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Abstract - Many approaches that address scenario testing do 
so using models semantically distant from an implementation 
under test (IUT). While test paths can be generated from such 
models, these paths typically do not include path sensitization 
data and are not testable against an actual execution of an 
IUT. In this paper, we explain how the Validation Framework 
(VF) we have developed models scenarios and parse these into 
test scenarios. The latter do include path sensitization data 
and are verified by the VF against an actual execution of an 
IUT. 
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1 Introduction 
 A quality-driven approach to software development and 
testing demands that, ultimately, the requirements of 
stakeholders be validated against the actual behavior of an 
implementation under test (IUT). That is, there needs to be a 
systematic (ideally objective and automated) approach to the 
validation of the requirements of the stakeholder against the 
actual behavior of an IUT [1, 2]. Unfortunately, most often, 
there is no such systematic approach to validation. Quite on 
the contrary, in practice, testers mostly carry out only 
extensive unit testing [3]. In this paper, we are instead 
concerned with scenario testing. 

Model-Based Testing (MBT) involves the derivation of test 
cases from a model (or set of models) that describes some of 
the aspects of an IUT. More precisely, an MBT method/tool 
uses various algorithms and strategies to generate tests from a 
behavioral model of an IUT.  Scenarios [3, 4, 5, 6, 7] 
constitute one type of behavioral model (another being state 
machines [3]). Such a model is usually a partial 
representation of the IUT's behavior, ‘partial’ because the 
model abstracts away some of the implementation details. 
Tests cases derived from such a model are functional ones 
expressed at the same level of abstraction as the model.  Such 
test cases are grouped together to form an abstract test suite.  
Most importantly, such an abstract test suite cannot be 
directly validated against the execution of an IUT because the 
test cases are not at the same level of abstraction as the code. 
Indeed, several MBT tools claim to offer test generation and 
test execution. But it is important to understand that in the 
context of MBT, 'test execution' generally consists in 
symbolic execution, that is, is carried out using a (typically 
state-based) model of the IUT, not the actual IUT. For 
example, Spec Explorer [8, 9, 10] stands out as an industrial-

strength MBT tool with a specification language (Spec #) rich 
enough to capture a detailed state-based model of an IUT's 
behavior, as well as user-defined scenarios. But, the latter are 
not taken as defining a grammar of valid and invalid 
sequences of procedures of an IUT. Instead, these scenarios 
are interpreted in terms of states of the model and are 
validated via their symbolic execution. In contrast, here we 
propose an approach to scenario testing that generates test 
scenarios that can be validated against the execution of an 
IUT. To do so, we first briefly summarize in the next section 
the Validation Framework (VF) we have introduced 
elsewhere [2, 11]. The key characteristic of that tool is that 
implementation-independent specifications are bound to 
actual types and procedures of an IUT in order to enable the 
validation of the specification model against the execution of 
an IUT. Examples of scenarios in the VF are presented in 
section 3 and their testing is discussed in section 4. 

Before concluding this introduction we remark that tools 
meant to only capture models (e.g., IBM's Rational Rose[12]) 
are not relevant to this paper, as they are not meant to address 
scenario testing. The same observation holds for test 
automation frameworks (e.g., IBM's Rational Robot [13]) in 
which there is no test generation from models (for the simple 
reason that such frameworks are not model-based). In the 
same vein, code-based testing tools (such JAVA's JUnit [14] 
and AutoTest [15]) mostly allow for unit tests (i.e., tests 
pertaining to a procedure, as opposed to tests addressing 
scenarios) to be specified in, or automatically generated from, 
code. Unit tests are semantically much simpler than scenario 
tests. Furthermore, such unit tests are implementation-specific 
and difficult (nay impossible) to trace back to the 
requirements of stakeholders (which are typically 
implementation-independent). For these reasons, code-based 
testing tools will not be discussed further here. 

