
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/264457764

Generating Verifiable Test Scenarios

Conference Paper · January 2011

CITATION

1
READS

42

2 authors:

Some of the authors of this publication are also working on these related projects:

Wireless Sensor Networks View project

Jean-Pierre Corriveau

Carleton University

94 PUBLICATIONS 467 CITATIONS

SEE PROFILE

Wei Shi

Carleton University

97 PUBLICATIONS 577 CITATIONS

SEE PROFILE

All content following this page was uploaded by Wei Shi on 04 July 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/264457764_Generating_Verifiable_Test_Scenarios?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/264457764_Generating_Verifiable_Test_Scenarios?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Wireless-Sensor-Networks-77?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Pierre_Corriveau?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Pierre_Corriveau?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carleton_University?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Pierre_Corriveau?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Shi28?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Shi28?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carleton_University?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Shi28?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Shi28?enrichId=rgreq-842d1e98faabf62ab2adce1892d73ac4-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ1Nzc2NDtBUzo3NzY3NTEwMzQ2NzExMDhAMTU2MjIwMzI4Njg5OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Generating Verifiable Test Scenarios

J.-P. Corriveau1 and W. Shi2
1Computer Science, Carleton University, Ottawa, Ontario, Canada

2Business and IT, UOIT, Oshawa, Ontario, Canada

Abstract - Many approaches that address scenario testing do
so using models semantically distant from an implementation
under test (IUT). While test paths can be generated from such
models, these paths typically do not include path sensitization
data and are not testable against an actual execution of an
IUT. In this paper, we explain how the Validation Framework
(VF) we have developed models scenarios and parse these into
test scenarios. The latter do include path sensitization data
and are verified by the VF against an actual execution of an
IUT.

Keywords: validation, model-based testing, scenarios

1 Introduction
 A quality-driven approach to software development and
testing demands that, ultimately, the requirements of
stakeholders be validated against the actual behavior of an
implementation under test (IUT). That is, there needs to be a
systematic (ideally objective and automated) approach to the
validation of the requirements of the stakeholder against the
actual behavior of an IUT [1, 2]. Unfortunately, most often,
there is no such systematic approach to validation. Quite on
the contrary, in practice, testers mostly carry out only
extensive unit testing [3]. In this paper, we are instead
concerned with scenario testing.

Model-Based Testing (MBT) involves the derivation of test
cases from a model (or set of models) that describes some of
the aspects of an IUT. More precisely, an MBT method/tool
uses various algorithms and strategies to generate tests from a
behavioral model of an IUT. Scenarios [3, 4, 5, 6, 7]
constitute one type of behavioral model (another being state
machines [3]). Such a model is usually a partial
representation of the IUT's behavior, ‘partial’ because the
model abstracts away some of the implementation details.
Tests cases derived from such a model are functional ones
expressed at the same level of abstraction as the model. Such
test cases are grouped together to form an abstract test suite.
Most importantly, such an abstract test suite cannot be
directly validated against the execution of an IUT because the
test cases are not at the same level of abstraction as the code.
Indeed, several MBT tools claim to offer test generation and
test execution. But it is important to understand that in the
context of MBT, 'test execution' generally consists in
symbolic execution, that is, is carried out using a (typically
state-based) model of the IUT, not the actual IUT. For
example, Spec Explorer [8, 9, 10] stands out as an industrial-

strength MBT tool with a specification language (Spec #) rich
enough to capture a detailed state-based model of an IUT's
behavior, as well as user-defined scenarios. But, the latter are
not taken as defining a grammar of valid and invalid
sequences of procedures of an IUT. Instead, these scenarios
are interpreted in terms of states of the model and are
validated via their symbolic execution. In contrast, here we
propose an approach to scenario testing that generates test
scenarios that can be validated against the execution of an
IUT. To do so, we first briefly summarize in the next section
the Validation Framework (VF) we have introduced
elsewhere [2, 11]. The key characteristic of that tool is that
implementation-independent specifications are bound to
actual types and procedures of an IUT in order to enable the
validation of the specification model against the execution of
an IUT. Examples of scenarios in the VF are presented in
section 3 and their testing is discussed in section 4.

