] by this test suite.

A further difficulty with TDD and similar
approaches is that tests cases (in contrast to more
abstract tests [11]) are code artifacts that are
implementation-driven and implementation-specific.
Consequently, the reuse potential of such test cases is
quite limited: each change to the IUT may require
several test cases to be updated. The explicit capturing
of a suite of implementation-independent tests
generated from a requirements model offers two
significant advantages:

1) It decouples requirements coverage from the
IUT: a suite of tests is generated from a requirements
model according to some coverage criterion. Then, and
only then, are tests somehow transformed into test
cases proper (i.e., code artifacts specific to the IUT).
Such test cases must be kept in sync with a constantly
evolving IUT, but this can be done totally
independently of requirements coverage.

2) It enables reuse of a suite of tests across several
IUTs, be they versions of a constantly-evolving IUT or,
more interestingly, competing vendor-specific IUTs
having to demonstrate compliance to some
specification (e.g., in the domain of software radios).

Beyond such methodological issues faced by code-
based approaches to acceptance testing, because the
latter requires automation (e.g., [11, 12]), we must also
consider tool support for such approaches.

Put simply, there is a multitude of tools for software
testing (e.g., [15, 16]), even for specific domains such
as Web quality assurance [17]. Bertolino [8] remarks,
in her seminal review of the state-of-the-art in software

testing, that most focus on functional testing, that is,
check "that the observed behavior complies with the
logic of the specifications". From this perspective, it
appears these tools are relevant to acceptance testing. A
closer look reveals most of these tools are code-based
testing tools (e.g., JAVA's JUnit [18] and AutoTest
[19]) that mainly focus on unit testing [11], that is, on
testing individual procedures of an IUT (as opposed to
scenario testing [20]). A few observations are in order:

1) There are many types of code-based verification
tools. They include a plethora of static analyzers, as
well as many other types of tools (see [21] for a short
review). For example, some tackle design-by-contract
[22], some metrics, some different forms of testing
(e.g., regression testing [11]). According to the
commonly accepted definition of software testing as
"the evaluation of software by observing its executions
on actual valued inputs" [7], many such tools (in
particular, static analyzers) are not testing tools per se.

2) As argued previously, acceptance testing requires
an implementation-independent requirements model.
While possibly feasible, it is unlikely this testable
requirements model (hereafter TRM) would be at a
level of details that would enable traceability between
it and unit-level tests and/or test cases. That is,
typically the tests proceeding from a TRM are system-
level ones [11], not unit-level ones.

3) Integration testing tools (such as Fit/Fitness,
EasyMock and jMock, etc.) do not address acceptance
testing proper. In particular, they do not capture a TRM
per se. The same conclusion holds for test automation
frameworks (e.g., IBM's Rational Robot [23]) and test
management tools (such as HP Quality Centre [24] and
Microsoft Team Foundation Server [25]).

One possible avenue to remedy the absence of a
TRM in existing code-based testing tools may consist
in trying to connect such a tool with a requirements
capture tool, that is, with a tool that captures a
requirements model but does not generate tests or test
cases from it. However, our ongoing collaboration with
Blueprint [26] to attempt to link their software to code-
based testing tools has revealed a fundamental hurdle
with such a multi-tool approach: Given there is no
generation of test cases in Blueprint, traceability from
Blueprint requirements2 to test cases (be they generated
or merely captured in some code-based testing tool)
reduces to manual cross-referencing. That is, there is
currently no automated way of connecting
requirements with test cases. But a scalable approach to

2 Blueprint offers user stories (which are a simple form of UML

Use Cases [11, 27]), UI Mockups and free-form text to capture
requirements. The latter are by far the most popular but the
hardest to semantically process in an automated way.