2 VF: An Alternative for MBT 
In order to validate the requirements of a stakeholder against 
the actual behavior of an IUT, it is necessary to have a 
specification language from which tests can be generated and 
executed 'against' an actual IUT (as opposed to a model of the 
latter). We have described such an approach and its 
corresponding tool, the VF, at length elsewhere [2, 11, 16]. 
Our VF operates on three input elements.  The first element is 
the Testable Requirements Model (hereafter TRM).  This 
model is expressed in ACL, a high-level general-purpose 
requirements contract language.  We use here the word 
‘contract’ because a TRM is formed of a set of contracts, as 



will be illustrated in the next section. ACL is closely tied to 
requirements by defining constructs for the representation of 
scenarios, and design-by-contract constructs [17] such as pre 
and post-conditions, and invariants. The second input element 
is the candidate IUT against which the TRM will be executed. 
This IUT is a .NET executable (for which we do not require 
the source code). Bindings represent the third and final input 
element required by the VF.  Before a TRM can be executed, 
the types, responsibilities, and observability requirements of 
the TRM (see next section) must be bound to concrete 
implementation artifacts located within the IUT. A structural 
representation of the IUT is first obtained automatically.  Our 
binding tool, which is part of the VF, uses this structural 
representation to map elements from the TRM to types and 
procedures defined within the candidate IUT.  In particular, 
our binding tool is able to automatically infer most of the 
bindings required between a TRM and an IUT [11, 16].  Such 
bindings are crucial for three reasons.  First, they allow the 
TRM to be independent of implementation details, as specific 
type and procedure names used with the candidate IUT do not 
have to exist within the TRM.  Second, because each IUT has 
its own bindings to a TRM, several candidate IUTs can be 
tested against a single TRM. Finally, bindings provide 
explicit traceability between a TRM and IUT. 

Once the TRM has been specified and bound to a candidate 
IUT, the TRM is compiled. Upon a successful compilation, 
all elements of the TRM have been bound to IUT artifacts. 
The result of such a compilation is a single file that contains 
all information required to execute the TRM against a 
candidate IUT.  (Details lie beyond the scope of this paper 
and are available at [11].) The validation of a TRM begins 
with a structural analysis of the candidate IUT, and with the 
execution of any static checks (e.g., a type inherits from 
another).  Following execution of the static checks,  the VF 
starts and monitors the execution of the IUT.  The VF is able 
to track and record the execution paths generated by the IUT, 
as well as execute any dynamic checks, and gather user-
specified metrics [11] indicated by the TRM.  The execution 
paths are used to determine if each scenario execution 
matches the grammar of responsibilities corresponding to it 
within the TRM (see next example).  Next, metric evaluators 
are used to analyze and interpret any metric data that was 
gathered during execution of the IUT.  All of the results 
generated from execution of the TRM against the candidate 
IUT are written to a Contract Evaluation Report (CER). The 
generation of the CER completes the process of executing a 
TRM against a candidate IUT. The CER indicates where the 
candidate IUT matches the TRM, and where any deviations 
from the TRM were observed.   For example, when a pre- or 
post-condition fails, the execution proceeds but that failure is 
logged in the CER. Also, when a scenario is executed by an 
IUT, the specified grammar of responsibilities must hold in 
order for the scenario to be considered to have succeeded.  
That is, for success, the responsibilities that compose the 
scenario must be executed in an order that satisfies the 
grammar.  If the scenario cannot be executed, or 
responsibilities/events that are not defined by the scenario are 

executed, then the scenario is deemed to have failed. This 
mismatch is also reported in the CER. 

The key point of this overview is that once a TRM is bound to 
an IUT, all checks are automatically instrumented in the IUT 
whose execution is also controlled by the VF. As explained 
above, this enables verifying that actual sequences of 
procedures occurring during an execution of an IUT 'obey' the 
grammar of valid sequences defined in ACL scenarios. As we 
will illustrate in section IV, scenario testing proper goes 
beyond this sort of validation. 
 
