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Abstract— Regardless of which (model-centric or code-centric) 
development process is adopted, industrial software 
production ultimately and necessarily requires the delivery of 
an executable implementation. It is generally accepted that the 
quality of such an implementation is of utmost importance. Yet 
current verification techniques, including software testing, 
remain problematic. In this paper, we focus on acceptance 
testing, that is, on the validation of the actual behavior of the 
implementation under test against the requirements of 
stakeholder(s). This task must be as objective and automated 
as possible. Our goal here is to review existing code-based and 
model-based tools for testing in light of what such an objective 
and automated approach to acceptance testing entails. Our 
contention is that the difficulties we identify originate mainly 
in a lack of traceability between a testable model of the 
requirements of the stakeholder(s) and the test cases used to 
validate these requirements. 
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I.  INTRODUCTION  
The use and role of models in the production of 

software systems vary considerably across industry. 
Whereas some development processes rely extensively 
on a diversity of semantic-rich UML models [1], 
proponents of Agile methods instead minimize [2], if 
not essentially eliminate [3] the need for models. 
However, regardless of which model-centric or code-
centric development process is adopted, industrial 
software production ultimately and necessarily requires 
the delivery of an executable implementation. 
Furthermore, it is generally accepted that the quality of 
such an implementation is of utmost importance [4]. 
That is, except for the few who adopt 'hit-and-run' 
software production 1 , the importance of software 
verification within the software development lifecycle 

                                                             
1 according to which one develops and releases quickly in order to 

grab a market share, with little consideration for quality 
assurance and no commitment to maintenance and customer 
satisfaction! 

is widely acknowledged. Yet, despite recent 
advancements in program verification, automatic 
debugging, assertion deduction and model-based 
testing (hereafter MBT), Ralph Johnson [5] and many 
others still view software verification as a "catastrophic 
computer science failure". Indeed, the recent CISQ 
initiative [6] proceeds from such remarks and similar 
ones such as: "The current quality of IT application 
software exposes businesses and government agencies 
to unacceptable levels of risk and loss." [Ibid.]. In 
summary, software verification remains problematic. In 
particular, software testing, that is evaluating software 
by observing its executions on actual valued inputs [7], 
is "a widespread validation approach in industry, but it 
is still largely ad hoc, expensive, and unpredictably 
effective" [8]. Grieskamp [9], the main architect of 
Microsoft's MBT tool Spec Explorer [10], indeed 
confirms that current testing practices "are not only 
laborious and expensive but often unsystematic, 
lacking an engineering methodology and discipline and 
adequate tool support".  

In this paper, we focus on one specific aspect of 
software testing, namely the validation [11] of the 
actual behavior of an implementation under test 
(hereafter IUT) against the requirements of 
stakeholder(s) of that system. This task, which 
Bertolino refers to as "acceptance testing" [8], must be 
as objective and automated as possible [12]. Our goal 
here is to survey existing tools for testing in light of 
what such an "objective and automated" approach to 
acceptance testing entails. To do so, we first discuss in 
section 2 existing code-based and, in section 3, existing 
model-based approaches to acceptance testing. We 
contend that the current challenges inherent to 
acceptance testing originate first and foremost in a lack 
of traceability between a testable model of the 
requirements of the stakeholder(s) and the test cases 
(i.e., code artifacts) used to validate the IUT against 
these requirements. We conclude by considering 
whether Model-Driven Development may offer an 
avenue of solution. 



II. CODE-BASED ACCEPTANCE TESTING? 
Testing constitutes one of the most expensive 

aspects of software development and software is often 
not tested as thoroughly as it should be [8, 9, 11, 13]. 
As mentioned earlier, one possible standpoint is to 
view current approaches to testing as belonging to one 
of two categories: code-centric and model-centric. In 
this section, we briefly discuss the first of these two 
categories.  

