
Teaching Strategies to Millenial Students
Jean-Pierre Corriveau

School of Computer Science
Carleton University
Ottawa, CANADA

1-613-520-2600 x1192

jeanpier@scs.carleton.ca

Wei Shi
Faculty of Business and IT

UOIT
Oshawa, CANADA

1-905-721-8668 x3803

Wei.Shi@uoit.ca

ABSTRACT
Millenial students are very technology-aware and see technology
as a necessity in most aspects of their life including learning.
Traditional learning methods, in which the instructor largely
controls the learning process, are not well adapted to such a
clientele. Conversely, serious gaming environments offer complex
and diversified approaches to active learning, which millenial
students greatly appreciate. In this paper, we report on how one
such environment, namely Second Life, was used to create a
teaching center for a university course on business strategies.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer Assisted
Education.

Keywords
Serious games, Second Life, Business Strategies, Scripted
Animations

1. INTRODUCTION
The current generation of students is often referred to as millenial
students [15]. Generally, these students are very technologically
literate and see technology as a necessity in most aspects of their
life, including learning [12]. For example, consider the ECAR
2009 survey [5], which gathers information about how skilled
undergraduate students believe they are with technologies; how
they perceive technology is affecting their learning experience; and
what their preferences are for Information Technology (IT) in
courses. The authors of this survey report, amongst other findings,
that all categories of students (especially millenial students who
are early adopters of technology) have a strong preference to "learn
through programs they can control (such as video games,
simulations, etc.)"

This point is particularly important: Traditional teacher-centered
learning methods and theories typically localize control almost
exclusively 'in the hands' of the instructor (who dictates and

verifies what is learnt and how and when it is). Engaging the
students is therefore often reduced to a minimum. Similarly, any
use of IT during lectures is also largely controlled by the instructor.
In our opinion, it is this near-total appropriation of control by the
instructor that clashes with the expectations of millenial students.
Let us elaborate.

Millions of people, including countless millenial students, already
spend time in virtual environments. For example, the virtual
community Second Life [18] has over 9 million residents. Regular
users spend an average of 22 hours online each week in these
virtual communities [20]. This almost irresistible appeal of having
one's self become immersed in a virtual world via an avatar has
deep psychological origins. Near-total controllability is one of the
most important aspects of such appeal. Consequently, a successful
introduction of games and simulations in teaching depends first
and foremost on the willingness of the instructor to relinquish
some control while still carrying out the pedagogical mandate at
hand. In particular, engaging millenial students requires that the
instructor develop 'interesting' (i.e., immersive) material in the eyes
of students. But this is not sufficient: no learning method is
complete without proper evaluation of what Dali [3] calls the
'learning results'. And, in the case of millenial students, this
presents a problem because another charateristic of these students
is that they want to spend less time on tasks and reach success with
relatively little effort [15]. Consequently, assignments and exams
should downplay the notion of failure (and its negative
repercussions in real life) and replace it with the notion of a
challenge (which, is expected to be eventually met).

Thankfully, it is widely acknowledged that games greatly
encourage (the avatars of) individuals to stand up to challenges that
they might not have considered under similar circumstances in real
life.

This suggests that a learning method targeted towards millenial
students should rest on game-based learning. In this paper, we
introduce such a method. First, game-based learning is explored in
subsection 2.1. But what kind of teaching material would lend
itself to such a method? What would be an environment conducive
to student engagement and discovery? What form would an
evaluation take? Those are the questions we investigated in a very
specific context, namely, Second Life. More precisely, in the rest
of this paper, we report on how Second Life was used for
specifically teaching an undergraduate course on business
strategies at UOIT. Thus, hereafter, we will use the term 'student'
to refer to university students. We will first briefly summarize, in
subsections 2.2 and 2.3 respectively, the key characteristics of
Second Life and of the teaching material for the target course.

143

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

...$10.00
ACM FuturePlay 2010, May 6-7, 2010, Vancouver, BC. Canada
Copyright 2010 ACM 978-1-4503-0235-7

Then, in section 3, we will motivate and describe our teaching
environment, and explain why it proceeds from the nature of the
teaching material itself. We will also discuss what types of
evaluations are supported. We conclude in section 4 with some
final remarks about this whole experiment.

2. BACKGROUND
2.1 Beyond Traditional Teaching
Traditional teaching/learning environments (be they industrial or
academic) are often viewed as 'boring' by millenial students (due to
their typical lack of engagement from the students). As early
adopters of technology, such students exhibit a new mindset
towards learning: for them, doing is preferred to knowing, and
achieving interactive, experiential learning is a necessity for their
educational success. Furthermore, as previously mentioned, they
appreciate the use of technology in learning.