3 An Example 
In order to discuss scenario testing, we must first illustrate the 
semantics of the language we use to specify a TRM, 
especially those features that pertain to scenario testing. 
Consequently, we now present excerpts of a medium-size 
case study that deals with how students register in their 
courses at a university and how they obtain grades for these 
courses. Our intent is not to motivate the contracts used, nor 
to explain at length how this example is processed. Instead, 
we aim at providing the reader with a substantial (i.e., non-
trivial) example in order to a) illustrate the semantics of ACL, 
especially pertaining to scenarios and b) subsequently discuss 
the basics of scenario testing in the VF. (The complete 
example is available at [11] and is 49 pages long. Most 
importantly it does compile and run, as is the case with all 
other examples in [11]. The reader may verify this claim by 
downloading the tool and trying it out!)  This example is at a 
level of abstraction similar to models specified in Spec# [8, 
9], and appears to most readers to be surprisingly low (in fact 
akin to programming). We remark that the level of abstraction 
of specification languages for MBT varies considerably [10]. 
In particular, we must emphasize that Spec# [9] (which 
supports Spec Explorer [8], the only industrial-strength MBT 
tool we know) works at a low level of abstraction (similar to 
that of ACL) because it deals with real systems, not toy 
examples. For such systems, semantic expressiveness and 
scalability are essential.  

In the following example, we use the //  and /* */ to provide 
comments in context, as this facilitates the presentation of 
ACL's features. Our example starts with the Course contract, 
which represents a single university course.  A course is 
created by the university, and consists of a name, code, a list 
of prerequisites, a list of students currently enrolled in the 
course, and a size limit on the number of students that can 
take the course. 

Namespace Examples.School{ 
Contract Course { 
/* Once the contract Course is bound to a type of the IUT, 
each time an instance of this type is created, a new instance of 
contract Course is associated with it. A contract can be bound 
to several types. 
Parameters can be left unspecified until run-time, using the 
keyword InstanceBind, in which case, each time an instance 



of a class bound to this contract is created, the VF will prompt 
the user for all required parameter values. */ 
 
Parameters 
{ Scalar Boolean InstanceBind HasFinal =  
 { default true, false };   
// other parameters have been omitted 
} 
/* An observability is a query-method that is used to provide 
state information about the IUT to the TRM. That is, they are 
read-only methods that acquire and return a value stored by 
the IUT. */ 
Observability Integer  
MarkForStudent(tStudent student);  
Invariant IsFullCheck   
{ Students().Length() <= CapSize();  }     
/* Here is a simple responsibility, which will be used if 
prerequisites are set to not be enforced. It just checks that the 
student is not already in the course.  
The keyword Execute indicates where execution occurs. */  
Responsibility AddStudentNoPreReqCheck(tStudent s) 
{   Pre(Students().Contains(s) == false); 
Execute(); 
Post(Students().Contains(s) == true);    } 
/* Other responsibilities include AddStudentPreReqCheck, 
RemoveStudent, new, finalize...  see [2, 11] */ 
// a scenario defines a grammar of responsibilities 
Scenario ReportMarks 
{  Trigger(observe(TermEnded)), 
once Scalar Contract University u = instance; 
each(Students())   
//built-in variable iterator accesses students one at a time 
{u.ReportMark(context, iterator, MarkForStudent(iterator))}, 
Terminate(fire(MarksRecorded));      } 
Exports 
{ Type tStudent conforms Student { University::tStudent; } 
}}} //end of Course contract 
 
