
Locating a Black Hole in an Un-oriented Ring
Using Tokens: The Case of Scattered Agents

Stefan Dobrev1, Nicola Santoro2, and Wei Shi2

1 University of Ottawa, Canada
sdobrev@site.uottawa.ca

2 Carleton University, Canada
{santoro,swei4}@scs.carleton.ca

Abstract. Black hole search in a ring network has been studied in a
token model. It is known that locating the black hole in an anonymous
ring using tokens is feasible, if the team of agents is initially co-located.
When dealing with the scattered agents, the problem was so far solved
only when the orientation of the ring is known.

In this paper, we prove that a black hole can be located in a ring
using tokens with scattered agents, even if the ring is un-oriented. More
precisely, first we prove that the black hole search problem can be solved
using only three scattered agents. We then show that, with k (k � 4)
scattered agents, the black hole can be located fewer moves. Moreover,
when k (k � 4) is a constant number, the move cost can be made opti-
mal. These results hold even if both agents and nodes are anonymous.

Keywords: Black Hole, Mobile Agent, Token, Ring, Anonymous, Asyn-
chronous, Scattered, Un-oriented.

1 Introduction

1.1 The Problem and Related Work

The computational issues related to the presence of a harmful agent have been
explored in the context of intruder capture and network decontamination. In the
case of a harmful host, the focus has been on the black hole, a node that disposes
of any incoming agent without leaving any observable trace of this destruction
[1,2,3,4,5,6].

A black hole (Bh) models a network site in which a resident process (e.g.,
an unknowingly installed virus) deletes visiting agents or incoming data; fur-
thermore, any undetectable crash failure of a site in an asynchronous network
transforms that site into a Bh. In presence of a Bh, the first important goal is to
determine its location. To this end, a team of mobile system agents is deployed;
their task is completed if, within finite time, at least one agent survives and
knows the links leading to the Bh. The research concern is to determine under
what conditions and at what cost mobile agents can successfully accomplish this
task, called the black hole search (Bhs) problem.

A.-M. Kermarrec, L. Bougé, and T. Priol (Eds.): Euro-Par 2007, LNCS 4641, pp. 608–617, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Locating a Black Hole in an Un-oriented Ring Using Tokens 609

The computability and complexity of Bhs depend on a variety of factors,
first and foremost on whether the system is synchronous [1,2,6] or asynchronous
[3,4]. Indeed the nature of the problem changes drastically and dramatically:
the former is a great simplification of the later. For example, if there is a doubt
on whether or not there is a Bh in the system, in absence of synchrony, this
doubt can not be removed. In fact, in an asynchronous system, it is undecidable
to determine if there is a Bh [3]. In this paper we continue the investigation of
black hole search problem in the asynchronous case.

The existing investigations on Bhs in asynchronous systems have assumed the
presence of a powerful inter-agent communication mechanism, whiteboards [3,4],
at all nodes. The availability of whiteboards at all nodes is a requirement that is
practically expensive to guarantee and theoretically (perhaps) not necessary. In
this paper, we consider a less demanding and less expensive inter-communication
and synchronization mechanisms that would still empower the team of agents to
locate the Bh: the token model. In this model, each agent has available a bounded
number of tokens that can be carried, placed in a node or/and on a port of the
node, or removed from them; all tokens are identical (i.e., indistinguishable) and
no other form of communication or coordination is available to the agents.

The problem of Bhs using tokens has been examined in the case of co-located
agents, that is when all the agents start from the same node. In this case, Bhs

is indeed solvable [5]. In [5] it was shown that a team of two or more co-located
agents can solve Bhs with O(n log n) moves and two (2) tokens per agent in a
ring network.

The problem becomes considerably more difficult if the agents are scattered,
that is, when they start from many different sites. In particular, with scattered
agents, the presence (or lack) of orientation in the ring and knowledge of the
team size are important factors. Here, oriented ring means all the agents in this
ring are able to agree on a common sense of direction. In the token model, in
particular, it is known that in an oriented ring it is possible to locate a Bh with
O(1) tokens per agent performing Θ(n log n) moves [7].