A code-centric approach, such as Test-Driven 
Design (TDD) [3] proceeds from the viewpoint that, 
for 'true agility', the design must be expressed once and 
only once, in code. In other words, there is no 
requirements model per se (that is, captured separately 
from code). Consequently, there is no traceability [14] 
between a requirements model and the test cases 
exercising the code.  But such traceability is an 
essential facet of acceptance testing: without 
traceability of a suite of test cases 'back to' an 
explicitly-captured requirements model, there is no 
objective way of measuring how much of this 
requirements model is covered [11] by this test suite.  

A further difficulty with TDD and similar 
approaches is that tests cases (in contrast to more 
abstract tests [11]) are code artifacts that are 
implementation-driven and implementation-specific. 
Consequently, the reuse potential of such test cases is 
quite limited: each change to the IUT may require 
several test cases to be updated. The explicit capturing 
of a suite of implementation-independent tests 
generated from a requirements model offers two 
significant advantages:  

1) It decouples requirements coverage from the 
IUT: a suite of tests is generated from a requirements 
model according to some coverage criterion. Then, and 
only then, are tests somehow transformed into test 
cases proper (i.e., code artifacts specific to the IUT). 
Such test cases must be kept in sync with a constantly 
evolving IUT, but this can be done totally 
independently of requirements coverage.  

2) It enables reuse of a suite of tests across several 
IUTs, be they versions of a constantly-evolving IUT or, 
more interestingly, competing vendor-specific IUTs 
having to demonstrate compliance to some 
specification (e.g., in the domain of software radios). 

Beyond such methodological issues faced by code-
based approaches to acceptance testing, because the 
latter requires automation (e.g., [11, 12]), we must also 
consider tool support for such approaches. 

Put simply, there is a multitude of tools for software 
testing (e.g., [15, 16]), even for specific domains such 
as Web quality assurance [17]. Bertolino [8] remarks, 
in her seminal review of the state-of-the-art in software 

testing, that most focus on functional testing, that is, 
check "that the observed behavior complies with the 
logic of the specifications". From this perspective, it 
appears these tools are relevant to acceptance testing. A 
closer look reveals most of these tools are code-based 
testing tools (e.g., JAVA's JUnit [18] and AutoTest 
[19]) that mainly focus on unit testing [11], that is, on 
testing individual procedures of an IUT (as opposed to 
scenario testing [20]). A few observations are in order:  

1) There are many types of code-based verification 
tools. They include a plethora of static analyzers, as 
well as many other types of tools (see [21] for a short 
review). For example, some tackle design-by-contract 
[22], some metrics, some different forms of testing 
(e.g., regression testing [11]).  According to the 
commonly accepted definition of software testing as 
"the evaluation of software by observing its executions 
on actual valued inputs" [7], many such tools (in 
particular, static analyzers) are not testing tools per se.  

2) As argued previously, acceptance testing requires 
an implementation-independent requirements model. 
While possibly feasible, it is unlikely this testable 
requirements model (hereafter TRM) would be at a 
level of details that would enable traceability between 
it and unit-level tests and/or test cases. That is, 
typically the tests proceeding from a TRM are system-
level ones [11], not unit-level ones. 

3) Integration testing tools (such as Fit/Fitness, 
EasyMock and jMock, etc.) do not address acceptance 
testing proper. In particular, they do not capture a TRM 
per se. The same conclusion holds for test automation 
frameworks (e.g., IBM's Rational Robot [23]) and test 
management tools (such as HP Quality Centre [24] and 
Microsoft Team Foundation Server [25]). 