Before concluding this introduction we remark that tools
meant to only capture models (e.g., IBM's Rational Rose[12])
are not relevant to this paper, as they are not meant to address
scenario testing. The same observation holds for test
automation frameworks (e.g., IBM's Rational Robot [13]) in
which there is no test generation from models (for the simple
reason that such frameworks are not model-based). In the
same vein, code-based testing tools (such JAVA's JUnit [14]
and AutoTest [15]) mostly allow for unit tests (i.e., tests
pertaining to a procedure, as opposed to tests addressing
scenarios) to be specified in, or automatically generated from,
code. Unit tests are semantically much simpler than scenario
tests. Furthermore, such unit tests are implementation-specific
and difficult (nay impossible) to trace back to the
requirements of stakeholders (which are typically
implementation-independent). For these reasons, code-based
testing tools will not be discussed further here.

2 VF: An Alternative for MBT
In order to validate the requirements of a stakeholder against
the actual behavior of an IUT, it is necessary to have a
specification language from which tests can be generated and
executed 'against' an actual IUT (as opposed to a model of the
latter). We have described such an approach and its
corresponding tool, the VF, at length elsewhere [2, 11, 16].
Our VF operates on three input elements. The first element is
the Testable Requirements Model (hereafter TRM). This
model is expressed in ACL, a high-level general-purpose
requirements contract language. We use here the word
‘contract’ because a TRM is formed of a set of contracts, as

will be illustrated in the next section. ACL is closely tied to
requirements by defining constructs for the representation of
scenarios, and design-by-contract constructs [17] such as pre
and post-conditions, and invariants. The second input element
is the candidate IUT against which the TRM will be executed.
This IUT is a .NET executable (for which we do not require
the source code). Bindings represent the third and final input
element required by the VF. Before a TRM can be executed,
the types, responsibilities, and observability requirements of
the TRM (see next section) must be bound to concrete
implementation artifacts located within the IUT. A structural
representation of the IUT is first obtained automatically. Our
binding tool, which is part of the VF, uses this structural
representation to map elements from the TRM to types and
procedures defined within the candidate IUT. In particular,
our binding tool is able to automatically infer most of the
bindings required between a TRM and an IUT [11, 16]. Such
bindings are crucial for three reasons. First, they allow the
TRM to be independent of implementation details, as specific
type and procedure names used with the candidate IUT do not
have to exist within the TRM. Second, because each IUT has
its own bindings to a TRM, several candidate IUTs can be
tested against a single TRM. Finally, bindings provide
explicit traceability between a TRM and IUT.

Once the TRM has been specified and bound to a candidate
IUT, the TRM is compiled. Upon a successful compilation,
all elements of the TRM have been bound to IUT artifacts.
The result of such a compilation is a single file that contains
all information required to execute the TRM against a
candidate IUT. (Details lie beyond the scope of this paper
and are available at [11].) The validation of a TRM begins
with a structural analysis of the candidate IUT, and with the
execution of any static checks (e.g., a type inherits from
another). Following execution of the static checks, the VF
starts and monitors the execution of the IUT. The VF is able
to track and record the execution paths generated by the IUT,
as well as execute any dynamic checks, and gather user-
specified metrics [11] indicated by the TRM. The execution
paths are used to determine if each scenario execution
matches the grammar of responsibilities corresponding to it
within the TRM (see next example). Next, metric evaluators
are used to analyze and interpret any metric data that was
gathered during execution of the IUT. All of the results
generated from execution of the TRM against the candidate
IUT are written to a Contract Evaluation Report (CER). The
generation of the CER completes the process of executing a
TRM against a candidate IUT. The CER indicates where the
candidate IUT matches the TRM, and where any deviations
from the TRM were observed. For example, when a pre- or
post-condition fails, the execution proceeds but that failure is
logged in the CER. Also, when a scenario is executed by an
IUT, the specified grammar of responsibilities must hold in
order for the scenario to be considered to have succeeded.
That is, for success, the responsibilities that compose the
scenario must be executed in an order that satisfies the
grammar. If the scenario cannot be executed, or
responsibilities/events that are not defined by the scenario are

executed, then the scenario is deemed to have failed. This
mismatch is also reported in the CER.