1.2 Main Results

In this paper we show that, for Bhs in a ring, the token model is computationally
and complexity-wise as powerful as the whiteboard model, regardless of the
initial position of the agents and of the orientation of the topology.

More precisely, first we prove that in an un-oriented ring, the Bh can be
located by a team of three or more scattered agents, each using O(1) tokens; the
total amount of moves is O(n2) in the worst case. We then show that, if there are
k (k � 4) scattered agents, the Bh can be located with O(kn + n log n) moves
and O(1) tokens per agent. When k (k � 4) is a constant number, the number
of moves used can be reduced to Θ(n log n), which is optimal. These results hold
even if both agents and nodes are anonymous.

Due to space limitations, the proofs of all lemmas are omitted.

610 S. Dobrev, N. Santoro, and W. Shi

2 Model, Observations and Basic Tool

2.1 The Model and Basic Observations

Let R be a anonymous ring of n nodes (i.e. all the nodes look the same, they do
not have distinct identifiers). Operating on R is a set of k agents a1, a2, ..., ak.
The agents are anonymous (do not have distinct identifiers), mobile (can move
from a node to a neighboring node) and autonomous (each has computing and
bounded memory capabilities). All agents have the same behavior, i.e. follow the
same protocol, but start at the different nodes (and they may start at different
and unpredictable times), each of which is called homebase (H for brevity). The
agents can interact with their environment and with each other only through
the means of tokens.

A token is an atomic entity that the agents can see, place in the middle
of a node or/and on a port, or remove. Several tokens can be placed on the
same location. The agents can detect the multiplicity, but the tokens themselves
are undistinguishable from each other. Initially, there are no tokens placed in
the network, and each agent starts with some fixed number of tokens. Most
importantly, the tokens are the only means of inter-agent communication we
consider. There is no read/write memory (whiteboards) for the agents to access
in the nodes, nor is there face-to-face recognition. In fact, an agent notices the
presence of another agent by recognizing the token(s) it leaves. When we say two
agents meet, there are two situations: two agents walking in the same direction
meet, meaning that one agent catches up with the agent in front of it in the
same direction. Here catch up means finding the token(s) of the other agent in
the same direction. When two agents walking in the opposite direction meet, we
mean that both agents find the token(s) of the other agent in the same node.

One of the nodes of the ring R is a Bh. All the agents are aware of the presence
of the Bh, but at the beginning the location of the Bh is unknown. The goal is
to locate the Bh, i.e. at the end there must be at least one agent that has not
entered the Bh and knows the location of the Bh.

The primary complexity measure is team size: the number of agents needed to
locate the Bh. Other complexity measures we are interested in are token count :
the number of tokens each agent starts with, and cost : the total number of
moves executed by the agents (worst case over all possible timings and starting
locations).

The computation is asynchronous in the sense that the time an agent sleeps or
is on transit is finite but unpredictable. The links obey a FIFO rule, that is, the
agents do not overtake each other when traveling over the same link in the same
direction. Because of the asynchrony, the agents cannot distinguish between a
slow node and the Bh. From this we get:

Lemma 1. [3] It is impossible to find the Black Hole if the size of the ring is
not known.

As the agents are scattered, it could be the case that there is an agent in each
neighbor of the Bh, and both these agents wake up and make their first move
towards the Bh. This shows that:

Locating a Black Hole in an Un-oriented Ring Using Tokens 611

Lemma 2. [3] Two agents are not sufficient to locate the Bh in scattered case
without knowing the orientation of the ring.

3 Algorithm Shadow Check

3.1 Basic Ideas, General Description and Communication

We call a node/link explored if it is visited by an agent. A safe (explored) region
consists of contiguous explored nodes and links. We call the last node an agent
explored its Last-Safe-Place (LSP for brevity). In the scattered agents case,
during the executing of Bhs there are more than one safe regions in the ring.
Our goal is to merge all the safe regions into one, which eventually includes all
the nodes and links with the exception of the Bh and the two links leading to
the Bh. Let us describe how this goal is going to be achieved.