One possible avenue to remedy the absence of a 
TRM in existing code-based testing tools may consist 
in trying to connect such a tool with a requirements 
capture tool, that is, with a tool that captures a 
requirements model but does not generate tests or test 
cases from it. However, our ongoing collaboration with 
Blueprint [26] to attempt to link their software to code-
based testing tools has revealed a fundamental hurdle 
with such a multi-tool approach: Given there is no 
generation of test cases in Blueprint, traceability from 
Blueprint requirements2 to test cases (be they generated 
or merely captured in some code-based testing tool) 
reduces to manual cross-referencing. That is, there is 
currently no automated way of connecting 
requirements with test cases. But a scalable approach to 

                                                             
2 Blueprint offers user stories (which are a simple form of UML 

Use Cases [11, 27]), UI Mockups and free-form text to capture 
requirements. The latter are by far the most popular but the 
hardest to semantically process in an automated way. 



acceptance testing requires such automated traceability. 
Without it, the initial manual linking of (e.g., hundred 
of) requirements to (e.g., possibly thousands of) test 
cases (e.g., in the case of a medium-size system of a 
few tens of thousands lines of code) is simply 
unfeasible. (From this viewpoint, whether either or 
both tools at hand support change impact analysis is 
irrelevant as it is the initial connecting of requirements 
to test cases that is most problematic.) At this point in 
time, the only observation we can add is that current 
experimentation with Blueprint suggests an eventual 
solution will require that a 'semantic bridge' between 
this tool and a code-based testing tool be constructed. 
But this is possible only if both requirements and test 
cases are captured in such a way that they enable their 
own semantic analysis. That is, unless we can first have 
algorithms and tools that can 'understand' requirements 
and test cases (by accessing and analyzing their 
underlying representations), we cannot hope to develop 
a semantic bridge between requirements and test cases. 
However, such 'understanding' is extremely tool 
specific, which leads us to conclude that a multi-tool 
approach to acceptance testing is unlikely in the short 
term (especially if one also has to 'fight' a frequent 
unfavorable bias of users towards multi-tool solutions, 
due to their over-specificity, their cost, etc.). 

The need for an automated approach to traceability 
between requirements and test cases suggests the latter 
be somehow generated from the former. And thus we 
now turn to model-based approaches to acceptance 
testing.  

III. MODEL-BASED TESTING  
In her review of software testing, Bertolino [8] 

remarks: “A great deal of research focuses nowadays 
on model-based testing. The leading idea is to use 
models defined in software construction to drive the 
testing process, in particular to automatically generate 
the test cases. The pragmatic approach that testing 
research takes is that of following what is the current 
trend in modeling: whichever be the notation used, say 
e.g., UML or Z, we try to adapt to it a testing technique 
as effectively as possible [.]” 

Model-Based Testing (MBT) [10, 28, 29] involves 
the derivation of tests and/or test cases from a model 
that describes at least some of the aspects of the IUT. 
More precisely, an MBT method uses various 
algorithms and strategies to generate tests (sometimes 
equivalently called 'test purposes') and/or test cases 
from a behavioral model of the IUT.  Such a model is 
usually a partial representation of the IUT's behavior, 
‘partial’ because the model abstracts away some of the 
implementation details.  

Several survey papers (e.g., [8, 30, 31) and special 
issues (e.g., [29]) have addressed such model-based 
approaches, as well as the more specific model driven 
ones (e.g., [32, 33]). Some have specifically targeted 
MBT tools (e.g., [28]). While some MBT methods use 
models other than UML state machines (e.g., [34]), 
most rely on test case generation from such state 
machines (see [35] for a survey).  

Here we will focus on state-based MBT tools that 
generate executable test cases. Thus we will not 
consider MBT contributions that instead only address 
the generation of tests (and thus do not tackle the 
difficult issue of transforming such tests into 
executable IUT-specific test cases). Nor will we 
consider MBT methods that are not supported by a tool 
(since, tool support is absolutely required in order to 
demonstrate the executability of the generated test 
cases).   

We start by discussing Conformiq's Tool Suite [36, 
37], formerly known as Conformiq Qtronic (as referred 
to in [35]). This tool requires that a system's 
requirements be captured in UML statecharts (using 
Conformiq's Modeler or third party tools). It "generates 
software tests [...] without user intervention, complete 
with test plan documentation and executable test scripts 
in industry standard formats like Python, TCL, TTCN-
3, C, C++, Visual Basic, Java, JUnit, Perl, Excel, 
HTML, Word, Shell Scripts and others." [37]. This 
includes the automatic generation of test inputs 
(including structural data), expected test outputs, 
executable test suites, test case dependency information 
and traceability matrix, as well as support for boundary 
value analysis, atomic condition coverage, and other 
black-box test design heuristics" [Ibid.].  

