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ABSTRACT

Although the storage capacity is rapidly increasing, the size of
datasets is also ever-growing, especially for those workflows in
HPC that perform the parameter sweep studies. Consequently, the
deadlock caused by the storage competition between concurrent
workflow instances is still a major pragmatic concern and storage
management remains important for high performance and through-
put computing. In practice, there are various ways to this issue,
ranging from admission control to deadlock resolution. Despite
being a simple solution, the admission control is conservative and
not space efficient to storage utilization. Therefore, in this paper,
we study the performance of the deadlock resolution approach by
proposing a resource allocation algorithm which is performance re-
silient to the workflows characterized by different features. The
algorithm is designed based on our previous result, called DDS,
which takes advantages of the dataflow information of the workflow
to resolve deadlock based on detection&recovery principle. We
improve DDS to allow it to not only resolve the deadlock but also
overcome the performance anomaly, a not yet investigated prob-
lem in our previous studies. We thus called the improved algorithm
performance-resilience algorithm, denoted as DDS+. The studies
in this paper can be viewed as a follow-up research on DDS and
show the performance behavior of the improved algorithm in vari-
ous conditions. Therefore, the results in this paper are more useful
to adapt DDS+ to the workflows with different characteristics in
reality while keeping the performance stable.

Categories and Subject Descriptors

D.4 [Software]: Operating Systems; D.4.8 [Performance]: Mod-
eling and prediction—simulation

General Terms

Performance
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1. INTRODUCTION
A complex scientific workflow is usually composed of a vari-

ety of standalone application components in terms of control- or
data-dependencies to carry out a well-defined scientific computing
process. In reality, a scientific workload often consists of multiple
instances of the same workflow, with each instance acting on inde-
pendent input files or different initial parameters, either for parallel
data processing or parameter-based studies. For example, the Sex-
tractor [2] pipeline runs, by NCSA astronomers, 2611 instances
on the DPOSS [8] dataset with each pipeline instance accessing
a different 1.1GB image to search for bright galaxies. Although
maximizing instance concurrency can optimize such computation,
it is not always available in practice due to a variety of resource
constraints.

In this paper, we are particularly interested in the storage con-
straints. On one hand, with the advance of high-performance com-
puting (HPC) in big science, the size of involved datasets is ever-
growing to outpace the increasing rates of any affordable storage
capacity. On the other hand, some practical and system policies
still exist in certain situations to limit the freedom of storage uses.
For example, in the cloud computing, whose resources are typically
provisioned based on “pay-as-you-go” billing model, fully utilizing
the provisioned resources in general and storage in particular is es-
sential to achieve cost-effective computation when limited budget
for the resources is a restriction. Consequently, the storage space
management remains important for high performance and through-
put of the workflow computation in HPC. In our case, a concerned
problem is the deadlock that is caused by the competition for the
storage resources between concurrent workflow instances.

In practice, there are various ways to the deadlock problem, rang-
ing from admission control to deadlock resolution. Despite be-
ing a simple solution, the admission control is conservative and
not space efficient to storage utilization. Therefore, we advocated
the deadlock resolution approach and proposed DDS, a deadlock
detection-based scheduling algorithm for workflow computation in
HPC systems with storage constraints [21]. The algorithm takes
advantages of the dataflow information of the workflow to specu-
latively execute each instance whenever the instantaneous storage
space is sufficient for some job executions (but not sufficient for
the whole instance) and perform the rollback operation on the se-
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Figure 1: An example of performance anomaly where three in-

stances are executed concurrently, each with one unit data for

each input and output files. Given total storage budget of 10

units, if resource allocation is not well designed, only the left

most instance can proceed and the other two have to be blocked,

leading to so-called performance anomaly.

lected in-progress instances whenever deadlock is detected. With
some simple yet practical assumptions we showed the advantages
of DDS in performance over the classic Banker’s algorithm. How-
ever, the studies still fall short of sufficient investigation on the
workflows with more different features, especially, the reaction to
performance anomaly during the workflow computation. Thus, we
leave some unknown facets of the algorithm when deploying it in
reality.