The key point of this overview is that once a TRM is bound to
an IUT, all checks are automatically instrumented in the IUT
whose execution is also controlled by the VF. As explained
above, this enables verifying that actual sequences of
procedures occurring during an execution of an IUT 'obey' the
grammar of valid sequences defined in ACL scenarios. As we
will illustrate in section IV, scenario testing proper goes
beyond this sort of validation.

3 An Example
In order to discuss scenario testing, we must first illustrate the
semantics of the language we use to specify a TRM,
especially those features that pertain to scenario testing.
Consequently, we now present excerpts of a medium-size
case study that deals with how students register in their
courses at a university and how they obtain grades for these
courses. Our intent is not to motivate the contracts used, nor
to explain at length how this example is processed. Instead,
we aim at providing the reader with a substantial (i.e., non-
trivial) example in order to a) illustrate the semantics of ACL,
especially pertaining to scenarios and b) subsequently discuss
the basics of scenario testing in the VF. (The complete
example is available at [11] and is 49 pages long. Most
importantly it does compile and run, as is the case with all
other examples in [11]. The reader may verify this claim by
downloading the tool and trying it out!) This example is at a
level of abstraction similar to models specified in Spec# [8,
9], and appears to most readers to be surprisingly low (in fact
akin to programming). We remark that the level of abstraction
of specification languages for MBT varies considerably [10].
In particular, we must emphasize that Spec# [9] (which
supports Spec Explorer [8], the only industrial-strength MBT
tool we know) works at a low level of abstraction (similar to
that of ACL) because it deals with real systems, not toy
examples. For such systems, semantic expressiveness and
scalability are essential.

In the following example, we use the // and /* */ to provide
comments in context, as this facilitates the presentation of
ACL's features. Our example starts with the Course contract,
which represents a single university course. A course is
created by the university, and consists of a name, code, a list
of prerequisites, a list of students currently enrolled in the
course, and a size limit on the number of students that can
take the course.

Namespace Examples.School{
Contract Course {
/* Once the contract Course is bound to a type of the IUT,
each time an instance of this type is created, a new instance of
contract Course is associated with it. A contract can be bound
to several types.
Parameters can be left unspecified until run-time, using the
keyword InstanceBind, in which case, each time an instance

of a class bound to this contract is created, the VF will prompt
the user for all required parameter values. */

Parameters
{ Scalar Boolean InstanceBind HasFinal =
 { default true, false };
// other parameters have been omitted
}
/* An observability is a query-method that is used to provide
state information about the IUT to the TRM. That is, they are
read-only methods that acquire and return a value stored by
the IUT. */
Observability Integer
MarkForStudent(tStudent student);
Invariant IsFullCheck
{ Students().Length() <= CapSize(); }
/* Here is a simple responsibility, which will be used if
prerequisites are set to not be enforced. It just checks that the
student is not already in the course.
The keyword Execute indicates where execution occurs. */
Responsibility AddStudentNoPreReqCheck(tStudent s)
{ Pre(Students().Contains(s) == false);
Execute();
Post(Students().Contains(s) == true); }
/* Other responsibilities include AddStudentPreReqCheck,
RemoveStudent, new, finalize... see [2, 11] */
// a scenario defines a grammar of responsibilities
Scenario ReportMarks
{ Trigger(observe(TermEnded)),
once Scalar Contract University u = instance;
each(Students())
//built-in variable iterator accesses students one at a time
{u.ReportMark(context, iterator, MarkForStudent(iterator))},
Terminate(fire(MarksRecorded)); }
Exports
{ Type tStudent conforms Student { University::tStudent; }
}}} //end of Course contract

/* The Student contract represents an individual student
enrolled at a university who is able to take courses. */
Namespace Examples.School {
Contract Student {
//lots of observabilities and responsibilities are omitted.
/* We include the two scenarios of this contract to illustrate
the semantic complexity our VF can currently handle. The
keyword atomic defines a grammar of responsibilities such
that no other responsibilities of this contract instance are
allowed to execute except the ones specified within the
grammar. We leave it to the reader to either figure out the
details or read them elsewhere [11]. */
Scenario RegisterForCourses {
Scalar tCourse course; Contract University u = instance;
Trigger(observe(CoursesCreated), IsCreated()),
/*triggered IF courses have been created and the student is
also created (isCreated is a responsibility in this contract) */
 choice(IsFullTime()) true
 { (atomic
 { course = SelectCourse(u.Courses()),