While such a description may give the impression 
acceptance testing has been successfully completely 
automated, extensive experimentation 3  reveals some 
significant hurdles: 

First, Grieskamp [9], the creator of Spec Explorer 
[10], another state-based MBT tool, explains at length 
the problems inherent to test case generation from state 
machines. In particular, he makes it clear that the state 
explosion problem remains a daunting challenge for all 
state-based MBT tools (contrary to the impression one 
may get from reading the few paragraphs devoted to it 
in the 360-page User Manual from Conformiq [37]). 
Indeed, even the modeling of a simple game like 
Yahtzee (involving throwing 5 dice up to three times 
per round, holding some dice between each throw, to 

                                                             
3 by the authors and 100+ senior undergraduate and graduate 

students in the context of offerings of a 4th year undergraduate 
course in Quality Assurance and a graduate course in Object 
Oriented Software Engineering twice over the last two years. 



achieve the highest possible score according to a 
specific poker-like scoring algorithm) can require a 
huge state space if the 13-rounds of the game are to be 
modeled. Both tools offer a simple mechanism to 
constrain the state 'exploration' (or search) algorithm by 
setting bounds (e.g., on the maximum number of states 
to consider, or the "look ahead depth"). But then the 
onus is on the user to fix such bounds through trial and 
error. And such constraining is likely to hinder the 
completeness of the generated test suite. The use of 
'slicing' in Spec Explorer  [10], via the specification of 
a scenario (see Figures 1a and 1b), constitutes a much 
better solution (to the problem of state explosion) for it 
emphasizes the importance of equivalence partitioning 
[11] and rightfully places on the user the onus of 
determining which scenarios are equivalent (a task that, 
as Binder explains [Ibid.], is unlikely to be fully 
automatable). 

 
// score 36 end states with 3, 3, 3 (as last dices)   
// then score one end state for 2, 2, 1, 1, 3: must score 0 
machine ScoreThreeOfAKind() : RollConstraint 
{ ( NewGame;  
 (RollAll(_, _, 3, 3, 3);  
 Score(ScoreType.ThreeOfAKind) 
    | RollAll(2, 2, 1, 1, 3);  
 Score(ScoreType.ThreeOfAKind)))  
    || (construct model program from RollConstraint) 
} 

Figure 1.a A Spec Explorer scenario for 
exploring scoring of three-of-a-kind rolls 

 
//Sample hold test: should vary only 4th and 5th dice  
// Gives 36 possible end states 
machine hold1() : RollConstraint 
{  (NewGame; RollAll(1,1,1,1,1);  
 hold(1); hold(2); hold(3); RollAll)  
    || (construct model program from RollConstraint) 
} 
Figure 1.b: A Spec Explorer scenario for holding 

the first three dice 
 
Second, in Conformiq, requirements coverage4 is 

only possible if states and transitions are manually 
associated with requirements (which are thus merely 
annotations superimposed on a state machine)! Clearly, 
such a task lacks automation and scalability. Also, it 
points to an even more fundamental problem: 
requirements traceability, that is, the ability to link 
requirements to test cases. Shafique and Labiche [35, 
table 4.b] equate "requirements traceability" with 

                                                             
4 not to be confused with state machine coverage, nor with test 

suite coverage, both of these being directly and quite adequately 
addressed by Conformiq and Spec Explorer [35, tables 2 and 3]. 