Performance anomaly could happen when multiple workflow in-
stances run concurrently, competing for the finite resources. It is
possible as we show in Figure 1 that a large number of instances
may become blocked (due to the unavailability of requested re-
sources) while retaining the occupied resources, leaving just a small
number of instances to make a slow progress. Although there is no
deadlock, the overall performance of the computation is dramat-
ically degraded. Performance anomaly is usually not a common
case, more often than not, a corner case, for an algorithm in its prac-
tical use. However, it introduces uncertainty to the performance of
the algorithm, rendering the algorithm unstable with respect to its
diverse inputs. Therefore, the strategies to improve DDS with an
ability to overcome the anomaly while maintaining or even improv-
ing the performance (i.e., performance resilience) is highly desired.
However, most of existing researches only focus on the anomaly or
fault detection via online or off-line techniques to model or pre-
dict the performance of the workflows instead of addressing the
anomaly at runtime directly without using modeling [18, 12, 1].

The studies in this paper can be viewed as follow-up research
to compensate for this shortage. We improve the algorithm with
a rollback operation to enable it to not only resolve the deadlock
but also overcome the performance anomaly. We thus call this
algorithm DDS+. The essence of this improvement is simple; it
allows the scheduler to selectively rollback the instance with min-
imum number of completed jobs at each time when a running job
is finished. As such, it does not need to monitor the instances’ sta-
tus whereby the rollback decision is made. Although, this strategy
could intuitively incur significant overhead due to a large number
of re-computed jobs. However, our finding is opposite to this intu-
ition. On the contrary, DDS+ not only addresses the performance
anomaly but also for certain workflows shows some performance
advantages over DDS where no rollback operation for the perfor-
mance anomaly is involved. This is also the reason we call the
improved algorithm performance resilience algorithm.

In this paper, we present simulation-based evidence to show how
DDS+ behaves to be performance resilient with respect to different
features of the workflows, and as well, the performance anomaly

in the computation. Our results would be very useful for the algo-
rithm to adapt to the workflow computation in reality, especially,
when cloud platforms are leveraged to achieve cost-effective com-
putation.

The rest of the paper is organized as follows: in the next sec-
tion, we discuss some related work. We introduce the computation
model in Section 3 and outline the DDS+ algorithm in Section 4.
Then, Section 5 follows to present our simulation results. In the last
section, we review lessons learned and propose some future work.

2. RELATED WORK
With the awareness of the continued growth of today’s extreme-

scale datasets in HPC [11, 3, 15, 7], the interest in scheduling work-
flow computation in storage-constrained systems is ever-increasing.
In this section, we first survey some related work in storage-aware
workflow scheduling algorithms [5, 16, 19, 6], and then review
several state-of-the-art results related to performance resilience in
workflow scheduling.

BAD-FS [5] is one of the early efforts in capacity-aware schedul-

ing in HPC. It leverages a centralized batch scheduler to allocate
storage volumes to the jobs from multiple workflow instances so
that storage overflowing or cache thrashing can be avoided. To
this end, BAD-FS identifies five possible data allocation strategies
which not only influences the execution path of the workloads [4]
but also prevent deadlock (not stated explicitly by the authors).
However, these strategies are unable to make the best use of stor-
age resources for performance optimization. On the other hand, all
of their allocation strategies are only designed for batch-pipelined
workflows with a sequential structure and thus might not effectively
work on the workflows with other structures like those examined in
this paper.

Ramakrishnan et al. address the later issue by considering the
scheduling of data-intensive workflows with more general struc-
tures onto a set of distributed storage-constrained compute node [16].
Their basic approach is to add a cleanup job for each data file when
that file is no longer needed by other jobs in the workflow or when
it has already been staged out to some permanent storage. The
garbage files are deleted (also called garbage collection) in time,
and the amount of storage used for the workflow can be reduced
significantly. To further reduce the overhead of the large number
of cleanup jobs, they also implement a heuristic that uses a single
cleanup job for removing multiple files.

A variant of this approach is presented in [19] where Singh et al.

study the issue of optimizing disk usage in scheduling of large-scale
data-intensive workflows onto distributed compute nodes, each with
limited storage resources. Their approach is two-fold. First, like
[16], they also minimize the amount of space a workflow requires
during execution by removing data files at runtime when these files
are no longer needed. Second, they demonstrate that workflows
may have to be restructured to reduce the overall data footprint of
the workflow, which is unique to their approach.

Recently, Chen et al. [6] studied the same problem as Ramakr-
ishnan et al.’s in a similar context with a storage-aware schedul-
ing but adopted a more elegant algorithm to partition the workflow
into a set of non-cross-dependent sub-workflow so that the potential
deadlock due to the storage constraints could be prevented. How-
ever, similar to the previous studies, this work is also geared to-
ward efficient scheduling of a single workflow instance to a set of
distributed storage sites.