 //via bindpoint get the instance for the selected course
 choice(course.bindpoint.IsFull()) true
 { course = SelectCourse(u.Courses()),
 redo} //until a course is not full
 },
// keyword context refers to the current contract instance
 u.RegisterStudentForCourse(context, course),
 RegisterCourse(course)
) [0-u.Parameters.MaxCoursesForFTStudents]
 //repeat up to the max # of courses for a full time
 }
 alternative(false) //student is part-time (PT)
{ (atomic
 { course = SelectCourse(u.Courses()),
 choice(course.bindpoint.IsFull()) true
 { course = SelectCourse(u.Courses()),
 redo }
 },
 u.RegisterStudentForCourse(context, course),
 RegisterCourse(course)
)[0-u.Parameters.MaxCoursesForPTStudents]
 },
Terminate(); } //end of scenario RegisterForCourses

Scenario TakeCourses {
failures = 0; //number of failures in the current term
Trigger(observe(TermStarted)),
parallel
{ // for all courses of that term
 Contract Course course = instance;
 //if and only if that course is one taken by this student
 Check(CurrentCourses().Contains(course.bindpoint));
 atomic
 { (parallel//can do assignmnts, midterm, proj concurrently
 { (DoAssignment(course.bindpoint))
 [course.Parameters.NumAssignments] }
 | //use OR, not AND, to avoid ordering
 (DoMidterm(course.bindpoint))
 [course.Parameters.NumMidterms]
 |
 (DoProject(course.bindpoint))
 [course sameas ProjectCourse &&
 course.Parameters.HasProject]
),
 (DoFinal(course.bindpoint)
 [course.Parameters.HasFinal]
 }
 alternative(not observe(LastDayToDrop))
 { DropCourse(course.bindpoint) }
}[CurrentCourses().Length()];
Terminate(); } //end of scenario TakeCourses

/* We omit most of the University contract, which does not
add to this presentation. */
MainContract University
 { Parameters {
[1-100] Scalar Integer InstanceBind UniversityCourses; }

/* several parameters, observabilities, responsibilities and
some scenarios were omitted. */
Observability List tCourse Courses();
Observability List tStudent Students();
Responsibility ReportMark
/* The course, the student and the mark to be recorded are
provided as parameters. Each parameter of the responsibility
is bound to a parameter of the procedure bound to this
responsibility. */
 (tCourse course, tStudent student, Integer mark)
// the number of failures is recorded
 { choice(mark) < Parameters.PassRate
 { student.bindpoint.failures =
 student.bindpoint.failures + 1; } }
Responsibility CalculatePassFail() {
 each(Students())
 choice(iterator.bindpoint.failures) >= 2
 FailStudent(iterator);
 alternative
 PassStudent(iterator);
Scenario CreateCourses
 { Trigger(new()),
 /* all courses of the term, in Parameters.UniversityCourses,
must be created */
 CreateCourse(dontcare, dontcare)
 [Parameters.UniversityCourses],
 Terminate(fire(CoursesCreated)); }
Scenario CreateStudents
 { Trigger(new()),
 CreateStudent(dontcare)+,
 Terminate(finalize()); }

Scenario Term
/* term management via doing responsibilities in a particular
order and firing the corresponding events */
 { Trigger(new()),
 (CreateCourse()[Parameters.UniversityCourses],
 TermStarted(),
 fire(TermStarted),
 LastDayToDrop(),
 fire(LastDayToDrop),
 TermEnded(),
 fire(TermEnded),
 observe(MarksRecorded)
 [Parameters.UniversityCourses],
 CalculatePassFail(),
 DestroyCourse()[Parameters.UniversityCourses],
 fire(TermComplete)
)+,
 Terminate(finalize());
 }
4 Scenario Testing with the VF
In ACL, scenarios are expressed as grammars of
responsibilities, much like in Use Cases [5] and Use Case
Maps [7]. As with any sort of grammar, there are well-known
algorithms (e.g., [18, 19, 20]) to obtain a selection of paths
through a grammar of responsibilities according to some

coverage criterion [3]. In essence, a scenario (or
responsibility) is parsed and transformed into a form of
control flow graph [Ibid.] from which paths are easily
extractable. However, such paths are not executable (and
thus are often referred to as test purposes). As in several
other methods, the VF currently supports the 'all branches'
coverage criterion. Consider, for example:
Scenario X
{ Trigger (observe(eventA)) ,
 choice(failures) >= 2 responsibilityA();
 alternative responsibilityB();
 Terminate (fire(eventB)); }