In contrast to traditional teaching/learning environments in which
control rests almost exclusively with the instructor, online video
games offer a learner-centered approach to learning: the
learner/player controls the learning process through interactions
with the game. In particular, Kolb [8] who makes a most important
remark when he states that games inherently support experiential
learning by providing students with concrete experiences and
active experimentation. For us, such an observation is especially
important because, in our specific context of a university
undergraduate course, insisting on experimentation indirectly
emphasizes the necessity for an evaluation component in a game-
based approach to learning. In turn, this suggests that one category
of games, namely so-called 'serious' games, may be best suited for
game-based learning in such a context.

Although there is no precise definition of what constitutes a
'serious game', this expression typically refers to online games that
are used for training (e.g., medical, nursing), simulation or
education purposes. Such games aim to provide highly
sophisticated simulations for specific domains and their scenarios.
They present such scenarios in a complex interactive narrative
context that is coupled to interactive elements that are designed to
engage the trainees. Generally, goals and challenges require
trainees to solve domain-specific problems that the trainees are
unlikely to have encountered, thus increasing both interest and
immersion. In fact, the high level of sophistication offered by
simulations in serious games allows trainees to be exposed to
complex situations that would be difficult, if not impossible, to
recreate in reality (due to a number of factors including cost, time,
ethics, safety, etc.). Thus, beyond meaningful play for training
purposes, serious games readily support the notion of evaluation
through the use of challenges that confront trainees with possibly
novel problematic scenarios that require solutions drawing on
newly acquired skills, while being engaged in the game.

For example, Michael and Chen [14] discuss an experiment in
which one group of students was taught in the traditional
instructor-led way, while another was taught the same concepts
through a serious video game. These authors first observe that
students learning through the use of a serious game were found to
be extremely engaged in the subject matter and much more
attentive than those in the other group. Second, the work of these
authors leads them to conclude that serious games offer not only
improved self-monitoring, problem recognition and problem

solving, but also improved short- and long-term memory, as well
as increased social skills and increased self-efficacy! Other
research on the role of serious games in education (e.g., [2, 16])
support similar conclusions: such rich simulation and gaming
environments (such as Second Life) offer complex and diversified
interactive approaches to learning and outcomes and, most
importantly, foster active learning, which, in our opinion, is a
fundamental expectation of millenial students.

The question then is how to exploit the potential of Second Life for
teaching millenial students.

2.2 Second Life
Second Life [18] is a free online virtual world that is both mature
and familiar to many of the students of the millennial generation.
In addition, several major corporations (e.g. IBM) have chosen
Second Life as their platform for the 3D Internet.

In essence, Second Life is a massive multiplayer online simulation
environment (as opposed to a 'game' per se). Its nature lends itself
to a multitude of immersive pedagogical usages [4, 19]. Moreover,
the infrastructure behind Second Life eliminates many problems
that less-used tools and environments face. In particular, having to
support literally millions of simultaneous users, the server
architecture of Second Life greatly contributes to ensuring
availability and reliability of a learning environment (unlike
'home-made' and/or 'experimental' pedagogical tools and
simulations). Moreover, because users can share in real-time a
common interactive environment, Second Life fully supports user
collaboration for shared tasks, a capability that is relevant to the
design of assignments/projects.

In the context of this paper, a crucial ability of Second Life is its
support for the creation and experiencing of scripts. More
precisely, Second Life comes with LSL, the Linden Scripting
Language [10], an event-oriented programming language for
specifying the behavior of objects in Second Life. It must be
emphasized that LSL provides general purpose programming
semantics comparable to those of programming languages such as
Java (including type checking and casting!). In fact, it is possible
to program extremely rich and diversified scripted animations.

Scripts are pervasive in Second Life as they capture how an object
looks, moves, communicates and interacts with avatars. Second
Life also allows the importation of images, videos and animations
from external sources. Ultimately, the overall functionality of
Second Life supports experiential learning, which is extremely
arduous to achieve by hand or with slides, and is generally
prohibitively time-consuming to attempt with stand-alone tools
(whose learning curve may be very high). Furthermore, it must be
emphasized that Second Life also provides a test harness [11] for
LSL scripts, another capability that is relevant to the design of
assignments/projects/exams.

2.3 The 36 Stratagems
The “Business Strategies for Professionals” course at UOIT
examines the notion of strategy and its related concepts. The focus
is on strategic management: choosing and/or designing a viable
strategy, and monitoring strategic performance. The main
characteristic of this course is that it discusses at length how to
apply traditional Chinese military strategy to business. More
specifically, the course investigates the relevance and applicability

144

to the business world of the Thirty-Six Stratagems put forth by Sun
Tzu in his famous book "The Art of War" [23]. The Thirty-Six
Stratagems are divided into six groups containing six stratagems
each.

The first three groups generally describe strategies for use in
advantageous situations, whereas the last three groups contain
stratagems that are more suitable for disadvantageous situations.
These stratagems take the form of 36 Chinese proverbs related to
36 battle scenarios in Chinese history and folklore, predominantly
of the Warring States Period and the Three Kingdoms Period.