Although all the aforementioned studies focus on improving work-
flow applications on HPC platforms with constrained storage, they
do not thoroughly consider the deadlock problem, instead, they ei-
ther prevent it from happening by using some conservative alloca-
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tion [5, 6] or adopt Ostrich strategy to resolve it manually [16]. On
the other hand, the performance behaviors of these algorithms on
some corner cases are also not known if the parameter space studies
on the workflows are not performed.

Wang and Lu [22] concentrate on the efficient deadlock reso-
lutions in scheduling scientific workflows on storage-constrained
HPC systems. To this end, they design two deadlock avoidance
algorithms by exploiting the dataflow dependency inherent in the
scheduled workflow. Moreover, in follow-up research, they also
present workflow-aware file system, called WaFS, to leverage the
dataflow information to manage the constrained storage resources
for scientific workflow computation in the cloud [23]. Our work
can be combined with WaFS to extend it for the deadlock resolu-
tion.

Deelman and Chervenak discuss general issues in data manage-
ments for data-intensive scientific workflows, with data storage as a
focused challenge [7]. In contrast, Pandey and Buyya [15] propose
workflow scheduling algorithms on data grids with large number of
replicated files that incorporate practical constraints in data grids,
and identify that constrained storage is one of major challenges in
workflow scheduling. However, none of these researches consider
the performance resilience issue.

To our best knowledge, the studies on this issue in workflow
computation is quite few. Most of existing works in this area ei-
ther leverage online techniques or resort to off-line infrastructure
to detect failure or execution anomaly in large-scale workflows
whereby their performance model is established, [18, 12, 1]. Wang
et al. [20] introduce ACS, which is an admission control scheme
with deadlock resolutions to facilitate workflow scheduling in the
cloud. Although this scheme can optimize the storage utilization,
and sometimes, can get rid of the performance anomaly, it is not
performance resilient as it fails to address this problem in general
sense. Compared to the existing results, our work focuses purely
on the workflow scheduling with performance resilience.

3. COMPUTATION MODEL

3.1 Workflow Model
We model a workflow as a workflow graph, a weighted DAG di-

rected acyclic graph G(V,E), where V is a set of nodes and E is a
set of edges. A node in the DAG represents a job which in turn is a
program that must be executed in sequential order without preemp-
tion. The weight of a node is called the computation cost. An edge
represents the communication in terms of dataflow (i.e. write/read
file) via the underlying file system from the source node to the des-
tination node; its weight indicates the file size. The precedence
constraints of a DAG dictate the execution orders of the nodes in
the sense that a node cannot begin execution until all its input files
have arrived and no output files are available until the job has fin-
ished and at that time all output files are simultaneously accessible
to its destination job.

A workload consists of multiple instances of the same workflow,
with each instance having its own node and edge weights. The
node and edge weights as well as the shape of the workflow are
provided by users and not changed during the computation. Since
in reality the multiple instances are usually created for parameter
sweep study, it is reasonable to assume that each edge has roughly
the same weight in different instance graphs of the same workflow.

Without loss of generality, single source and sink nodes are as-
sumed in the DAG. These two nodes can be viewed as the jobs in
the workflow that stage in the initial input data and stage out the
result output data respectively. As such, the net storage after the

Algorithm 1 DDS+ algorithm

1: procedure DDS+(I, j)
2: if (DDS(I, j) = f alse) then

3: ⊲ no deadlock, rollback for performance anomaly
4: if (schedRollbackInst(I)) then
5: rollbackInst(I)
6: end if

7: end if
8: end procedure

workflow computation is zero if no intermediate data products are
maintained.

3.2 Execution Model
During the execution of a workflow instance, the life cycle of a

job may experience several states. Initially, all the jobs in a work-
flow instance are in blocked state. A job becomes free if it has no
parent jobs or all its parent jobs have finished. Every free job can be
scheduled but only those who have storage space to accommodate
their output data set can enter ready state for execution. Otherwise,
they will be in pending state waiting for the storage. Of course,
as soon as the required storage is available, the jobs in the pending
state can be changed to the ready state for execution again. The jobs
in running state are never stopped until they complete the compu-
tation. After a job has completed, it enters done state. A completed
job will release the storage space of its input data set only, which
can be reclaimed for other jobs’ executions, but keeping the storage
for the output data set for the later job use.