"integration with a requirements engineering tool". 
Consequently, they consider that both Spec Explorer 
and Conformiq offer only "partial" support for this 
problem. For example, in Conformiq, the 
abovementioned requirements annotations can be 
manually connected to requirements captured in a tool 
such as IBM RequisitePro or IBM Rational DOORS 
[37, chapter 7]. However, we believe this operational 
view of requirements traceability downplays a more 
fundamental semantic problem identified by 
Grieskamp [9]: a system's stakeholders are much more 
inclined to associate requirements to scenarios [20] 
(such as UML use cases [27]) than to parts of a state 
machine...  From this viewpoint: 

1) Spec Explorer implicitly supports the notion of 
scenarios via the use of "sliced machines", as 
previously illustrated. But slicing is a sophisticated 
technique drawing on semantically complex operators 
[10]. Thus, the state space generated by a sliced 
machine often may not correspond to the expectations 
of the user. This makes it all-the-more difficult to 
conceptually and then manually link the requirements 
of stakeholder's to such scenarios.  

2) Conformiq does support use cases, which can be 
linked to requirements and can play a role in test case 
generation [37, p.58]. Thus, instead of having the user 
manually connect requirements to elements of a state 
machine, a scenario-based approach to requirements 
traceability could be envisioned. Intuitively this 
approach would associated a) requirements with use 
cases and b) paths of use cases with series of test cases. 
But, unfortunately, this would require a totally different 
algorithm for test case generation, one not rooted in 
state machines, leading to a totally different tool. 

Third, test case executability may not be as readily 
available as what the user of an MBT tool expects. 
Consider for example, the notion of a "scripting 
backend" in Conformiq Designer. For example [37, 
p.131]: "The TTCN-3 scripting backend publishes tests 
generated by Conformiq Designer automatically in 
TTCN-3 and saves them in TTCN-3 files. TTCN-3 test 
cases are executed against a real system under test with 
a TTCN-3 runtime environment and necessary 
adapters." The point to be grasped is (what is often 
referred to as) 'glue code' is required to connect the 
generated tests to an actual IUT. Though less obvious 
from the documentation, the same observation holds 
for the other formats (e.g., C++, Perl, etc.) for which 
Conformiq offers such backends. For example, we first 
read [37, p.136]: "With Perl script backend, Perl test 
cases can be derived automatically from a functional 
design model and be executed against a real system." 
And then find out on the next page that this in fact 



requires "the location of the Perl test harness module, 
i.e., the Perl module which contains the implementation 
of the routines that the scripting backend generates." In 
other words, Conformiq does provide not only test 
cases but also offers a (possibly 3rd party) test harness 
[Ibid.] that enables their execution against an IUT. But 
its user is left to create glue code to bridge between 
these test cases and the IUT. This manual task is not 
only time-consuming but potentially error-prone [11]. 
Also, this glue code is implementation-specific and 
thus, both its reusability across IUTs and its 
maintainability are problematic.  

In Spec Explorer [10], each test case corresponds to 
a specific path through a generated state machine. One 
alternative is to have each test case connected to the 
IUT by having the rules of the specification (which are 
used to control state exploration, as illustrated shortly) 
explicitly refer to procedures of the IUT. Alternatively, 
an adapter, that is, glue code, can be written to link 
these test cases with the IUT. That is, once again, 
traceability to the IUT is a manual task. Furthermore, 
in this tool, test case execution (which is completely 
neatly integrated into Visual Studio) relies on the IUT 
inputting test case specific data (captured as parameter 
values of a transition of the generated state machine) 
and outputting the expected results (captured in the 
model as return values of these transitions). As often 
emphasized in the associated tutorial videos 
(especially, session 3 part 2), the state variables used in 
the Spec Explorer rules are only relevant to state 
machine exploration, not to test case execution. Thus 
any probing into the state of the IUT must be explicitly 
addressed through the use of such parameters and 
return values. The challenge of such an approach can 
be illustrated by returning to our Yahtzee example. 
Consider a rule called RollAll to capture the state 
change corresponding to a roll of the dice:  

[Rule]         
 static void RollAll(int d1, int d2, int d3, int d4, int d5)      