Each stratagem (in bold below) is typically accompanied by a short
domain-specific (e.g., war) description (in italics below). For
example, stratagem 28 [21]:

Remove the Ladder when enemy has ascended to the roof

With baits and deceptions, lure your enemy into treacherous
terrain. Then cut off his lines of communication and avenue of
escape. To save himself, he must fight both your own forces and
the elements of nature.

Most importantly, in the context of the target business course at
UOIT that uses our learning environment, we remark that several
authors have explored the relevance and applicability of the 36
stratagems to the business world (e.g., [9, 13]). On the one hand,
some researchers have focused on producing specific examples
(which we will call instantiations) of these stratagems in the
domain of business. On the other hand, other authors [22] have
aimed at replacing the short war-specific descriptions provided by
Sun Tzu for each stratagem, with short descriptions specific to the
domain of business.

As will be explained shortly, our proposal rests in part on this
distinction between the a) a stratagem, b) its description in a
particular domain, and c) specific examples of the use of this
stratagem in a particular domain.

3. TEACHING PATTERNS WITH SECOND
LIFE
3.1 About the Teaching Material
The design of a learning approach may proceed in many ways. The
approach we propose stems from the analysis of the teaching
material we carried out and now summarize.

Initially, as suggested in subsection 2.3, we can classify what we
must teach into 5 categories:

 • the names of the 36 stratagems
 • a description of each stratagem in the domain of war
 • a description of each one in the domain of business
 • instantiations of each stratagem in the domain of war,

and
 • instantiations of each stratagem in the domain of

business.
Semantically, the domain-specific description of each stratagem
serves as a factory (or generator) for the production of one or more
distinct specific examples (thereby explaining why we shall refer
to such examples as instantiations of a stratagem in a domain).

From a pedagogical standpoint, the task at hand is one of learning
by analogy [7]. Cognitively, analogy is the process of transferring
concepts from one domain to another [Ibid]. So, in the context of

our business strategies course, learning proceeds from first
'mastering' the 36 stratagems in one (source) domain (the war
domain), and then being able to use this new knowledge to
conceptualize the same stratagems in a target domain (the business
domain). This process imposes a partial temporal flow to the order
of presentation of the material: first a strategy's name and its
source-domain description, then examples of this strategy in the
source domain, then and only then the target-domain description
and its corresponding examples (in no specific order). As will be
explained later, this temporal flow also influences the nature of
evaluation of the learning results in our proposal.

For now, it is important to understand that adopting “learning by
analogy” as the pedagogical foundation of our approach does
impose restrictions on how the stratagems/strategies are to be
presented. More precisely, we are constraining all descriptions and
instantiations of the stratagems to be expressed with respect to
either the source or the target domain. In other words, it will not be
acceptable to have some of the 36 stratagems be illustrated using
one source domain (e.g., armies at war) and others using a distinct
source domain (e.g., courtiers intriguing). Analogy is about a
conceptual transfer from a single source domain to a single target
domain. Thus, all descriptions and examples must be consistent in
their commitment to a same (source or target) domain.

“Learning by analogy” also leads to a key aspect of our proposal:
the idea of applying a set of strategies to a source and then to a
target domain suggests that this set of strategies forms what
Christopher Alexander has called a pattern language in his seminal
work in architecture [1]. There are two consequences to thinking of
Sun Tzu’s stratagems as patterns:

First, the notion of patterns has been researched in several different
fields. In software engineering, the work of Gamma et al. [6] has
emphasized the need for the standardization in the presentation of
patterns. This is highly desirable from a pedagogical standpoint:
using a specific format for the description of the stratagems (e.g.,
name, short description, motivation, structure, participants,
interactions, and tradeoff analysis, as in [6]) should improve
memorization, as well as ease comparison between these patterns.

Second, given a domain, the description of each pattern defines de
facto a domain-specific script in the sense used by Schank and
Abelson [17], namely: a generalized episode (in this case of a
stratagem). Semantically, for these authors, a script defines some
roles (i.e., participants) and a sequence of actions. Consider again,
for example, the previously mentioned stratagem 5: Loot a
burning house. In the domain of war, all instantiations of this
stratagem would follow a script such as:

Identify roles 'looter' and 'enemy'

Enemy is in weak state
Looter attacks enemy

Looter eliminates enemy
Script 5W: Loot a Burning House

This script should be viewed as a blueprint (or factory [6]) from
which all examples in this domain must be instantiated. From this
viewpoint, scripts indeed fit well in Alexander's [1]
conceptualization of patterns as generators (of
instances/instantiations in a domain). In fact, scripts correspond to

145

what Gamma et al. [6] capture in an interaction diagram between
the different participants of a pattern.