acceptance testing requires such automated traceability.
Without it, the initial manual linking of (e.g., hundred
of) requirements to (e.g., possibly thousands of) test
cases (e.g., in the case of a medium-size system of a
few tens of thousands lines of code) is simply
unfeasible. (From this viewpoint, whether either or
both tools at hand support change impact analysis is
irrelevant as it is the initial connecting of requirements
to test cases that is most problematic.) At this point in
time, the only observation we can add is that current
experimentation with Blueprint suggests an eventual
solution will require that a 'semantic bridge' between
this tool and a code-based testing tool be constructed.
But this is possible only if both requirements and test
cases are captured in such a way that they enable their
own semantic analysis. That is, unless we can first have
algorithms and tools that can 'understand' requirements
and test cases (by accessing and analyzing their
underlying representations), we cannot hope to develop
a semantic bridge between requirements and test cases.
However, such 'understanding' is extremely tool
specific, which leads us to conclude that a multi-tool
approach to acceptance testing is unlikely in the short
term (especially if one also has to 'fight' a frequent
unfavorable bias of users towards multi-tool solutions,
due to their over-specificity, their cost, etc.).

The need for an automated approach to traceability
between requirements and test cases suggests the latter
be somehow generated from the former. And thus we
now turn to model-based approaches to acceptance
testing.

III. MODEL-BASED TESTING
In her review of software testing, Bertolino [8]

remarks: “A great deal of research focuses nowadays
on model-based testing. The leading idea is to use
models defined in software construction to drive the
testing process, in particular to automatically generate
the test cases. The pragmatic approach that testing
research takes is that of following what is the current
trend in modeling: whichever be the notation used, say
e.g., UML or Z, we try to adapt to it a testing technique
as effectively as possible [.]”

Model-Based Testing (MBT) [10, 28, 29] involves
the derivation of tests and/or test cases from a model
that describes at least some of the aspects of the IUT.
More precisely, an MBT method uses various
algorithms and strategies to generate tests (sometimes
equivalently called 'test purposes') and/or test cases
from a behavioral model of the IUT. Such a model is
usually a partial representation of the IUT's behavior,
‘partial’ because the model abstracts away some of the
implementation details.

Several survey papers (e.g., [8, 30, 31) and special
issues (e.g., [29]) have addressed such model-based
approaches, as well as the more specific model driven
ones (e.g., [32, 33]). Some have specifically targeted
MBT tools (e.g., [28]). While some MBT methods use
models other than UML state machines (e.g., [34]),
most rely on test case generation from such state
machines (see [35] for a survey).

Here we will focus on state-based MBT tools that
generate executable test cases. Thus we will not
consider MBT contributions that instead only address
the generation of tests (and thus do not tackle the
difficult issue of transforming such tests into
executable IUT-specific test cases). Nor will we
consider MBT methods that are not supported by a tool
(since, tool support is absolutely required in order to
demonstrate the executability of the generated test
cases).

We start by discussing Conformiq's Tool Suite [36,
37], formerly known as Conformiq Qtronic (as referred
to in [35]). This tool requires that a system's
requirements be captured in UML statecharts (using
Conformiq's Modeler or third party tools). It "generates
software tests [...] without user intervention, complete
with test plan documentation and executable test scripts
in industry standard formats like Python, TCL, TTCN-
3, C, C++, Visual Basic, Java, JUnit, Perl, Excel,
HTML, Word, Shell Scripts and others." [37]. This
includes the automatic generation of test inputs
(including structural data), expected test outputs,
executable test suites, test case dependency information
and traceability matrix, as well as support for boundary
value analysis, atomic condition coverage, and other
black-box test design heuristics" [Ibid.].

While such a description may give the impression
acceptance testing has been successfully completely
automated, extensive experimentation 3 reveals some
significant hurdles:

First, Grieskamp [9], the creator of Spec Explorer
[10], another state-based MBT tool, explains at length
the problems inherent to test case generation from state
machines. In particular, he makes it clear that the state
explosion problem remains a daunting challenge for all
state-based MBT tools (contrary to the impression one
may get from reading the few paragraphs devoted to it
in the 360-page User Manual from Conformiq [37]).
Indeed, even the modeling of a simple game like
Yahtzee (involving throwing 5 dice up to three times
per round, holding some dice between each throw, to