Here, two branches need to be covered: one for 2 or more
failures, one for less than 2 failures. In order to control this
branching, a path sensitization variable (PSV) is required
leading to two test cases: one for which the value of the PSV
is set to 2 or more, another with a value less than 2. Currently,
this form of equivalence partitioning [3] requires the user to
set the actual PSV value used for each test case (for it cannot
be inferred by the tool whether, for example, -1 or 0 are valid
or not, and what is the maximum valid value for this PSV). It
must also be pointed out that only valid PSV values are
relevant for testing a scenario, as will be explained shortly.

As Binder explains at length [3], coverage of loops requires
that they be flattened (i.e., 'unrolled'). So scenario
ReportMarks in the Course contract will require a PSV to
control the generation of the different paths associated with
this loop. This PSV corresponds to the number of students in
the course at hand. Currently, using the VF, minimally two
test cases are generated: one for the minimum number of
iterations and one for the maximum. If possible, a third test
case for a number of iterations between this minimum and
maximum is also generated. Thus, for the loop in
ReportMarks, three test cases will be generated: one for a
course with a minimum number of students, one for a course
with the maximum number of students this course allows
(i.e., its capsize), and one for a course with a number of
students between this minimum and maximum.

Transforming a scenario into a graph from which paths can be
extracted is not necessarily trivial as studying scenarios
RegisterForCourses and TakeCourses in contract Student
should make clear: combining branching statements (e.g.,
choice/alternative) with one another and with loop statements
(e.g., redo and [] blocks) leads to complex control structures.
The introduction of possible concurrent paths (through the
parallel statement) further complicates this task. But, as
previously mentioned, path generation is a well-understood
process [18, 19, 20] for which we merely reuse existing
solutions (by adapting them to the syntax and semantics of
ACL). Conversely, the identification of PSVs requires an
ACL-specific solution, which can be discussed only after we
first understand what the VF offers in terms of support for
scenario testing.

As hinted in section 2, the primary role of the VF is to
monitor the execution of an IUT and report on violations of
static and dynamic checks (such as violations of pre- and
post-conditions of responsibilities, of invariants of contracts,
and of grammars of scenarios). Focusing specifically in this
paper on scenarios, we remark that an instance of a contract is
created each time an instance of the type to which the contract
has been bound is made. So, for example, each instance of a
course created during the execution of the IUT is monitored
by a corresponding instance of the Course contract. And each
contract instance creates an instance of one of its scenarios
once this scenario is triggered. So, for example, once the term
ends, each course contract instance will create its scenario
instance for scenario ReportMarks in order to monitor the
grammar of that scenario for that specific course. A scenario
violation will occur, for example, in any course for which its
scenario instance for scenario ReportMarks fails to observe
the responsibility ReportMark() of the university being called
for the exact number of students in the course at hand. A
scenario violation will also be recorded if the execution of the
IUT terminates without a scenario having its Terminate
condition satisfied.

The more complex the semantics of a scenario, the more
complex its grammar and the more numerous its sources of
violations. Consider, for example, scenario TakeCourses in
contract Student. The key observation is that there is a single
instance of this scenario for each student. Thus, this single
scenario instance addresses the completion of all the courses
taken by this student in that term. To do so, it verifies
(amongst other checks) that the exact number of assignments
for course c is performed (by tracking how many times the
DoAssignment() responsibility is invoked with c as
parameter). Should the student not complete the required
number of assignments (or midterms, etc.) in any of her
courses during the term at hand, then the VF will report a
violation for scenario TakeCourses.