/* The Student contract represents an individual student 
enrolled at a university who is able to take courses.  */ 
Namespace Examples.School { 
Contract Student  {  
//lots of observabilities and responsibilities are omitted. 
/* We include the two scenarios of this contract to illustrate 
the semantic complexity our VF can currently handle. The 
keyword atomic defines a grammar of responsibilities such 
that no other responsibilities of this contract instance are 
allowed to execute except the ones specified within the 
grammar. We leave it to the reader to either figure out the 
details or read them elsewhere [11]. */ 
Scenario RegisterForCourses {  
Scalar tCourse course;      Contract University u = instance; 
Trigger(observe(CoursesCreated), IsCreated()),  
/*triggered IF courses have been created and the student is 
also created (isCreated is a responsibility in this contract) */ 
  choice(IsFullTime()) true  
   {  ( atomic  
   { course = SelectCourse(u.Courses()), 

      //via bindpoint get the instance for the selected course 
      choice(course.bindpoint.IsFull())  true  
         {  course = SelectCourse(u.Courses()), 
            redo}   //until a course is not full 
    }, 
// keyword context refers to the current contract instance 
   u.RegisterStudentForCourse(context, course), 
   RegisterCourse(course) 
  )  [0-u.Parameters.MaxCoursesForFTStudents] 
     //repeat up to the max # of courses for a full time 
   } 
     alternative(false)  //student is part-time (PT) 
{ ( atomic  
     {  course = SelectCourse(u.Courses()), 
          choice(course.bindpoint.IsFull())  true  
           { course = SelectCourse(u.Courses()),  
              redo   } 
        }, 
     u.RegisterStudentForCourse(context, course), 
     RegisterCourse(course) 
     )[0-u.Parameters.MaxCoursesForPTStudents] 
 }, 
Terminate();  } //end of scenario RegisterForCourses 
 
Scenario TakeCourses {  
failures = 0; //number of failures in the current term 
Trigger(observe(TermStarted)), 
parallel  
{ // for all courses of that term 
  Contract Course course = instance; 
   //if and only if that course is one taken by this student 
   Check(CurrentCourses().Contains(course.bindpoint)); 
   atomic  
     { (parallel//can do assignmnts, midterm, proj concurrently 
           { (DoAssignment(course.bindpoint)) 
         [course.Parameters.NumAssignments]  }   
     |  //use OR, not AND, to avoid ordering 
         (DoMidterm(course.bindpoint)) 
          [course.Parameters.NumMidterms]  
     | 
            (DoProject(course.bindpoint))  
            [course sameas ProjectCourse && 
                 course.Parameters.HasProject] 
      ),     
      (DoFinal(course.bindpoint) 
         [course.Parameters.HasFinal] 
        } 
    alternative( not observe(LastDayToDrop))  
      { DropCourse(course.bindpoint) } 
}[CurrentCourses().Length()]; 
Terminate();  } //end of scenario TakeCourses 
 
/* We omit most of the University contract, which does not 
add to this presentation. */ 
MainContract University  
 { Parameters { 
[1-100] Scalar Integer InstanceBind UniversityCourses; } 



/* several parameters, observabilities, responsibilities and 
some scenarios were omitted.  */ 
Observability List tCourse Courses(); 
Observability List tStudent Students(); 
Responsibility ReportMark  
/* The course, the student and the mark to be recorded are 
provided as parameters. Each parameter of the responsibility 
is bound to a parameter of the procedure bound to this 
responsibility. */ 
    (tCourse course, tStudent student, Integer mark)  
// the number of failures is recorded 
  {  choice(mark) < Parameters.PassRate  
          {  student.bindpoint.failures =  
                student.bindpoint.failures + 1;  }  }  
Responsibility CalculatePassFail()  { 
 each(Students()) 
     choice(iterator.bindpoint.failures) >= 2 
 FailStudent(iterator); 
    alternative 
 PassStudent(iterator);     
Scenario CreateCourses  
  { Trigger(new()),  
 /* all courses of the term, in Parameters.UniversityCourses, 
must be created */ 
    CreateCourse(dontcare, dontcare)  
                 [Parameters.UniversityCourses],  
     Terminate(fire(CoursesCreated));   } 
Scenario CreateStudents  
  { Trigger(new()),  
    CreateStudent(dontcare)+,  
    Terminate(finalize());   }  
   