3 by the authors and 100+ senior undergraduate and graduate

students in the context of offerings of a 4th year undergraduate
course in Quality Assurance and a graduate course in Object
Oriented Software Engineering twice over the last two years.

achieve the highest possible score according to a
specific poker-like scoring algorithm) can require a
huge state space if the 13-rounds of the game are to be
modeled. Both tools offer a simple mechanism to
constrain the state 'exploration' (or search) algorithm by
setting bounds (e.g., on the maximum number of states
to consider, or the "look ahead depth"). But then the
onus is on the user to fix such bounds through trial and
error. And such constraining is likely to hinder the
completeness of the generated test suite. The use of
'slicing' in Spec Explorer [10], via the specification of
a scenario (see Figures 1a and 1b), constitutes a much
better solution (to the problem of state explosion) for it
emphasizes the importance of equivalence partitioning
[11] and rightfully places on the user the onus of
determining which scenarios are equivalent (a task that,
as Binder explains [Ibid.], is unlikely to be fully
automatable).

// score 36 end states with 3, 3, 3 (as last dices)
// then score one end state for 2, 2, 1, 1, 3: must score 0
machine ScoreThreeOfAKind() : RollConstraint
{ (NewGame;
 (RollAll(_, _, 3, 3, 3);
 Score(ScoreType.ThreeOfAKind)
 | RollAll(2, 2, 1, 1, 3);
 Score(ScoreType.ThreeOfAKind)))
 || (construct model program from RollConstraint)
}

Figure 1.a A Spec Explorer scenario for
exploring scoring of three-of-a-kind rolls

//Sample hold test: should vary only 4th and 5th dice
// Gives 36 possible end states
machine hold1() : RollConstraint
{ (NewGame; RollAll(1,1,1,1,1);
 hold(1); hold(2); hold(3); RollAll)
 || (construct model program from RollConstraint)
}
Figure 1.b: A Spec Explorer scenario for holding

the first three dice

Second, in Conformiq, requirements coverage4 is

only possible if states and transitions are manually
associated with requirements (which are thus merely
annotations superimposed on a state machine)! Clearly,
such a task lacks automation and scalability. Also, it
points to an even more fundamental problem:
requirements traceability, that is, the ability to link
requirements to test cases. Shafique and Labiche [35,
table 4.b] equate "requirements traceability" with

4 not to be confused with state machine coverage, nor with test

suite coverage, both of these being directly and quite adequately
addressed by Conformiq and Spec Explorer [35, tables 2 and 3].

"integration with a requirements engineering tool".
Consequently, they consider that both Spec Explorer
and Conformiq offer only "partial" support for this
problem. For example, in Conformiq, the
abovementioned requirements annotations can be
manually connected to requirements captured in a tool
such as IBM RequisitePro or IBM Rational DOORS
[37, chapter 7]. However, we believe this operational
view of requirements traceability downplays a more
fundamental semantic problem identified by
Grieskamp [9]: a system's stakeholders are much more
inclined to associate requirements to scenarios [20]
(such as UML use cases [27]) than to parts of a state
machine... From this viewpoint:

1) Spec Explorer implicitly supports the notion of
scenarios via the use of "sliced machines", as
previously illustrated. But slicing is a sophisticated
technique drawing on semantically complex operators
[10]. Thus, the state space generated by a sliced
machine often may not correspond to the expectations
of the user. This makes it all-the-more difficult to
conceptually and then manually link the requirements
of stakeholder's to such scenarios.

2) Conformiq does support use cases, which can be
linked to requirements and can play a role in test case
generation [37, p.58]. Thus, instead of having the user
manually connect requirements to elements of a state
machine, a scenario-based approach to requirements
traceability could be envisioned. Intuitively this
approach would associated a) requirements with use
cases and b) paths of use cases with series of test cases.
But, unfortunately, this would require a totally different
algorithm for test case generation, one not rooted in
state machines, leading to a totally different tool.