{             Condition.IsTrue(numRolls < 3);             
 Condition.IsTrue(numRounds < 13);               

 if (numRolls == 0)   {          
          Condition.IsTrue(numHeld == 0);   }             
  else   {  Condition.IsTrue(!d1Held || d1 == d1Val);                 

  Condition.IsTrue(!d2Held || d2 == d2Val);                 
  Condition.IsTrue(!d3Held || d3 == d3Val);                 
  Condition.IsTrue(!d4Held || d4 == d4Val);                 
  Condition.IsTrue(!d5Held || d5 == d5Val);          
          } 

       /* store values from this roll */              
       d1Val = d1;            d2Val = d2;     d3Val = d3;                 

 d4Val = d4;            d5Val = d5;     numRolls += 1;         
} 

Here numRolls, numRounds, numHeld, diHeld and 
diVal are all state variables. Without going in details, 

this rule enables all valid rolls (with respect to the 
number of rounds, the number of rolls and which dice 
are to be held) to be potential next states. So, if before 
firing this rules the values for diVal were {1, 2, 3, 4, 5} 
and those of the diHeld were {true, true, true, true, 
false}, then only rolls that have the first 4 dice (which 
are held) as {1, 2, 3, 4} are valid as next rolls. The 
problem is that {1, 2, 3, 4, 5} is valid as a next roll. 
But, when testing against an IUT, this rule makes it 
impossible to verify whether the last dice was held by 
mistake or actually rerolled and still gave 5. The 
solution attempted by students given this exercise 
generally consists in adding 6 more Boolean 
parameters to RollAll: each Boolean indicating if a die 
is held or not. The problem with such a solution is that 
it leads to state explosion (especially if the scenario 
under test addresses the 3 throws of a round!). One 
alternative, which is far less obvious, is to use the 
return value of this rule to indicate for each die if it was 
held or not...  

The key point to be grasped from this example is 
that, beyond issues of scalability and traceability, one 
fundamental reality of all MBT tools is that their 
semantic intricacies can significantly impact on what 
acceptance testing can and cannot address. For 
example, in Yahtzee, given a game consists of 13 
rounds to be each scored once into one of the 13 
categories of the scoring sheet, a tester would ideally 
want to see this scoring sheet after each roll in order to 
ensure not only that the most recent roll has been 
scored correctly but also that previous scores are still 
correctly recorded. But achieving this is notoriously 
challenging unless it is explicitly programmed into the 
glue code that connects the test cases to the IUT; an 
approach that is quite distant from the goals of 
automated testing. 

Finally, on the topic of semantics, it is important to 
emphasize the wide spectrum of semantics found in 
MBT tools. Consider, for example, Cucumber rooted in 
BDD [38], a user-friendly language for expressing 
scenarios. But these scenarios are extremely simple 
(nay simplistic) compared to the ones expressible using 
slicing in Spec Explorer [10]. In fact, most MBT tools 
cannot adequately address the semantic complexities 
(e.g., temporal scenario inter-relationships [20]) of a 
scenario-driven approach to test case derivation 
[Ibid.])5. The question then is to ask how relevant to 
acceptance testing other semantic approaches may be. 
We consider this issue next. 

                                                             
5 despite, we repeat, Grieskamp's [9] crucial observation that the 

stakeholders of a software system are much likelier to express 
their requirements using scenarios than state machines! 



IV. DISCUSSION 
There exists a large body of work on modeling 

'specifications' in vacuum, that is, with no connection 
to an executable system. From Büschi automata to 
Formula [39], researchers have explored formalisms 
whose semantics enable objective (and possibly 
automated) 'model checking', which consists in 
deciding if a model is well-formed or not. The lack of 
traceability to an IUT disqualifies such work from 
immediate use for acceptance testing. In fact, because 
the semantic gap between such approaches and what 
can be observed from the execution of a system under 
test is so significant, it is unlikely such approaches will 
be reconcilable in the short or medium term with the 
demands of practical acceptance testing, especially 
with respect to traceability from requirements to test 
cases.  