Scenario Term  
/* term management via doing responsibilities in a particular 
order and firing the corresponding events  */ 
  { Trigger(new()),  
   ( CreateCourse()[Parameters.UniversityCourses],  
     TermStarted(),  
      fire(TermStarted),  
      LastDayToDrop(),  
      fire(LastDayToDrop),  
      TermEnded(),  
      fire(TermEnded),  
      observe(MarksRecorded) 
 [Parameters.UniversityCourses],  
      CalculatePassFail(),  
      DestroyCourse()[Parameters.UniversityCourses],  
      fire(TermComplete)  
    )+,  
   Terminate(finalize());  
  } 
4 Scenario Testing with the VF 
In ACL, scenarios are expressed as grammars of 
responsibilities, much like in Use Cases [5] and Use Case 
Maps [7]. As with any sort of grammar, there are well-known 
algorithms (e.g., [18, 19, 20]) to obtain a selection of paths 
through a grammar of responsibilities according to some 

coverage criterion [3]. In essence, a scenario (or 
responsibility) is parsed and transformed into a form of 
control flow graph [Ibid.] from which paths are easily 
extractable.  However, such paths are not executable (and 
thus are often referred to as test purposes).  As in several 
other methods, the VF currently supports the 'all branches' 
coverage criterion. Consider, for example: 
Scenario X 
{    Trigger (observe(eventA)) , 
      choice(failures) >= 2     responsibilityA(); 
         alternative                   responsibilityB();  
 Terminate (fire(eventB));      } 

Here, two branches need to be covered: one for 2 or more 
failures, one for less than 2 failures. In order to control this 
branching, a path sensitization variable (PSV) is required 
leading to two test cases: one for which the value of the PSV 
is set to 2 or more, another with a value less than 2. Currently, 
this form of equivalence partitioning [3] requires the user to 
set the actual PSV value used for each test case (for it cannot 
be inferred by the tool whether, for example, -1 or 0 are valid 
or not, and what is the maximum valid value for this PSV).  It 
must also be pointed out that only valid PSV values are 
relevant for testing a scenario, as will be explained shortly.  

As Binder explains at length [3], coverage of loops requires 
that they be flattened (i.e., 'unrolled'). So scenario 
ReportMarks in the Course contract will require a PSV to 
control the generation of the different paths associated with 
this loop.  This PSV corresponds to the number of students in 
the course at hand. Currently, using the VF, minimally two 
test cases are generated: one for the minimum number of 
iterations and one for the maximum. If possible, a third test 
case for a number of iterations between this minimum and 
maximum is also generated. Thus, for the loop in 
ReportMarks, three test cases will be generated: one for a 
course with a minimum number of students, one for a course 
with the maximum number of students this course allows 
(i.e., its capsize), and one for a course with a number of 
students between this minimum and maximum.  

Transforming a scenario into a graph from which paths can be 
extracted is not necessarily trivial as studying scenarios 
RegisterForCourses and TakeCourses in contract Student 
should make clear: combining branching statements (e.g., 
choice/alternative) with one another and with loop statements 
(e.g., redo and [] blocks) leads to complex control structures. 
The introduction of possible concurrent paths (through the 
parallel statement) further complicates this task. But, as 
previously mentioned, path generation is a well-understood 
process [18, 19, 20] for which we merely reuse existing 
solutions (by adapting them to the syntax and semantics of 
ACL). Conversely, the identification of PSVs requires an 
ACL-specific solution, which can be discussed only after we 
first understand what the VF offers in terms of support for 
scenario testing. 