Most importantly, it is crucial to understand that, because
responsibilities found in ACL contracts are bound to actual
procedures of an IUT, scenario validation using the VF
ensures that actual sequences of procedure calls (monitored
during the execution of an IUT) 'obey' the grammar of the
scenario(s) relevant to these procedures. With respect to
scenario testing, this modus operandi of the VF defines what
is observable [3]. But scenario testing requires that we
address not only observability but also controllability [Ibid.].
To do so, let us return to scenario ReportMarks. As
previously mentioned, testing this scenario involves one PSV
for the flattening of the each statement. ReportMarks also
invokes responsibility ReportMark() in the University
contract. This further complicates PSV identification, as
discussed at the end of this section.

For now, the immediate question is how test cases generated
for a scenario are to be executed. ACL is an implementation-
independent specification language and thus executable code
cannot be generated from it. However, because ACL contracts

are bound to classes and ACL observabilities and
responsibilities to procedures, ACL scenarios can be used to
monitor the correct execution of specific test cases. Let us
elaborate on this by continuing our discussion of the testing
of scenario ReportMarks.

In the context of testing the example university system, the
execution of a corresponding IUT will involve the execution
of a test suite, that is, of a set of test cases. The task of
creating this test suite lies with the developer/tester: the role
of the VF is to generate what we call test scenarios that
address the coverage of the ACL contracts (not IUT code!)
modeling the university system. Specifically, for scenario
ReportMarks, this involves the following steps:
1) this scenario is selected in the testing window of the VF.
(The user chooses which scenarios to test in a particular
execution of the IUT.)
2) the scenario is parsed and the user is asked to input a name
(e.g., numberOfStudents) for the PSV required to flatten the
loop of the scenario (and for other identified PSVs, if any).
3) the user is prompted to input a minimum and a maximum
default value for numberOfStudents.
4) the user may flag the observability MarkForStudent as a
'IUTProvided', in which case it is understood marks for
students will be supplied via the execution of the IUT.
Alternatively, the user may flag this observability as 'toInput',
in which case each mark will have to be input by the tester at
run-time. (This alternative is useful when wanting to avoid
writing a multitude of similar test cases differing only with
respect to these marks.)
5) From the information above, the VF generates a test
scenario for the minimum value of numberOfStudents and
another for its maximum value. If an in-between value is
possible, the VF generates a third tes scenario for this value.
(Examples of such test scenarios are discussed shortly.)
6) As the IUT executes, beyond the monitoring offered by
scenario ReportMarks, the VF also monitors the generated
test scenarios. A test scenario is 'covered' if it is triggered and
terminates correctly. That is, whereas scenarios are monitored
for violations, in the case of test scenarios, it is their
occurrence at least once during the execution of an IUT that is
reported to the user. (Thus, once the occurrence of a test
scenario has been detected, the VF prevents this test scenario
from being triggered again.)
7) At the end of the execution of an IUT, the VF reports on
the occurrence or absence of each test scenario. The user can
assess how much coverage of each one the scenarios has been
achieved and add more test cases to the IUT where need be (in
order to have more test scenarios covered).

The nature of a test scenario is best understood through a
simple example. Consider the case for which scenario
ReportMarks is to be tested with a minimum number of
students. The generated test scenario is:

TestScenario ReportMarks-1
{ Trigger(observe(TermEnded)),
once Scalar Contract University u = instance;

Check(Students.Length() == numberOfStudents.Min());
Terminate(fire(MarksRecorded)); }

This test scenario will have been covered once any empty
course completes. Now consider the case for which scenario
ReportMarks is to be tested with a maximum number of
students. The self-explanatory generated test scenario is:

TestScenario ReportMarks-2
{ Trigger(observe(TermEnded)),
once Scalar Contract University u = instance;
Check(Students.Length() == numberOfStudents.Max());
Terminate(fire(MarksRecorded));

Should the tester want to use a maximum number of students
specific to each course, then the appropriate Check statement
would be:
Check(Students.Length() == context.CapSize());

While these simple examples summarize the role of generated
test scenarios with respect to scenario coverage, they do not
convey the complexity of i) PSV identification and ii)
generation in more complex scenarios. We discuss these
issues next.

Consider scenario RegisterForCourses in contract Student.
Whether a student is full-time or part-time leads to two
different sets of generated test scenarios. For each of these
two sets, there are several other PSVs:
- the number of courses successfully registered in (required to
flatten out the statement [0-
u.Parameters.MaxCoursesForFTStudents] for full-time
student (or its equivalent for part-timers).