Upon waking up, an agent becomes a Junior Explorer (JE), exploring the ring
to the right (from the viewpoint of the agent) until it meets another agent1. When
two JEs meet, they both become Senior Explorers (SE), and start exploring the
ring in opposite directions. We call the explored area between these two SEs a
safe region for them. A SE explores the ring, growing its safe region and checking
after each newly explored node whether the safe region contains all the nodes
except the Bh. When two SEs moving in opposite directions meet, the two safe
regions merge into a bigger safe region. The two meeting SEs become Checkers
and check the size of the new safe region. There could be more than one such
safe region in the whole ring. When a JE sees a safe region(i.e., it encounters a
SE), it becomes Passive (stops being active).

When no unusual event occurs, each SE repeats the following cycle: it leaves
two (SEs use two tokens) tokens on the port (if there is no token on this port) of
the unexplored link on which it is going to move next. Once it reaches the node
(if it is not the Bh), the SE leaves there two tokens on the port from which it
did not enter that node. It returns to the previous node, picks up the token(s)
on the port it used, then returns to the last explored node. If, between cycles, an
agent notices any unusual event (e.g., token situation changes on certain ports
of a node), it stops the cycle and acts according to this interruption. The details
of possible interruptions are explained later.

The communication and coordination between the agents are described as
follows:

– One token on the port means a JE is exploring the link via this port.
– Two tokens on the port means a SE is exploring the link via this port.
– One token on the port and one token in the middle means this is the node

in which two opposite direction JEs meet.
– One token on each port means this is the node in which one JE catches up

with another JE in the same direction.

1 More precisely, finds a token of another agent.

612 S. Dobrev, N. Santoro, and W. Shi

The details of the algorithm are explained in the next sub-sections. In order
to make the algorithm simpler to understand, we describe the procedure “Ju-
nior/Senior Explorer” from the viewpoint of the agents, who agree on the same
“right” direction. The procedure for all the agents who agree on the same “left”
direction can be achieved by changing the word “right” into “left”, and “left”
into “right”.

3.2 Procedure “Initialize” and “Junior Explorer”

Once an agent wakes up, it becomes a JE that will go to the next node to the
right immediately. There are 6 possible situations a JE may encounter once in
the right neighbor node. A JE will eventually either end up in the Bh or become
a Checker upon meet ing a SE or a potential SE, or become a SE upon meet ing
another JE.

– Case 1
The agent A puts one token in the middle, then goes back to the left node.
If there is a SE caught up with agent A, then A will become a Checker to
the left. If the agent it just met (let’s say B) in the opposite direction also
left A a sign (a token in the middle), then A will become a SE to the left. If
A is caught up by another JE in the same direction, A will pick up all the
tokens, then become a Checker to the right.

– Case 2
The agent A goes back to the left node. If A is caught up by another JE,
it will become a Checker to the right. If A notices that the SE it just met
in the opposite direction left A a sign(a token in the middle), then it will
become Passive immediately. If the JE A just met left A a sign, then A will
become a SE to the left.

– Case 3
The agent A puts one token on the left port, then goes back to the left node.
If A’s token is still there, it will move this token to the left port, add one
more token on the left port then it becomes a SE to the left. If either A sees
the sign a SE it just met left to it, or A is caught up by another JE, it will
become Passive immediately.

– Case 4
The agent A goes back to the left node. If A’s token is still there, then it will
pick the token and then become Passive. If A is caught up by a SE, then
it will become Passive. If A is caught up by another JE, it will pick up the
tokens, then become a Checker to the right.

– Case 5
The agent A returns to the left node. If A is caught up by a SE, then it
becomes Passive. If A is caught up by another JE, it will become a Checker
to the right. If it notices that the JE it just met left it a sign (a token in the
middle), then it will move the two tokens to the left port and become a SE
to the left.

Locating a Black Hole in an Un-oriented Ring Using Tokens 613

– Case 6
The agent A puts a token on the right port then goes back to the left node.
If A’s token is still there, then it will pick the token and continue as a JE.
If it is caught up by a SE, then it will become Passive. If A is caught up by
an other JE, then it will become a SE to the right.