Third, test case executability may not be as readily
available as what the user of an MBT tool expects.
Consider for example, the notion of a "scripting
backend" in Conformiq Designer. For example [37,
p.131]: "The TTCN-3 scripting backend publishes tests
generated by Conformiq Designer automatically in
TTCN-3 and saves them in TTCN-3 files. TTCN-3 test
cases are executed against a real system under test with
a TTCN-3 runtime environment and necessary
adapters." The point to be grasped is (what is often
referred to as) 'glue code' is required to connect the
generated tests to an actual IUT. Though less obvious
from the documentation, the same observation holds
for the other formats (e.g., C++, Perl, etc.) for which
Conformiq offers such backends. For example, we first
read [37, p.136]: "With Perl script backend, Perl test
cases can be derived automatically from a functional
design model and be executed against a real system."
And then find out on the next page that this in fact

requires "the location of the Perl test harness module,
i.e., the Perl module which contains the implementation
of the routines that the scripting backend generates." In
other words, Conformiq does provide not only test
cases but also offers a (possibly 3rd party) test harness
[Ibid.] that enables their execution against an IUT. But
its user is left to create glue code to bridge between
these test cases and the IUT. This manual task is not
only time-consuming but potentially error-prone [11].
Also, this glue code is implementation-specific and
thus, both its reusability across IUTs and its
maintainability are problematic.

In Spec Explorer [10], each test case corresponds to
a specific path through a generated state machine. One
alternative is to have each test case connected to the
IUT by having the rules of the specification (which are
used to control state exploration, as illustrated shortly)
explicitly refer to procedures of the IUT. Alternatively,
an adapter, that is, glue code, can be written to link
these test cases with the IUT. That is, once again,
traceability to the IUT is a manual task. Furthermore,
in this tool, test case execution (which is completely
neatly integrated into Visual Studio) relies on the IUT
inputting test case specific data (captured as parameter
values of a transition of the generated state machine)
and outputting the expected results (captured in the
model as return values of these transitions). As often
emphasized in the associated tutorial videos
(especially, session 3 part 2), the state variables used in
the Spec Explorer rules are only relevant to state
machine exploration, not to test case execution. Thus
any probing into the state of the IUT must be explicitly
addressed through the use of such parameters and
return values. The challenge of such an approach can
be illustrated by returning to our Yahtzee example.
Consider a rule called RollAll to capture the state
change corresponding to a roll of the dice:

[Rule]
 static void RollAll(int d1, int d2, int d3, int d4, int d5)

{ Condition.IsTrue(numRolls < 3);
 Condition.IsTrue(numRounds < 13);

 if (numRolls == 0) {
 Condition.IsTrue(numHeld == 0); }
 else { Condition.IsTrue(!d1Held || d1 == d1Val);

 Condition.IsTrue(!d2Held || d2 == d2Val);
 Condition.IsTrue(!d3Held || d3 == d3Val);
 Condition.IsTrue(!d4Held || d4 == d4Val);
 Condition.IsTrue(!d5Held || d5 == d5Val);
 }

 /* store values from this roll */
 d1Val = d1; d2Val = d2; d3Val = d3;

 d4Val = d4; d5Val = d5; numRolls += 1;
}

Here numRolls, numRounds, numHeld, diHeld and
diVal are all state variables. Without going in details,

this rule enables all valid rolls (with respect to the
number of rounds, the number of rolls and which dice
are to be held) to be potential next states. So, if before
firing this rules the values for diVal were {1, 2, 3, 4, 5}
and those of the diHeld were {true, true, true, true,
false}, then only rolls that have the first 4 dice (which
are held) as {1, 2, 3, 4} are valid as next rolls. The
problem is that {1, 2, 3, 4, 5} is valid as a next roll.
But, when testing against an IUT, this rule makes it
impossible to verify whether the last dice was held by
mistake or actually rerolled and still gave 5. The
solution attempted by students given this exercise
generally consists in adding 6 more Boolean
parameters to RollAll: each Boolean indicating if a die
is held or not. The problem with such a solution is that
it leads to state explosion (especially if the scenario
under test addresses the 3 throws of a round!). One
alternative, which is far less obvious, is to use the
return value of this rule to indicate for each die if it was
held or not...