Our model is deterministic, at least to the extent that the time and
storage space required by any job as well as the data dependencies
among the jobs are pre-determined and remain unchanged during
the computation.

Algorithm 2 Rollback algorithm

1: procedure SCHEDROLLBACKINST(&I)
2: ⊲ inst. with the smallest # of done jobs in waitReqQ
3: J← waitResQ.get_min()
4: ⊲ I is not the only active instance
5: if (J 6= I

∧
waitResQ(J) 6=∅) then

6: return true
7: else
8: return false
9: end if

10: end procedure

4. DDS+: A PERFORMANCE-RESILIENCE

ALGORITHM
In this section, we introduce DDS+, an improved deadlock de-

tection algorithm by extending DDS [21] with resilience to per-
formance anomaly. The essence of this algorithm is to leverage
DDS+ to resolve the detected deadlock while picking up a selected
instance to rollback to release its occupied storage when there is
no deadlock detected. DDS allows a workflow instance to spec-
ulatively execute if the storage is sufficient for some jobs of the
instances, but not sufficient for the whole workflow instance. The
algorithm expects that as the computation proceeds, the occupied
storage (by some instances) can be reclaimed to contribute to the
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Algorithm 3 Workflow Batch Scheduling

1: procedure Sched

2: ⊲ When a job j′ completed
3: Budget← Budget + j.rel ⊲ release budget
4: ⊲ Move jobs in waitResQ to readyQ if possible
5: ...... ⊲ codes are omitted for simplicity
6: I← getInstance( j′)
7: for j ∈ I do

8: if ( j’s dependency is resolved) then
9: if (Budget ≥ j.req) then

10: readyQ[I].add( j)
11: Budget← Budget− j.req

12: else
13: waitResQ[I].add( j)
14: end if

15: end if
16: end for
17: for (I ∈ readyQ) do
18: for ( ji ∈ readyQ[I]) do

19: ⊲ readyQ[I] contains all jobs of instance I

20: ⊲ alg could be Banker′s, DDS or DDS+

21: if (Deadlock_Resolver(I, ji,alg)) then
22: schedule ji ⊲ Schedule job ji

23: readyQ[I]← readyQ[I]\{ ji}
24: end if
25: end for
26: end for

27: end procedure

computation progress as a whole. To resolve the deadlock, DDS

rollbacks some later instances based on certain criteria (e.g., least
done job first) to reclaim the occupied storage resources and re-
allocate them to an earlier blocked instance. It is possible that the
given storage resources are insufficient even for a single instance.
As such, rollback is always possible in our scenario to resolve the
deadlock problem. DDS+ can detect this case instead of falling into
endless rollback operations. The details of DDS can be found in
[21]. Here, we only focus on DDS+ itself (Algorithm 1) as well as
its invoked subroutine instance rollback algorithm (Algorithm 2).
Note that the main scheduling algorithm which calls DDS or DDS+

as a deadlock resolver is shown in Algorithm 3.
As shown in Algorithm 3, the completion of a job may free new

jobs (i.e., a job is free if all its parent jobs are completed) into either
the ReadyQ queue if the required storage is available or, otherwise,
the waitResQ queue, waiting for the required storage (Lines 7-16).
Then the algorithm enumerates the ready queues and select sched-
ule the jobs in each selected instance after the deadlock is resolved
(Lines 17-25). The deadlock resolver is a driver program that sim-
ply invokes the pre-defined deadlock resolution algorithms such as
the Banker’s algorithm, DDS and DDS+. This strategy, though
simple and efficient, could possibly incur performance anomaly
when scheduling certain workloads due to the large amount of inac-
tive storage held by the blocked instances without any contribution
to the progress of the computation (e.g., fork&join workloads in our
studies). We fix this problem by performing a rollback scheduling
procedure (i.e., schedRollbackInst()) after DDS checking in DDS+
at the end of freeing each job as shown in Algorithm 1. This pro-
cedure is responsible for picking up an instance in the waitResQ to
rollback. Currently, our strategy is simply to pick up the instance
who is not the only running instance, yet has the smallest number
of completed jobs (Algorithm 2). As such the algorithm is efficient,
which can finish the operation within logarithmic time (Line 3 in
Algorithm 2).