3.3 Procedure “Checker”

A Checker is created when an agent realizes it is in the middle of two SEs
exploring in different directions. The purpose of the Checker is to check the
distance between the two SEs. A Checker keeps walking to the right until it
either sees the token of a SE going to the right, or a node with one token on
each port. If the distance is n − 2, that means that two agents have died in the
Bh, and the only node left is the Bh. Otherwise, it keeps walking to the left
until it either sees the token of a SE going to the right, or a node with one token
on each port. If now the distance is n − 2, then it will become DONE (the Bh

is located), otherwise it becomes Passive immediately.

3.4 Procedure “Senior Explorer”

A senior explorer will eventually either end up in the Bh or locate the Bh, or
become a Checker upon meet ing another SE or a potential SE. A potential SE
means a status of a JE after it either met another JE in the same direction or
different direction, but before it becomes a SE. A SE walks to the right node. If
it meets another SE in the different direction (we say: faces a SE), it will pick
up all the tokens and become a Checker to the right. If it realizes it is the node
which two JEs in the different directions met, it will then become a Checker to
the right. If it realizes this node is where two JEs in the same direction met, it
will then go back to the left port, pick up all the tokens and become a Checker.
If it meets a JE going to the left, then it will pick the token on the left port, put
two tokens on the right ports and go back to the left node and pick up the two
tokens on the right port. Then the SE will execute the check phase to the left.
If it meets a JE going to the right, then it will put one more token on the right
port, go back to the left node; pick up the two tokens on the right port, then
execute the check phase to the left. If the node is empty, the SE will then put
two tokens on the right ports, go back to the left node; pick up the two tokens
on the right port, then execute the check phase to the left.

Once a SE is in the check phase, it walks to the left until it either sees the
token of a SE going to the right, or a token with one token on each port. If there
are n − 2 links in the safe region, then it will become DONE, otherwise it goes
back to its LSP. If there is no token on the right port of its LSP, it then will
become Passive.

3.5 Analysis of Algorithm Shadow Check

According to Lemma 2, we assume there are at least three agents in the ring
network. The following lemmas and corollary hold.

614 S. Dobrev, N. Santoro, and W. Shi

Lemma 3. Eventually there is at least one SE.

Corollary 1. At most two agents enter the Bh.

Lemma 4. A safe region will be created.

Lemma 5. Whenever the length of a safe region increases, it will be checked.

Lemma 6. The length of a safe region keeps increasing until it contains n − 2
links or n − 1 nodes.

Theorem 1. Algorithm Shadow Check correctly locates the Bh with k (k � 3)
scattered agents in an un-oriented anonymous ring network. The total cost is
O(n2) moves and, 5 tokens per agent.

Proof. According to the above lemmas, three scattered agents are enough to
locate the Bh.

Now let us analyze the move cost: because there are k scattered agents, there
is a maximum of k/2 safe regions in the ring. In procedure “Senior Explorer”,
an agent traverses its safe region once it explores one more node. There is a
maximum 2n moves in each such traversal. There are at most n nodes in the
ring, which means there are at most n such traversals. So, O(n2) moves are used.
In procedure “Checker”, the maximum number of each check is 2n. A check can
be triggered by either two safe regions merging or the SE this Checker follows
exploring one more node. Given, there are no more than k/2 merges and n such
checks, the total number of moves in procedure “Checker” is no more than 2n2.
Hence, the total move cost is O(n2).

Now we analyze the token cost: a JE uses one token on the port to mark its
progress. Once a JE meets another JE, one extra token is used to mark the node
in which the two JEs meet and form a pair of SEs. This token will stay in the
node until the algorithm terminates. A SE puts two tokens on the port as soon
as it is created. It puts another two tokens on the port of the next node to mark
progress. The first two tokens will be picked up and reused when exploring the
next node. Hence, at most 1 + 2 + 2 = 5 tokens are used by each agent.