The key point to be grasped from this example is
that, beyond issues of scalability and traceability, one
fundamental reality of all MBT tools is that their
semantic intricacies can significantly impact on what
acceptance testing can and cannot address. For
example, in Yahtzee, given a game consists of 13
rounds to be each scored once into one of the 13
categories of the scoring sheet, a tester would ideally
want to see this scoring sheet after each roll in order to
ensure not only that the most recent roll has been
scored correctly but also that previous scores are still
correctly recorded. But achieving this is notoriously
challenging unless it is explicitly programmed into the
glue code that connects the test cases to the IUT; an
approach that is quite distant from the goals of
automated testing.

Finally, on the topic of semantics, it is important to
emphasize the wide spectrum of semantics found in
MBT tools. Consider, for example, Cucumber rooted in
BDD [38], a user-friendly language for expressing
scenarios. But these scenarios are extremely simple
(nay simplistic) compared to the ones expressible using
slicing in Spec Explorer [10]. In fact, most MBT tools
cannot adequately address the semantic complexities
(e.g., temporal scenario inter-relationships [20]) of a
scenario-driven approach to test case derivation
[Ibid.])5. The question then is to ask how relevant to
acceptance testing other semantic approaches may be.
We consider this issue next.

5 despite, we repeat, Grieskamp's [9] crucial observation that the

stakeholders of a software system are much likelier to express
their requirements using scenarios than state machines!

IV. DISCUSSION
There exists a large body of work on modeling

'specifications' in vacuum, that is, with no connection
to an executable system. From Büschi automata to
Formula [39], researchers have explored formalisms
whose semantics enable objective (and possibly
automated) 'model checking', which consists in
deciding if a model is well-formed or not. The lack of
traceability to an IUT disqualifies such work from
immediate use for acceptance testing. In fact, because
the semantic gap between such approaches and what
can be observed from the execution of a system under
test is so significant, it is unlikely such approaches will
be reconcilable in the short or medium term with the
demands of practical acceptance testing, especially
with respect to traceability from requirements to test
cases.

Because the lack of traceability between models and
code is widely acknowledged as a common problem,
we should consider modeling approaches not
specifically targeted towards acceptance testing but that
address traceability. More to the point, we must now
ask if model-driven design (MDD) [40] may be the
foundations on which to build a scalable traceable
approach to acceptance testing. MDD's philosophy that
"the model is the code" [Ibid.] certainly seems to
eliminate the traceability issue between models and
code: code can be easily regenerated every time the
model changes6. And since, in MDD tools (e.g., [41]),
code generation is based on state machines, there
appears to be an opportunity to reuse these state
machines not just for code generation but also for test
case generation. This is indeed feasible with Conformiq
Designer [36], which allows the reuse of state
machines from third party tools. But there is a major
stumbling block: while both code and test cases can be
generated (albeit by different tools) from the same state
machines, they are totally independent. In other words,
the existence of a full code generator does not readily
help with the problem of traceability from requirements
to test cases. In fact, because the code is generated, it is
extremely difficult to reuse it for the construction of the
scriptends that would allow Conformiq's user to
connect test cases to this generated IUT. Moreover,
such a strategy defeats the intention of full code
generation in MDD, which is to have the users of an
MDD tool never have to deal with code directly

6 As one of the original creators of the ObjecTime toolset, which

has evolved in Rational Rose Technical Developer [41], the first
author of this paper is well aware of the semantic and scalability
issues facing existing MDD tools. But solutions to these issues
are not as relevant to acceptance testing as the problem of
traceability.

(except for defining the actions of transitions in state
machines).

One possible avenue of solution would be to
develop an integrated generator that would use state
machines to generate code and test cases for this code.
But traceability of such test cases back to a
requirements models (especially a scenario-driven one,
as advocated by Grieskamp [9]), still remains
unaddressed by this proposal. Thus, at this point in
time, the traceability offered in MDD tools by virtue of
full code generation does not appear to help with the
issue of traceability between requirements and test
cases for acceptance testing. Furthermore, one must
also acknowledge Selic's [40] concerns about the
relatively low level of adoption of MDD tools in
industry.