We suggest that conceptualizing a strategy (or stratagem) as a
script allows us to refine what we mean by 'learning by analogy'. In
the context of our target course, understanding any one of the 36
analogies will consist in 'transferring' the script associated with one
of the 36 stratagems from the domain of war to the domain of
business. It is possible that the transfer reduces to the complete
reuse of the source script (i.e., the names of roles and actions
remain unchanged). Most often, however, while the ordering of the
steps of the script remains the same, roles and actions will be
relabeled from the source domain to the target one. For example,
for stratagem 5:

- The 'looter' becomes the 'hostile company' and the 'enemy', the
'competitor'.

- Step 2 merely requires the target competitor to be in a weak
state (i.e., no need to refer to a military state).

- The action 'attack the enemy' in the source script can remain
the same, or can be associated with one or more refinements (i.e.,
specializations) of itself in the domain of business (e.g., 'perform
hostile take-over of competitor', 'seek bankruptcy of competitor',
etc.).

- Finally, 'Looter eliminates enemy' becomes 'Hostile company
puts competitor out of business'.
The key requirement is that the steps of the script in the source
domain remain the same in order for the analogy to be easily
conceptualized. Without such a constraint, that is, if we allow the
source script and the target script to be quite different structurally,
then the notion of analogical transfer is considerably blurred and,
in fact, the crucial point that the two scripts are for a same strategy
may be lost!

It must be emphasized that the onus is on the instructor to develop,
in both the source and the target domain, scripts and examples
derived from them. These should be conducive to learning, that is,
they should highlight the commonalities and the analogical transfer
between such scripts (and their corresponding examples).

Furthermore, in the learning approach we propose, scripts
constitute the ideal vehicle for immersion through animations. We
explore this idea next.

3.2 Animated Scripts for Immersion
Our pedagogical proposal for the game-based analogical learning
of strategies rests on engaging students through the use of
animations illustrating the scripts associated with such strategies.
This is not a trivial task. In particular, the description, scripts and
examples of the strategies to teach must be domain specific. Since
animations are to be associated with scripts, it follows that
animations too must be domain specific. We take this requirement
to entail that all animations in a domain must take place in the
same animation context. For example, for the domain of war, we
require that all animations be set in the context of a battlefield.

Deciding on a domain-wide animation context is a difficult choice
that an instructor (as subject expert) faces. In essence, the
challenge is to have all scripts of a domain 'fit' this shared
animation context. For example, in the domain of war, all scripts
must have their roles and actions expressed in terms of two (or
more) armies in battle. This can require a significant amount of
creativity for some stratagems. Consider, for example, 'chaos'
stratagems such as: 19: Remove the firewood from under the
pot (i.e., steal someone's thunder) and 20: Catch a fish while the

water is disturbed (i.e., create confusion and exploit it to your
enemy's detriment). In practice, once the domain-wide animation
context is chosen, then all roles and actions of all scripts must be
'fitted' to that context. Moreover, this is not a purely conceptual
task: each action of a script must allow for one or more
visualizations.

To illustrate this discussion, let us go back to the script given in 3.1
for stratagem 5. Step 2 states that the enemy reaches a weak
military state. But, as is obvious from the short description for this
stratagem given in 2.3, 'famine', 'corruption' and 'crime' may be
causes for the weak state of the enemy. A script being a generator
of examples, it is important that it is written with sufficient
abstraction to carry out its purpose as a factory of examples. In
other words, replacing step 2 in Script 5W with something such as:

Enemy is decimated by famine
is not desirable as it is too specific. More generally, the causes of
actions are best left out of scripts and instead be used to generate
specific instantiations of a script.

Most importantly, 'fitting' each role and action in a common
context is not sufficient: the visualization of all such roles and
actions must be addressed. This also requires creativity. For
example, soldiers that are either starved, or corrupted, or murdered
can use colors distinct from the one used to denote 'normal'
soldiers in animations. More generally, the use of color to
distinguish the possible states of some entity is widely used in
games, software modeling tools, etc.

The visualization of actions is typically more challenging.
Consider, for example, the following specification for an action of
statagem 20:

Spies from army on left of battlefield confuse soldiers on the

front line of army on right of battlefield.

Such a specification illustrates several of the representational
pitfalls to avoid in writing actions:

1) There should not be an overabundance of roles across the
domain (if spies are one of the 50 roles used in the domain of war,
and each role has a color associated with it, it is likely the user will
not recognize the role from the color...).

2) Explicit references (such as 'army on left' of the battlefield)
should be avoided: instead the names of the participants in the
strategy should be used to improve learnability.

3) The expressions 'soldiers on the front line' is a role in disguise.
It is overspecific: a script is a generator of examples and thus
should not overcommit in terms of its visualization. For this
stratagem, the action of 'confusing' the enemy should not be
limited only to the 'front line' of the enemy army.