W
id

th
H

ei
gh

t

St
ag

e

Fan−out Factor
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Intuitively, this extra scheduling step may increase the number
of re-computed jobs and adversely affect the overall performance.
However, our simulation results show the opposite effect that this
strategy not only addresses the performance anomaly problem in
fork&join workloads but also improve the performance of other
(e.g., lattice) workloads. More details are shown in the following
part.

5. PERFORMANCE STUDIES

5.1 Experimental Setup
We simulate the computation model presented in Section 3 and

implement a scheduler using the simulation package SMURPH [9].
The scheduler accepts the dataflow DAG from the user submitting
the workflow instances and follows the execution model to manage
the submitted workloads. It schedules each job based on the an-
swer from a deadlock resolver which runs DDS+ for both deadlock
resolution and performance resilience.

Like in [21], we continue to use the two representative structures,
fork & join and lattice shown in Figure 2 as the benchmarks in our
experiments since on the one hand, they represent a wide range of
scientific workflows [10, 13, 14, 17], and on the other hand, they
exhibit different degree of concurrency (DOC) patterns which make
it easy to reason about the experimental results.

Since we intend to study the performance of the proposed algo-
rithms in general cases, except for the representative DAG struc-
tures, we make no further assumption on any a prior knowledge of
the jobs such as its job service time (JST) and file sizes. As such,
for all investigated workflow structures (i.e., fork&join (3×32) and
lattice (8× 12)), we consider the job service times that are varied
from 500 to 1000] time units in different distributions, while the
input/output file sizes are either unit-based or uniformly distributed
on [1,10] storage units, to reflect different situations in reality. For
all the examined workflow DAGs, the maximum claim of the job
can be computed in an efficient optimal way by exploiting the fea-
tures of each graph.

Additionally, we also assume that an unbounded number of ho-
mogeneous compute nodes are available as constrained storage is
only our concern, and thus the maximum DOC should never be
constrained by the compute nodes. Finally, in each experiment, a
total of 100 workflow instances are in the workload.
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Figure 4: Impact of storage budget vs. JST distribution for workload fork&join and lattice
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Figure 3: Impact of storage budget vs. instance average inter-

arrival time for workload fork&join and lattice

5.2 Simulation Results
In this section, we present our simulation results on diverse as-

pects of DDS+. To this end, we first study DDS+ itself with re-
spect to its behaviors to diverse features of the workloads. Then
we compare DDS+ with the classic Banker’s algorithm to show its
performance advantage.

5.2.1 DDS+ Studies

We study DDS+ from several aspects, ranging from the impact of
storage budget and average inter-arrival time (AIT) on the makespan
performance to the effects of improved rollback operation for per-
formance resilience.

Storage Budgets vs. Average Inter-arrival Time.
We first investigate the impact of different storage budgets on

the total makespan of DDS+ on the both workloads. Each work-
load consists of 100 instances whose inter-arrival time follows ex-
ponential distribution. Figure 3(a) shows the results of fork&join
workload. We found from this graph that both the storage budget
and the instance average inter-arrival time have big impact on the
workload makespan. When the storage budget is very limited (e.g.,
budget=200), such impact are dominated by the storage budget, ir-
respective of the different instance average inter-arrival time. It is
easy to understand since the limited storage decreases the degree
of concurrency and in the meanwhile increases the probability of
instance rollbacks. However, as the storage budget increases, these
adverse effects diminish, and the impact on the makespan are grad-
ually dominated by the instance average inter-arrival time. This
is reasonable since the degree of concurrency of less intense work-
loads is low, and thus reduces the simultaneous requirements for the
storage. From this graph, we can conclude that the storage budget
should be determined by the intensity of the workload. The higher
the intensity of the workload, the more budgets should be given.
When the intensity of the workload is low, more storage budgets
cannot definitely guarantee the improvement of the makespan. The
same conclusion is also true for the lattice workload (Figure 3(b)).

Storage Budget vs. JST Distribution.
Figure 4 shows the results of DDS+ with different storage bud-

gets on various JST distributions including Uniform, Bi-modal, Nor-

mal, Poisson, and Zipf-like distributions to reflect diverse situations
in reality. The characteristics of fork&join workloads under these
distributions are illustrated in Figure 5 where the total amount of
workload, the average JST, as well as the length of critical path are
obtained when AIT = 0 and normalized by the uniform distribu-
tion. The lattice workload also exhibits similar observations.