4 Algorithm Modified ‘Shadow Check’

4.1 Motivation

In the previous section, we presented algorithm Shadow Check that handles the
Bhs problem in an un-oriented ring with a minimum of 3 scattered agents and
5 tokens per agents. According to Theorem 1, an agent in one of the k/2 safe
regions, traverses its safe region every time it explores one more node in order
to check the size of this safe region. This is due to requiring minimum team size:
Since there are only 3 agents in total, and because of the definition of Checker, it
is obvious that there is at most one Checker formed in algorithm Shadow Check.
So the explorers have to both explore the ring and check the size of the safe
region. This cost (n2) moves in the worst case.

Locating a Black Hole in an Un-oriented Ring Using Tokens 615

After considering what kind of cost would we obtain if we had one more agent,
we modify the algorithm slightly. The modified algorithm Modified ‘Shadow
Check’ is such that:

– it can handle 4 or more scattered agents instead of 3;
– eventually there will be two Checkers formed and O(kn + n logn) moves are

used for an arbitrary k. If k (k � 4) is a constant number, the move cost can
be reduced to Θ(n log n)

4.2 Modification

We can obtain algorithm Modified ‘Shadow Check’ by performing the following
modifications on algorithm Shadow Check :

1. In procedure “Junior Explorer”: change all the action “become Passive” of
a JE in algorithm Shadow Check, into “become a SE in the same direction
reusing the two tokens of the caught up SE”, whenever this JE is caught up
by a SE.

2. In procedure “Senior Explorer”, there are two types of SEs: a SE with a
Checker and a SE without a Checker.
– a SE with a Checker : marked as three tokens on the port (the extra

token is added by its Checker).
– a SE without a Checker : marked as two tokens on the port.

In both procedures, the ‘check phase’ in algorithm Shadow Check is deleted;
Instead, as soon as it caught up with a JE, it will becomes a Checker in the
opposite direction;
– In procedure “a SE with a Checker”: as soon as a SE with a Checker

faces another SE with/without a Checker, it becomes Passive. Other-
wise, it continues exploring.

– In procedure “a SE without a Checker”: as soon as a SE without a
Checker faces another SE with/without a Checker, it becomes a Checker.
Otherwise it continues exploring.

3. The procedure “Checker” is modified as follows:
A Checker is created when it realizes it is in the middle of two SEs exploring
in different directions. Once an agent becomes a Checker, it checks the size
(number of nodes) of the safe region once, namely, it walks until the LSP
of a SE with/without a Checker, then changes direction, walks and keeps
counting the number of nodes it passes, until it arrives in the LSP of another
SE without a Checker. We call this a check and this second SE the SE of
this Checker. Let L denote the size of a safe region. Now this Checker puts
an extra token on the port where its SE left two tokens. But if what this
Checker meets is a SE with a Checker, then this Checker leaves a token in
the middle of the node and becomes Passive immediately. There are two
situations that can trigger a Checker to check again:
– Merging check : there is a token in the middle of the LSP of the SE of

this Checker. This is caused by two safe regions merging. This Checker
then picks up the token in the middle and performs a check in order to
update L.

616 S. Dobrev, N. Santoro, and W. Shi

– Dividing check : this Checker followed its SE for �(n − L)/2� steps.
If while a Checker is following its SE, it notices that its SE became Passive
(i.e., no token or not three tokens on the port in the next node), it then keeps
walking until it sees the LSP of another SE. If it is a SE without a Checker,
then this Checker becomes a Checker of this SE ; otherwise, this Checker
puts a token in the middle of this LSP and becomes Passive immediately.
If while a Checker is check ing the length of its safe region L, it notices that
the safe region contains n − 1 links. Then the Bh is located: the only node
left unexplored is the Bh.

4.3 Correctness and Complexity

Given there are at least 4 agents in the ring, we know:

Lemma 7. At least two SEs are formed in algorithm Modified ‘Shadow Check’.

Lemma 8. Eventually at least two Checkers will be formed.

Theorem 2. Algorithm Modified ‘Shadow Check’ correctly locates the Bh

Proof. According to Corollary 1 and Lemma 7 and 8, eventually there will be
two Checkers formed/left that keep checking the size of the safe region until the
only safe region in the ring contains n − 1 nodes or n − 2 links. Hence the Bh is
correctly located.