As hinted in section 2, the primary role of the VF is to 
monitor the execution of an IUT and report on violations of 
static and dynamic checks (such as violations of pre- and 
post-conditions of responsibilities, of invariants of contracts, 
and of grammars of scenarios). Focusing specifically in this 
paper on scenarios, we remark that an instance of a contract is 
created each time an instance of the type to which the contract 
has been bound is made. So, for example, each instance of a 
course created during the execution of the IUT is monitored 
by a corresponding instance of the Course contract. And each 
contract instance creates an instance of one of its scenarios 
once this scenario is triggered. So, for example, once the term 
ends, each course contract instance will create its scenario 
instance for scenario ReportMarks in order to monitor the 
grammar of that scenario for that specific course. A scenario 
violation will occur, for example, in any course for which its 
scenario instance for scenario ReportMarks fails to observe 
the responsibility ReportMark() of the university being called 
for the exact number of students in the course at hand. A 
scenario violation will also be recorded if the execution of the 
IUT terminates without a scenario having its Terminate 
condition satisfied.  

The more complex the semantics of a scenario, the more 
complex its grammar and the more numerous its sources of 
violations. Consider, for example, scenario TakeCourses in 
contract Student. The key observation is that there is a single 
instance of this scenario for each student. Thus, this single 
scenario instance addresses the completion of all the courses 
taken by this student in that term. To do so, it verifies 
(amongst other checks) that the exact number of assignments 
for course c is performed (by tracking how many times the 
DoAssignment() responsibility is invoked with c as 
parameter). Should the student not complete the required 
number of assignments (or midterms, etc.) in any of her 
courses during the term at hand, then the VF will report a 
violation for scenario TakeCourses.  

Most importantly, it is crucial to understand that, because 
responsibilities found in ACL contracts are bound to actual 
procedures of an IUT, scenario validation using the VF 
ensures that actual sequences of procedure calls (monitored 
during the execution of an IUT) 'obey' the grammar of the 
scenario(s) relevant to these procedures. With respect to 
scenario testing, this modus operandi of the VF defines what 
is observable [3].  But scenario testing requires that we 
address not only observability but also controllability [Ibid.]. 
To do so, let us return to scenario ReportMarks. As 
previously mentioned, testing this scenario involves one PSV 
for the flattening of the each statement.  ReportMarks also 
invokes responsibility ReportMark() in the University 
contract. This further complicates PSV identification, as 
discussed at the end of this section. 

For now, the immediate question is how test cases generated 
for a scenario are to be executed. ACL is an implementation-
independent specification language and thus executable code 
cannot be generated from it. However, because ACL contracts 

are bound to classes and ACL observabilities and 
responsibilities to procedures, ACL scenarios can be used to 
monitor the correct execution of specific test cases. Let us 
elaborate on this by continuing our discussion of the testing 
of scenario ReportMarks.  

In the context of testing the example university system, the 
execution of a corresponding IUT will involve the execution 
of a test suite, that is, of a set of test cases. The task of 
creating this test suite lies with the developer/tester: the role 
of the VF is to generate what we call test scenarios that 
address the coverage of the ACL contracts (not IUT code!) 
modeling the university system. Specifically, for scenario 
ReportMarks, this involves the following steps:  
1) this scenario is selected in the testing window of the VF. 
(The user chooses which scenarios to test in a particular 
execution of the IUT.) 
2) the scenario is parsed and the user is asked to input a name 
(e.g., numberOfStudents) for the PSV required to flatten the 
loop of the scenario (and for other identified PSVs, if any). 
3) the user is prompted to input a minimum and a maximum 
default value for numberOfStudents. 
4) the user may flag the observability MarkForStudent as a 
'IUTProvided', in which case it is understood marks for 
students will be supplied via the execution of the IUT. 
Alternatively, the user may flag this observability as 'toInput', 
in which case each mark will have to be input by the tester at 
run-time. (This alternative is useful when wanting to avoid 
writing a multitude of similar test cases differing only with 
respect to these marks.) 
5) From the information above, the VF generates a test 
scenario for the minimum value of numberOfStudents and 
another for its maximum value. If an in-between value is 
possible, the VF generates a third tes scenario for this value. 
(Examples of such test scenarios are discussed shortly.) 
6) As the IUT executes, beyond the monitoring offered by 
scenario ReportMarks, the VF also monitors the generated 
test scenarios. A test scenario is 'covered' if it is triggered and 
terminates correctly. That is, whereas scenarios are monitored 
for violations, in the case of test scenarios, it is their 
occurrence at least once during the execution of an IUT that is 
reported to the user. (Thus, once the occurrence of a test 
scenario has been detected, the VF prevents this test scenario 
from being triggered again.) 
7) At the end of the execution of an IUT, the VF reports on 
the occurrence or absence of each test scenario. The user can 
assess how much coverage of each one the scenarios has been 
achieved and add more test cases to the IUT where need be (in 
order to have more test scenarios covered). 
 