4) The action 'to confuse' is meaningless unless it is associated
with some kind of animation. It is quite easy to capture (and
remember) soldiers fighting and soldiers dying. The action of
'spies confusing enemy soldiers' is definitely less obvious to
visualize, though always possible. Perhaps the spies could do
'jumping jacks' or make tables spin.

In the end, the instructor who creates a script must produce one
that allows several possible instantiations. Consequently, assuming
that the role named 'strategist' refers to the army that applies

146

stratagem 20, the following wording for steps 2 and 3 of this
stratagem:

2) Strategist creates confusion in enemy's army
3) Enemy is in weak state

is more desirable because step 2 can be associated with several
animations (e.g., inducing enemy soldiers into a confused state1 by
having the strategist carry out confusing maneuvers such as going
two steps forward and then two steps backwards repeatedly, or
detonating one or more bombs in the enemy's positions) and also
because step 3 is being reused over several scripts.

At this point of the discussion, we remark that generic steps such
as 3) above (which we have already encountered in script 5W), are
ideally transferred to equivalently generic steps in the target
domain. So, in the business domain, stratagem 20 could be:

1) Identify roles 'strategist' and 'competitor'

2) Strategist creates confusion in competitor's company
3) Competitor is in weak state

4) Strategist attacks competitor
5) Strategist hurts competitor's business

Script 20B: Catch a fish while the water is disturbed

In the domain of business, a multitude of tactics could be used to
generate confusion (e.g., misinformation). Similarly, a company
attacking and hurting another can take many forms. Thus, the
proposed script retains the generative nature of its equivalent in the
domain of war, which makes the conceptual transfer quite obvious.

Furthermore, emphasizing the conceptualizations of scripts as
generators clarifies the relationship between scripts and
animations: an animation always corresponds to a particular
instantiation of a script within a domain. For example, consider
script 20W and its equivalent 20B (given above):

1) Identify roles 'strategist' and 'enemy'

2) Strategist creates confusion in enemy's army
3) Enemy is in weak state

4) Strategist attacks enemy
5) Strategist defeats enemy

Script 20W: Catch a fish while the water is disturbed

In the context of a battlefield, as previously stated, creating
confusion and having the enemy confused can both be animated in
many different ways. But step 3 is highly reusable across the 36
stratagems. Therefore, in order to emphasize this common step
across several stratagems, a 'standard' animation could be
associated with it. The same guideline can apply to steps 4 and 5,
which are also highly reusable step across several scripts (e.g., all
soldiers combat one against one for step 4, and all enemy soldiers
lie on the battlefield for step 5). One advantage to having a
'standard' animation for a step reusable across a domain is that it
allows the instructor to assign as an exercise the development of

1 that can be represented as a color or an action (e.g., shaking head,

going in circles) of the confused soldier.

more specific animations for the same step in different strategies
(as will be further discussed in 3.4)

Once animations have been associated with scripts in the source
domain, the same must be done in the target domain, which
presupposes: i) all source scripts have been transferred/adapted to
the target domain, and ii) a single animation content has been
selected for that target domain. For example, in the business
domain, this shared animation could consist of:

1) two (or more) boardrooms (one per company), each with several
screens monitoring share prices, sales, productivity, etc. , as well
as news (in order to visualize misinformation), and

2) a pool of employees (e.g., in a cafeteria) of each company (in
order to visualize employee movement across companies).

Returning to stratagem 20, step 2 could again be animated in
several ways (e.g., feed contradictory information about the
strategist's company to the newwire of the competitor's company,
send employees to misinform). However, as in the source domain,
steps 3, 4 and 5 of script 20B would be reusable and thus each
should be associated with a single animation across the domain.
The point to be grasped is that, ideally, the organization of
animations in the target domain would be highly similar to the one
in the source domain (in order to facilitate the learning of the
analogy between the two domains).

Ultimately, the combined usage of scripts and animations a) favors
the immersion of students in the teaching material and b) leads to a
systematic student evaluation method. Both of these topics will be
addressed in 3.4. First, we will briefly overview the proposed
teaching environment. Please use a 9-point Times Roman font, or
other Roman font with serifs, as close as possible in appearance to
Times Roman in which these guidelines have been set. The goal is
to have a 9-point text, as you see here. Please use sans-serif or non-
proportional fonts only for special purposes, such as distinguishing
source code text. If Times Roman is not available, try the font
named Computer Modern Roman. On a Macintosh, use the font
named Times. Right margins should be justified, not ragged.

3.3 The Teaching Environment
Given the teaching material for our experiment originates in Sun
Tzu's well-known Art of War, we implemented our virtual learning
environment in the form of a small village in ancient Asia.