These results are obtained when the average instance inter-arrival
time is zero. We observe from the left graph that as the storage
budgets increases, all the makespans of the fork&join workloads
with different JST distributions are reduced, especially when the
storage budgets are highly limited. It demonstrates that the per-
formance of the workload is very sensitive to the increment of the
storage budgets when they are low. However, the performance gain
is gradually lessened when the storage budgets increase over a cer-
tain value. These results are consistent with those of our previous
experiments. We explain them as follows, when the storage bud-
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gets are low, although there are lots of jobs who can execute con-
currently, these jobs have to wait in the waitResQ queue for the
required storage. As a result, most of these jobs execute sequen-
tially, elongating the total makespan. However, with the growth
of the budgets, such jobs can obtain more opportunities to execute
concurrently, and thus, shortening the makespan. The performance
improvement may result from two factors, the available storage and
the degree of concurrency. Although the storage increases gradu-
ally, the degree of concurrency is not changed. This fact explains
why the performance gain is gradually lessened.

Total Workload Avg. JST. Total Length of CP.
0

0.5

1

1.5

2
Uniform[500, 1000]
Bimodal[500, 1000]

Poisson(750)

Normal(750,50)

Zipf-like

Figure 5: Workload characteristics for fork&join under differ-

ent JST distributions

By comparing the shapes of both workflows, we further observed
that for all storage budgets, all the JST distributions, except the
Zipf-like, DDS+ exhibits almost identical performance trends. In
this sense, the performance of DDS+ with different storage bud-
gets are insensitive to the JST distributions. Since the Zipf-like
distributions may result in some jobs with much higher JST than
other jobs, and thus these jobs may block subsequent small jobs
and elongate the critical path (Figure 5). As a consequence, the
Zipf-like distribution always exhibit the worst performance among
the investigated distributions.
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Cost of Speculative Execution.

Due to the speculative execution of the workflow instances, we
can expect the performance loss with DDS+. Unfortunately, such
loss cannot be measured accurately since the rollback instances ex-
ecute concurrently with other normal instances. To address this
problem, we measure the percentage of the re-computed jobs to
indirectly reflect the cost of the speculative execution. From the
bottom graph of Figure 4(a), one can see that the percentage of the
re-computed jobs is less than 1%, and all rollback instances have
only one done job (not shown in the graph). Since the number
of processors/hosts is not our bottleneck, we think the cost of the
speculative execution is not significant.

Another interesting observation is that when the storage budget
is highly limited (e.g., < 60), the percentage of the re-computed
jobs is almost 0, less than those with more storage budget, which
contradicts our intuition. It demonstrates that our algorithm control
the job executions well for the fork&join workload, and make the
best use of the storage when the budget is limited. As the budget
increases, more instances can execute concurrently, promoting the
opportunities to rollback instances as we discussed above.

Compare to the fork&join workload, the performance of lattice
workload also exhibits the same trend as the storage budget in-
creases. Due to the degree of concurrency increases progressively
in lattice workloads, the makespan curves are relatively stable. In
contrast to the fork&join workload, the percentage of re-computed
jobs is high in lattice workload, especially when the storage bud-
get is highly limited, which is quite different from the situation in
fork&join. We attribute this difference to the shape of the workflow
and the dispatch/issue control of our algorithm. In our fork&join
workload, a new instance (i.e., the first job of the instance) can be
dispatched/issued if there are 32 storage units available. There-
fore, when the budget is highly limited, this requirement is seldom
satisfied, and at most one instance can be dispatched/issued. On
the contrary, in the lattice workload, a new instance can be dis-
patched/issued if only 2 storage units are available. As the number
of concurrent instances increases, the number of rollback instances
also increases. Due to the low requirements for the storage to dis-
patch/issue an instance, the percentage of re-computed jobs in the
lattice workload is much higher than that of fork&join workload.
Therefore, the speculative execution of the lattice workload may be
thought of being costly. Fortunately, more than 98% rollback in-
stances have less than 5 jobs which are completed before rollback.
Figure 6 evidences this observation by the cumulative distribution
functions (CDFs) given the budget of 60, 80, 120 and 160 units.

Effects of Scheduling Rollback Instances.
In this section, we evaluate the effects of scheduling rollback in-

stances, which allows DDS+ to be performance resilient. Figure 7
shows the performance comparison between the strategies with and
without using rollback instance scheduling.