Because the lack of traceability between models and 
code is widely acknowledged as a common problem, 
we should consider modeling approaches not 
specifically targeted towards acceptance testing but that 
address traceability. More to the point, we must now 
ask if model-driven design (MDD) [40] may be the 
foundations on which to build a scalable traceable 
approach to acceptance testing. MDD's philosophy that 
"the model is the code" [Ibid.] certainly seems to 
eliminate the traceability issue between models and 
code: code can be easily regenerated every time the 
model changes6.  And since, in MDD tools (e.g., [41]), 
code generation is based on state machines, there 
appears to be an opportunity to reuse these state 
machines not just for code generation but also for test 
case generation. This is indeed feasible with Conformiq 
Designer [36], which allows the reuse of state 
machines from third party tools. But there is a major 
stumbling block: while both code and test cases can be 
generated (albeit by different tools) from the same state 
machines, they are totally independent. In other words, 
the existence of a full code generator does not readily 
help with the problem of traceability from requirements 
to test cases. In fact, because the code is generated, it is 
extremely difficult to reuse it for the construction of the 
scriptends that would allow Conformiq's user to 
connect test cases to this generated IUT. Moreover, 
such a strategy defeats the intention of full code 
generation in MDD, which is to have the users of an 
MDD tool never have to deal with code directly 

                                                             
6 As one of the original creators of the ObjecTime toolset, which 

has evolved in Rational Rose Technical Developer [41], the first 
author of this paper is well aware of the semantic and scalability 
issues facing existing MDD tools. But solutions to these issues 
are not as relevant to acceptance testing as the problem of 
traceability. 

(except for defining the actions of transitions in state 
machines). 

One possible avenue of solution would be to 
develop an integrated generator that would use state 
machines to generate code and test cases for this code. 
But traceability of such test cases back to a 
requirements models (especially a scenario-driven one, 
as advocated by Grieskamp [9]), still remains 
unaddressed by this proposal. Thus, at this point in 
time, the traceability offered in MDD tools by virtue of 
full code generation does not appear to help with the 
issue of traceability between requirements and test 
cases for acceptance testing. Furthermore, one must 
also acknowledge Selic's [40] concerns about the 
relatively low level of adoption of MDD tools in 
industry. 

In the end, despite the dominant trend in MBT of 
adopting state-based test and test case generation, it 
may be necessary to consider some sort of scenario-
driven generation of test cases from requirements for 
acceptance testing. This seems eventually feasible 
given the following concluding observations:  

1) There is already work on generating tests out of 
use cases [11, 42] and use case maps [43], and 
generating test cases out of sequence diagrams [44, 45]. 
Path sensitization [11] is the key technique typically 
used in these proposals. There are still open problems 
with path sensitization [Ibid.]. In particular, automating 
the identification of the variables to be used for path 
selection is problematic.  As is the issue of path 
coverage (in light of a potential explosion of the 
number of possible paths in a scenario model). In other 
words, the fundamental problem of equivalence 
partitioning [Ibid.] remains and an automated solution 
for it appears to be quite unlikely. However, despite all 
of this,  we remark simple implementations of this 
technique already exist (e.g., [43] for use case maps).  

2) (Partial if not ideally fully) automated traceability 
between these three models can certainly be envisioned 
given their semantic closeness, each one in fact 
refining the previous one.  

3) Traceability between sequence diagrams and an 
IUT appears quite straightforward given the low-level 
of abstraction of such models. 

4) Within the semantic context of path sensitization, 
tests can be thought of as paths (i.e., sequences) of 
observable responsibilities (i.e., small testable 
functional requirements). Thus, because tests from use 
cases, use case maps and sequence diagrams are all 
essentially paths of responsibilities, and because 
responsibilities ultimately  map onto procedures of the 
IUT, automated traceability between tests and test 
cases and between test cases and IUT seems realizable. 
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