Here the minimum and maximum values are explicitly
captured and need not be asked from the user.
- the maximum number of iterations of the redo statement,
that is how many courses that are full can be selected before
one non-full one is found. Because of the semantics of the
redo, the minimum is implicit: if the first course selected is
available, the redo does not execute.
 Given these three PSVs, the VF will generate test scenarios
corresponding to different combinations of values for these
PSVs. For example:
- a full-time (or part-time) student who does not attempt to
register in any course
- a full-time (or part-time) student who registers in the
maximum allowable number of courses for her status, all
these courses being immediately available (i.e., non full and
thus no redo is performed).
- a full-time (or part-time) student who registers in the
maximum allowable number of courses for her status, each of
these available courses being selected only after the maximum
number of retries (i.e., full courses) has been attempted.
 In summary, a scenario can have several PSVs
associated with it and (via boundary analysis [3] on these
PSVs) a test scenario will be generated for each possible valid
combination of PSV values. (Representations and algorithms

for such combinations are discussed at length in chapter 6 of
[3].) Due to the semantic richness of ACL, such
combinatorial testing can be quite complex. Consider, for
example, scenario TakeCourses in contract Student. The
parallel statement and or (|) operators used in the atomic
block allow for the requirements of a course to be addressed
in any order as previously mentioned. And, for assignments
and midterms, loops are involved and must be flattened (thus
requiring a min/max for the number of assignments and the
number of midterms). In contrast, for the possible project and
final, the choice is Boolean: a course has 0 or 1 project and 0
or 1 final. What further complicates the corresponding control
flow graph is the parallel statement used at the start of the
scenario to allow a single student to have the requirements of
several courses taken the same term be addressed
concurrently. Whereas a loop requires one PSV, a parallel
statement requires two: i) the min/max number of instances
(defined in this scenario by CurrentCourses().Length()) and
ii) the min/max number of concurrent instances. That is, for
this scenario to be thoroughly covered, we need to know not
only the maximum number of courses a student can take in a
term but also how many of these courses can have their
requirements be concurrent. Only with these two PSVs can
we test not only courses with simultaneous requirements, but
also courses whose requirements do not overlap in time (i.e.,
minimum concurrency is set to 0). A last PSV (capturing the
min/max number of courses dropped) is required to control
whether or not courses are droppedduring a term.

Three observations proceed from this example:
 1) Test scenarios are not meant to address issues such as
trying to drop a course after the last day to drop: the scenario
itself will catch such violations.
 2) It should be clear that not all paths are covered: there is a
combinatorial explosion of possible paths, especially in light
of the interleaving [18] resulting from the use of parallel
statements. This is why we rely on an existing algorithm for
'all-branches' coverage [3, 18].
 3) The scope of a PSV is a test scenario. Thus there is no
way in TakeCourses to associate a maximum number of
assignments to a specific course. Semantically this could be
desirable but would not only greatly complicate the generation
of combinations of PSV values, but also dramatically decrease
the usability of our testing approach (as a multitude of user
inputs would be required).
 The fact that a scenario invokes one or more
responsibilities constitutes another source of complexity in
identifying PSVs. Let us return to scenario ReportMarks of
the Course contract. It invokes responsibility ReportMark() of
the University contract. We postulate that, in the context of
testing ReportMarks, both branches (i.e., a failing grade or,
implicitly, a passing one) of ReportMark() must be covered
(regardless of unit testing on the procedure bound to this
responsibility). The PSV to control this is generated by the
VF in the scope ReportMarks. Its name summarizes best its
semantics: numberOfFailingMarks (over the scenario's
execution). As usual, it is left to the user to specify the min
and max for this PSV (from which the system will generate

an in-between value, if possible). Once, this is done, test
scenario generation can proceed: the loop of the scenario
leads to 2 or 3 paths (as explained earlier), each of which now
branching into one of the 2 or 3 paths associated with
numberOfFailingMarks. Thus, the VF generates a minimum
of 4 test scenarios for ReportMarks: (min # of students, min
of failures), (min # of students, max # of failures), (max #
of students, min # of failures) and (max # of students, max #
of failures).