The fork&join workload has performance anomaly when the stor-
age budgets are between 65 and 70 units if no rollback scheduling
is considered (see Figure 7(a). We guess this anomaly is resulted
from the comprehensive effects of the shape of the workflow and
the dispatch/issue control of the scheduling policy. For example,
when the budget is 65, only one job in one instance is executing
(the second instance holds 32 storage units, but cannot execute),
leading to low degree of concurrency. This is evident by the spike
in Figure 7(b). By performing an extra rollback scheduling step,
this performance anomaly is suppressed. Although such extra step
may increase the number of re-computed jobs (Figure 7(b)), the
performance is not degraded (Figure 7(a)) since on the one hand,
the effect of those re-computed jobs are marginal as shown in the
previous experiment, and on the other hand, the extra-step may lead
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Figure 7: Performance comparison between DDS and DDS+ for fork&join and lattice (AIT=0, JST=Uniform). The x-axes labels

represent the storage budget units.
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Figure 8: Performance comparison between DDS+ and the Banker’s algorithm. The x-axes labels represent the storage budget units

to re-distribution of the released storage to the instances with most
done jobs, and thus, accelerate the computation as a whole.

The performance improvement is also obtained from the lattice
workload in spite of the large percentage of the re-computed jobs
(Figure 7). The reason behind this phenomenon has been explained
in the previous sub-section. It demonstrates that our instance roll-
back strategy is effective to make a good use of the storage budgets
for performance improvement. In addition to the uniform distribu-
tion, the same performance gains are also observed in other inves-
tigated JST distributions.

5.2.2 Comparison with Deadlock Avoidance

In this section, we show how the performance of DDS+ is rel-
ative to the Banker’s algorithm, a classic algorithm for deadlock
avoidance. In the experiment, we vary the file sizes from 1 to 10
uniformly, and use x-axis for all graphs to represent storage units,
where the leftmost, starting point on the x-axis is based on the
largest maximum claim of the Banker’s algorithm for all workflow
instances.

Figure 8(a) is the performance comparison for the fork&join
workload where we can observe that DDS+ is constantly better
than the Banker’s algorithm, especially when the storage budget is
highly limited. This is mainly because the large values of the max-

imum claims computed by the Banker’s algorithm prevent more
instances from being admitted to execution. This situation is very
serious in the case that the storage is highly constrained. How-
ever, when the storage resources increase, more and more jobs in-
side the active instances can run concurrently (i.e., intra-instance
concurrency), dramatically improving the overall performance to
approach DDS+. Although the inter-instance concurrency (i.e.,
the number of concurrent instances) is not improved that much,
fork&join has a high intra-instance concurrency due to its large
number of independent jobs in the workflow. On the contrary,
DDS+ admits instances in an eager way without safety checking,
which allows more jobs in different instances to execute at the same
time, thus it has a better performance when the storage is highly
constrained. However, this advantage is diminished as the storage
budget increases.

Unlike the fork&join, the performance advantage of DDS+ over
the Banker’s algorithm is not that pronounced to the lattice work-
load (Figure 8(b)). When the storage is tight, the Banker’s algo-
rithm exhibits some performance advantage over DDS+. However,
as the resources increase, DDS+ gradually outperform the Banker’s
algorithm. We can attribute this observation to the job concur-
rency pattern of the lattice which is quite different from that of the
fork&join.
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This experiment demonstrates that DDS+ does not consistently
outperform the deadlock avoidance algorithm across all shapes of
workflows. It exhibits performance advantages over the deadlock
avoidance algorithm when workflows have a relatively high degree
of intra-instance concurrency.

6. CONCLUSIONS
In this paper, we proposed DDS+, a performance-resilience al-

gorithm, which is based on our previous result by adding a rollback
operation to DDS to overcome the performance anomaly. We in-
vestigated the behavior of the DDS+ algorithm with respect to its
scheduling of the workloads with more practical features when the
storage is constrained as well as its ability to handle the perfor-
mance anomaly. DDS+ does not consistently outperform the dead-
lock avoidance algorithm (e.g., the Banker’s algorithm) across all
shapes of workflows. It exhibits performance advantages over the
deadlock avoidance algorithm when workflows have a relatively
high degree of intra-instance concurrency. These results deepen
our insight for deploying the algorithm DDS+ in reality to improve
the performance of the scientific workflow-based workloads.
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