At the entrance of this village, the user finds a configuration we
will reuse systematically: 2 screens, the left one offering a textual
presentation and the right one a video synchronized with this
presentation and explaining it. We will refer to this configuration
as a slides/video synchronized pair (hereafter SVSP). At the
entrance of the village, the SVSP addresses the organization of the
course (i.e., outline, logistics, organization of the village). To the
right we find 2 teleport posts. The red one carries the user back to
the university grounds from which this course was accessed. The
blue post brings the user to the shared battlefield, which will be
discussed shortly.

Once through the gate of the course, the user can circulate within
the village.

The village consists of 36 traditional Chinese buildings: one for
each of Sun Tzu's 36 stratagems. Each building clearly identifies
the name of the stratagem it corresponds to. The motivation for
such an organization is simple: each stratagem deserves a separate

147

building because, as previously mentioned, each stratagem is
associated with a distinct script in the domain. However, inside
each building, the user will find the same learning configuration,
namely an SVSP.

The decision to a homogeneous approach to the presentation of the
teaching material proceeds from the nature of the latter: we are
dealing with 36 members of a same domain, not 36 unrelated
topics. Consequently, all stratagems are presented in the same way.

At this point, it must be emphasized how SL makes it easy to
construct the village, to set up an SVSP at the entrance of the
village and in each building, to upload the presentation and video
for each SVSP, and to synchronize them. Furthermore, given it
was observed that millenial students have a strong preference for
learning through searching Internet, this functionality is offered via
the left screen of any SVSP.

Completion of the presentation found in a building gives access to
two teleports. The first one is to the prespecified animation of the
stratagem (associated with that building) in the source domain; the
second, for the target domain. In the context of the Business course
at hand, recall that our source animation context is a battlefield.

Our battlefield involves two (or more) armies, each with its own
distinct color. The battlefield can be visualized from different
perspectives. In fact, the avatar of a student can be placed
anywhere on this battlefield.

Each army is minimally composed of soldiers and a general. An
army may also include special 'role' units, such as the spies.

Furthermore, it is straightforward to associate different states and
actions with units of an army. While different graphical
representations (e.g., soldier versus general) and colors can be used
to denote roles and states, actions in animations must be specified
as specific movements. Consider, for example, fighting. In its
simplest form, this consists in having a soldier of one army
'bumping' into a soldier of another army.

More generally, as will explained shortly, animating all 36
strategies in a single domain consists in i) establishing all roles,
states, and actions used by the scripts of this domain, ii)
associating some graphical representation and/or animation snippet
to each of these, iii) developing an animation for each strategy and
iv) uploading the relevant animation for each one of the 36
buildings of our village. This process, which is discussed in the
next subsection, amounts to defining what we will call a domain
specific animation language (hereafter DSAL).

For now, the point to be understood is that the semantic richness of
such a DSAL is independent of the level of sophistication of the
graphics used in animations. In other words, we insist, it is entirely
feasible to develop adequate animations for different domains even
using simplistic graphics. This is important because simpler
graphics entail less LSL programming and faster course set up. But
two crucial questions must be immediately addressed:

First, do simpler graphics increase the possibility of students
developing their own animations? The answer is no. The
development of domain-specific animations by an instructor or a
student is independent of the level of sophistication of such
graphics. In other words, as will be explained below, the amount of
work is the same, whether using simplistic or complex graphics.
Conversely, the amount of work devoluted to the LSL programmer
(required to implement the DSAL) is directly proportional to the

complexity of such graphics. In other words, it is the course
instructor who must define the semantics of a DSAL, but it is left
to an LSL expert to make this DSAL operational.

Second, do simpler graphics decrease student immersion? The
short answer is 'yes somewhat'. Consider, for example, the action
of fighting. Peg-soldiers bumping in one another is a simple
(esthetically rather unsatisfying) way of denoting this action.
Having soldiers wielding swords is much more captivating.
However, in the context of a university course, students feedback
indicates they understand that the graphics are not the focus of the
learning process; scripts are. In other words, students pay attention
to the animation of the steps of a script, in the source domain, then
in the target domain. In our current implementation, such an
animation is uninterruptable, and thus non-interactive. That is,
while the animation can optionally display the number of each step
(in the top right corner of the animation), it runs without any
possibility for a student to intervene. Some students complain
about this lack of interaction: they would like to have an animation
environment in which they could interactively control the behavior
of the participants of this animation. While this is technically
feasible, we have purposely ruled it out for now. The reason is
simple: a script is a pre-established sequence of actions and states
across a set of participants; it is immutable. Put another way, from
a pedagogical viewpoint, there is no room for interaction in the
animation of a script. From our viewpoint, should we, for example,
let a student control the sword of a soldier or arbitrarily move the
latter, we would lose both the notions of a script and of a DSAL,
and, ultimately, the whole learning approach we are proposing. Put
simply, a truly interactive animation would not be constrained to
respect its script, which is totally unacceptable in the context of our
learning approach! Consequently, in summary, we advocate the
use of graphics that are capable of offering all the semantics of a
DSAL. Any further sophistication to these graphics may represent
a significant investment of time and money (in LSL development)
while not significantly improving the learning of the relevant
scripts and analogies. And, in the context of learning strategies via
scripts, interactive animations of such scripts are ruled out a priori.