In the end, despite the dominant trend in MBT of
adopting state-based test and test case generation, it
may be necessary to consider some sort of scenario-
driven generation of test cases from requirements for
acceptance testing. This seems eventually feasible
given the following concluding observations:

1) There is already work on generating tests out of
use cases [11, 42] and use case maps [43], and
generating test cases out of sequence diagrams [44, 45].
Path sensitization [11] is the key technique typically
used in these proposals. There are still open problems
with path sensitization [Ibid.]. In particular, automating
the identification of the variables to be used for path
selection is problematic. As is the issue of path
coverage (in light of a potential explosion of the
number of possible paths in a scenario model). In other
words, the fundamental problem of equivalence
partitioning [Ibid.] remains and an automated solution
for it appears to be quite unlikely. However, despite all
of this, we remark simple implementations of this
technique already exist (e.g., [43] for use case maps).

2) (Partial if not ideally fully) automated traceability
between these three models can certainly be envisioned
given their semantic closeness, each one in fact
refining the previous one.

3) Traceability between sequence diagrams and an
IUT appears quite straightforward given the low-level
of abstraction of such models.

4) Within the semantic context of path sensitization,
tests can be thought of as paths (i.e., sequences) of
observable responsibilities (i.e., small testable
functional requirements). Thus, because tests from use
cases, use case maps and sequence diagrams are all
essentially paths of responsibilities, and because
responsibilities ultimately map onto procedures of the
IUT, automated traceability between tests and test
cases and between test cases and IUT seems realizable.

REFERENCES
[1] Kruchten, P.: The Rational Unified Process, Addison-Wesley,

Reading, 2003.
[2] Rosemberg, D. and Stephens, M.: Use Case Driven Object

Modeling with UML, APress, New York, 2007.
[3] Beck, K.: Test-Driven Development: By Example. Addison-

Wesley Professional, Reading, 2002.
[4] Jones, C. and Bonsignour, O.: The Economics of Software

Quality, Addison-Wesley Professional, 2011.
[5] Johnson, R.: Avoiding the classic catastrophic computer

science failure mode, 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010,
Santa Fe, NM, USA, November 7-11, 2010.

[6] Surhone, M., Tennoe, M. and Henssonow, S.: Cisq, Betascript
Publishing, 2010.

[7] Ammann P. and Offutt J.: Introduction to Software Testing,
Cambridge University Press, 2008.

[8] Bertolino, A.: Software Testing Research: Achievements,
Challenges and Dreams, Future of Software Engineering
(FOSE '07), pp.85-103, IEEE Press, Minneapolis, May 2007.

[9] Grieskamp, W.: Multi-Paradigmatic Model-Based Testing,
Technical Report, pp.1-20, Microsoft Research, August 2006.

[10] Spec Explorer Visual Studio Power Tool,
http://visualstudiogallery.msdn.microsoft.com/271d0904-
f178-4ce9-956b-d9bfa4902745

[11] Binder, R.: Testing Object-Oriented Systems, Addison-
Wesley Professional, Reading, 2000.

[12] Corriveau, J.-P.: Testable Requirements for Offshore
Outsourcing, SEAFOOD, Zurich, February 2007.

[13] Meyer, B.: The Unspoken Revolution in Software
Engineering, IEEE Computer 39(1), pp.121-123, 2006.

[14] Corriveau, J.-P.: Traceability Process for Large OO Projects,
IEEE Computer 29(9), pp.63-68, 1996.

[15] First list of testing tools:
http://www.info.com/Tools%20Software%20Testing?cb=22&
cmp=316574&gclid=CO7R4eeH1LICFaR9OgodYBsAmw

[16] Second list of testing tools:
http://en.wikipedia.org/wiki/Category:Software_testing_tools

[17] Testing tools for Web QA:
http://www.aptest.com/webresources.html

[18] JUnit, http://www.junit.org/
[19] Meyer, B. et al.: Programs that test themselves, IEEE

Computer 42(9), pp.46-55, 2009.
[20] Ryser, J. and Glinz, M.: SCENT: A Method Employing

Scenarios to Systematically Derive Test Cases for System
Test., Technical Report. University of Zurich, 2003.