There two points to make here: i) and ii) the generation of test
scenarios does not merely proceed from generating
combination of PSV values; it also involves the flow analysis
of the scenario (and the responsibilities it invokes). Thus, in
summary, the generation and validation of test scenarios in
ACL is a complex task relying on user input for setting up
correctly boundary value testing.

5 Conclusion
We have presented elsewhere i) ACL, a semantically rich
implementation independent specification language (that
supports design by contract, responsibilities and scenarios)
and ii) the tool (the VF) that enables its user to bind ACL
specifications to the types and procedures of an IUT, thus
enabling the validation of an ACL against an actual execution
of an IUT. In this paper we have focused specifically on
scenario testing and we have overviewed how ACL
specifications can be used to generated test scenarios and
their path sensitization data. Most importantly, using the VF,
these test scenarios can be validated against an actual
execution of an IUT. We believe only Spec Explorer [8]
offers similar semantic richness and scenario testing
capabilities, albeit using the symbolic execution of a complex
finite state machine.

Acknowledgments

We thank Katie McClean for her implementation of the ACL
parsing required to generate the PSVs. And thanks to NSERC!

6 References

[1] B. Meyer, The Unspoken Revolution in Software
Engineering, IEEE Computer, January 2006.

[2] D. Arnold, J.-P. Corriveau and W. Shi, Reconciling
Offshore Outscouring with Model-Based Testing, SEAFOOD,
Saint Peterburg, Russia, June 2010.

[3] R., Binder, Testing Object-Oriented Systems, Addison-
Wesley Professional, Reading, MA, 2000.

[4] J. Ryser and M. Glinz. SCENT: A Method Employing
Scenarios to Systematically Derive Test Cases for System
Test. Technical Report. University of Zurich, 2003.

[5] D. Rosenberg and M. Stephens, Use Case Driven Object
Modeling with UMLTheory and Practice, APress, 2007.

[6] Message Sequence Charts, http://www.itu.int/ITU-
T/2005-2008/com17/languages/Z120.pdf

[7] Buhr, R.J.A., Casselman, R.: Use Case Maps for Object
Oriented Systems. Prentice Hall, November 1995.

[8] C. Campbell, W., Grieskamp, L., Nachmanson, W.,
Schulte, N., Tillmann, and M.Veanes. Model-Based Testing
of Object-Oriented Reactive Systems with Spec Explorer.
Microsoft Research Technical Report #MSR-TR-2005-59,
May 2005.

[9] Microsoft Research: Spec# Tool.
http://research.microsoft.com/specsharp

[10] D. Arnold, J.-P. Corriveau and W. Shi, Validation
against Actual Behavior: Still a Challenge for Testing Tools,
SERP, Las Vegas, July 2010

[11] D. Arnold, The Validation Framework and its examples,
http://vf.davearnold.ca/.

[12] IBM: Rational Rose. http://www-
306.ibm.com/software/awdtools/developer/rose/index.html

[13] IBM: Rational Robot, http://www-
01.ibm.com/software/awdtools/tester/robot/

[14] JUnit, http://www.junit.org/

[15] B. Meyer et al., Programs that test themselves, IEEE
Computer, vol.42(9), September 2009, pp.46-55.

[16] B. Meyer, Design by Contract. In IEEE Computer, vol.
25, no. 10, pp. 40-51, IEEE Press, New York, October 1992.

[17] D. Arnold, J.-P. Corriveau and W. Shi,, Modeling and
Validating Requirements using Executable Contracts and
Scenarios, SERA, Montreal, May 2010.

[18] L. Briand and Y. Labiche, A UML-Based Approach to
System Testing, Lecture Notes In Computer Science; Vol.
2185, Proceedings of the 4th International Conference on The
Unified Modeling Language, Modeling Languages, Concepts,
and Tools, 194 - 208

[19] C. Nebut, F. Fleury, Y. Le Traon J.M. Jézéquel.
Automatic Test Generation: A Use Case Driven Approach.
IEEE Transactions on Software Engineering Vol. 32, 2006

[20] A. Miga, Applications of Use Case Maps to System
Design with Tool Support, M.Eng. Thesis, Dept. of Systems
and Computer. Engineering, Carleton University, 1998.

View publication statsView publication stats

https://www.researchgate.net/publication/264457764