To conclude this overview of our learning method, we must now
address the issue of the implementation of a domain specific
animation language and how this affects our approach to student.2

3.4 Creating Domain Specific Animations in
Second Life
As mentioned earlier, the set of scripts of a domain inherently
define the roles/participants, states, and actions relevant to the
animation language of this domain, a DSAL. In other words, a
visualization convention must be created for each such role, state,
and action. This task is carried out by the domain expert, namely
the teacher.

Now recall that Second Life offers LSL, a comprehensive scripting
language. Thus, in Second Life, the task of animating scripts
ultimately consists in programming them in LSL. To illustrate this
point, consider the LSL code for having a single soldier die:

2 If necessary, you may place some address information in a

footnote, or in a named section at the end of your paper.

148

//- UNIT DIE procedure
unitDie()
{
 speed = 0;
 float rotAmount = llSin(50 * DEG_TO_RAD);
 float num = llFrand(rotAmount);
 float num_2 = rotAmount - num;

 // Create a random rotation that
 // lies on the X-Y plane
 rotation dieRot = <num, num_2, 0, rotAmount>;
 llSleep(0.25);
 llSetPos(<currentPosition.x,
 currentPosition.y, deadZ>);
 llSleep(0.25);
 llSetLocalRot(dieRot);
}

This procedure is called in a multitude of scripts. For example, in a
script in which several groups of soldiers have been defined, we
find the following partial code:

// Large force of the red army
group 9;
position 113, 34, facing 270; colour red; move forward 104,
speed 0.5; fight 55;
// Large force of the blue army
group 8;
position 4, 37 facing 90; colour blue; move forward 103,
speed 0.5; fight 54; die;

This is not LSL code; this is code expressed in the DSAL for the
war domain. For example, fight and die are procedures of that
DSAL that have LSL definitions. It must be emphasized that each
DSAL comes with its features and restrictions. For example, in the
war domain, our DSAL has positioning use absolutes coordinates
(while Second Life offers a third axis). On the other hand, timing
delays, number of soldiers, of spies, grouping of units, etc. are
specifiable by the user.

Interestingly enough, as discussed in 3.2, DSALs for war and
business share some common vocabulary (e.g., creating confusion,
being in a weak state, attacking someone). From a pedagogical
viewpoint, this is important as it helps reducing the learning curve
for a DSAL. But recall that the animations for these common states
and actions will likely be totally different from one domain to
another.

From the above LSL and DSAL samples, it is clear that significant
programming expertise is required to use the former but not the
latter. And it is unlikely a course instructor will be an LSL
programmer. Consequently, as previously mentioned, it will be up
to an instructor to i) define the scripts for both source and target
domains, and then, for each domain, to ii) specify a corresponding
DSAL (which not only identifies roles, states and actions but also
describes their visualization). Then the LSL programmer will have
to implement this DSAL (e.g., coding for war, that spies are in
black, that 'to confuse' consists in starting to fight and then quickly
slightly retreat, that being weak corresponds to having a low
number of soldiers, or encircled, etc.). It is important to remark
that, in practice, the DSAL will have essentially closed semantics:
no new action, state or participant can be added to the DSAL and
immediately used in the animations once these animations have

been uploaded. In other words, fine-tuning of and possible
additions to the DSAL are not to be planned frequently unless the
LSL programmer is readily available. Ultimately, the onus is on
the course instructor to define a DSAL that not only handles this
instructor's animations in a domain, but also leaves rooms for
students to contribute their own animations in that domain. This
idea leads us to now consider how students can be evaluated using
the proposed method. Assuming students are not fluent in LSL
programming, two forms are evaluations are possible.

First, traditional evaluations consist in questions asked of the
students. These can take the form of questionaires to be filled in
each building. For example, once and only once a student has
listened to the teaching material in a building and looked at the
animation for the source domain and the one for the target domain,
this student could be asked questions via the slides/video
synchronized pair of that building. The performance of the student
on such exams could even determine whether exiting from the
current building is allowed! Alternatively, throughout the village,
non-player characters could challenge an avatar to provide an
answer to such questions, in exchange for some collectable
valuable [14] (such as those required to be admitted in a guild of
Sun Tzu's disciples). This second approach has the merit of
presenting millenial students with a challenge, which is typically
preferred to exams per se. We did not develop such traditional
evaluation schemes in our current prototype and thus will not
discuss them further.

Instead, the evaluation approach we have adopted requires that
students develop scripts and/or animations. More specifically, we
have asked students to develop a) alternative animations for
stratagems in the domain of war and b) missing scripts and
animations in the domain of business.