[21] Arnold, D., Corriveau, J.-P. and Shi, W.: Validation against
Actual Behavior: Still a Challenge for Testing Tools, SERP,
Las Vegas, July, 2010.

[22] Meyer, B.: Design by Contract. IEEE Computer 25(10), pp.
40-51, 1992.

[23] IBM: Rational Robot, http://www-
01.ibm.com/software/awdtools/tester/robot/

[24] HP Quality Centre http://www8.hp.com/us/en/software-
solutions/software.html?compURI=1172141&jumpid=ex_r11
374_us/en/large/eb/go_qualitycenter#.UTEXSI76TJo

[25] TFS http://msdn.microsoft.com/en-us/vstudio/ff637362.aspx
[26] Blueprint

https://documentation.blueprintcloud.com/Blueprint5.1/Defau
lt.htm#Help/Project%20Administration/Tasks/Managing%20
ALM%20targets/Creating%20ALM%20targets.htm

[27] UML Superstructure Specification, v2.3,

http://www.omg.org/spec/UML/2.3/
[28] Utting, M. and Legeard, B. 2007: Practical Model-Based

Testing: A Tools Approach, Morgan Kauffmann
[29] Testing Experience, Model-Based Testing, March 2012, Díaz

& Hilterscheid GmbH, Germany
[30] Prasanna, M. et al.: A survey on Automatic Test Case

Generation, Academic Open Internet Journal, Volume 15, part
6, 2005

[31] Neto, A. et al.: A survey of Model-based Testing Approaches,
WEASELTech'07, Atlanta, November 2007.

[32] Baker, P., Dai, Z.R., Grabowski, J., Schieferdecker, I. and
Williams, C.: Model-Driven Testing: Using the UML Profile,
Springer, 2007.

[33] Bukhari, S. and Waheed, T.: Model driven transformation
between design models to system test models using UML: A
survey, Proceedings of the 2010 National S/w Engineering
Conference, article 08, Rawalpindi, Pakistan, October 2010.

[34] http://wiki.eclipse.org/EclipseTestingDay2010_Talk_Seppme
d

[35] Shafique, M. and Labiche, Y.: A Systematic Review of Model
Based Testing Tool Support, Technical Report, SCE-10-04,
Carleton University, 2010

[36] Conformiq Tool Suite,
http://www.verifysoft.com/en_conformiq_automatic_test_gen
eration.html

[37] Conformiq Manual,
http://www.verifysoft.com/ConformiqManual.pdf

[38] Chelimsky, D. et al.: The RSpec Book: Behaviour Driven
Development with Rspec, Cucumber and Friends, Pragmatic
Bookshelf , 2010.

[39] FORMULA, http://research.microsoft.com/en-
us/projects/formula/

[40] Selic, B.: Filling in the Whitespace,
http://lmo08.iro.umontreal.ca/Bran%20Selic.pdf

[41] Rational Technical Developer, http://www-
01.ibm.com/software/awdtools/developer/technical/

[42] Nebut C., Fleury F., Le Traon Y., and Jézéquel J. M.:
Automatic Test Generation: A Use Case Driven Approach.
IEEE Transactions on Software Engineering, Vol. 32, 2006.

[43] A. Miga, Applications of Use Case Maps to System Design
with Tool Support, M.Eng. Thesis, Dept. of Systems and
Computer. Engineering, Carleton University, 1998.

[44] Zander, J. et al: From U2TP Models to Executable Tests with
TTCN-3 - An Approach to Model Driven Testing. 17th
International Conf. on Testing Communicating Systems
TestCom 2005, Montreal, Canada, ISBN: 3-540-26054-4,
May 2005.

[45] Baker, P. and Jervis, C.: Testing UML 2.0 Models using
TTCN-3 and the UML 2.0 Testing Profile. LNCS 4745, pp.
86-100, 2007.

View publication statsView publication stats

https://www.researchgate.net/publication/261135731