Theorem 3. Algorithm Modified ‘Shadow Check’ correctly locates the Bh in
an un-oriented ring with k (k � 4) scattered agents, each having 5 tokens. When
k is arbitrary, the total cost is O(kn + n logn). If k is a constant number, then
the total move cost is Θ(n log n).

Proof. First we analyze the move cost: a SE with/without a Checker keeps
exploring nodes along the ring without turning back. There are at most n such
moves in total. In procedure “Checker”, the maximum number of moves in each
check is 2n, and there are no more than log n Dividing checks, given a Checker
does not proceed with the next Dividing check until it follows its SE for �(n −
L)/2� steps. There are no more than k/2 Merging Checks in total, given k
scattered agents can form at most k/2 safe regions. So the total number of
moves in procedure “Checker” is no more than kn +2n log n. When k (k � 4) is
a constant number, the total number of moves in procedure “Checker” becomes
O(n log n), and the total move cost is O(n log n). The lower bound follows from
the whiteboard model presented in [3]. Hence the total cost of moves is optimal
when four or more (O(1)) scattered agents searching for a Bh in an un-oriented
ring.

Now we analyze the token cost: as we know that except for in procedure
“Checker”, a Checker uses one more token compared to a Checker in algorithm
Shadow Check, no other modification affects the number of tokens used by each
agent. According to the algorithm, a Checker uses a token only once in its lifes-
pan. Also, according to Theorem 1: five tokens per agent are used in algorithm
Shadow Check. Hence, 5 tokens per agent suffice to locate the Bh in algorithm
Modified ‘Shadow Check’.

Locating a Black Hole in an Un-oriented Ring Using Tokens 617

5 Conclusion

In this paper, we proved that locating the Black Hole in an anonymous ring net-
work using tokens is feasible even if the agents are scattered and the orientation
of the ring is unknown. Thus, we proved that, for the black hole search problem,
the token model is as powerful as the whiteboard regardless of the initial position
of the agents.

From the results we obtained in this paper, we observe that there is a trade-
off between the team size (number of agents) and the costs (number of moves
and number of tokens used). Since both algorithms we presented require only
a constant number of tokens per agent, we are unable to simulate the distance
identity. (The distance identity, presented in [3], is the crucial technique used in
order to achieve Θ(n log n) moves with optimal team size (3 agents).) But with
one more agent, the token model is as powerful as the whiteboard with respect
to black hole search in an un-oriented ring. And memorywise our algorithms
represent a considerable improvement on the whiteboard model.

References

1. Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network
using multiple agents. In: Shvartsman, A.A. (ed.) OPODIS 2006. LNCS, vol. 4305,
pp. 320–332. Springer, Heidelberg (2006)

2. Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Complexity of searching for a
black hole. Fundamenta Informatica 71(2-3), 229–242 (2006)

3. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica (to appear, 2007)

4. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in
arbitrary networks: Optimal mobile agent protocols. Distributed Computing (to
appear, 2007)

5. Dobrev, S., Kralovic, R., Santoro, N., Shi, W.: Black hole search in asynchronous
rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006.
LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006)

6. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation re-
sults for black hole search in arbitrary networks. Structural Information and Com-
munication Complexity 3499, 200–215 (2005)

7. Dobrev, S., Santoro, N., Shi, W.: Scattered black hole search in an oriented ring
using tokens. In: Proc. of 9th Workshop on Advances in Parallel and Distributed
Computational Models (APDCM’07) (to appear, 2007)

	Locating a Black Hole in an Un-oriented Ring Using Tokens: The Case of Scattered Agents
	Introduction
	The Problem and Related Work
	Main Results

	Model, Observations and Basic Tool
	The Model and Basic Observations

	Algorithm Shadow Check
	Basic Ideas, General Description and Communication
	Procedure ``Initialize" and ``Junior Explorer"
	Procedure ``Checker"
	Procedure ``Senior Explorer"
	Analysis of Algorithm Shadow Check

	Algorithm Modified `Shadow Check'
	Motivation
	Modification
	Correctness and Complexity

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