The nature of a test scenario is best understood through a 
simple example. Consider the case for which scenario 
ReportMarks is to be tested with a minimum number of 
students. The generated test scenario is: 
 
TestScenario ReportMarks-1 
{  Trigger(observe(TermEnded)), 
once Scalar Contract University u = instance; 



Check(Students.Length() == numberOfStudents.Min()); 
Terminate(fire(MarksRecorded));      } 
 
This test scenario will have been covered once any empty 
course completes. Now consider the case for which scenario 
ReportMarks is to be tested with a maximum number of 
students. The self-explanatory generated test scenario is: 
 
TestScenario ReportMarks-2 
{  Trigger(observe(TermEnded)), 
once Scalar Contract University u = instance; 
Check(Students.Length() == numberOfStudents.Max()); 
Terminate(fire(MarksRecorded)); 
 
Should the tester want to use a maximum number of students 
specific to each course, then the appropriate Check statement 
would be:  
Check(Students.Length() == context.CapSize()); 
 
While these simple examples summarize the role of generated 
test scenarios with respect to scenario coverage, they do not 
convey the complexity of i) PSV identification and ii) 
generation in more complex scenarios. We discuss these 
issues next. 

Consider scenario RegisterForCourses in contract Student. 
Whether a student is full-time or part-time leads to two 
different sets of generated test scenarios. For each of these 
two sets, there are several other PSVs: 
- the number of courses successfully registered in (required to 
flatten out the statement [0-
u.Parameters.MaxCoursesForFTStudents] for full-time 
student (or its equivalent for part-timers). 
 
Here the minimum and maximum values are explicitly 
captured and need not be asked from the user. 
- the maximum number of iterations of the redo statement, 
that is how many courses that are full can be selected before 
one non-full one is found. Because of the semantics of the 
redo, the minimum is implicit: if the first course selected is 
available, the redo does not execute. 
 Given these three PSVs, the VF will generate test scenarios 
corresponding to different combinations of values for these 
PSVs. For example:  
- a full-time (or part-time) student who does not attempt to 
register in any course  
- a full-time (or part-time) student who registers in the 
maximum allowable number of courses for her status, all 
these courses being immediately available (i.e., non full and 
thus no redo is performed).  
- a full-time (or part-time) student who registers in the 
maximum allowable number of courses for her status, each of 
these available courses being selected only after the maximum 
number of retries (i.e., full courses) has been attempted. 
 In summary, a scenario can have several PSVs 
associated with it and (via boundary analysis [3] on these 
PSVs) a test scenario will be generated for each possible valid 
combination of PSV values.  (Representations and algorithms 