Finally, it should be emphasized that the functionality offered by
Second Life readily allows all students to share the same learning
environment. More precisely, all students visit the same village
and several can observe simultaneously the same animation.
Cooperation between students is also entirely supported in Second
Life (in which communication between avatars is the central
socializing concept).

4. CONCLUSIONS
In this paper, we report on how Second Life was used to create a
teaching center for a university course on business strategies. More
specifically, this course systematically develops analogies between
the military stratagems found in Sun Tzu's "Art of War" and
modern-day business strategies. Learning by analogy suggests
having these teaching objects conceptualized as scripts applicable
to different domains (such as war and business). The hands-on
learning approach we propose rests on having both teacher and
students capable of producing animations for each strategy. To do
so, for each domain, a simple animation language targeting non-
programmers is developed (and 'game-play' consists in developing
animations). Having students challenged to demonstrate their
understanding of the teaching material through the creation of
animations constitutes a novel approach to the evaluation of
students, one that favors student engagement and collaboration.
Also, having students create animations ultimately verifies the
completeness and correctness of the Domain Specific Animation
Language these students use.

149

5. ACKNOWLEDGMENTS
Support from the Natural Science and Engineering Research
Council of Canada is gratefully acknowledged. Wealso thank the
UOIT Teaching Innovation Center, IBM's Global Business
Services (GBS) and Centre For Advanced Studies (CAS) for their
co-operation and financial support.

6. REFERENCES
[1] Alexander, C. The Timeless Way of Building, Oxford

University Press, 1979.

[2] Annetta, L., Murray, M., Laird, S., Bohr, S. and Park, J..
Serious games: Incorporating video games in the classroom,
EDUCAUSE Quarterly Magazine, Vol. 29, No.3, 2006.

[3] Dali, H., Design and Implementation of E-learning
Performance Evaluation System, International Conference on
Computer Science and Software Engineering, Volume 5:376-
380, December 2008.

[4] Delwiche, A.,Massively multiplayer online games (MMOs) in
the new media classroom. Educational Technology Society, 9
(3):160-172, 2006.

[5] ECAR 2009 report , DOI=
http://net.educause.edu/ir/library/pdf/ers0906/rs/ERS0906w.
pdf

[6] Gamma, E., Helm, R. Johnson R., and Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Reading, 1994.

[7] Gentner, D., Holyoak, K. J. and Kokinov, B. K., The
Analogical Mind: Perspectives from Cognitive Science, MIT
Press, 2001.

[8] Kolb, D., Experiential learning: experience as the source of
learning and development. Englewood Cliffs, New Jersey:
Prentice-Hall, 1984.

[9] Lee, S.F., Roberts, P., Lau, W.S. and Bhattacharyya, S.K.,
Sun Tzu’s as business and management strategies for world
class business excellence evaluation under QFD
methodology, Business Process Management Journal,
Volume: 4(2) 96 - 113, 1998.

[10] Linden Scripting Language Portal, DOI=
http://wiki.secondlife.com/wiki/LSL_Portal

[11] Linden Scripting Language Test Harness, DOI=
http://wiki.secondlife.com/wiki/LSL_Test_Harness

[12] Mangold, K., Educating a new generation: Teaching baby
boomer faculty about millenial students, Nurse Educator,
32(1):2123, 2007.

[13] McNeilly, M., Sun Tzu and the Art of Business: Six Strategic
Principles for Managers, Oxford University Press, 2000.

[14] Michael D. and Chen, S., Serious Games: Games That
Educate, Train and Inform. Thomson Course Technology,
Boston, MA. USA, 2006.

[15] Monaco, M. and Martin, M., The Millennial Student: A New
Generation of Learners. Athletic Training Education Journal,
2:42-46, 2007.

[16] Ruben, D., Simulations, games, and experience-based
learning: The quest for a new paradigm for teaching and
learning. Health Education Research, Theory and Practice,
30(4): 498505, 1999.

[17] Schank R.C. and Abelson, R., Scripts, Plans, Goals, and
Understanding. Earlbaum Assoc., Hillsdale, NJ, 1977.

[18] Second Life, an Online 3D Virtual World. Linden Lab. DOI=
http://secondlife.com

[19] Second Life in Education, Exploring the Educational Uses of
Second Life. DOI=
http://sleducation.wikispaces.com/educationaluses

[20] Science Notes 09 DOI =
http://scicom.ucsc.edu/SciNotes/0901/pages/avatar/avatar.h
tml

[21] Thirty six stratagems DOI =
http://en.wikipedia.org/wiki/Thirty-Six_Stratagems

[22] Thirty Six Stratagems as business strategies DOI=
http://www.businesscoachingexecutive.com/36-
stratagems.htm

[23] Wing, R.L., The Art of Strategy: A New Translation of Sun
Tzu's Classic The Art of War, Main Street Books, 1988.

150