for such combinations are discussed at length in chapter 6 of  
[3].) Due to the semantic richness of ACL, such 
combinatorial testing can be quite complex. Consider, for 
example, scenario TakeCourses in contract Student. The 
parallel statement and or (|) operators used in the atomic 
block allow for the requirements of a course to be addressed 
in any order as previously mentioned. And, for assignments 
and midterms, loops are involved and must be flattened (thus 
requiring a min/max for the number of assignments and the 
number of midterms). In contrast, for the possible project and 
final, the choice is Boolean: a course has 0 or 1 project and 0 
or 1 final. What further complicates the corresponding control 
flow graph is the parallel statement used at the start of the 
scenario to allow a single student to have the requirements of 
several courses taken the same term be addressed 
concurrently. Whereas a loop requires one PSV, a parallel 
statement requires two: i) the min/max number of instances 
(defined in this scenario by CurrentCourses().Length()) and 
ii) the min/max number of concurrent instances. That is, for 
this scenario to be thoroughly covered, we need to know not 
only the maximum number of courses a student can take in a 
term but also how many of these courses can have their 
requirements be concurrent. Only with these two PSVs can 
we test not only courses with simultaneous requirements, but 
also courses whose requirements do not overlap in time (i.e., 
minimum concurrency is set to 0). A last PSV (capturing the 
min/max number of courses dropped) is required to control 
whether or not courses are droppedduring a term. 

Three observations proceed from this example:  
 1) Test scenarios are not meant to address issues such as 
trying to drop a course after the last day to drop: the scenario 
itself will catch such violations. 
 2) It should be clear that not all paths are covered: there is a 
combinatorial explosion of possible paths, especially in light 
of the interleaving [18] resulting from the use of parallel 
statements. This is why we rely on an existing algorithm for 
'all-branches' coverage [3, 18]. 
 3) The scope of a PSV is a test scenario. Thus there is no 
way in TakeCourses to associate a maximum number of 
assignments to a specific course. Semantically this could be 
desirable but would not only greatly complicate the generation 
of combinations of PSV values, but also dramatically decrease 
the usability of our testing approach (as a multitude of user 
inputs would be required). 
 The fact that a scenario invokes one or more 
responsibilities constitutes another source of complexity in 
identifying PSVs. Let us return to scenario ReportMarks of 
the Course contract. It invokes responsibility ReportMark() of 
the University contract. We postulate that, in the context of 
testing ReportMarks, both branches (i.e., a failing grade or, 
implicitly, a passing one) of ReportMark() must be covered 
(regardless of unit testing on the procedure bound to this 
responsibility). The PSV to control this is generated by the 
VF in the scope ReportMarks. Its name summarizes best its 
semantics: numberOfFailingMarks (over the scenario's 
execution). As usual, it is left to the user to specify the min 
and max for this PSV (from which the system will generate 



an in-between value, if possible). Once, this is done, test 
scenario generation can proceed: the loop of the scenario 
leads to 2 or 3 paths (as explained earlier), each of which now 
branching into one of the 2 or 3 paths associated with 
numberOfFailingMarks. Thus, the VF generates a minimum 
of 4 test scenarios for ReportMarks: (min # of students, min 
# of failures), (min # of students, max # of failures), (max # 
of students, min # of failures) and (max # of students, max # 
of failures).  

There two points to make here: i) and ii) the generation of test 
scenarios does not merely proceed from generating 
combination of PSV values; it also involves the flow analysis 
of the scenario (and the responsibilities it invokes). Thus, in 
summary, the generation and validation of test scenarios in 
ACL is a complex task relying on user input for setting up 
correctly boundary value testing. 

 
5 Conclusion 
We have presented elsewhere i) ACL, a semantically rich 
implementation independent specification language (that 
supports design by contract, responsibilities and scenarios) 
and ii) the tool (the VF) that enables its user to bind ACL 
specifications to the types and procedures of an IUT, thus 
enabling the validation of an ACL against an actual execution 
of an IUT. In this paper we have focused specifically on 
scenario testing and we have overviewed how ACL 
specifications can be used to generated test scenarios and 
their path sensitization data. Most importantly, using the VF, 
these test scenarios can be validated against an actual 
execution of an IUT. We believe only Spec Explorer [8] 
offers similar semantic richness and scenario testing 
capabilities, albeit using the symbolic execution of a complex 
finite state machine. 
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